]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/namespace.c
Merge tag 'xfs-4.18-merge-10' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[mirror_ubuntu-hirsute-kernel.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
29
30 #include "pnode.h"
31 #include "internal.h"
32
33 /* Maximum number of mounts in a mount namespace */
34 unsigned int sysctl_mount_max __read_mostly = 100000;
35
36 static unsigned int m_hash_mask __read_mostly;
37 static unsigned int m_hash_shift __read_mostly;
38 static unsigned int mp_hash_mask __read_mostly;
39 static unsigned int mp_hash_shift __read_mostly;
40
41 static __initdata unsigned long mhash_entries;
42 static int __init set_mhash_entries(char *str)
43 {
44 if (!str)
45 return 0;
46 mhash_entries = simple_strtoul(str, &str, 0);
47 return 1;
48 }
49 __setup("mhash_entries=", set_mhash_entries);
50
51 static __initdata unsigned long mphash_entries;
52 static int __init set_mphash_entries(char *str)
53 {
54 if (!str)
55 return 0;
56 mphash_entries = simple_strtoul(str, &str, 0);
57 return 1;
58 }
59 __setup("mphash_entries=", set_mphash_entries);
60
61 static u64 event;
62 static DEFINE_IDA(mnt_id_ida);
63 static DEFINE_IDA(mnt_group_ida);
64 static DEFINE_SPINLOCK(mnt_id_lock);
65 static int mnt_id_start = 0;
66 static int mnt_group_start = 1;
67
68 static struct hlist_head *mount_hashtable __read_mostly;
69 static struct hlist_head *mountpoint_hashtable __read_mostly;
70 static struct kmem_cache *mnt_cache __read_mostly;
71 static DECLARE_RWSEM(namespace_sem);
72
73 /* /sys/fs */
74 struct kobject *fs_kobj;
75 EXPORT_SYMBOL_GPL(fs_kobj);
76
77 /*
78 * vfsmount lock may be taken for read to prevent changes to the
79 * vfsmount hash, ie. during mountpoint lookups or walking back
80 * up the tree.
81 *
82 * It should be taken for write in all cases where the vfsmount
83 * tree or hash is modified or when a vfsmount structure is modified.
84 */
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
86
87 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
88 {
89 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
90 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
91 tmp = tmp + (tmp >> m_hash_shift);
92 return &mount_hashtable[tmp & m_hash_mask];
93 }
94
95 static inline struct hlist_head *mp_hash(struct dentry *dentry)
96 {
97 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
98 tmp = tmp + (tmp >> mp_hash_shift);
99 return &mountpoint_hashtable[tmp & mp_hash_mask];
100 }
101
102 static int mnt_alloc_id(struct mount *mnt)
103 {
104 int res;
105
106 retry:
107 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
108 spin_lock(&mnt_id_lock);
109 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
110 if (!res)
111 mnt_id_start = mnt->mnt_id + 1;
112 spin_unlock(&mnt_id_lock);
113 if (res == -EAGAIN)
114 goto retry;
115
116 return res;
117 }
118
119 static void mnt_free_id(struct mount *mnt)
120 {
121 int id = mnt->mnt_id;
122 spin_lock(&mnt_id_lock);
123 ida_remove(&mnt_id_ida, id);
124 if (mnt_id_start > id)
125 mnt_id_start = id;
126 spin_unlock(&mnt_id_lock);
127 }
128
129 /*
130 * Allocate a new peer group ID
131 *
132 * mnt_group_ida is protected by namespace_sem
133 */
134 static int mnt_alloc_group_id(struct mount *mnt)
135 {
136 int res;
137
138 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
139 return -ENOMEM;
140
141 res = ida_get_new_above(&mnt_group_ida,
142 mnt_group_start,
143 &mnt->mnt_group_id);
144 if (!res)
145 mnt_group_start = mnt->mnt_group_id + 1;
146
147 return res;
148 }
149
150 /*
151 * Release a peer group ID
152 */
153 void mnt_release_group_id(struct mount *mnt)
154 {
155 int id = mnt->mnt_group_id;
156 ida_remove(&mnt_group_ida, id);
157 if (mnt_group_start > id)
158 mnt_group_start = id;
159 mnt->mnt_group_id = 0;
160 }
161
162 /*
163 * vfsmount lock must be held for read
164 */
165 static inline void mnt_add_count(struct mount *mnt, int n)
166 {
167 #ifdef CONFIG_SMP
168 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
169 #else
170 preempt_disable();
171 mnt->mnt_count += n;
172 preempt_enable();
173 #endif
174 }
175
176 /*
177 * vfsmount lock must be held for write
178 */
179 unsigned int mnt_get_count(struct mount *mnt)
180 {
181 #ifdef CONFIG_SMP
182 unsigned int count = 0;
183 int cpu;
184
185 for_each_possible_cpu(cpu) {
186 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
187 }
188
189 return count;
190 #else
191 return mnt->mnt_count;
192 #endif
193 }
194
195 static void drop_mountpoint(struct fs_pin *p)
196 {
197 struct mount *m = container_of(p, struct mount, mnt_umount);
198 dput(m->mnt_ex_mountpoint);
199 pin_remove(p);
200 mntput(&m->mnt);
201 }
202
203 static struct mount *alloc_vfsmnt(const char *name)
204 {
205 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
206 if (mnt) {
207 int err;
208
209 err = mnt_alloc_id(mnt);
210 if (err)
211 goto out_free_cache;
212
213 if (name) {
214 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
215 if (!mnt->mnt_devname)
216 goto out_free_id;
217 }
218
219 #ifdef CONFIG_SMP
220 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
221 if (!mnt->mnt_pcp)
222 goto out_free_devname;
223
224 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
225 #else
226 mnt->mnt_count = 1;
227 mnt->mnt_writers = 0;
228 #endif
229
230 INIT_HLIST_NODE(&mnt->mnt_hash);
231 INIT_LIST_HEAD(&mnt->mnt_child);
232 INIT_LIST_HEAD(&mnt->mnt_mounts);
233 INIT_LIST_HEAD(&mnt->mnt_list);
234 INIT_LIST_HEAD(&mnt->mnt_expire);
235 INIT_LIST_HEAD(&mnt->mnt_share);
236 INIT_LIST_HEAD(&mnt->mnt_slave_list);
237 INIT_LIST_HEAD(&mnt->mnt_slave);
238 INIT_HLIST_NODE(&mnt->mnt_mp_list);
239 INIT_LIST_HEAD(&mnt->mnt_umounting);
240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
241 }
242 return mnt;
243
244 #ifdef CONFIG_SMP
245 out_free_devname:
246 kfree_const(mnt->mnt_devname);
247 #endif
248 out_free_id:
249 mnt_free_id(mnt);
250 out_free_cache:
251 kmem_cache_free(mnt_cache, mnt);
252 return NULL;
253 }
254
255 /*
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
262 */
263 /*
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
266 *
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
273 */
274 int __mnt_is_readonly(struct vfsmount *mnt)
275 {
276 if (mnt->mnt_flags & MNT_READONLY)
277 return 1;
278 if (sb_rdonly(mnt->mnt_sb))
279 return 1;
280 return 0;
281 }
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283
284 static inline void mnt_inc_writers(struct mount *mnt)
285 {
286 #ifdef CONFIG_SMP
287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
288 #else
289 mnt->mnt_writers++;
290 #endif
291 }
292
293 static inline void mnt_dec_writers(struct mount *mnt)
294 {
295 #ifdef CONFIG_SMP
296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
297 #else
298 mnt->mnt_writers--;
299 #endif
300 }
301
302 static unsigned int mnt_get_writers(struct mount *mnt)
303 {
304 #ifdef CONFIG_SMP
305 unsigned int count = 0;
306 int cpu;
307
308 for_each_possible_cpu(cpu) {
309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
310 }
311
312 return count;
313 #else
314 return mnt->mnt_writers;
315 #endif
316 }
317
318 static int mnt_is_readonly(struct vfsmount *mnt)
319 {
320 if (mnt->mnt_sb->s_readonly_remount)
321 return 1;
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 smp_rmb();
324 return __mnt_is_readonly(mnt);
325 }
326
327 /*
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
332 */
333 /**
334 * __mnt_want_write - get write access to a mount without freeze protection
335 * @m: the mount on which to take a write
336 *
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
342 */
343 int __mnt_want_write(struct vfsmount *m)
344 {
345 struct mount *mnt = real_mount(m);
346 int ret = 0;
347
348 preempt_disable();
349 mnt_inc_writers(mnt);
350 /*
351 * The store to mnt_inc_writers must be visible before we pass
352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
354 */
355 smp_mb();
356 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
357 cpu_relax();
358 /*
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
362 */
363 smp_rmb();
364 if (mnt_is_readonly(m)) {
365 mnt_dec_writers(mnt);
366 ret = -EROFS;
367 }
368 preempt_enable();
369
370 return ret;
371 }
372
373 /**
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
376 *
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
381 */
382 int mnt_want_write(struct vfsmount *m)
383 {
384 int ret;
385
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
388 if (ret)
389 sb_end_write(m->mnt_sb);
390 return ret;
391 }
392 EXPORT_SYMBOL_GPL(mnt_want_write);
393
394 /**
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
397 *
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
402 *
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
405 */
406 int mnt_clone_write(struct vfsmount *mnt)
407 {
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
410 return -EROFS;
411 preempt_disable();
412 mnt_inc_writers(real_mount(mnt));
413 preempt_enable();
414 return 0;
415 }
416 EXPORT_SYMBOL_GPL(mnt_clone_write);
417
418 /**
419 * __mnt_want_write_file - get write access to a file's mount
420 * @file: the file who's mount on which to take a write
421 *
422 * This is like __mnt_want_write, but it takes a file and can
423 * do some optimisations if the file is open for write already
424 */
425 int __mnt_want_write_file(struct file *file)
426 {
427 if (!(file->f_mode & FMODE_WRITER))
428 return __mnt_want_write(file->f_path.mnt);
429 else
430 return mnt_clone_write(file->f_path.mnt);
431 }
432
433 /**
434 * mnt_want_write_file_path - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
436 *
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
439 *
440 * Called by the vfs for cases when we have an open file at hand, but will do an
441 * inode operation on it (important distinction for files opened on overlayfs,
442 * since the file operations will come from the real underlying file, while
443 * inode operations come from the overlay).
444 */
445 int mnt_want_write_file_path(struct file *file)
446 {
447 int ret;
448
449 sb_start_write(file->f_path.mnt->mnt_sb);
450 ret = __mnt_want_write_file(file);
451 if (ret)
452 sb_end_write(file->f_path.mnt->mnt_sb);
453 return ret;
454 }
455
456 static inline int may_write_real(struct file *file)
457 {
458 struct dentry *dentry = file->f_path.dentry;
459 struct dentry *upperdentry;
460
461 /* Writable file? */
462 if (file->f_mode & FMODE_WRITER)
463 return 0;
464
465 /* Not overlayfs? */
466 if (likely(!(dentry->d_flags & DCACHE_OP_REAL)))
467 return 0;
468
469 /* File refers to upper, writable layer? */
470 upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
471 if (upperdentry &&
472 (file_inode(file) == d_inode(upperdentry) ||
473 file_inode(file) == d_inode(dentry)))
474 return 0;
475
476 /* Lower layer: can't write to real file, sorry... */
477 return -EPERM;
478 }
479
480 /**
481 * mnt_want_write_file - get write access to a file's mount
482 * @file: the file who's mount on which to take a write
483 *
484 * This is like mnt_want_write, but it takes a file and can
485 * do some optimisations if the file is open for write already
486 *
487 * Mostly called by filesystems from their ioctl operation before performing
488 * modification. On overlayfs this needs to check if the file is on a read-only
489 * lower layer and deny access in that case.
490 */
491 int mnt_want_write_file(struct file *file)
492 {
493 int ret;
494
495 ret = may_write_real(file);
496 if (!ret) {
497 sb_start_write(file_inode(file)->i_sb);
498 ret = __mnt_want_write_file(file);
499 if (ret)
500 sb_end_write(file_inode(file)->i_sb);
501 }
502 return ret;
503 }
504 EXPORT_SYMBOL_GPL(mnt_want_write_file);
505
506 /**
507 * __mnt_drop_write - give up write access to a mount
508 * @mnt: the mount on which to give up write access
509 *
510 * Tells the low-level filesystem that we are done
511 * performing writes to it. Must be matched with
512 * __mnt_want_write() call above.
513 */
514 void __mnt_drop_write(struct vfsmount *mnt)
515 {
516 preempt_disable();
517 mnt_dec_writers(real_mount(mnt));
518 preempt_enable();
519 }
520
521 /**
522 * mnt_drop_write - give up write access to a mount
523 * @mnt: the mount on which to give up write access
524 *
525 * Tells the low-level filesystem that we are done performing writes to it and
526 * also allows filesystem to be frozen again. Must be matched with
527 * mnt_want_write() call above.
528 */
529 void mnt_drop_write(struct vfsmount *mnt)
530 {
531 __mnt_drop_write(mnt);
532 sb_end_write(mnt->mnt_sb);
533 }
534 EXPORT_SYMBOL_GPL(mnt_drop_write);
535
536 void __mnt_drop_write_file(struct file *file)
537 {
538 __mnt_drop_write(file->f_path.mnt);
539 }
540
541 void mnt_drop_write_file_path(struct file *file)
542 {
543 mnt_drop_write(file->f_path.mnt);
544 }
545
546 void mnt_drop_write_file(struct file *file)
547 {
548 __mnt_drop_write(file->f_path.mnt);
549 sb_end_write(file_inode(file)->i_sb);
550 }
551 EXPORT_SYMBOL(mnt_drop_write_file);
552
553 static int mnt_make_readonly(struct mount *mnt)
554 {
555 int ret = 0;
556
557 lock_mount_hash();
558 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
559 /*
560 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
561 * should be visible before we do.
562 */
563 smp_mb();
564
565 /*
566 * With writers on hold, if this value is zero, then there are
567 * definitely no active writers (although held writers may subsequently
568 * increment the count, they'll have to wait, and decrement it after
569 * seeing MNT_READONLY).
570 *
571 * It is OK to have counter incremented on one CPU and decremented on
572 * another: the sum will add up correctly. The danger would be when we
573 * sum up each counter, if we read a counter before it is incremented,
574 * but then read another CPU's count which it has been subsequently
575 * decremented from -- we would see more decrements than we should.
576 * MNT_WRITE_HOLD protects against this scenario, because
577 * mnt_want_write first increments count, then smp_mb, then spins on
578 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
579 * we're counting up here.
580 */
581 if (mnt_get_writers(mnt) > 0)
582 ret = -EBUSY;
583 else
584 mnt->mnt.mnt_flags |= MNT_READONLY;
585 /*
586 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
587 * that become unheld will see MNT_READONLY.
588 */
589 smp_wmb();
590 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
591 unlock_mount_hash();
592 return ret;
593 }
594
595 static void __mnt_unmake_readonly(struct mount *mnt)
596 {
597 lock_mount_hash();
598 mnt->mnt.mnt_flags &= ~MNT_READONLY;
599 unlock_mount_hash();
600 }
601
602 int sb_prepare_remount_readonly(struct super_block *sb)
603 {
604 struct mount *mnt;
605 int err = 0;
606
607 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
608 if (atomic_long_read(&sb->s_remove_count))
609 return -EBUSY;
610
611 lock_mount_hash();
612 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
613 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
614 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
615 smp_mb();
616 if (mnt_get_writers(mnt) > 0) {
617 err = -EBUSY;
618 break;
619 }
620 }
621 }
622 if (!err && atomic_long_read(&sb->s_remove_count))
623 err = -EBUSY;
624
625 if (!err) {
626 sb->s_readonly_remount = 1;
627 smp_wmb();
628 }
629 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
630 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
631 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
632 }
633 unlock_mount_hash();
634
635 return err;
636 }
637
638 static void free_vfsmnt(struct mount *mnt)
639 {
640 kfree_const(mnt->mnt_devname);
641 #ifdef CONFIG_SMP
642 free_percpu(mnt->mnt_pcp);
643 #endif
644 kmem_cache_free(mnt_cache, mnt);
645 }
646
647 static void delayed_free_vfsmnt(struct rcu_head *head)
648 {
649 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
650 }
651
652 /* call under rcu_read_lock */
653 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
654 {
655 struct mount *mnt;
656 if (read_seqretry(&mount_lock, seq))
657 return 1;
658 if (bastard == NULL)
659 return 0;
660 mnt = real_mount(bastard);
661 mnt_add_count(mnt, 1);
662 if (likely(!read_seqretry(&mount_lock, seq)))
663 return 0;
664 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
665 mnt_add_count(mnt, -1);
666 return 1;
667 }
668 return -1;
669 }
670
671 /* call under rcu_read_lock */
672 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
673 {
674 int res = __legitimize_mnt(bastard, seq);
675 if (likely(!res))
676 return true;
677 if (unlikely(res < 0)) {
678 rcu_read_unlock();
679 mntput(bastard);
680 rcu_read_lock();
681 }
682 return false;
683 }
684
685 /*
686 * find the first mount at @dentry on vfsmount @mnt.
687 * call under rcu_read_lock()
688 */
689 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
690 {
691 struct hlist_head *head = m_hash(mnt, dentry);
692 struct mount *p;
693
694 hlist_for_each_entry_rcu(p, head, mnt_hash)
695 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
696 return p;
697 return NULL;
698 }
699
700 /*
701 * lookup_mnt - Return the first child mount mounted at path
702 *
703 * "First" means first mounted chronologically. If you create the
704 * following mounts:
705 *
706 * mount /dev/sda1 /mnt
707 * mount /dev/sda2 /mnt
708 * mount /dev/sda3 /mnt
709 *
710 * Then lookup_mnt() on the base /mnt dentry in the root mount will
711 * return successively the root dentry and vfsmount of /dev/sda1, then
712 * /dev/sda2, then /dev/sda3, then NULL.
713 *
714 * lookup_mnt takes a reference to the found vfsmount.
715 */
716 struct vfsmount *lookup_mnt(const struct path *path)
717 {
718 struct mount *child_mnt;
719 struct vfsmount *m;
720 unsigned seq;
721
722 rcu_read_lock();
723 do {
724 seq = read_seqbegin(&mount_lock);
725 child_mnt = __lookup_mnt(path->mnt, path->dentry);
726 m = child_mnt ? &child_mnt->mnt : NULL;
727 } while (!legitimize_mnt(m, seq));
728 rcu_read_unlock();
729 return m;
730 }
731
732 /*
733 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
734 * current mount namespace.
735 *
736 * The common case is dentries are not mountpoints at all and that
737 * test is handled inline. For the slow case when we are actually
738 * dealing with a mountpoint of some kind, walk through all of the
739 * mounts in the current mount namespace and test to see if the dentry
740 * is a mountpoint.
741 *
742 * The mount_hashtable is not usable in the context because we
743 * need to identify all mounts that may be in the current mount
744 * namespace not just a mount that happens to have some specified
745 * parent mount.
746 */
747 bool __is_local_mountpoint(struct dentry *dentry)
748 {
749 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
750 struct mount *mnt;
751 bool is_covered = false;
752
753 if (!d_mountpoint(dentry))
754 goto out;
755
756 down_read(&namespace_sem);
757 list_for_each_entry(mnt, &ns->list, mnt_list) {
758 is_covered = (mnt->mnt_mountpoint == dentry);
759 if (is_covered)
760 break;
761 }
762 up_read(&namespace_sem);
763 out:
764 return is_covered;
765 }
766
767 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
768 {
769 struct hlist_head *chain = mp_hash(dentry);
770 struct mountpoint *mp;
771
772 hlist_for_each_entry(mp, chain, m_hash) {
773 if (mp->m_dentry == dentry) {
774 /* might be worth a WARN_ON() */
775 if (d_unlinked(dentry))
776 return ERR_PTR(-ENOENT);
777 mp->m_count++;
778 return mp;
779 }
780 }
781 return NULL;
782 }
783
784 static struct mountpoint *get_mountpoint(struct dentry *dentry)
785 {
786 struct mountpoint *mp, *new = NULL;
787 int ret;
788
789 if (d_mountpoint(dentry)) {
790 mountpoint:
791 read_seqlock_excl(&mount_lock);
792 mp = lookup_mountpoint(dentry);
793 read_sequnlock_excl(&mount_lock);
794 if (mp)
795 goto done;
796 }
797
798 if (!new)
799 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
800 if (!new)
801 return ERR_PTR(-ENOMEM);
802
803
804 /* Exactly one processes may set d_mounted */
805 ret = d_set_mounted(dentry);
806
807 /* Someone else set d_mounted? */
808 if (ret == -EBUSY)
809 goto mountpoint;
810
811 /* The dentry is not available as a mountpoint? */
812 mp = ERR_PTR(ret);
813 if (ret)
814 goto done;
815
816 /* Add the new mountpoint to the hash table */
817 read_seqlock_excl(&mount_lock);
818 new->m_dentry = dentry;
819 new->m_count = 1;
820 hlist_add_head(&new->m_hash, mp_hash(dentry));
821 INIT_HLIST_HEAD(&new->m_list);
822 read_sequnlock_excl(&mount_lock);
823
824 mp = new;
825 new = NULL;
826 done:
827 kfree(new);
828 return mp;
829 }
830
831 static void put_mountpoint(struct mountpoint *mp)
832 {
833 if (!--mp->m_count) {
834 struct dentry *dentry = mp->m_dentry;
835 BUG_ON(!hlist_empty(&mp->m_list));
836 spin_lock(&dentry->d_lock);
837 dentry->d_flags &= ~DCACHE_MOUNTED;
838 spin_unlock(&dentry->d_lock);
839 hlist_del(&mp->m_hash);
840 kfree(mp);
841 }
842 }
843
844 static inline int check_mnt(struct mount *mnt)
845 {
846 return mnt->mnt_ns == current->nsproxy->mnt_ns;
847 }
848
849 /*
850 * vfsmount lock must be held for write
851 */
852 static void touch_mnt_namespace(struct mnt_namespace *ns)
853 {
854 if (ns) {
855 ns->event = ++event;
856 wake_up_interruptible(&ns->poll);
857 }
858 }
859
860 /*
861 * vfsmount lock must be held for write
862 */
863 static void __touch_mnt_namespace(struct mnt_namespace *ns)
864 {
865 if (ns && ns->event != event) {
866 ns->event = event;
867 wake_up_interruptible(&ns->poll);
868 }
869 }
870
871 /*
872 * vfsmount lock must be held for write
873 */
874 static void unhash_mnt(struct mount *mnt)
875 {
876 mnt->mnt_parent = mnt;
877 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
878 list_del_init(&mnt->mnt_child);
879 hlist_del_init_rcu(&mnt->mnt_hash);
880 hlist_del_init(&mnt->mnt_mp_list);
881 put_mountpoint(mnt->mnt_mp);
882 mnt->mnt_mp = NULL;
883 }
884
885 /*
886 * vfsmount lock must be held for write
887 */
888 static void detach_mnt(struct mount *mnt, struct path *old_path)
889 {
890 old_path->dentry = mnt->mnt_mountpoint;
891 old_path->mnt = &mnt->mnt_parent->mnt;
892 unhash_mnt(mnt);
893 }
894
895 /*
896 * vfsmount lock must be held for write
897 */
898 static void umount_mnt(struct mount *mnt)
899 {
900 /* old mountpoint will be dropped when we can do that */
901 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
902 unhash_mnt(mnt);
903 }
904
905 /*
906 * vfsmount lock must be held for write
907 */
908 void mnt_set_mountpoint(struct mount *mnt,
909 struct mountpoint *mp,
910 struct mount *child_mnt)
911 {
912 mp->m_count++;
913 mnt_add_count(mnt, 1); /* essentially, that's mntget */
914 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
915 child_mnt->mnt_parent = mnt;
916 child_mnt->mnt_mp = mp;
917 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
918 }
919
920 static void __attach_mnt(struct mount *mnt, struct mount *parent)
921 {
922 hlist_add_head_rcu(&mnt->mnt_hash,
923 m_hash(&parent->mnt, mnt->mnt_mountpoint));
924 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
925 }
926
927 /*
928 * vfsmount lock must be held for write
929 */
930 static void attach_mnt(struct mount *mnt,
931 struct mount *parent,
932 struct mountpoint *mp)
933 {
934 mnt_set_mountpoint(parent, mp, mnt);
935 __attach_mnt(mnt, parent);
936 }
937
938 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
939 {
940 struct mountpoint *old_mp = mnt->mnt_mp;
941 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
942 struct mount *old_parent = mnt->mnt_parent;
943
944 list_del_init(&mnt->mnt_child);
945 hlist_del_init(&mnt->mnt_mp_list);
946 hlist_del_init_rcu(&mnt->mnt_hash);
947
948 attach_mnt(mnt, parent, mp);
949
950 put_mountpoint(old_mp);
951
952 /*
953 * Safely avoid even the suggestion this code might sleep or
954 * lock the mount hash by taking advantage of the knowledge that
955 * mnt_change_mountpoint will not release the final reference
956 * to a mountpoint.
957 *
958 * During mounting, the mount passed in as the parent mount will
959 * continue to use the old mountpoint and during unmounting, the
960 * old mountpoint will continue to exist until namespace_unlock,
961 * which happens well after mnt_change_mountpoint.
962 */
963 spin_lock(&old_mountpoint->d_lock);
964 old_mountpoint->d_lockref.count--;
965 spin_unlock(&old_mountpoint->d_lock);
966
967 mnt_add_count(old_parent, -1);
968 }
969
970 /*
971 * vfsmount lock must be held for write
972 */
973 static void commit_tree(struct mount *mnt)
974 {
975 struct mount *parent = mnt->mnt_parent;
976 struct mount *m;
977 LIST_HEAD(head);
978 struct mnt_namespace *n = parent->mnt_ns;
979
980 BUG_ON(parent == mnt);
981
982 list_add_tail(&head, &mnt->mnt_list);
983 list_for_each_entry(m, &head, mnt_list)
984 m->mnt_ns = n;
985
986 list_splice(&head, n->list.prev);
987
988 n->mounts += n->pending_mounts;
989 n->pending_mounts = 0;
990
991 __attach_mnt(mnt, parent);
992 touch_mnt_namespace(n);
993 }
994
995 static struct mount *next_mnt(struct mount *p, struct mount *root)
996 {
997 struct list_head *next = p->mnt_mounts.next;
998 if (next == &p->mnt_mounts) {
999 while (1) {
1000 if (p == root)
1001 return NULL;
1002 next = p->mnt_child.next;
1003 if (next != &p->mnt_parent->mnt_mounts)
1004 break;
1005 p = p->mnt_parent;
1006 }
1007 }
1008 return list_entry(next, struct mount, mnt_child);
1009 }
1010
1011 static struct mount *skip_mnt_tree(struct mount *p)
1012 {
1013 struct list_head *prev = p->mnt_mounts.prev;
1014 while (prev != &p->mnt_mounts) {
1015 p = list_entry(prev, struct mount, mnt_child);
1016 prev = p->mnt_mounts.prev;
1017 }
1018 return p;
1019 }
1020
1021 struct vfsmount *
1022 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
1023 {
1024 struct mount *mnt;
1025 struct dentry *root;
1026
1027 if (!type)
1028 return ERR_PTR(-ENODEV);
1029
1030 mnt = alloc_vfsmnt(name);
1031 if (!mnt)
1032 return ERR_PTR(-ENOMEM);
1033
1034 if (flags & SB_KERNMOUNT)
1035 mnt->mnt.mnt_flags = MNT_INTERNAL;
1036
1037 root = mount_fs(type, flags, name, data);
1038 if (IS_ERR(root)) {
1039 mnt_free_id(mnt);
1040 free_vfsmnt(mnt);
1041 return ERR_CAST(root);
1042 }
1043
1044 mnt->mnt.mnt_root = root;
1045 mnt->mnt.mnt_sb = root->d_sb;
1046 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1047 mnt->mnt_parent = mnt;
1048 lock_mount_hash();
1049 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
1050 unlock_mount_hash();
1051 return &mnt->mnt;
1052 }
1053 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1054
1055 struct vfsmount *
1056 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1057 const char *name, void *data)
1058 {
1059 /* Until it is worked out how to pass the user namespace
1060 * through from the parent mount to the submount don't support
1061 * unprivileged mounts with submounts.
1062 */
1063 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1064 return ERR_PTR(-EPERM);
1065
1066 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1067 }
1068 EXPORT_SYMBOL_GPL(vfs_submount);
1069
1070 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1071 int flag)
1072 {
1073 struct super_block *sb = old->mnt.mnt_sb;
1074 struct mount *mnt;
1075 int err;
1076
1077 mnt = alloc_vfsmnt(old->mnt_devname);
1078 if (!mnt)
1079 return ERR_PTR(-ENOMEM);
1080
1081 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1082 mnt->mnt_group_id = 0; /* not a peer of original */
1083 else
1084 mnt->mnt_group_id = old->mnt_group_id;
1085
1086 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1087 err = mnt_alloc_group_id(mnt);
1088 if (err)
1089 goto out_free;
1090 }
1091
1092 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1093 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1094 /* Don't allow unprivileged users to change mount flags */
1095 if (flag & CL_UNPRIVILEGED) {
1096 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1097
1098 if (mnt->mnt.mnt_flags & MNT_READONLY)
1099 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1100
1101 if (mnt->mnt.mnt_flags & MNT_NODEV)
1102 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1103
1104 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1105 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1106
1107 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1108 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1109 }
1110
1111 /* Don't allow unprivileged users to reveal what is under a mount */
1112 if ((flag & CL_UNPRIVILEGED) &&
1113 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1114 mnt->mnt.mnt_flags |= MNT_LOCKED;
1115
1116 atomic_inc(&sb->s_active);
1117 mnt->mnt.mnt_sb = sb;
1118 mnt->mnt.mnt_root = dget(root);
1119 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1120 mnt->mnt_parent = mnt;
1121 lock_mount_hash();
1122 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1123 unlock_mount_hash();
1124
1125 if ((flag & CL_SLAVE) ||
1126 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1127 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1128 mnt->mnt_master = old;
1129 CLEAR_MNT_SHARED(mnt);
1130 } else if (!(flag & CL_PRIVATE)) {
1131 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1132 list_add(&mnt->mnt_share, &old->mnt_share);
1133 if (IS_MNT_SLAVE(old))
1134 list_add(&mnt->mnt_slave, &old->mnt_slave);
1135 mnt->mnt_master = old->mnt_master;
1136 } else {
1137 CLEAR_MNT_SHARED(mnt);
1138 }
1139 if (flag & CL_MAKE_SHARED)
1140 set_mnt_shared(mnt);
1141
1142 /* stick the duplicate mount on the same expiry list
1143 * as the original if that was on one */
1144 if (flag & CL_EXPIRE) {
1145 if (!list_empty(&old->mnt_expire))
1146 list_add(&mnt->mnt_expire, &old->mnt_expire);
1147 }
1148
1149 return mnt;
1150
1151 out_free:
1152 mnt_free_id(mnt);
1153 free_vfsmnt(mnt);
1154 return ERR_PTR(err);
1155 }
1156
1157 static void cleanup_mnt(struct mount *mnt)
1158 {
1159 /*
1160 * This probably indicates that somebody messed
1161 * up a mnt_want/drop_write() pair. If this
1162 * happens, the filesystem was probably unable
1163 * to make r/w->r/o transitions.
1164 */
1165 /*
1166 * The locking used to deal with mnt_count decrement provides barriers,
1167 * so mnt_get_writers() below is safe.
1168 */
1169 WARN_ON(mnt_get_writers(mnt));
1170 if (unlikely(mnt->mnt_pins.first))
1171 mnt_pin_kill(mnt);
1172 fsnotify_vfsmount_delete(&mnt->mnt);
1173 dput(mnt->mnt.mnt_root);
1174 deactivate_super(mnt->mnt.mnt_sb);
1175 mnt_free_id(mnt);
1176 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1177 }
1178
1179 static void __cleanup_mnt(struct rcu_head *head)
1180 {
1181 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1182 }
1183
1184 static LLIST_HEAD(delayed_mntput_list);
1185 static void delayed_mntput(struct work_struct *unused)
1186 {
1187 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1188 struct mount *m, *t;
1189
1190 llist_for_each_entry_safe(m, t, node, mnt_llist)
1191 cleanup_mnt(m);
1192 }
1193 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1194
1195 static void mntput_no_expire(struct mount *mnt)
1196 {
1197 rcu_read_lock();
1198 mnt_add_count(mnt, -1);
1199 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1200 rcu_read_unlock();
1201 return;
1202 }
1203 lock_mount_hash();
1204 if (mnt_get_count(mnt)) {
1205 rcu_read_unlock();
1206 unlock_mount_hash();
1207 return;
1208 }
1209 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1210 rcu_read_unlock();
1211 unlock_mount_hash();
1212 return;
1213 }
1214 mnt->mnt.mnt_flags |= MNT_DOOMED;
1215 rcu_read_unlock();
1216
1217 list_del(&mnt->mnt_instance);
1218
1219 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1220 struct mount *p, *tmp;
1221 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1222 umount_mnt(p);
1223 }
1224 }
1225 unlock_mount_hash();
1226
1227 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1228 struct task_struct *task = current;
1229 if (likely(!(task->flags & PF_KTHREAD))) {
1230 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1231 if (!task_work_add(task, &mnt->mnt_rcu, true))
1232 return;
1233 }
1234 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1235 schedule_delayed_work(&delayed_mntput_work, 1);
1236 return;
1237 }
1238 cleanup_mnt(mnt);
1239 }
1240
1241 void mntput(struct vfsmount *mnt)
1242 {
1243 if (mnt) {
1244 struct mount *m = real_mount(mnt);
1245 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1246 if (unlikely(m->mnt_expiry_mark))
1247 m->mnt_expiry_mark = 0;
1248 mntput_no_expire(m);
1249 }
1250 }
1251 EXPORT_SYMBOL(mntput);
1252
1253 struct vfsmount *mntget(struct vfsmount *mnt)
1254 {
1255 if (mnt)
1256 mnt_add_count(real_mount(mnt), 1);
1257 return mnt;
1258 }
1259 EXPORT_SYMBOL(mntget);
1260
1261 /* path_is_mountpoint() - Check if path is a mount in the current
1262 * namespace.
1263 *
1264 * d_mountpoint() can only be used reliably to establish if a dentry is
1265 * not mounted in any namespace and that common case is handled inline.
1266 * d_mountpoint() isn't aware of the possibility there may be multiple
1267 * mounts using a given dentry in a different namespace. This function
1268 * checks if the passed in path is a mountpoint rather than the dentry
1269 * alone.
1270 */
1271 bool path_is_mountpoint(const struct path *path)
1272 {
1273 unsigned seq;
1274 bool res;
1275
1276 if (!d_mountpoint(path->dentry))
1277 return false;
1278
1279 rcu_read_lock();
1280 do {
1281 seq = read_seqbegin(&mount_lock);
1282 res = __path_is_mountpoint(path);
1283 } while (read_seqretry(&mount_lock, seq));
1284 rcu_read_unlock();
1285
1286 return res;
1287 }
1288 EXPORT_SYMBOL(path_is_mountpoint);
1289
1290 struct vfsmount *mnt_clone_internal(const struct path *path)
1291 {
1292 struct mount *p;
1293 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1294 if (IS_ERR(p))
1295 return ERR_CAST(p);
1296 p->mnt.mnt_flags |= MNT_INTERNAL;
1297 return &p->mnt;
1298 }
1299
1300 #ifdef CONFIG_PROC_FS
1301 /* iterator; we want it to have access to namespace_sem, thus here... */
1302 static void *m_start(struct seq_file *m, loff_t *pos)
1303 {
1304 struct proc_mounts *p = m->private;
1305
1306 down_read(&namespace_sem);
1307 if (p->cached_event == p->ns->event) {
1308 void *v = p->cached_mount;
1309 if (*pos == p->cached_index)
1310 return v;
1311 if (*pos == p->cached_index + 1) {
1312 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1313 return p->cached_mount = v;
1314 }
1315 }
1316
1317 p->cached_event = p->ns->event;
1318 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1319 p->cached_index = *pos;
1320 return p->cached_mount;
1321 }
1322
1323 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1324 {
1325 struct proc_mounts *p = m->private;
1326
1327 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1328 p->cached_index = *pos;
1329 return p->cached_mount;
1330 }
1331
1332 static void m_stop(struct seq_file *m, void *v)
1333 {
1334 up_read(&namespace_sem);
1335 }
1336
1337 static int m_show(struct seq_file *m, void *v)
1338 {
1339 struct proc_mounts *p = m->private;
1340 struct mount *r = list_entry(v, struct mount, mnt_list);
1341 return p->show(m, &r->mnt);
1342 }
1343
1344 const struct seq_operations mounts_op = {
1345 .start = m_start,
1346 .next = m_next,
1347 .stop = m_stop,
1348 .show = m_show,
1349 };
1350 #endif /* CONFIG_PROC_FS */
1351
1352 /**
1353 * may_umount_tree - check if a mount tree is busy
1354 * @mnt: root of mount tree
1355 *
1356 * This is called to check if a tree of mounts has any
1357 * open files, pwds, chroots or sub mounts that are
1358 * busy.
1359 */
1360 int may_umount_tree(struct vfsmount *m)
1361 {
1362 struct mount *mnt = real_mount(m);
1363 int actual_refs = 0;
1364 int minimum_refs = 0;
1365 struct mount *p;
1366 BUG_ON(!m);
1367
1368 /* write lock needed for mnt_get_count */
1369 lock_mount_hash();
1370 for (p = mnt; p; p = next_mnt(p, mnt)) {
1371 actual_refs += mnt_get_count(p);
1372 minimum_refs += 2;
1373 }
1374 unlock_mount_hash();
1375
1376 if (actual_refs > minimum_refs)
1377 return 0;
1378
1379 return 1;
1380 }
1381
1382 EXPORT_SYMBOL(may_umount_tree);
1383
1384 /**
1385 * may_umount - check if a mount point is busy
1386 * @mnt: root of mount
1387 *
1388 * This is called to check if a mount point has any
1389 * open files, pwds, chroots or sub mounts. If the
1390 * mount has sub mounts this will return busy
1391 * regardless of whether the sub mounts are busy.
1392 *
1393 * Doesn't take quota and stuff into account. IOW, in some cases it will
1394 * give false negatives. The main reason why it's here is that we need
1395 * a non-destructive way to look for easily umountable filesystems.
1396 */
1397 int may_umount(struct vfsmount *mnt)
1398 {
1399 int ret = 1;
1400 down_read(&namespace_sem);
1401 lock_mount_hash();
1402 if (propagate_mount_busy(real_mount(mnt), 2))
1403 ret = 0;
1404 unlock_mount_hash();
1405 up_read(&namespace_sem);
1406 return ret;
1407 }
1408
1409 EXPORT_SYMBOL(may_umount);
1410
1411 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1412
1413 static void namespace_unlock(void)
1414 {
1415 struct hlist_head head;
1416
1417 hlist_move_list(&unmounted, &head);
1418
1419 up_write(&namespace_sem);
1420
1421 if (likely(hlist_empty(&head)))
1422 return;
1423
1424 synchronize_rcu();
1425
1426 group_pin_kill(&head);
1427 }
1428
1429 static inline void namespace_lock(void)
1430 {
1431 down_write(&namespace_sem);
1432 }
1433
1434 enum umount_tree_flags {
1435 UMOUNT_SYNC = 1,
1436 UMOUNT_PROPAGATE = 2,
1437 UMOUNT_CONNECTED = 4,
1438 };
1439
1440 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1441 {
1442 /* Leaving mounts connected is only valid for lazy umounts */
1443 if (how & UMOUNT_SYNC)
1444 return true;
1445
1446 /* A mount without a parent has nothing to be connected to */
1447 if (!mnt_has_parent(mnt))
1448 return true;
1449
1450 /* Because the reference counting rules change when mounts are
1451 * unmounted and connected, umounted mounts may not be
1452 * connected to mounted mounts.
1453 */
1454 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1455 return true;
1456
1457 /* Has it been requested that the mount remain connected? */
1458 if (how & UMOUNT_CONNECTED)
1459 return false;
1460
1461 /* Is the mount locked such that it needs to remain connected? */
1462 if (IS_MNT_LOCKED(mnt))
1463 return false;
1464
1465 /* By default disconnect the mount */
1466 return true;
1467 }
1468
1469 /*
1470 * mount_lock must be held
1471 * namespace_sem must be held for write
1472 */
1473 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1474 {
1475 LIST_HEAD(tmp_list);
1476 struct mount *p;
1477
1478 if (how & UMOUNT_PROPAGATE)
1479 propagate_mount_unlock(mnt);
1480
1481 /* Gather the mounts to umount */
1482 for (p = mnt; p; p = next_mnt(p, mnt)) {
1483 p->mnt.mnt_flags |= MNT_UMOUNT;
1484 list_move(&p->mnt_list, &tmp_list);
1485 }
1486
1487 /* Hide the mounts from mnt_mounts */
1488 list_for_each_entry(p, &tmp_list, mnt_list) {
1489 list_del_init(&p->mnt_child);
1490 }
1491
1492 /* Add propogated mounts to the tmp_list */
1493 if (how & UMOUNT_PROPAGATE)
1494 propagate_umount(&tmp_list);
1495
1496 while (!list_empty(&tmp_list)) {
1497 struct mnt_namespace *ns;
1498 bool disconnect;
1499 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1500 list_del_init(&p->mnt_expire);
1501 list_del_init(&p->mnt_list);
1502 ns = p->mnt_ns;
1503 if (ns) {
1504 ns->mounts--;
1505 __touch_mnt_namespace(ns);
1506 }
1507 p->mnt_ns = NULL;
1508 if (how & UMOUNT_SYNC)
1509 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1510
1511 disconnect = disconnect_mount(p, how);
1512
1513 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1514 disconnect ? &unmounted : NULL);
1515 if (mnt_has_parent(p)) {
1516 mnt_add_count(p->mnt_parent, -1);
1517 if (!disconnect) {
1518 /* Don't forget about p */
1519 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1520 } else {
1521 umount_mnt(p);
1522 }
1523 }
1524 change_mnt_propagation(p, MS_PRIVATE);
1525 }
1526 }
1527
1528 static void shrink_submounts(struct mount *mnt);
1529
1530 static int do_umount(struct mount *mnt, int flags)
1531 {
1532 struct super_block *sb = mnt->mnt.mnt_sb;
1533 int retval;
1534
1535 retval = security_sb_umount(&mnt->mnt, flags);
1536 if (retval)
1537 return retval;
1538
1539 /*
1540 * Allow userspace to request a mountpoint be expired rather than
1541 * unmounting unconditionally. Unmount only happens if:
1542 * (1) the mark is already set (the mark is cleared by mntput())
1543 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1544 */
1545 if (flags & MNT_EXPIRE) {
1546 if (&mnt->mnt == current->fs->root.mnt ||
1547 flags & (MNT_FORCE | MNT_DETACH))
1548 return -EINVAL;
1549
1550 /*
1551 * probably don't strictly need the lock here if we examined
1552 * all race cases, but it's a slowpath.
1553 */
1554 lock_mount_hash();
1555 if (mnt_get_count(mnt) != 2) {
1556 unlock_mount_hash();
1557 return -EBUSY;
1558 }
1559 unlock_mount_hash();
1560
1561 if (!xchg(&mnt->mnt_expiry_mark, 1))
1562 return -EAGAIN;
1563 }
1564
1565 /*
1566 * If we may have to abort operations to get out of this
1567 * mount, and they will themselves hold resources we must
1568 * allow the fs to do things. In the Unix tradition of
1569 * 'Gee thats tricky lets do it in userspace' the umount_begin
1570 * might fail to complete on the first run through as other tasks
1571 * must return, and the like. Thats for the mount program to worry
1572 * about for the moment.
1573 */
1574
1575 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1576 sb->s_op->umount_begin(sb);
1577 }
1578
1579 /*
1580 * No sense to grab the lock for this test, but test itself looks
1581 * somewhat bogus. Suggestions for better replacement?
1582 * Ho-hum... In principle, we might treat that as umount + switch
1583 * to rootfs. GC would eventually take care of the old vfsmount.
1584 * Actually it makes sense, especially if rootfs would contain a
1585 * /reboot - static binary that would close all descriptors and
1586 * call reboot(9). Then init(8) could umount root and exec /reboot.
1587 */
1588 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1589 /*
1590 * Special case for "unmounting" root ...
1591 * we just try to remount it readonly.
1592 */
1593 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1594 return -EPERM;
1595 down_write(&sb->s_umount);
1596 if (!sb_rdonly(sb))
1597 retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1598 up_write(&sb->s_umount);
1599 return retval;
1600 }
1601
1602 namespace_lock();
1603 lock_mount_hash();
1604 event++;
1605
1606 if (flags & MNT_DETACH) {
1607 if (!list_empty(&mnt->mnt_list))
1608 umount_tree(mnt, UMOUNT_PROPAGATE);
1609 retval = 0;
1610 } else {
1611 shrink_submounts(mnt);
1612 retval = -EBUSY;
1613 if (!propagate_mount_busy(mnt, 2)) {
1614 if (!list_empty(&mnt->mnt_list))
1615 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1616 retval = 0;
1617 }
1618 }
1619 unlock_mount_hash();
1620 namespace_unlock();
1621 return retval;
1622 }
1623
1624 /*
1625 * __detach_mounts - lazily unmount all mounts on the specified dentry
1626 *
1627 * During unlink, rmdir, and d_drop it is possible to loose the path
1628 * to an existing mountpoint, and wind up leaking the mount.
1629 * detach_mounts allows lazily unmounting those mounts instead of
1630 * leaking them.
1631 *
1632 * The caller may hold dentry->d_inode->i_mutex.
1633 */
1634 void __detach_mounts(struct dentry *dentry)
1635 {
1636 struct mountpoint *mp;
1637 struct mount *mnt;
1638
1639 namespace_lock();
1640 lock_mount_hash();
1641 mp = lookup_mountpoint(dentry);
1642 if (IS_ERR_OR_NULL(mp))
1643 goto out_unlock;
1644
1645 event++;
1646 while (!hlist_empty(&mp->m_list)) {
1647 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1648 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1649 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1650 umount_mnt(mnt);
1651 }
1652 else umount_tree(mnt, UMOUNT_CONNECTED);
1653 }
1654 put_mountpoint(mp);
1655 out_unlock:
1656 unlock_mount_hash();
1657 namespace_unlock();
1658 }
1659
1660 /*
1661 * Is the caller allowed to modify his namespace?
1662 */
1663 static inline bool may_mount(void)
1664 {
1665 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1666 }
1667
1668 static inline bool may_mandlock(void)
1669 {
1670 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1671 return false;
1672 #endif
1673 return capable(CAP_SYS_ADMIN);
1674 }
1675
1676 /*
1677 * Now umount can handle mount points as well as block devices.
1678 * This is important for filesystems which use unnamed block devices.
1679 *
1680 * We now support a flag for forced unmount like the other 'big iron'
1681 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1682 */
1683
1684 int ksys_umount(char __user *name, int flags)
1685 {
1686 struct path path;
1687 struct mount *mnt;
1688 int retval;
1689 int lookup_flags = 0;
1690
1691 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1692 return -EINVAL;
1693
1694 if (!may_mount())
1695 return -EPERM;
1696
1697 if (!(flags & UMOUNT_NOFOLLOW))
1698 lookup_flags |= LOOKUP_FOLLOW;
1699
1700 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1701 if (retval)
1702 goto out;
1703 mnt = real_mount(path.mnt);
1704 retval = -EINVAL;
1705 if (path.dentry != path.mnt->mnt_root)
1706 goto dput_and_out;
1707 if (!check_mnt(mnt))
1708 goto dput_and_out;
1709 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1710 goto dput_and_out;
1711 retval = -EPERM;
1712 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1713 goto dput_and_out;
1714
1715 retval = do_umount(mnt, flags);
1716 dput_and_out:
1717 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1718 dput(path.dentry);
1719 mntput_no_expire(mnt);
1720 out:
1721 return retval;
1722 }
1723
1724 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1725 {
1726 return ksys_umount(name, flags);
1727 }
1728
1729 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1730
1731 /*
1732 * The 2.0 compatible umount. No flags.
1733 */
1734 SYSCALL_DEFINE1(oldumount, char __user *, name)
1735 {
1736 return ksys_umount(name, 0);
1737 }
1738
1739 #endif
1740
1741 static bool is_mnt_ns_file(struct dentry *dentry)
1742 {
1743 /* Is this a proxy for a mount namespace? */
1744 return dentry->d_op == &ns_dentry_operations &&
1745 dentry->d_fsdata == &mntns_operations;
1746 }
1747
1748 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1749 {
1750 return container_of(ns, struct mnt_namespace, ns);
1751 }
1752
1753 static bool mnt_ns_loop(struct dentry *dentry)
1754 {
1755 /* Could bind mounting the mount namespace inode cause a
1756 * mount namespace loop?
1757 */
1758 struct mnt_namespace *mnt_ns;
1759 if (!is_mnt_ns_file(dentry))
1760 return false;
1761
1762 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1763 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1764 }
1765
1766 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1767 int flag)
1768 {
1769 struct mount *res, *p, *q, *r, *parent;
1770
1771 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1772 return ERR_PTR(-EINVAL);
1773
1774 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1775 return ERR_PTR(-EINVAL);
1776
1777 res = q = clone_mnt(mnt, dentry, flag);
1778 if (IS_ERR(q))
1779 return q;
1780
1781 q->mnt_mountpoint = mnt->mnt_mountpoint;
1782
1783 p = mnt;
1784 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1785 struct mount *s;
1786 if (!is_subdir(r->mnt_mountpoint, dentry))
1787 continue;
1788
1789 for (s = r; s; s = next_mnt(s, r)) {
1790 if (!(flag & CL_COPY_UNBINDABLE) &&
1791 IS_MNT_UNBINDABLE(s)) {
1792 s = skip_mnt_tree(s);
1793 continue;
1794 }
1795 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1796 is_mnt_ns_file(s->mnt.mnt_root)) {
1797 s = skip_mnt_tree(s);
1798 continue;
1799 }
1800 while (p != s->mnt_parent) {
1801 p = p->mnt_parent;
1802 q = q->mnt_parent;
1803 }
1804 p = s;
1805 parent = q;
1806 q = clone_mnt(p, p->mnt.mnt_root, flag);
1807 if (IS_ERR(q))
1808 goto out;
1809 lock_mount_hash();
1810 list_add_tail(&q->mnt_list, &res->mnt_list);
1811 attach_mnt(q, parent, p->mnt_mp);
1812 unlock_mount_hash();
1813 }
1814 }
1815 return res;
1816 out:
1817 if (res) {
1818 lock_mount_hash();
1819 umount_tree(res, UMOUNT_SYNC);
1820 unlock_mount_hash();
1821 }
1822 return q;
1823 }
1824
1825 /* Caller should check returned pointer for errors */
1826
1827 struct vfsmount *collect_mounts(const struct path *path)
1828 {
1829 struct mount *tree;
1830 namespace_lock();
1831 if (!check_mnt(real_mount(path->mnt)))
1832 tree = ERR_PTR(-EINVAL);
1833 else
1834 tree = copy_tree(real_mount(path->mnt), path->dentry,
1835 CL_COPY_ALL | CL_PRIVATE);
1836 namespace_unlock();
1837 if (IS_ERR(tree))
1838 return ERR_CAST(tree);
1839 return &tree->mnt;
1840 }
1841
1842 void drop_collected_mounts(struct vfsmount *mnt)
1843 {
1844 namespace_lock();
1845 lock_mount_hash();
1846 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1847 unlock_mount_hash();
1848 namespace_unlock();
1849 }
1850
1851 /**
1852 * clone_private_mount - create a private clone of a path
1853 *
1854 * This creates a new vfsmount, which will be the clone of @path. The new will
1855 * not be attached anywhere in the namespace and will be private (i.e. changes
1856 * to the originating mount won't be propagated into this).
1857 *
1858 * Release with mntput().
1859 */
1860 struct vfsmount *clone_private_mount(const struct path *path)
1861 {
1862 struct mount *old_mnt = real_mount(path->mnt);
1863 struct mount *new_mnt;
1864
1865 if (IS_MNT_UNBINDABLE(old_mnt))
1866 return ERR_PTR(-EINVAL);
1867
1868 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1869 if (IS_ERR(new_mnt))
1870 return ERR_CAST(new_mnt);
1871
1872 return &new_mnt->mnt;
1873 }
1874 EXPORT_SYMBOL_GPL(clone_private_mount);
1875
1876 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1877 struct vfsmount *root)
1878 {
1879 struct mount *mnt;
1880 int res = f(root, arg);
1881 if (res)
1882 return res;
1883 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1884 res = f(&mnt->mnt, arg);
1885 if (res)
1886 return res;
1887 }
1888 return 0;
1889 }
1890
1891 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1892 {
1893 struct mount *p;
1894
1895 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1896 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1897 mnt_release_group_id(p);
1898 }
1899 }
1900
1901 static int invent_group_ids(struct mount *mnt, bool recurse)
1902 {
1903 struct mount *p;
1904
1905 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1906 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1907 int err = mnt_alloc_group_id(p);
1908 if (err) {
1909 cleanup_group_ids(mnt, p);
1910 return err;
1911 }
1912 }
1913 }
1914
1915 return 0;
1916 }
1917
1918 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1919 {
1920 unsigned int max = READ_ONCE(sysctl_mount_max);
1921 unsigned int mounts = 0, old, pending, sum;
1922 struct mount *p;
1923
1924 for (p = mnt; p; p = next_mnt(p, mnt))
1925 mounts++;
1926
1927 old = ns->mounts;
1928 pending = ns->pending_mounts;
1929 sum = old + pending;
1930 if ((old > sum) ||
1931 (pending > sum) ||
1932 (max < sum) ||
1933 (mounts > (max - sum)))
1934 return -ENOSPC;
1935
1936 ns->pending_mounts = pending + mounts;
1937 return 0;
1938 }
1939
1940 /*
1941 * @source_mnt : mount tree to be attached
1942 * @nd : place the mount tree @source_mnt is attached
1943 * @parent_nd : if non-null, detach the source_mnt from its parent and
1944 * store the parent mount and mountpoint dentry.
1945 * (done when source_mnt is moved)
1946 *
1947 * NOTE: in the table below explains the semantics when a source mount
1948 * of a given type is attached to a destination mount of a given type.
1949 * ---------------------------------------------------------------------------
1950 * | BIND MOUNT OPERATION |
1951 * |**************************************************************************
1952 * | source-->| shared | private | slave | unbindable |
1953 * | dest | | | | |
1954 * | | | | | | |
1955 * | v | | | | |
1956 * |**************************************************************************
1957 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1958 * | | | | | |
1959 * |non-shared| shared (+) | private | slave (*) | invalid |
1960 * ***************************************************************************
1961 * A bind operation clones the source mount and mounts the clone on the
1962 * destination mount.
1963 *
1964 * (++) the cloned mount is propagated to all the mounts in the propagation
1965 * tree of the destination mount and the cloned mount is added to
1966 * the peer group of the source mount.
1967 * (+) the cloned mount is created under the destination mount and is marked
1968 * as shared. The cloned mount is added to the peer group of the source
1969 * mount.
1970 * (+++) the mount is propagated to all the mounts in the propagation tree
1971 * of the destination mount and the cloned mount is made slave
1972 * of the same master as that of the source mount. The cloned mount
1973 * is marked as 'shared and slave'.
1974 * (*) the cloned mount is made a slave of the same master as that of the
1975 * source mount.
1976 *
1977 * ---------------------------------------------------------------------------
1978 * | MOVE MOUNT OPERATION |
1979 * |**************************************************************************
1980 * | source-->| shared | private | slave | unbindable |
1981 * | dest | | | | |
1982 * | | | | | | |
1983 * | v | | | | |
1984 * |**************************************************************************
1985 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1986 * | | | | | |
1987 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1988 * ***************************************************************************
1989 *
1990 * (+) the mount is moved to the destination. And is then propagated to
1991 * all the mounts in the propagation tree of the destination mount.
1992 * (+*) the mount is moved to the destination.
1993 * (+++) the mount is moved to the destination and is then propagated to
1994 * all the mounts belonging to the destination mount's propagation tree.
1995 * the mount is marked as 'shared and slave'.
1996 * (*) the mount continues to be a slave at the new location.
1997 *
1998 * if the source mount is a tree, the operations explained above is
1999 * applied to each mount in the tree.
2000 * Must be called without spinlocks held, since this function can sleep
2001 * in allocations.
2002 */
2003 static int attach_recursive_mnt(struct mount *source_mnt,
2004 struct mount *dest_mnt,
2005 struct mountpoint *dest_mp,
2006 struct path *parent_path)
2007 {
2008 HLIST_HEAD(tree_list);
2009 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2010 struct mountpoint *smp;
2011 struct mount *child, *p;
2012 struct hlist_node *n;
2013 int err;
2014
2015 /* Preallocate a mountpoint in case the new mounts need
2016 * to be tucked under other mounts.
2017 */
2018 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2019 if (IS_ERR(smp))
2020 return PTR_ERR(smp);
2021
2022 /* Is there space to add these mounts to the mount namespace? */
2023 if (!parent_path) {
2024 err = count_mounts(ns, source_mnt);
2025 if (err)
2026 goto out;
2027 }
2028
2029 if (IS_MNT_SHARED(dest_mnt)) {
2030 err = invent_group_ids(source_mnt, true);
2031 if (err)
2032 goto out;
2033 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2034 lock_mount_hash();
2035 if (err)
2036 goto out_cleanup_ids;
2037 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2038 set_mnt_shared(p);
2039 } else {
2040 lock_mount_hash();
2041 }
2042 if (parent_path) {
2043 detach_mnt(source_mnt, parent_path);
2044 attach_mnt(source_mnt, dest_mnt, dest_mp);
2045 touch_mnt_namespace(source_mnt->mnt_ns);
2046 } else {
2047 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2048 commit_tree(source_mnt);
2049 }
2050
2051 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2052 struct mount *q;
2053 hlist_del_init(&child->mnt_hash);
2054 q = __lookup_mnt(&child->mnt_parent->mnt,
2055 child->mnt_mountpoint);
2056 if (q)
2057 mnt_change_mountpoint(child, smp, q);
2058 commit_tree(child);
2059 }
2060 put_mountpoint(smp);
2061 unlock_mount_hash();
2062
2063 return 0;
2064
2065 out_cleanup_ids:
2066 while (!hlist_empty(&tree_list)) {
2067 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2068 child->mnt_parent->mnt_ns->pending_mounts = 0;
2069 umount_tree(child, UMOUNT_SYNC);
2070 }
2071 unlock_mount_hash();
2072 cleanup_group_ids(source_mnt, NULL);
2073 out:
2074 ns->pending_mounts = 0;
2075
2076 read_seqlock_excl(&mount_lock);
2077 put_mountpoint(smp);
2078 read_sequnlock_excl(&mount_lock);
2079
2080 return err;
2081 }
2082
2083 static struct mountpoint *lock_mount(struct path *path)
2084 {
2085 struct vfsmount *mnt;
2086 struct dentry *dentry = path->dentry;
2087 retry:
2088 inode_lock(dentry->d_inode);
2089 if (unlikely(cant_mount(dentry))) {
2090 inode_unlock(dentry->d_inode);
2091 return ERR_PTR(-ENOENT);
2092 }
2093 namespace_lock();
2094 mnt = lookup_mnt(path);
2095 if (likely(!mnt)) {
2096 struct mountpoint *mp = get_mountpoint(dentry);
2097 if (IS_ERR(mp)) {
2098 namespace_unlock();
2099 inode_unlock(dentry->d_inode);
2100 return mp;
2101 }
2102 return mp;
2103 }
2104 namespace_unlock();
2105 inode_unlock(path->dentry->d_inode);
2106 path_put(path);
2107 path->mnt = mnt;
2108 dentry = path->dentry = dget(mnt->mnt_root);
2109 goto retry;
2110 }
2111
2112 static void unlock_mount(struct mountpoint *where)
2113 {
2114 struct dentry *dentry = where->m_dentry;
2115
2116 read_seqlock_excl(&mount_lock);
2117 put_mountpoint(where);
2118 read_sequnlock_excl(&mount_lock);
2119
2120 namespace_unlock();
2121 inode_unlock(dentry->d_inode);
2122 }
2123
2124 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2125 {
2126 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2127 return -EINVAL;
2128
2129 if (d_is_dir(mp->m_dentry) !=
2130 d_is_dir(mnt->mnt.mnt_root))
2131 return -ENOTDIR;
2132
2133 return attach_recursive_mnt(mnt, p, mp, NULL);
2134 }
2135
2136 /*
2137 * Sanity check the flags to change_mnt_propagation.
2138 */
2139
2140 static int flags_to_propagation_type(int ms_flags)
2141 {
2142 int type = ms_flags & ~(MS_REC | MS_SILENT);
2143
2144 /* Fail if any non-propagation flags are set */
2145 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2146 return 0;
2147 /* Only one propagation flag should be set */
2148 if (!is_power_of_2(type))
2149 return 0;
2150 return type;
2151 }
2152
2153 /*
2154 * recursively change the type of the mountpoint.
2155 */
2156 static int do_change_type(struct path *path, int ms_flags)
2157 {
2158 struct mount *m;
2159 struct mount *mnt = real_mount(path->mnt);
2160 int recurse = ms_flags & MS_REC;
2161 int type;
2162 int err = 0;
2163
2164 if (path->dentry != path->mnt->mnt_root)
2165 return -EINVAL;
2166
2167 type = flags_to_propagation_type(ms_flags);
2168 if (!type)
2169 return -EINVAL;
2170
2171 namespace_lock();
2172 if (type == MS_SHARED) {
2173 err = invent_group_ids(mnt, recurse);
2174 if (err)
2175 goto out_unlock;
2176 }
2177
2178 lock_mount_hash();
2179 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2180 change_mnt_propagation(m, type);
2181 unlock_mount_hash();
2182
2183 out_unlock:
2184 namespace_unlock();
2185 return err;
2186 }
2187
2188 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2189 {
2190 struct mount *child;
2191 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2192 if (!is_subdir(child->mnt_mountpoint, dentry))
2193 continue;
2194
2195 if (child->mnt.mnt_flags & MNT_LOCKED)
2196 return true;
2197 }
2198 return false;
2199 }
2200
2201 /*
2202 * do loopback mount.
2203 */
2204 static int do_loopback(struct path *path, const char *old_name,
2205 int recurse)
2206 {
2207 struct path old_path;
2208 struct mount *mnt = NULL, *old, *parent;
2209 struct mountpoint *mp;
2210 int err;
2211 if (!old_name || !*old_name)
2212 return -EINVAL;
2213 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2214 if (err)
2215 return err;
2216
2217 err = -EINVAL;
2218 if (mnt_ns_loop(old_path.dentry))
2219 goto out;
2220
2221 mp = lock_mount(path);
2222 err = PTR_ERR(mp);
2223 if (IS_ERR(mp))
2224 goto out;
2225
2226 old = real_mount(old_path.mnt);
2227 parent = real_mount(path->mnt);
2228
2229 err = -EINVAL;
2230 if (IS_MNT_UNBINDABLE(old))
2231 goto out2;
2232
2233 if (!check_mnt(parent))
2234 goto out2;
2235
2236 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2237 goto out2;
2238
2239 if (!recurse && has_locked_children(old, old_path.dentry))
2240 goto out2;
2241
2242 if (recurse)
2243 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2244 else
2245 mnt = clone_mnt(old, old_path.dentry, 0);
2246
2247 if (IS_ERR(mnt)) {
2248 err = PTR_ERR(mnt);
2249 goto out2;
2250 }
2251
2252 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2253
2254 err = graft_tree(mnt, parent, mp);
2255 if (err) {
2256 lock_mount_hash();
2257 umount_tree(mnt, UMOUNT_SYNC);
2258 unlock_mount_hash();
2259 }
2260 out2:
2261 unlock_mount(mp);
2262 out:
2263 path_put(&old_path);
2264 return err;
2265 }
2266
2267 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2268 {
2269 int error = 0;
2270 int readonly_request = 0;
2271
2272 if (ms_flags & MS_RDONLY)
2273 readonly_request = 1;
2274 if (readonly_request == __mnt_is_readonly(mnt))
2275 return 0;
2276
2277 if (readonly_request)
2278 error = mnt_make_readonly(real_mount(mnt));
2279 else
2280 __mnt_unmake_readonly(real_mount(mnt));
2281 return error;
2282 }
2283
2284 /*
2285 * change filesystem flags. dir should be a physical root of filesystem.
2286 * If you've mounted a non-root directory somewhere and want to do remount
2287 * on it - tough luck.
2288 */
2289 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2290 int mnt_flags, void *data)
2291 {
2292 int err;
2293 struct super_block *sb = path->mnt->mnt_sb;
2294 struct mount *mnt = real_mount(path->mnt);
2295
2296 if (!check_mnt(mnt))
2297 return -EINVAL;
2298
2299 if (path->dentry != path->mnt->mnt_root)
2300 return -EINVAL;
2301
2302 /* Don't allow changing of locked mnt flags.
2303 *
2304 * No locks need to be held here while testing the various
2305 * MNT_LOCK flags because those flags can never be cleared
2306 * once they are set.
2307 */
2308 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2309 !(mnt_flags & MNT_READONLY)) {
2310 return -EPERM;
2311 }
2312 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2313 !(mnt_flags & MNT_NODEV)) {
2314 return -EPERM;
2315 }
2316 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2317 !(mnt_flags & MNT_NOSUID)) {
2318 return -EPERM;
2319 }
2320 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2321 !(mnt_flags & MNT_NOEXEC)) {
2322 return -EPERM;
2323 }
2324 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2325 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2326 return -EPERM;
2327 }
2328
2329 err = security_sb_remount(sb, data);
2330 if (err)
2331 return err;
2332
2333 down_write(&sb->s_umount);
2334 if (ms_flags & MS_BIND)
2335 err = change_mount_flags(path->mnt, ms_flags);
2336 else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2337 err = -EPERM;
2338 else
2339 err = do_remount_sb(sb, sb_flags, data, 0);
2340 if (!err) {
2341 lock_mount_hash();
2342 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2343 mnt->mnt.mnt_flags = mnt_flags;
2344 touch_mnt_namespace(mnt->mnt_ns);
2345 unlock_mount_hash();
2346 }
2347 up_write(&sb->s_umount);
2348 return err;
2349 }
2350
2351 static inline int tree_contains_unbindable(struct mount *mnt)
2352 {
2353 struct mount *p;
2354 for (p = mnt; p; p = next_mnt(p, mnt)) {
2355 if (IS_MNT_UNBINDABLE(p))
2356 return 1;
2357 }
2358 return 0;
2359 }
2360
2361 static int do_move_mount(struct path *path, const char *old_name)
2362 {
2363 struct path old_path, parent_path;
2364 struct mount *p;
2365 struct mount *old;
2366 struct mountpoint *mp;
2367 int err;
2368 if (!old_name || !*old_name)
2369 return -EINVAL;
2370 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2371 if (err)
2372 return err;
2373
2374 mp = lock_mount(path);
2375 err = PTR_ERR(mp);
2376 if (IS_ERR(mp))
2377 goto out;
2378
2379 old = real_mount(old_path.mnt);
2380 p = real_mount(path->mnt);
2381
2382 err = -EINVAL;
2383 if (!check_mnt(p) || !check_mnt(old))
2384 goto out1;
2385
2386 if (old->mnt.mnt_flags & MNT_LOCKED)
2387 goto out1;
2388
2389 err = -EINVAL;
2390 if (old_path.dentry != old_path.mnt->mnt_root)
2391 goto out1;
2392
2393 if (!mnt_has_parent(old))
2394 goto out1;
2395
2396 if (d_is_dir(path->dentry) !=
2397 d_is_dir(old_path.dentry))
2398 goto out1;
2399 /*
2400 * Don't move a mount residing in a shared parent.
2401 */
2402 if (IS_MNT_SHARED(old->mnt_parent))
2403 goto out1;
2404 /*
2405 * Don't move a mount tree containing unbindable mounts to a destination
2406 * mount which is shared.
2407 */
2408 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2409 goto out1;
2410 err = -ELOOP;
2411 for (; mnt_has_parent(p); p = p->mnt_parent)
2412 if (p == old)
2413 goto out1;
2414
2415 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2416 if (err)
2417 goto out1;
2418
2419 /* if the mount is moved, it should no longer be expire
2420 * automatically */
2421 list_del_init(&old->mnt_expire);
2422 out1:
2423 unlock_mount(mp);
2424 out:
2425 if (!err)
2426 path_put(&parent_path);
2427 path_put(&old_path);
2428 return err;
2429 }
2430
2431 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2432 {
2433 int err;
2434 const char *subtype = strchr(fstype, '.');
2435 if (subtype) {
2436 subtype++;
2437 err = -EINVAL;
2438 if (!subtype[0])
2439 goto err;
2440 } else
2441 subtype = "";
2442
2443 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2444 err = -ENOMEM;
2445 if (!mnt->mnt_sb->s_subtype)
2446 goto err;
2447 return mnt;
2448
2449 err:
2450 mntput(mnt);
2451 return ERR_PTR(err);
2452 }
2453
2454 /*
2455 * add a mount into a namespace's mount tree
2456 */
2457 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2458 {
2459 struct mountpoint *mp;
2460 struct mount *parent;
2461 int err;
2462
2463 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2464
2465 mp = lock_mount(path);
2466 if (IS_ERR(mp))
2467 return PTR_ERR(mp);
2468
2469 parent = real_mount(path->mnt);
2470 err = -EINVAL;
2471 if (unlikely(!check_mnt(parent))) {
2472 /* that's acceptable only for automounts done in private ns */
2473 if (!(mnt_flags & MNT_SHRINKABLE))
2474 goto unlock;
2475 /* ... and for those we'd better have mountpoint still alive */
2476 if (!parent->mnt_ns)
2477 goto unlock;
2478 }
2479
2480 /* Refuse the same filesystem on the same mount point */
2481 err = -EBUSY;
2482 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2483 path->mnt->mnt_root == path->dentry)
2484 goto unlock;
2485
2486 err = -EINVAL;
2487 if (d_is_symlink(newmnt->mnt.mnt_root))
2488 goto unlock;
2489
2490 newmnt->mnt.mnt_flags = mnt_flags;
2491 err = graft_tree(newmnt, parent, mp);
2492
2493 unlock:
2494 unlock_mount(mp);
2495 return err;
2496 }
2497
2498 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2499
2500 /*
2501 * create a new mount for userspace and request it to be added into the
2502 * namespace's tree
2503 */
2504 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2505 int mnt_flags, const char *name, void *data)
2506 {
2507 struct file_system_type *type;
2508 struct vfsmount *mnt;
2509 int err;
2510
2511 if (!fstype)
2512 return -EINVAL;
2513
2514 type = get_fs_type(fstype);
2515 if (!type)
2516 return -ENODEV;
2517
2518 mnt = vfs_kern_mount(type, sb_flags, name, data);
2519 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2520 !mnt->mnt_sb->s_subtype)
2521 mnt = fs_set_subtype(mnt, fstype);
2522
2523 put_filesystem(type);
2524 if (IS_ERR(mnt))
2525 return PTR_ERR(mnt);
2526
2527 if (mount_too_revealing(mnt, &mnt_flags)) {
2528 mntput(mnt);
2529 return -EPERM;
2530 }
2531
2532 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2533 if (err)
2534 mntput(mnt);
2535 return err;
2536 }
2537
2538 int finish_automount(struct vfsmount *m, struct path *path)
2539 {
2540 struct mount *mnt = real_mount(m);
2541 int err;
2542 /* The new mount record should have at least 2 refs to prevent it being
2543 * expired before we get a chance to add it
2544 */
2545 BUG_ON(mnt_get_count(mnt) < 2);
2546
2547 if (m->mnt_sb == path->mnt->mnt_sb &&
2548 m->mnt_root == path->dentry) {
2549 err = -ELOOP;
2550 goto fail;
2551 }
2552
2553 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2554 if (!err)
2555 return 0;
2556 fail:
2557 /* remove m from any expiration list it may be on */
2558 if (!list_empty(&mnt->mnt_expire)) {
2559 namespace_lock();
2560 list_del_init(&mnt->mnt_expire);
2561 namespace_unlock();
2562 }
2563 mntput(m);
2564 mntput(m);
2565 return err;
2566 }
2567
2568 /**
2569 * mnt_set_expiry - Put a mount on an expiration list
2570 * @mnt: The mount to list.
2571 * @expiry_list: The list to add the mount to.
2572 */
2573 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2574 {
2575 namespace_lock();
2576
2577 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2578
2579 namespace_unlock();
2580 }
2581 EXPORT_SYMBOL(mnt_set_expiry);
2582
2583 /*
2584 * process a list of expirable mountpoints with the intent of discarding any
2585 * mountpoints that aren't in use and haven't been touched since last we came
2586 * here
2587 */
2588 void mark_mounts_for_expiry(struct list_head *mounts)
2589 {
2590 struct mount *mnt, *next;
2591 LIST_HEAD(graveyard);
2592
2593 if (list_empty(mounts))
2594 return;
2595
2596 namespace_lock();
2597 lock_mount_hash();
2598
2599 /* extract from the expiration list every vfsmount that matches the
2600 * following criteria:
2601 * - only referenced by its parent vfsmount
2602 * - still marked for expiry (marked on the last call here; marks are
2603 * cleared by mntput())
2604 */
2605 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2606 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2607 propagate_mount_busy(mnt, 1))
2608 continue;
2609 list_move(&mnt->mnt_expire, &graveyard);
2610 }
2611 while (!list_empty(&graveyard)) {
2612 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2613 touch_mnt_namespace(mnt->mnt_ns);
2614 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2615 }
2616 unlock_mount_hash();
2617 namespace_unlock();
2618 }
2619
2620 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2621
2622 /*
2623 * Ripoff of 'select_parent()'
2624 *
2625 * search the list of submounts for a given mountpoint, and move any
2626 * shrinkable submounts to the 'graveyard' list.
2627 */
2628 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2629 {
2630 struct mount *this_parent = parent;
2631 struct list_head *next;
2632 int found = 0;
2633
2634 repeat:
2635 next = this_parent->mnt_mounts.next;
2636 resume:
2637 while (next != &this_parent->mnt_mounts) {
2638 struct list_head *tmp = next;
2639 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2640
2641 next = tmp->next;
2642 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2643 continue;
2644 /*
2645 * Descend a level if the d_mounts list is non-empty.
2646 */
2647 if (!list_empty(&mnt->mnt_mounts)) {
2648 this_parent = mnt;
2649 goto repeat;
2650 }
2651
2652 if (!propagate_mount_busy(mnt, 1)) {
2653 list_move_tail(&mnt->mnt_expire, graveyard);
2654 found++;
2655 }
2656 }
2657 /*
2658 * All done at this level ... ascend and resume the search
2659 */
2660 if (this_parent != parent) {
2661 next = this_parent->mnt_child.next;
2662 this_parent = this_parent->mnt_parent;
2663 goto resume;
2664 }
2665 return found;
2666 }
2667
2668 /*
2669 * process a list of expirable mountpoints with the intent of discarding any
2670 * submounts of a specific parent mountpoint
2671 *
2672 * mount_lock must be held for write
2673 */
2674 static void shrink_submounts(struct mount *mnt)
2675 {
2676 LIST_HEAD(graveyard);
2677 struct mount *m;
2678
2679 /* extract submounts of 'mountpoint' from the expiration list */
2680 while (select_submounts(mnt, &graveyard)) {
2681 while (!list_empty(&graveyard)) {
2682 m = list_first_entry(&graveyard, struct mount,
2683 mnt_expire);
2684 touch_mnt_namespace(m->mnt_ns);
2685 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2686 }
2687 }
2688 }
2689
2690 /*
2691 * Some copy_from_user() implementations do not return the exact number of
2692 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2693 * Note that this function differs from copy_from_user() in that it will oops
2694 * on bad values of `to', rather than returning a short copy.
2695 */
2696 static long exact_copy_from_user(void *to, const void __user * from,
2697 unsigned long n)
2698 {
2699 char *t = to;
2700 const char __user *f = from;
2701 char c;
2702
2703 if (!access_ok(VERIFY_READ, from, n))
2704 return n;
2705
2706 while (n) {
2707 if (__get_user(c, f)) {
2708 memset(t, 0, n);
2709 break;
2710 }
2711 *t++ = c;
2712 f++;
2713 n--;
2714 }
2715 return n;
2716 }
2717
2718 void *copy_mount_options(const void __user * data)
2719 {
2720 int i;
2721 unsigned long size;
2722 char *copy;
2723
2724 if (!data)
2725 return NULL;
2726
2727 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2728 if (!copy)
2729 return ERR_PTR(-ENOMEM);
2730
2731 /* We only care that *some* data at the address the user
2732 * gave us is valid. Just in case, we'll zero
2733 * the remainder of the page.
2734 */
2735 /* copy_from_user cannot cross TASK_SIZE ! */
2736 size = TASK_SIZE - (unsigned long)data;
2737 if (size > PAGE_SIZE)
2738 size = PAGE_SIZE;
2739
2740 i = size - exact_copy_from_user(copy, data, size);
2741 if (!i) {
2742 kfree(copy);
2743 return ERR_PTR(-EFAULT);
2744 }
2745 if (i != PAGE_SIZE)
2746 memset(copy + i, 0, PAGE_SIZE - i);
2747 return copy;
2748 }
2749
2750 char *copy_mount_string(const void __user *data)
2751 {
2752 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2753 }
2754
2755 /*
2756 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2757 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2758 *
2759 * data is a (void *) that can point to any structure up to
2760 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2761 * information (or be NULL).
2762 *
2763 * Pre-0.97 versions of mount() didn't have a flags word.
2764 * When the flags word was introduced its top half was required
2765 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2766 * Therefore, if this magic number is present, it carries no information
2767 * and must be discarded.
2768 */
2769 long do_mount(const char *dev_name, const char __user *dir_name,
2770 const char *type_page, unsigned long flags, void *data_page)
2771 {
2772 struct path path;
2773 unsigned int mnt_flags = 0, sb_flags;
2774 int retval = 0;
2775
2776 /* Discard magic */
2777 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2778 flags &= ~MS_MGC_MSK;
2779
2780 /* Basic sanity checks */
2781 if (data_page)
2782 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2783
2784 if (flags & MS_NOUSER)
2785 return -EINVAL;
2786
2787 /* ... and get the mountpoint */
2788 retval = user_path(dir_name, &path);
2789 if (retval)
2790 return retval;
2791
2792 retval = security_sb_mount(dev_name, &path,
2793 type_page, flags, data_page);
2794 if (!retval && !may_mount())
2795 retval = -EPERM;
2796 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
2797 retval = -EPERM;
2798 if (retval)
2799 goto dput_out;
2800
2801 /* Default to relatime unless overriden */
2802 if (!(flags & MS_NOATIME))
2803 mnt_flags |= MNT_RELATIME;
2804
2805 /* Separate the per-mountpoint flags */
2806 if (flags & MS_NOSUID)
2807 mnt_flags |= MNT_NOSUID;
2808 if (flags & MS_NODEV)
2809 mnt_flags |= MNT_NODEV;
2810 if (flags & MS_NOEXEC)
2811 mnt_flags |= MNT_NOEXEC;
2812 if (flags & MS_NOATIME)
2813 mnt_flags |= MNT_NOATIME;
2814 if (flags & MS_NODIRATIME)
2815 mnt_flags |= MNT_NODIRATIME;
2816 if (flags & MS_STRICTATIME)
2817 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2818 if (flags & MS_RDONLY)
2819 mnt_flags |= MNT_READONLY;
2820
2821 /* The default atime for remount is preservation */
2822 if ((flags & MS_REMOUNT) &&
2823 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2824 MS_STRICTATIME)) == 0)) {
2825 mnt_flags &= ~MNT_ATIME_MASK;
2826 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2827 }
2828
2829 sb_flags = flags & (SB_RDONLY |
2830 SB_SYNCHRONOUS |
2831 SB_MANDLOCK |
2832 SB_DIRSYNC |
2833 SB_SILENT |
2834 SB_POSIXACL |
2835 SB_LAZYTIME |
2836 SB_I_VERSION);
2837
2838 if (flags & MS_REMOUNT)
2839 retval = do_remount(&path, flags, sb_flags, mnt_flags,
2840 data_page);
2841 else if (flags & MS_BIND)
2842 retval = do_loopback(&path, dev_name, flags & MS_REC);
2843 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2844 retval = do_change_type(&path, flags);
2845 else if (flags & MS_MOVE)
2846 retval = do_move_mount(&path, dev_name);
2847 else
2848 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
2849 dev_name, data_page);
2850 dput_out:
2851 path_put(&path);
2852 return retval;
2853 }
2854
2855 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2856 {
2857 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2858 }
2859
2860 static void dec_mnt_namespaces(struct ucounts *ucounts)
2861 {
2862 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2863 }
2864
2865 static void free_mnt_ns(struct mnt_namespace *ns)
2866 {
2867 ns_free_inum(&ns->ns);
2868 dec_mnt_namespaces(ns->ucounts);
2869 put_user_ns(ns->user_ns);
2870 kfree(ns);
2871 }
2872
2873 /*
2874 * Assign a sequence number so we can detect when we attempt to bind
2875 * mount a reference to an older mount namespace into the current
2876 * mount namespace, preventing reference counting loops. A 64bit
2877 * number incrementing at 10Ghz will take 12,427 years to wrap which
2878 * is effectively never, so we can ignore the possibility.
2879 */
2880 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2881
2882 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2883 {
2884 struct mnt_namespace *new_ns;
2885 struct ucounts *ucounts;
2886 int ret;
2887
2888 ucounts = inc_mnt_namespaces(user_ns);
2889 if (!ucounts)
2890 return ERR_PTR(-ENOSPC);
2891
2892 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2893 if (!new_ns) {
2894 dec_mnt_namespaces(ucounts);
2895 return ERR_PTR(-ENOMEM);
2896 }
2897 ret = ns_alloc_inum(&new_ns->ns);
2898 if (ret) {
2899 kfree(new_ns);
2900 dec_mnt_namespaces(ucounts);
2901 return ERR_PTR(ret);
2902 }
2903 new_ns->ns.ops = &mntns_operations;
2904 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2905 atomic_set(&new_ns->count, 1);
2906 new_ns->root = NULL;
2907 INIT_LIST_HEAD(&new_ns->list);
2908 init_waitqueue_head(&new_ns->poll);
2909 new_ns->event = 0;
2910 new_ns->user_ns = get_user_ns(user_ns);
2911 new_ns->ucounts = ucounts;
2912 new_ns->mounts = 0;
2913 new_ns->pending_mounts = 0;
2914 return new_ns;
2915 }
2916
2917 __latent_entropy
2918 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2919 struct user_namespace *user_ns, struct fs_struct *new_fs)
2920 {
2921 struct mnt_namespace *new_ns;
2922 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2923 struct mount *p, *q;
2924 struct mount *old;
2925 struct mount *new;
2926 int copy_flags;
2927
2928 BUG_ON(!ns);
2929
2930 if (likely(!(flags & CLONE_NEWNS))) {
2931 get_mnt_ns(ns);
2932 return ns;
2933 }
2934
2935 old = ns->root;
2936
2937 new_ns = alloc_mnt_ns(user_ns);
2938 if (IS_ERR(new_ns))
2939 return new_ns;
2940
2941 namespace_lock();
2942 /* First pass: copy the tree topology */
2943 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2944 if (user_ns != ns->user_ns)
2945 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2946 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2947 if (IS_ERR(new)) {
2948 namespace_unlock();
2949 free_mnt_ns(new_ns);
2950 return ERR_CAST(new);
2951 }
2952 new_ns->root = new;
2953 list_add_tail(&new_ns->list, &new->mnt_list);
2954
2955 /*
2956 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2957 * as belonging to new namespace. We have already acquired a private
2958 * fs_struct, so tsk->fs->lock is not needed.
2959 */
2960 p = old;
2961 q = new;
2962 while (p) {
2963 q->mnt_ns = new_ns;
2964 new_ns->mounts++;
2965 if (new_fs) {
2966 if (&p->mnt == new_fs->root.mnt) {
2967 new_fs->root.mnt = mntget(&q->mnt);
2968 rootmnt = &p->mnt;
2969 }
2970 if (&p->mnt == new_fs->pwd.mnt) {
2971 new_fs->pwd.mnt = mntget(&q->mnt);
2972 pwdmnt = &p->mnt;
2973 }
2974 }
2975 p = next_mnt(p, old);
2976 q = next_mnt(q, new);
2977 if (!q)
2978 break;
2979 while (p->mnt.mnt_root != q->mnt.mnt_root)
2980 p = next_mnt(p, old);
2981 }
2982 namespace_unlock();
2983
2984 if (rootmnt)
2985 mntput(rootmnt);
2986 if (pwdmnt)
2987 mntput(pwdmnt);
2988
2989 return new_ns;
2990 }
2991
2992 /**
2993 * create_mnt_ns - creates a private namespace and adds a root filesystem
2994 * @mnt: pointer to the new root filesystem mountpoint
2995 */
2996 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2997 {
2998 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2999 if (!IS_ERR(new_ns)) {
3000 struct mount *mnt = real_mount(m);
3001 mnt->mnt_ns = new_ns;
3002 new_ns->root = mnt;
3003 new_ns->mounts++;
3004 list_add(&mnt->mnt_list, &new_ns->list);
3005 } else {
3006 mntput(m);
3007 }
3008 return new_ns;
3009 }
3010
3011 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3012 {
3013 struct mnt_namespace *ns;
3014 struct super_block *s;
3015 struct path path;
3016 int err;
3017
3018 ns = create_mnt_ns(mnt);
3019 if (IS_ERR(ns))
3020 return ERR_CAST(ns);
3021
3022 err = vfs_path_lookup(mnt->mnt_root, mnt,
3023 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3024
3025 put_mnt_ns(ns);
3026
3027 if (err)
3028 return ERR_PTR(err);
3029
3030 /* trade a vfsmount reference for active sb one */
3031 s = path.mnt->mnt_sb;
3032 atomic_inc(&s->s_active);
3033 mntput(path.mnt);
3034 /* lock the sucker */
3035 down_write(&s->s_umount);
3036 /* ... and return the root of (sub)tree on it */
3037 return path.dentry;
3038 }
3039 EXPORT_SYMBOL(mount_subtree);
3040
3041 int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
3042 unsigned long flags, void __user *data)
3043 {
3044 int ret;
3045 char *kernel_type;
3046 char *kernel_dev;
3047 void *options;
3048
3049 kernel_type = copy_mount_string(type);
3050 ret = PTR_ERR(kernel_type);
3051 if (IS_ERR(kernel_type))
3052 goto out_type;
3053
3054 kernel_dev = copy_mount_string(dev_name);
3055 ret = PTR_ERR(kernel_dev);
3056 if (IS_ERR(kernel_dev))
3057 goto out_dev;
3058
3059 options = copy_mount_options(data);
3060 ret = PTR_ERR(options);
3061 if (IS_ERR(options))
3062 goto out_data;
3063
3064 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3065
3066 kfree(options);
3067 out_data:
3068 kfree(kernel_dev);
3069 out_dev:
3070 kfree(kernel_type);
3071 out_type:
3072 return ret;
3073 }
3074
3075 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3076 char __user *, type, unsigned long, flags, void __user *, data)
3077 {
3078 return ksys_mount(dev_name, dir_name, type, flags, data);
3079 }
3080
3081 /*
3082 * Return true if path is reachable from root
3083 *
3084 * namespace_sem or mount_lock is held
3085 */
3086 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3087 const struct path *root)
3088 {
3089 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3090 dentry = mnt->mnt_mountpoint;
3091 mnt = mnt->mnt_parent;
3092 }
3093 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3094 }
3095
3096 bool path_is_under(const struct path *path1, const struct path *path2)
3097 {
3098 bool res;
3099 read_seqlock_excl(&mount_lock);
3100 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3101 read_sequnlock_excl(&mount_lock);
3102 return res;
3103 }
3104 EXPORT_SYMBOL(path_is_under);
3105
3106 /*
3107 * pivot_root Semantics:
3108 * Moves the root file system of the current process to the directory put_old,
3109 * makes new_root as the new root file system of the current process, and sets
3110 * root/cwd of all processes which had them on the current root to new_root.
3111 *
3112 * Restrictions:
3113 * The new_root and put_old must be directories, and must not be on the
3114 * same file system as the current process root. The put_old must be
3115 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3116 * pointed to by put_old must yield the same directory as new_root. No other
3117 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3118 *
3119 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3120 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3121 * in this situation.
3122 *
3123 * Notes:
3124 * - we don't move root/cwd if they are not at the root (reason: if something
3125 * cared enough to change them, it's probably wrong to force them elsewhere)
3126 * - it's okay to pick a root that isn't the root of a file system, e.g.
3127 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3128 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3129 * first.
3130 */
3131 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3132 const char __user *, put_old)
3133 {
3134 struct path new, old, parent_path, root_parent, root;
3135 struct mount *new_mnt, *root_mnt, *old_mnt;
3136 struct mountpoint *old_mp, *root_mp;
3137 int error;
3138
3139 if (!may_mount())
3140 return -EPERM;
3141
3142 error = user_path_dir(new_root, &new);
3143 if (error)
3144 goto out0;
3145
3146 error = user_path_dir(put_old, &old);
3147 if (error)
3148 goto out1;
3149
3150 error = security_sb_pivotroot(&old, &new);
3151 if (error)
3152 goto out2;
3153
3154 get_fs_root(current->fs, &root);
3155 old_mp = lock_mount(&old);
3156 error = PTR_ERR(old_mp);
3157 if (IS_ERR(old_mp))
3158 goto out3;
3159
3160 error = -EINVAL;
3161 new_mnt = real_mount(new.mnt);
3162 root_mnt = real_mount(root.mnt);
3163 old_mnt = real_mount(old.mnt);
3164 if (IS_MNT_SHARED(old_mnt) ||
3165 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3166 IS_MNT_SHARED(root_mnt->mnt_parent))
3167 goto out4;
3168 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3169 goto out4;
3170 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3171 goto out4;
3172 error = -ENOENT;
3173 if (d_unlinked(new.dentry))
3174 goto out4;
3175 error = -EBUSY;
3176 if (new_mnt == root_mnt || old_mnt == root_mnt)
3177 goto out4; /* loop, on the same file system */
3178 error = -EINVAL;
3179 if (root.mnt->mnt_root != root.dentry)
3180 goto out4; /* not a mountpoint */
3181 if (!mnt_has_parent(root_mnt))
3182 goto out4; /* not attached */
3183 root_mp = root_mnt->mnt_mp;
3184 if (new.mnt->mnt_root != new.dentry)
3185 goto out4; /* not a mountpoint */
3186 if (!mnt_has_parent(new_mnt))
3187 goto out4; /* not attached */
3188 /* make sure we can reach put_old from new_root */
3189 if (!is_path_reachable(old_mnt, old.dentry, &new))
3190 goto out4;
3191 /* make certain new is below the root */
3192 if (!is_path_reachable(new_mnt, new.dentry, &root))
3193 goto out4;
3194 root_mp->m_count++; /* pin it so it won't go away */
3195 lock_mount_hash();
3196 detach_mnt(new_mnt, &parent_path);
3197 detach_mnt(root_mnt, &root_parent);
3198 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3199 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3200 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3201 }
3202 /* mount old root on put_old */
3203 attach_mnt(root_mnt, old_mnt, old_mp);
3204 /* mount new_root on / */
3205 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3206 touch_mnt_namespace(current->nsproxy->mnt_ns);
3207 /* A moved mount should not expire automatically */
3208 list_del_init(&new_mnt->mnt_expire);
3209 put_mountpoint(root_mp);
3210 unlock_mount_hash();
3211 chroot_fs_refs(&root, &new);
3212 error = 0;
3213 out4:
3214 unlock_mount(old_mp);
3215 if (!error) {
3216 path_put(&root_parent);
3217 path_put(&parent_path);
3218 }
3219 out3:
3220 path_put(&root);
3221 out2:
3222 path_put(&old);
3223 out1:
3224 path_put(&new);
3225 out0:
3226 return error;
3227 }
3228
3229 static void __init init_mount_tree(void)
3230 {
3231 struct vfsmount *mnt;
3232 struct mnt_namespace *ns;
3233 struct path root;
3234 struct file_system_type *type;
3235
3236 type = get_fs_type("rootfs");
3237 if (!type)
3238 panic("Can't find rootfs type");
3239 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3240 put_filesystem(type);
3241 if (IS_ERR(mnt))
3242 panic("Can't create rootfs");
3243
3244 ns = create_mnt_ns(mnt);
3245 if (IS_ERR(ns))
3246 panic("Can't allocate initial namespace");
3247
3248 init_task.nsproxy->mnt_ns = ns;
3249 get_mnt_ns(ns);
3250
3251 root.mnt = mnt;
3252 root.dentry = mnt->mnt_root;
3253 mnt->mnt_flags |= MNT_LOCKED;
3254
3255 set_fs_pwd(current->fs, &root);
3256 set_fs_root(current->fs, &root);
3257 }
3258
3259 void __init mnt_init(void)
3260 {
3261 int err;
3262
3263 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3264 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3265
3266 mount_hashtable = alloc_large_system_hash("Mount-cache",
3267 sizeof(struct hlist_head),
3268 mhash_entries, 19,
3269 HASH_ZERO,
3270 &m_hash_shift, &m_hash_mask, 0, 0);
3271 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3272 sizeof(struct hlist_head),
3273 mphash_entries, 19,
3274 HASH_ZERO,
3275 &mp_hash_shift, &mp_hash_mask, 0, 0);
3276
3277 if (!mount_hashtable || !mountpoint_hashtable)
3278 panic("Failed to allocate mount hash table\n");
3279
3280 kernfs_init();
3281
3282 err = sysfs_init();
3283 if (err)
3284 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3285 __func__, err);
3286 fs_kobj = kobject_create_and_add("fs", NULL);
3287 if (!fs_kobj)
3288 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3289 init_rootfs();
3290 init_mount_tree();
3291 }
3292
3293 void put_mnt_ns(struct mnt_namespace *ns)
3294 {
3295 if (!atomic_dec_and_test(&ns->count))
3296 return;
3297 drop_collected_mounts(&ns->root->mnt);
3298 free_mnt_ns(ns);
3299 }
3300
3301 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3302 {
3303 struct vfsmount *mnt;
3304 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
3305 if (!IS_ERR(mnt)) {
3306 /*
3307 * it is a longterm mount, don't release mnt until
3308 * we unmount before file sys is unregistered
3309 */
3310 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3311 }
3312 return mnt;
3313 }
3314 EXPORT_SYMBOL_GPL(kern_mount_data);
3315
3316 void kern_unmount(struct vfsmount *mnt)
3317 {
3318 /* release long term mount so mount point can be released */
3319 if (!IS_ERR_OR_NULL(mnt)) {
3320 real_mount(mnt)->mnt_ns = NULL;
3321 synchronize_rcu(); /* yecchhh... */
3322 mntput(mnt);
3323 }
3324 }
3325 EXPORT_SYMBOL(kern_unmount);
3326
3327 bool our_mnt(struct vfsmount *mnt)
3328 {
3329 return check_mnt(real_mount(mnt));
3330 }
3331
3332 bool current_chrooted(void)
3333 {
3334 /* Does the current process have a non-standard root */
3335 struct path ns_root;
3336 struct path fs_root;
3337 bool chrooted;
3338
3339 /* Find the namespace root */
3340 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3341 ns_root.dentry = ns_root.mnt->mnt_root;
3342 path_get(&ns_root);
3343 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3344 ;
3345
3346 get_fs_root(current->fs, &fs_root);
3347
3348 chrooted = !path_equal(&fs_root, &ns_root);
3349
3350 path_put(&fs_root);
3351 path_put(&ns_root);
3352
3353 return chrooted;
3354 }
3355
3356 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3357 int *new_mnt_flags)
3358 {
3359 int new_flags = *new_mnt_flags;
3360 struct mount *mnt;
3361 bool visible = false;
3362
3363 down_read(&namespace_sem);
3364 list_for_each_entry(mnt, &ns->list, mnt_list) {
3365 struct mount *child;
3366 int mnt_flags;
3367
3368 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3369 continue;
3370
3371 /* This mount is not fully visible if it's root directory
3372 * is not the root directory of the filesystem.
3373 */
3374 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3375 continue;
3376
3377 /* A local view of the mount flags */
3378 mnt_flags = mnt->mnt.mnt_flags;
3379
3380 /* Don't miss readonly hidden in the superblock flags */
3381 if (sb_rdonly(mnt->mnt.mnt_sb))
3382 mnt_flags |= MNT_LOCK_READONLY;
3383
3384 /* Verify the mount flags are equal to or more permissive
3385 * than the proposed new mount.
3386 */
3387 if ((mnt_flags & MNT_LOCK_READONLY) &&
3388 !(new_flags & MNT_READONLY))
3389 continue;
3390 if ((mnt_flags & MNT_LOCK_ATIME) &&
3391 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3392 continue;
3393
3394 /* This mount is not fully visible if there are any
3395 * locked child mounts that cover anything except for
3396 * empty directories.
3397 */
3398 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3399 struct inode *inode = child->mnt_mountpoint->d_inode;
3400 /* Only worry about locked mounts */
3401 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3402 continue;
3403 /* Is the directory permanetly empty? */
3404 if (!is_empty_dir_inode(inode))
3405 goto next;
3406 }
3407 /* Preserve the locked attributes */
3408 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3409 MNT_LOCK_ATIME);
3410 visible = true;
3411 goto found;
3412 next: ;
3413 }
3414 found:
3415 up_read(&namespace_sem);
3416 return visible;
3417 }
3418
3419 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3420 {
3421 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3422 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3423 unsigned long s_iflags;
3424
3425 if (ns->user_ns == &init_user_ns)
3426 return false;
3427
3428 /* Can this filesystem be too revealing? */
3429 s_iflags = mnt->mnt_sb->s_iflags;
3430 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3431 return false;
3432
3433 if ((s_iflags & required_iflags) != required_iflags) {
3434 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3435 required_iflags);
3436 return true;
3437 }
3438
3439 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3440 }
3441
3442 bool mnt_may_suid(struct vfsmount *mnt)
3443 {
3444 /*
3445 * Foreign mounts (accessed via fchdir or through /proc
3446 * symlinks) are always treated as if they are nosuid. This
3447 * prevents namespaces from trusting potentially unsafe
3448 * suid/sgid bits, file caps, or security labels that originate
3449 * in other namespaces.
3450 */
3451 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3452 current_in_userns(mnt->mnt_sb->s_user_ns);
3453 }
3454
3455 static struct ns_common *mntns_get(struct task_struct *task)
3456 {
3457 struct ns_common *ns = NULL;
3458 struct nsproxy *nsproxy;
3459
3460 task_lock(task);
3461 nsproxy = task->nsproxy;
3462 if (nsproxy) {
3463 ns = &nsproxy->mnt_ns->ns;
3464 get_mnt_ns(to_mnt_ns(ns));
3465 }
3466 task_unlock(task);
3467
3468 return ns;
3469 }
3470
3471 static void mntns_put(struct ns_common *ns)
3472 {
3473 put_mnt_ns(to_mnt_ns(ns));
3474 }
3475
3476 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3477 {
3478 struct fs_struct *fs = current->fs;
3479 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3480 struct path root;
3481 int err;
3482
3483 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3484 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3485 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3486 return -EPERM;
3487
3488 if (fs->users != 1)
3489 return -EINVAL;
3490
3491 get_mnt_ns(mnt_ns);
3492 old_mnt_ns = nsproxy->mnt_ns;
3493 nsproxy->mnt_ns = mnt_ns;
3494
3495 /* Find the root */
3496 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3497 "/", LOOKUP_DOWN, &root);
3498 if (err) {
3499 /* revert to old namespace */
3500 nsproxy->mnt_ns = old_mnt_ns;
3501 put_mnt_ns(mnt_ns);
3502 return err;
3503 }
3504
3505 put_mnt_ns(old_mnt_ns);
3506
3507 /* Update the pwd and root */
3508 set_fs_pwd(fs, &root);
3509 set_fs_root(fs, &root);
3510
3511 path_put(&root);
3512 return 0;
3513 }
3514
3515 static struct user_namespace *mntns_owner(struct ns_common *ns)
3516 {
3517 return to_mnt_ns(ns)->user_ns;
3518 }
3519
3520 const struct proc_ns_operations mntns_operations = {
3521 .name = "mnt",
3522 .type = CLONE_NEWNS,
3523 .get = mntns_get,
3524 .put = mntns_put,
3525 .install = mntns_install,
3526 .owner = mntns_owner,
3527 };