]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/namespace.c
[media] omap3isp: ccdc: Increment the frame number at VD0 time for BT.656
[mirror_ubuntu-bionic-kernel.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include "pnode.h"
27 #include "internal.h"
28
29 static unsigned int m_hash_mask __read_mostly;
30 static unsigned int m_hash_shift __read_mostly;
31 static unsigned int mp_hash_mask __read_mostly;
32 static unsigned int mp_hash_shift __read_mostly;
33
34 static __initdata unsigned long mhash_entries;
35 static int __init set_mhash_entries(char *str)
36 {
37 if (!str)
38 return 0;
39 mhash_entries = simple_strtoul(str, &str, 0);
40 return 1;
41 }
42 __setup("mhash_entries=", set_mhash_entries);
43
44 static __initdata unsigned long mphash_entries;
45 static int __init set_mphash_entries(char *str)
46 {
47 if (!str)
48 return 0;
49 mphash_entries = simple_strtoul(str, &str, 0);
50 return 1;
51 }
52 __setup("mphash_entries=", set_mphash_entries);
53
54 static u64 event;
55 static DEFINE_IDA(mnt_id_ida);
56 static DEFINE_IDA(mnt_group_ida);
57 static DEFINE_SPINLOCK(mnt_id_lock);
58 static int mnt_id_start = 0;
59 static int mnt_group_start = 1;
60
61 static struct hlist_head *mount_hashtable __read_mostly;
62 static struct hlist_head *mountpoint_hashtable __read_mostly;
63 static struct kmem_cache *mnt_cache __read_mostly;
64 static DECLARE_RWSEM(namespace_sem);
65
66 /* /sys/fs */
67 struct kobject *fs_kobj;
68 EXPORT_SYMBOL_GPL(fs_kobj);
69
70 /*
71 * vfsmount lock may be taken for read to prevent changes to the
72 * vfsmount hash, ie. during mountpoint lookups or walking back
73 * up the tree.
74 *
75 * It should be taken for write in all cases where the vfsmount
76 * tree or hash is modified or when a vfsmount structure is modified.
77 */
78 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
79
80 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
81 {
82 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
83 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
84 tmp = tmp + (tmp >> m_hash_shift);
85 return &mount_hashtable[tmp & m_hash_mask];
86 }
87
88 static inline struct hlist_head *mp_hash(struct dentry *dentry)
89 {
90 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
91 tmp = tmp + (tmp >> mp_hash_shift);
92 return &mountpoint_hashtable[tmp & mp_hash_mask];
93 }
94
95 /*
96 * allocation is serialized by namespace_sem, but we need the spinlock to
97 * serialize with freeing.
98 */
99 static int mnt_alloc_id(struct mount *mnt)
100 {
101 int res;
102
103 retry:
104 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
105 spin_lock(&mnt_id_lock);
106 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
107 if (!res)
108 mnt_id_start = mnt->mnt_id + 1;
109 spin_unlock(&mnt_id_lock);
110 if (res == -EAGAIN)
111 goto retry;
112
113 return res;
114 }
115
116 static void mnt_free_id(struct mount *mnt)
117 {
118 int id = mnt->mnt_id;
119 spin_lock(&mnt_id_lock);
120 ida_remove(&mnt_id_ida, id);
121 if (mnt_id_start > id)
122 mnt_id_start = id;
123 spin_unlock(&mnt_id_lock);
124 }
125
126 /*
127 * Allocate a new peer group ID
128 *
129 * mnt_group_ida is protected by namespace_sem
130 */
131 static int mnt_alloc_group_id(struct mount *mnt)
132 {
133 int res;
134
135 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
136 return -ENOMEM;
137
138 res = ida_get_new_above(&mnt_group_ida,
139 mnt_group_start,
140 &mnt->mnt_group_id);
141 if (!res)
142 mnt_group_start = mnt->mnt_group_id + 1;
143
144 return res;
145 }
146
147 /*
148 * Release a peer group ID
149 */
150 void mnt_release_group_id(struct mount *mnt)
151 {
152 int id = mnt->mnt_group_id;
153 ida_remove(&mnt_group_ida, id);
154 if (mnt_group_start > id)
155 mnt_group_start = id;
156 mnt->mnt_group_id = 0;
157 }
158
159 /*
160 * vfsmount lock must be held for read
161 */
162 static inline void mnt_add_count(struct mount *mnt, int n)
163 {
164 #ifdef CONFIG_SMP
165 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
166 #else
167 preempt_disable();
168 mnt->mnt_count += n;
169 preempt_enable();
170 #endif
171 }
172
173 /*
174 * vfsmount lock must be held for write
175 */
176 unsigned int mnt_get_count(struct mount *mnt)
177 {
178 #ifdef CONFIG_SMP
179 unsigned int count = 0;
180 int cpu;
181
182 for_each_possible_cpu(cpu) {
183 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
184 }
185
186 return count;
187 #else
188 return mnt->mnt_count;
189 #endif
190 }
191
192 static struct mount *alloc_vfsmnt(const char *name)
193 {
194 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
195 if (mnt) {
196 int err;
197
198 err = mnt_alloc_id(mnt);
199 if (err)
200 goto out_free_cache;
201
202 if (name) {
203 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
204 if (!mnt->mnt_devname)
205 goto out_free_id;
206 }
207
208 #ifdef CONFIG_SMP
209 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
210 if (!mnt->mnt_pcp)
211 goto out_free_devname;
212
213 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
214 #else
215 mnt->mnt_count = 1;
216 mnt->mnt_writers = 0;
217 #endif
218
219 INIT_HLIST_NODE(&mnt->mnt_hash);
220 INIT_LIST_HEAD(&mnt->mnt_child);
221 INIT_LIST_HEAD(&mnt->mnt_mounts);
222 INIT_LIST_HEAD(&mnt->mnt_list);
223 INIT_LIST_HEAD(&mnt->mnt_expire);
224 INIT_LIST_HEAD(&mnt->mnt_share);
225 INIT_LIST_HEAD(&mnt->mnt_slave_list);
226 INIT_LIST_HEAD(&mnt->mnt_slave);
227 #ifdef CONFIG_FSNOTIFY
228 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
229 #endif
230 }
231 return mnt;
232
233 #ifdef CONFIG_SMP
234 out_free_devname:
235 kfree(mnt->mnt_devname);
236 #endif
237 out_free_id:
238 mnt_free_id(mnt);
239 out_free_cache:
240 kmem_cache_free(mnt_cache, mnt);
241 return NULL;
242 }
243
244 /*
245 * Most r/o checks on a fs are for operations that take
246 * discrete amounts of time, like a write() or unlink().
247 * We must keep track of when those operations start
248 * (for permission checks) and when they end, so that
249 * we can determine when writes are able to occur to
250 * a filesystem.
251 */
252 /*
253 * __mnt_is_readonly: check whether a mount is read-only
254 * @mnt: the mount to check for its write status
255 *
256 * This shouldn't be used directly ouside of the VFS.
257 * It does not guarantee that the filesystem will stay
258 * r/w, just that it is right *now*. This can not and
259 * should not be used in place of IS_RDONLY(inode).
260 * mnt_want/drop_write() will _keep_ the filesystem
261 * r/w.
262 */
263 int __mnt_is_readonly(struct vfsmount *mnt)
264 {
265 if (mnt->mnt_flags & MNT_READONLY)
266 return 1;
267 if (mnt->mnt_sb->s_flags & MS_RDONLY)
268 return 1;
269 return 0;
270 }
271 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
272
273 static inline void mnt_inc_writers(struct mount *mnt)
274 {
275 #ifdef CONFIG_SMP
276 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
277 #else
278 mnt->mnt_writers++;
279 #endif
280 }
281
282 static inline void mnt_dec_writers(struct mount *mnt)
283 {
284 #ifdef CONFIG_SMP
285 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
286 #else
287 mnt->mnt_writers--;
288 #endif
289 }
290
291 static unsigned int mnt_get_writers(struct mount *mnt)
292 {
293 #ifdef CONFIG_SMP
294 unsigned int count = 0;
295 int cpu;
296
297 for_each_possible_cpu(cpu) {
298 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
299 }
300
301 return count;
302 #else
303 return mnt->mnt_writers;
304 #endif
305 }
306
307 static int mnt_is_readonly(struct vfsmount *mnt)
308 {
309 if (mnt->mnt_sb->s_readonly_remount)
310 return 1;
311 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
312 smp_rmb();
313 return __mnt_is_readonly(mnt);
314 }
315
316 /*
317 * Most r/o & frozen checks on a fs are for operations that take discrete
318 * amounts of time, like a write() or unlink(). We must keep track of when
319 * those operations start (for permission checks) and when they end, so that we
320 * can determine when writes are able to occur to a filesystem.
321 */
322 /**
323 * __mnt_want_write - get write access to a mount without freeze protection
324 * @m: the mount on which to take a write
325 *
326 * This tells the low-level filesystem that a write is about to be performed to
327 * it, and makes sure that writes are allowed (mnt it read-write) before
328 * returning success. This operation does not protect against filesystem being
329 * frozen. When the write operation is finished, __mnt_drop_write() must be
330 * called. This is effectively a refcount.
331 */
332 int __mnt_want_write(struct vfsmount *m)
333 {
334 struct mount *mnt = real_mount(m);
335 int ret = 0;
336
337 preempt_disable();
338 mnt_inc_writers(mnt);
339 /*
340 * The store to mnt_inc_writers must be visible before we pass
341 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
342 * incremented count after it has set MNT_WRITE_HOLD.
343 */
344 smp_mb();
345 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
346 cpu_relax();
347 /*
348 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
349 * be set to match its requirements. So we must not load that until
350 * MNT_WRITE_HOLD is cleared.
351 */
352 smp_rmb();
353 if (mnt_is_readonly(m)) {
354 mnt_dec_writers(mnt);
355 ret = -EROFS;
356 }
357 preempt_enable();
358
359 return ret;
360 }
361
362 /**
363 * mnt_want_write - get write access to a mount
364 * @m: the mount on which to take a write
365 *
366 * This tells the low-level filesystem that a write is about to be performed to
367 * it, and makes sure that writes are allowed (mount is read-write, filesystem
368 * is not frozen) before returning success. When the write operation is
369 * finished, mnt_drop_write() must be called. This is effectively a refcount.
370 */
371 int mnt_want_write(struct vfsmount *m)
372 {
373 int ret;
374
375 sb_start_write(m->mnt_sb);
376 ret = __mnt_want_write(m);
377 if (ret)
378 sb_end_write(m->mnt_sb);
379 return ret;
380 }
381 EXPORT_SYMBOL_GPL(mnt_want_write);
382
383 /**
384 * mnt_clone_write - get write access to a mount
385 * @mnt: the mount on which to take a write
386 *
387 * This is effectively like mnt_want_write, except
388 * it must only be used to take an extra write reference
389 * on a mountpoint that we already know has a write reference
390 * on it. This allows some optimisation.
391 *
392 * After finished, mnt_drop_write must be called as usual to
393 * drop the reference.
394 */
395 int mnt_clone_write(struct vfsmount *mnt)
396 {
397 /* superblock may be r/o */
398 if (__mnt_is_readonly(mnt))
399 return -EROFS;
400 preempt_disable();
401 mnt_inc_writers(real_mount(mnt));
402 preempt_enable();
403 return 0;
404 }
405 EXPORT_SYMBOL_GPL(mnt_clone_write);
406
407 /**
408 * __mnt_want_write_file - get write access to a file's mount
409 * @file: the file who's mount on which to take a write
410 *
411 * This is like __mnt_want_write, but it takes a file and can
412 * do some optimisations if the file is open for write already
413 */
414 int __mnt_want_write_file(struct file *file)
415 {
416 if (!(file->f_mode & FMODE_WRITER))
417 return __mnt_want_write(file->f_path.mnt);
418 else
419 return mnt_clone_write(file->f_path.mnt);
420 }
421
422 /**
423 * mnt_want_write_file - get write access to a file's mount
424 * @file: the file who's mount on which to take a write
425 *
426 * This is like mnt_want_write, but it takes a file and can
427 * do some optimisations if the file is open for write already
428 */
429 int mnt_want_write_file(struct file *file)
430 {
431 int ret;
432
433 sb_start_write(file->f_path.mnt->mnt_sb);
434 ret = __mnt_want_write_file(file);
435 if (ret)
436 sb_end_write(file->f_path.mnt->mnt_sb);
437 return ret;
438 }
439 EXPORT_SYMBOL_GPL(mnt_want_write_file);
440
441 /**
442 * __mnt_drop_write - give up write access to a mount
443 * @mnt: the mount on which to give up write access
444 *
445 * Tells the low-level filesystem that we are done
446 * performing writes to it. Must be matched with
447 * __mnt_want_write() call above.
448 */
449 void __mnt_drop_write(struct vfsmount *mnt)
450 {
451 preempt_disable();
452 mnt_dec_writers(real_mount(mnt));
453 preempt_enable();
454 }
455
456 /**
457 * mnt_drop_write - give up write access to a mount
458 * @mnt: the mount on which to give up write access
459 *
460 * Tells the low-level filesystem that we are done performing writes to it and
461 * also allows filesystem to be frozen again. Must be matched with
462 * mnt_want_write() call above.
463 */
464 void mnt_drop_write(struct vfsmount *mnt)
465 {
466 __mnt_drop_write(mnt);
467 sb_end_write(mnt->mnt_sb);
468 }
469 EXPORT_SYMBOL_GPL(mnt_drop_write);
470
471 void __mnt_drop_write_file(struct file *file)
472 {
473 __mnt_drop_write(file->f_path.mnt);
474 }
475
476 void mnt_drop_write_file(struct file *file)
477 {
478 mnt_drop_write(file->f_path.mnt);
479 }
480 EXPORT_SYMBOL(mnt_drop_write_file);
481
482 static int mnt_make_readonly(struct mount *mnt)
483 {
484 int ret = 0;
485
486 lock_mount_hash();
487 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
488 /*
489 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
490 * should be visible before we do.
491 */
492 smp_mb();
493
494 /*
495 * With writers on hold, if this value is zero, then there are
496 * definitely no active writers (although held writers may subsequently
497 * increment the count, they'll have to wait, and decrement it after
498 * seeing MNT_READONLY).
499 *
500 * It is OK to have counter incremented on one CPU and decremented on
501 * another: the sum will add up correctly. The danger would be when we
502 * sum up each counter, if we read a counter before it is incremented,
503 * but then read another CPU's count which it has been subsequently
504 * decremented from -- we would see more decrements than we should.
505 * MNT_WRITE_HOLD protects against this scenario, because
506 * mnt_want_write first increments count, then smp_mb, then spins on
507 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
508 * we're counting up here.
509 */
510 if (mnt_get_writers(mnt) > 0)
511 ret = -EBUSY;
512 else
513 mnt->mnt.mnt_flags |= MNT_READONLY;
514 /*
515 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
516 * that become unheld will see MNT_READONLY.
517 */
518 smp_wmb();
519 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
520 unlock_mount_hash();
521 return ret;
522 }
523
524 static void __mnt_unmake_readonly(struct mount *mnt)
525 {
526 lock_mount_hash();
527 mnt->mnt.mnt_flags &= ~MNT_READONLY;
528 unlock_mount_hash();
529 }
530
531 int sb_prepare_remount_readonly(struct super_block *sb)
532 {
533 struct mount *mnt;
534 int err = 0;
535
536 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
537 if (atomic_long_read(&sb->s_remove_count))
538 return -EBUSY;
539
540 lock_mount_hash();
541 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
542 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
543 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
544 smp_mb();
545 if (mnt_get_writers(mnt) > 0) {
546 err = -EBUSY;
547 break;
548 }
549 }
550 }
551 if (!err && atomic_long_read(&sb->s_remove_count))
552 err = -EBUSY;
553
554 if (!err) {
555 sb->s_readonly_remount = 1;
556 smp_wmb();
557 }
558 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
559 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
560 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
561 }
562 unlock_mount_hash();
563
564 return err;
565 }
566
567 static void free_vfsmnt(struct mount *mnt)
568 {
569 kfree(mnt->mnt_devname);
570 #ifdef CONFIG_SMP
571 free_percpu(mnt->mnt_pcp);
572 #endif
573 kmem_cache_free(mnt_cache, mnt);
574 }
575
576 static void delayed_free_vfsmnt(struct rcu_head *head)
577 {
578 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
579 }
580
581 /* call under rcu_read_lock */
582 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
583 {
584 struct mount *mnt;
585 if (read_seqretry(&mount_lock, seq))
586 return false;
587 if (bastard == NULL)
588 return true;
589 mnt = real_mount(bastard);
590 mnt_add_count(mnt, 1);
591 if (likely(!read_seqretry(&mount_lock, seq)))
592 return true;
593 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
594 mnt_add_count(mnt, -1);
595 return false;
596 }
597 rcu_read_unlock();
598 mntput(bastard);
599 rcu_read_lock();
600 return false;
601 }
602
603 /*
604 * find the first mount at @dentry on vfsmount @mnt.
605 * call under rcu_read_lock()
606 */
607 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
608 {
609 struct hlist_head *head = m_hash(mnt, dentry);
610 struct mount *p;
611
612 hlist_for_each_entry_rcu(p, head, mnt_hash)
613 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
614 return p;
615 return NULL;
616 }
617
618 /*
619 * find the last mount at @dentry on vfsmount @mnt.
620 * mount_lock must be held.
621 */
622 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
623 {
624 struct mount *p, *res;
625 res = p = __lookup_mnt(mnt, dentry);
626 if (!p)
627 goto out;
628 hlist_for_each_entry_continue(p, mnt_hash) {
629 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
630 break;
631 res = p;
632 }
633 out:
634 return res;
635 }
636
637 /*
638 * lookup_mnt - Return the first child mount mounted at path
639 *
640 * "First" means first mounted chronologically. If you create the
641 * following mounts:
642 *
643 * mount /dev/sda1 /mnt
644 * mount /dev/sda2 /mnt
645 * mount /dev/sda3 /mnt
646 *
647 * Then lookup_mnt() on the base /mnt dentry in the root mount will
648 * return successively the root dentry and vfsmount of /dev/sda1, then
649 * /dev/sda2, then /dev/sda3, then NULL.
650 *
651 * lookup_mnt takes a reference to the found vfsmount.
652 */
653 struct vfsmount *lookup_mnt(struct path *path)
654 {
655 struct mount *child_mnt;
656 struct vfsmount *m;
657 unsigned seq;
658
659 rcu_read_lock();
660 do {
661 seq = read_seqbegin(&mount_lock);
662 child_mnt = __lookup_mnt(path->mnt, path->dentry);
663 m = child_mnt ? &child_mnt->mnt : NULL;
664 } while (!legitimize_mnt(m, seq));
665 rcu_read_unlock();
666 return m;
667 }
668
669 static struct mountpoint *new_mountpoint(struct dentry *dentry)
670 {
671 struct hlist_head *chain = mp_hash(dentry);
672 struct mountpoint *mp;
673 int ret;
674
675 hlist_for_each_entry(mp, chain, m_hash) {
676 if (mp->m_dentry == dentry) {
677 /* might be worth a WARN_ON() */
678 if (d_unlinked(dentry))
679 return ERR_PTR(-ENOENT);
680 mp->m_count++;
681 return mp;
682 }
683 }
684
685 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
686 if (!mp)
687 return ERR_PTR(-ENOMEM);
688
689 ret = d_set_mounted(dentry);
690 if (ret) {
691 kfree(mp);
692 return ERR_PTR(ret);
693 }
694
695 mp->m_dentry = dentry;
696 mp->m_count = 1;
697 hlist_add_head(&mp->m_hash, chain);
698 return mp;
699 }
700
701 static void put_mountpoint(struct mountpoint *mp)
702 {
703 if (!--mp->m_count) {
704 struct dentry *dentry = mp->m_dentry;
705 spin_lock(&dentry->d_lock);
706 dentry->d_flags &= ~DCACHE_MOUNTED;
707 spin_unlock(&dentry->d_lock);
708 hlist_del(&mp->m_hash);
709 kfree(mp);
710 }
711 }
712
713 static inline int check_mnt(struct mount *mnt)
714 {
715 return mnt->mnt_ns == current->nsproxy->mnt_ns;
716 }
717
718 /*
719 * vfsmount lock must be held for write
720 */
721 static void touch_mnt_namespace(struct mnt_namespace *ns)
722 {
723 if (ns) {
724 ns->event = ++event;
725 wake_up_interruptible(&ns->poll);
726 }
727 }
728
729 /*
730 * vfsmount lock must be held for write
731 */
732 static void __touch_mnt_namespace(struct mnt_namespace *ns)
733 {
734 if (ns && ns->event != event) {
735 ns->event = event;
736 wake_up_interruptible(&ns->poll);
737 }
738 }
739
740 /*
741 * vfsmount lock must be held for write
742 */
743 static void detach_mnt(struct mount *mnt, struct path *old_path)
744 {
745 old_path->dentry = mnt->mnt_mountpoint;
746 old_path->mnt = &mnt->mnt_parent->mnt;
747 mnt->mnt_parent = mnt;
748 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
749 list_del_init(&mnt->mnt_child);
750 hlist_del_init_rcu(&mnt->mnt_hash);
751 put_mountpoint(mnt->mnt_mp);
752 mnt->mnt_mp = NULL;
753 }
754
755 /*
756 * vfsmount lock must be held for write
757 */
758 void mnt_set_mountpoint(struct mount *mnt,
759 struct mountpoint *mp,
760 struct mount *child_mnt)
761 {
762 mp->m_count++;
763 mnt_add_count(mnt, 1); /* essentially, that's mntget */
764 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
765 child_mnt->mnt_parent = mnt;
766 child_mnt->mnt_mp = mp;
767 }
768
769 /*
770 * vfsmount lock must be held for write
771 */
772 static void attach_mnt(struct mount *mnt,
773 struct mount *parent,
774 struct mountpoint *mp)
775 {
776 mnt_set_mountpoint(parent, mp, mnt);
777 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
778 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
779 }
780
781 static void attach_shadowed(struct mount *mnt,
782 struct mount *parent,
783 struct mount *shadows)
784 {
785 if (shadows) {
786 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
787 list_add(&mnt->mnt_child, &shadows->mnt_child);
788 } else {
789 hlist_add_head_rcu(&mnt->mnt_hash,
790 m_hash(&parent->mnt, mnt->mnt_mountpoint));
791 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
792 }
793 }
794
795 /*
796 * vfsmount lock must be held for write
797 */
798 static void commit_tree(struct mount *mnt, struct mount *shadows)
799 {
800 struct mount *parent = mnt->mnt_parent;
801 struct mount *m;
802 LIST_HEAD(head);
803 struct mnt_namespace *n = parent->mnt_ns;
804
805 BUG_ON(parent == mnt);
806
807 list_add_tail(&head, &mnt->mnt_list);
808 list_for_each_entry(m, &head, mnt_list)
809 m->mnt_ns = n;
810
811 list_splice(&head, n->list.prev);
812
813 attach_shadowed(mnt, parent, shadows);
814 touch_mnt_namespace(n);
815 }
816
817 static struct mount *next_mnt(struct mount *p, struct mount *root)
818 {
819 struct list_head *next = p->mnt_mounts.next;
820 if (next == &p->mnt_mounts) {
821 while (1) {
822 if (p == root)
823 return NULL;
824 next = p->mnt_child.next;
825 if (next != &p->mnt_parent->mnt_mounts)
826 break;
827 p = p->mnt_parent;
828 }
829 }
830 return list_entry(next, struct mount, mnt_child);
831 }
832
833 static struct mount *skip_mnt_tree(struct mount *p)
834 {
835 struct list_head *prev = p->mnt_mounts.prev;
836 while (prev != &p->mnt_mounts) {
837 p = list_entry(prev, struct mount, mnt_child);
838 prev = p->mnt_mounts.prev;
839 }
840 return p;
841 }
842
843 struct vfsmount *
844 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
845 {
846 struct mount *mnt;
847 struct dentry *root;
848
849 if (!type)
850 return ERR_PTR(-ENODEV);
851
852 mnt = alloc_vfsmnt(name);
853 if (!mnt)
854 return ERR_PTR(-ENOMEM);
855
856 if (flags & MS_KERNMOUNT)
857 mnt->mnt.mnt_flags = MNT_INTERNAL;
858
859 root = mount_fs(type, flags, name, data);
860 if (IS_ERR(root)) {
861 mnt_free_id(mnt);
862 free_vfsmnt(mnt);
863 return ERR_CAST(root);
864 }
865
866 mnt->mnt.mnt_root = root;
867 mnt->mnt.mnt_sb = root->d_sb;
868 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
869 mnt->mnt_parent = mnt;
870 lock_mount_hash();
871 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
872 unlock_mount_hash();
873 return &mnt->mnt;
874 }
875 EXPORT_SYMBOL_GPL(vfs_kern_mount);
876
877 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
878 int flag)
879 {
880 struct super_block *sb = old->mnt.mnt_sb;
881 struct mount *mnt;
882 int err;
883
884 mnt = alloc_vfsmnt(old->mnt_devname);
885 if (!mnt)
886 return ERR_PTR(-ENOMEM);
887
888 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
889 mnt->mnt_group_id = 0; /* not a peer of original */
890 else
891 mnt->mnt_group_id = old->mnt_group_id;
892
893 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
894 err = mnt_alloc_group_id(mnt);
895 if (err)
896 goto out_free;
897 }
898
899 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
900 /* Don't allow unprivileged users to change mount flags */
901 if (flag & CL_UNPRIVILEGED) {
902 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
903
904 if (mnt->mnt.mnt_flags & MNT_READONLY)
905 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
906
907 if (mnt->mnt.mnt_flags & MNT_NODEV)
908 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
909
910 if (mnt->mnt.mnt_flags & MNT_NOSUID)
911 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
912
913 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
914 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
915 }
916
917 /* Don't allow unprivileged users to reveal what is under a mount */
918 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
919 mnt->mnt.mnt_flags |= MNT_LOCKED;
920
921 atomic_inc(&sb->s_active);
922 mnt->mnt.mnt_sb = sb;
923 mnt->mnt.mnt_root = dget(root);
924 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
925 mnt->mnt_parent = mnt;
926 lock_mount_hash();
927 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
928 unlock_mount_hash();
929
930 if ((flag & CL_SLAVE) ||
931 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
932 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
933 mnt->mnt_master = old;
934 CLEAR_MNT_SHARED(mnt);
935 } else if (!(flag & CL_PRIVATE)) {
936 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
937 list_add(&mnt->mnt_share, &old->mnt_share);
938 if (IS_MNT_SLAVE(old))
939 list_add(&mnt->mnt_slave, &old->mnt_slave);
940 mnt->mnt_master = old->mnt_master;
941 }
942 if (flag & CL_MAKE_SHARED)
943 set_mnt_shared(mnt);
944
945 /* stick the duplicate mount on the same expiry list
946 * as the original if that was on one */
947 if (flag & CL_EXPIRE) {
948 if (!list_empty(&old->mnt_expire))
949 list_add(&mnt->mnt_expire, &old->mnt_expire);
950 }
951
952 return mnt;
953
954 out_free:
955 mnt_free_id(mnt);
956 free_vfsmnt(mnt);
957 return ERR_PTR(err);
958 }
959
960 static void mntput_no_expire(struct mount *mnt)
961 {
962 rcu_read_lock();
963 mnt_add_count(mnt, -1);
964 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
965 rcu_read_unlock();
966 return;
967 }
968 lock_mount_hash();
969 if (mnt_get_count(mnt)) {
970 rcu_read_unlock();
971 unlock_mount_hash();
972 return;
973 }
974 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
975 rcu_read_unlock();
976 unlock_mount_hash();
977 return;
978 }
979 mnt->mnt.mnt_flags |= MNT_DOOMED;
980 rcu_read_unlock();
981
982 list_del(&mnt->mnt_instance);
983 unlock_mount_hash();
984
985 /*
986 * This probably indicates that somebody messed
987 * up a mnt_want/drop_write() pair. If this
988 * happens, the filesystem was probably unable
989 * to make r/w->r/o transitions.
990 */
991 /*
992 * The locking used to deal with mnt_count decrement provides barriers,
993 * so mnt_get_writers() below is safe.
994 */
995 WARN_ON(mnt_get_writers(mnt));
996 if (unlikely(mnt->mnt_pins.first))
997 mnt_pin_kill(mnt);
998 fsnotify_vfsmount_delete(&mnt->mnt);
999 dput(mnt->mnt.mnt_root);
1000 deactivate_super(mnt->mnt.mnt_sb);
1001 mnt_free_id(mnt);
1002 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1003 }
1004
1005 void mntput(struct vfsmount *mnt)
1006 {
1007 if (mnt) {
1008 struct mount *m = real_mount(mnt);
1009 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1010 if (unlikely(m->mnt_expiry_mark))
1011 m->mnt_expiry_mark = 0;
1012 mntput_no_expire(m);
1013 }
1014 }
1015 EXPORT_SYMBOL(mntput);
1016
1017 struct vfsmount *mntget(struct vfsmount *mnt)
1018 {
1019 if (mnt)
1020 mnt_add_count(real_mount(mnt), 1);
1021 return mnt;
1022 }
1023 EXPORT_SYMBOL(mntget);
1024
1025 struct vfsmount *mnt_clone_internal(struct path *path)
1026 {
1027 struct mount *p;
1028 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1029 if (IS_ERR(p))
1030 return ERR_CAST(p);
1031 p->mnt.mnt_flags |= MNT_INTERNAL;
1032 return &p->mnt;
1033 }
1034
1035 static inline void mangle(struct seq_file *m, const char *s)
1036 {
1037 seq_escape(m, s, " \t\n\\");
1038 }
1039
1040 /*
1041 * Simple .show_options callback for filesystems which don't want to
1042 * implement more complex mount option showing.
1043 *
1044 * See also save_mount_options().
1045 */
1046 int generic_show_options(struct seq_file *m, struct dentry *root)
1047 {
1048 const char *options;
1049
1050 rcu_read_lock();
1051 options = rcu_dereference(root->d_sb->s_options);
1052
1053 if (options != NULL && options[0]) {
1054 seq_putc(m, ',');
1055 mangle(m, options);
1056 }
1057 rcu_read_unlock();
1058
1059 return 0;
1060 }
1061 EXPORT_SYMBOL(generic_show_options);
1062
1063 /*
1064 * If filesystem uses generic_show_options(), this function should be
1065 * called from the fill_super() callback.
1066 *
1067 * The .remount_fs callback usually needs to be handled in a special
1068 * way, to make sure, that previous options are not overwritten if the
1069 * remount fails.
1070 *
1071 * Also note, that if the filesystem's .remount_fs function doesn't
1072 * reset all options to their default value, but changes only newly
1073 * given options, then the displayed options will not reflect reality
1074 * any more.
1075 */
1076 void save_mount_options(struct super_block *sb, char *options)
1077 {
1078 BUG_ON(sb->s_options);
1079 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1080 }
1081 EXPORT_SYMBOL(save_mount_options);
1082
1083 void replace_mount_options(struct super_block *sb, char *options)
1084 {
1085 char *old = sb->s_options;
1086 rcu_assign_pointer(sb->s_options, options);
1087 if (old) {
1088 synchronize_rcu();
1089 kfree(old);
1090 }
1091 }
1092 EXPORT_SYMBOL(replace_mount_options);
1093
1094 #ifdef CONFIG_PROC_FS
1095 /* iterator; we want it to have access to namespace_sem, thus here... */
1096 static void *m_start(struct seq_file *m, loff_t *pos)
1097 {
1098 struct proc_mounts *p = proc_mounts(m);
1099
1100 down_read(&namespace_sem);
1101 if (p->cached_event == p->ns->event) {
1102 void *v = p->cached_mount;
1103 if (*pos == p->cached_index)
1104 return v;
1105 if (*pos == p->cached_index + 1) {
1106 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1107 return p->cached_mount = v;
1108 }
1109 }
1110
1111 p->cached_event = p->ns->event;
1112 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1113 p->cached_index = *pos;
1114 return p->cached_mount;
1115 }
1116
1117 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1118 {
1119 struct proc_mounts *p = proc_mounts(m);
1120
1121 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1122 p->cached_index = *pos;
1123 return p->cached_mount;
1124 }
1125
1126 static void m_stop(struct seq_file *m, void *v)
1127 {
1128 up_read(&namespace_sem);
1129 }
1130
1131 static int m_show(struct seq_file *m, void *v)
1132 {
1133 struct proc_mounts *p = proc_mounts(m);
1134 struct mount *r = list_entry(v, struct mount, mnt_list);
1135 return p->show(m, &r->mnt);
1136 }
1137
1138 const struct seq_operations mounts_op = {
1139 .start = m_start,
1140 .next = m_next,
1141 .stop = m_stop,
1142 .show = m_show,
1143 };
1144 #endif /* CONFIG_PROC_FS */
1145
1146 /**
1147 * may_umount_tree - check if a mount tree is busy
1148 * @mnt: root of mount tree
1149 *
1150 * This is called to check if a tree of mounts has any
1151 * open files, pwds, chroots or sub mounts that are
1152 * busy.
1153 */
1154 int may_umount_tree(struct vfsmount *m)
1155 {
1156 struct mount *mnt = real_mount(m);
1157 int actual_refs = 0;
1158 int minimum_refs = 0;
1159 struct mount *p;
1160 BUG_ON(!m);
1161
1162 /* write lock needed for mnt_get_count */
1163 lock_mount_hash();
1164 for (p = mnt; p; p = next_mnt(p, mnt)) {
1165 actual_refs += mnt_get_count(p);
1166 minimum_refs += 2;
1167 }
1168 unlock_mount_hash();
1169
1170 if (actual_refs > minimum_refs)
1171 return 0;
1172
1173 return 1;
1174 }
1175
1176 EXPORT_SYMBOL(may_umount_tree);
1177
1178 /**
1179 * may_umount - check if a mount point is busy
1180 * @mnt: root of mount
1181 *
1182 * This is called to check if a mount point has any
1183 * open files, pwds, chroots or sub mounts. If the
1184 * mount has sub mounts this will return busy
1185 * regardless of whether the sub mounts are busy.
1186 *
1187 * Doesn't take quota and stuff into account. IOW, in some cases it will
1188 * give false negatives. The main reason why it's here is that we need
1189 * a non-destructive way to look for easily umountable filesystems.
1190 */
1191 int may_umount(struct vfsmount *mnt)
1192 {
1193 int ret = 1;
1194 down_read(&namespace_sem);
1195 lock_mount_hash();
1196 if (propagate_mount_busy(real_mount(mnt), 2))
1197 ret = 0;
1198 unlock_mount_hash();
1199 up_read(&namespace_sem);
1200 return ret;
1201 }
1202
1203 EXPORT_SYMBOL(may_umount);
1204
1205 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1206
1207 static void namespace_unlock(void)
1208 {
1209 struct mount *mnt;
1210 struct hlist_head head = unmounted;
1211
1212 if (likely(hlist_empty(&head))) {
1213 up_write(&namespace_sem);
1214 return;
1215 }
1216
1217 head.first->pprev = &head.first;
1218 INIT_HLIST_HEAD(&unmounted);
1219
1220 up_write(&namespace_sem);
1221
1222 synchronize_rcu();
1223
1224 while (!hlist_empty(&head)) {
1225 mnt = hlist_entry(head.first, struct mount, mnt_hash);
1226 hlist_del_init(&mnt->mnt_hash);
1227 if (mnt->mnt_ex_mountpoint.mnt)
1228 path_put(&mnt->mnt_ex_mountpoint);
1229 mntput(&mnt->mnt);
1230 }
1231 }
1232
1233 static inline void namespace_lock(void)
1234 {
1235 down_write(&namespace_sem);
1236 }
1237
1238 /*
1239 * mount_lock must be held
1240 * namespace_sem must be held for write
1241 * how = 0 => just this tree, don't propagate
1242 * how = 1 => propagate; we know that nobody else has reference to any victims
1243 * how = 2 => lazy umount
1244 */
1245 void umount_tree(struct mount *mnt, int how)
1246 {
1247 HLIST_HEAD(tmp_list);
1248 struct mount *p;
1249 struct mount *last = NULL;
1250
1251 for (p = mnt; p; p = next_mnt(p, mnt)) {
1252 hlist_del_init_rcu(&p->mnt_hash);
1253 hlist_add_head(&p->mnt_hash, &tmp_list);
1254 }
1255
1256 if (how)
1257 propagate_umount(&tmp_list);
1258
1259 hlist_for_each_entry(p, &tmp_list, mnt_hash) {
1260 list_del_init(&p->mnt_expire);
1261 list_del_init(&p->mnt_list);
1262 __touch_mnt_namespace(p->mnt_ns);
1263 p->mnt_ns = NULL;
1264 if (how < 2)
1265 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1266 list_del_init(&p->mnt_child);
1267 if (mnt_has_parent(p)) {
1268 put_mountpoint(p->mnt_mp);
1269 /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1270 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1271 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1272 p->mnt_mountpoint = p->mnt.mnt_root;
1273 p->mnt_parent = p;
1274 p->mnt_mp = NULL;
1275 }
1276 change_mnt_propagation(p, MS_PRIVATE);
1277 last = p;
1278 }
1279 if (last) {
1280 last->mnt_hash.next = unmounted.first;
1281 unmounted.first = tmp_list.first;
1282 unmounted.first->pprev = &unmounted.first;
1283 }
1284 }
1285
1286 static void shrink_submounts(struct mount *mnt);
1287
1288 static int do_umount(struct mount *mnt, int flags)
1289 {
1290 struct super_block *sb = mnt->mnt.mnt_sb;
1291 int retval;
1292
1293 retval = security_sb_umount(&mnt->mnt, flags);
1294 if (retval)
1295 return retval;
1296
1297 /*
1298 * Allow userspace to request a mountpoint be expired rather than
1299 * unmounting unconditionally. Unmount only happens if:
1300 * (1) the mark is already set (the mark is cleared by mntput())
1301 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1302 */
1303 if (flags & MNT_EXPIRE) {
1304 if (&mnt->mnt == current->fs->root.mnt ||
1305 flags & (MNT_FORCE | MNT_DETACH))
1306 return -EINVAL;
1307
1308 /*
1309 * probably don't strictly need the lock here if we examined
1310 * all race cases, but it's a slowpath.
1311 */
1312 lock_mount_hash();
1313 if (mnt_get_count(mnt) != 2) {
1314 unlock_mount_hash();
1315 return -EBUSY;
1316 }
1317 unlock_mount_hash();
1318
1319 if (!xchg(&mnt->mnt_expiry_mark, 1))
1320 return -EAGAIN;
1321 }
1322
1323 /*
1324 * If we may have to abort operations to get out of this
1325 * mount, and they will themselves hold resources we must
1326 * allow the fs to do things. In the Unix tradition of
1327 * 'Gee thats tricky lets do it in userspace' the umount_begin
1328 * might fail to complete on the first run through as other tasks
1329 * must return, and the like. Thats for the mount program to worry
1330 * about for the moment.
1331 */
1332
1333 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1334 sb->s_op->umount_begin(sb);
1335 }
1336
1337 /*
1338 * No sense to grab the lock for this test, but test itself looks
1339 * somewhat bogus. Suggestions for better replacement?
1340 * Ho-hum... In principle, we might treat that as umount + switch
1341 * to rootfs. GC would eventually take care of the old vfsmount.
1342 * Actually it makes sense, especially if rootfs would contain a
1343 * /reboot - static binary that would close all descriptors and
1344 * call reboot(9). Then init(8) could umount root and exec /reboot.
1345 */
1346 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1347 /*
1348 * Special case for "unmounting" root ...
1349 * we just try to remount it readonly.
1350 */
1351 down_write(&sb->s_umount);
1352 if (!(sb->s_flags & MS_RDONLY))
1353 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1354 up_write(&sb->s_umount);
1355 return retval;
1356 }
1357
1358 namespace_lock();
1359 lock_mount_hash();
1360 event++;
1361
1362 if (flags & MNT_DETACH) {
1363 if (!list_empty(&mnt->mnt_list))
1364 umount_tree(mnt, 2);
1365 retval = 0;
1366 } else {
1367 shrink_submounts(mnt);
1368 retval = -EBUSY;
1369 if (!propagate_mount_busy(mnt, 2)) {
1370 if (!list_empty(&mnt->mnt_list))
1371 umount_tree(mnt, 1);
1372 retval = 0;
1373 }
1374 }
1375 unlock_mount_hash();
1376 namespace_unlock();
1377 return retval;
1378 }
1379
1380 /*
1381 * Is the caller allowed to modify his namespace?
1382 */
1383 static inline bool may_mount(void)
1384 {
1385 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1386 }
1387
1388 /*
1389 * Now umount can handle mount points as well as block devices.
1390 * This is important for filesystems which use unnamed block devices.
1391 *
1392 * We now support a flag for forced unmount like the other 'big iron'
1393 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1394 */
1395
1396 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1397 {
1398 struct path path;
1399 struct mount *mnt;
1400 int retval;
1401 int lookup_flags = 0;
1402
1403 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1404 return -EINVAL;
1405
1406 if (!may_mount())
1407 return -EPERM;
1408
1409 if (!(flags & UMOUNT_NOFOLLOW))
1410 lookup_flags |= LOOKUP_FOLLOW;
1411
1412 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1413 if (retval)
1414 goto out;
1415 mnt = real_mount(path.mnt);
1416 retval = -EINVAL;
1417 if (path.dentry != path.mnt->mnt_root)
1418 goto dput_and_out;
1419 if (!check_mnt(mnt))
1420 goto dput_and_out;
1421 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1422 goto dput_and_out;
1423
1424 retval = do_umount(mnt, flags);
1425 dput_and_out:
1426 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1427 dput(path.dentry);
1428 mntput_no_expire(mnt);
1429 out:
1430 return retval;
1431 }
1432
1433 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1434
1435 /*
1436 * The 2.0 compatible umount. No flags.
1437 */
1438 SYSCALL_DEFINE1(oldumount, char __user *, name)
1439 {
1440 return sys_umount(name, 0);
1441 }
1442
1443 #endif
1444
1445 static bool is_mnt_ns_file(struct dentry *dentry)
1446 {
1447 /* Is this a proxy for a mount namespace? */
1448 struct inode *inode = dentry->d_inode;
1449 struct proc_ns *ei;
1450
1451 if (!proc_ns_inode(inode))
1452 return false;
1453
1454 ei = get_proc_ns(inode);
1455 if (ei->ns_ops != &mntns_operations)
1456 return false;
1457
1458 return true;
1459 }
1460
1461 static bool mnt_ns_loop(struct dentry *dentry)
1462 {
1463 /* Could bind mounting the mount namespace inode cause a
1464 * mount namespace loop?
1465 */
1466 struct mnt_namespace *mnt_ns;
1467 if (!is_mnt_ns_file(dentry))
1468 return false;
1469
1470 mnt_ns = get_proc_ns(dentry->d_inode)->ns;
1471 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1472 }
1473
1474 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1475 int flag)
1476 {
1477 struct mount *res, *p, *q, *r, *parent;
1478
1479 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1480 return ERR_PTR(-EINVAL);
1481
1482 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1483 return ERR_PTR(-EINVAL);
1484
1485 res = q = clone_mnt(mnt, dentry, flag);
1486 if (IS_ERR(q))
1487 return q;
1488
1489 q->mnt.mnt_flags &= ~MNT_LOCKED;
1490 q->mnt_mountpoint = mnt->mnt_mountpoint;
1491
1492 p = mnt;
1493 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1494 struct mount *s;
1495 if (!is_subdir(r->mnt_mountpoint, dentry))
1496 continue;
1497
1498 for (s = r; s; s = next_mnt(s, r)) {
1499 struct mount *t = NULL;
1500 if (!(flag & CL_COPY_UNBINDABLE) &&
1501 IS_MNT_UNBINDABLE(s)) {
1502 s = skip_mnt_tree(s);
1503 continue;
1504 }
1505 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1506 is_mnt_ns_file(s->mnt.mnt_root)) {
1507 s = skip_mnt_tree(s);
1508 continue;
1509 }
1510 while (p != s->mnt_parent) {
1511 p = p->mnt_parent;
1512 q = q->mnt_parent;
1513 }
1514 p = s;
1515 parent = q;
1516 q = clone_mnt(p, p->mnt.mnt_root, flag);
1517 if (IS_ERR(q))
1518 goto out;
1519 lock_mount_hash();
1520 list_add_tail(&q->mnt_list, &res->mnt_list);
1521 mnt_set_mountpoint(parent, p->mnt_mp, q);
1522 if (!list_empty(&parent->mnt_mounts)) {
1523 t = list_last_entry(&parent->mnt_mounts,
1524 struct mount, mnt_child);
1525 if (t->mnt_mp != p->mnt_mp)
1526 t = NULL;
1527 }
1528 attach_shadowed(q, parent, t);
1529 unlock_mount_hash();
1530 }
1531 }
1532 return res;
1533 out:
1534 if (res) {
1535 lock_mount_hash();
1536 umount_tree(res, 0);
1537 unlock_mount_hash();
1538 }
1539 return q;
1540 }
1541
1542 /* Caller should check returned pointer for errors */
1543
1544 struct vfsmount *collect_mounts(struct path *path)
1545 {
1546 struct mount *tree;
1547 namespace_lock();
1548 tree = copy_tree(real_mount(path->mnt), path->dentry,
1549 CL_COPY_ALL | CL_PRIVATE);
1550 namespace_unlock();
1551 if (IS_ERR(tree))
1552 return ERR_CAST(tree);
1553 return &tree->mnt;
1554 }
1555
1556 void drop_collected_mounts(struct vfsmount *mnt)
1557 {
1558 namespace_lock();
1559 lock_mount_hash();
1560 umount_tree(real_mount(mnt), 0);
1561 unlock_mount_hash();
1562 namespace_unlock();
1563 }
1564
1565 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1566 struct vfsmount *root)
1567 {
1568 struct mount *mnt;
1569 int res = f(root, arg);
1570 if (res)
1571 return res;
1572 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1573 res = f(&mnt->mnt, arg);
1574 if (res)
1575 return res;
1576 }
1577 return 0;
1578 }
1579
1580 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1581 {
1582 struct mount *p;
1583
1584 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1585 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1586 mnt_release_group_id(p);
1587 }
1588 }
1589
1590 static int invent_group_ids(struct mount *mnt, bool recurse)
1591 {
1592 struct mount *p;
1593
1594 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1595 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1596 int err = mnt_alloc_group_id(p);
1597 if (err) {
1598 cleanup_group_ids(mnt, p);
1599 return err;
1600 }
1601 }
1602 }
1603
1604 return 0;
1605 }
1606
1607 /*
1608 * @source_mnt : mount tree to be attached
1609 * @nd : place the mount tree @source_mnt is attached
1610 * @parent_nd : if non-null, detach the source_mnt from its parent and
1611 * store the parent mount and mountpoint dentry.
1612 * (done when source_mnt is moved)
1613 *
1614 * NOTE: in the table below explains the semantics when a source mount
1615 * of a given type is attached to a destination mount of a given type.
1616 * ---------------------------------------------------------------------------
1617 * | BIND MOUNT OPERATION |
1618 * |**************************************************************************
1619 * | source-->| shared | private | slave | unbindable |
1620 * | dest | | | | |
1621 * | | | | | | |
1622 * | v | | | | |
1623 * |**************************************************************************
1624 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1625 * | | | | | |
1626 * |non-shared| shared (+) | private | slave (*) | invalid |
1627 * ***************************************************************************
1628 * A bind operation clones the source mount and mounts the clone on the
1629 * destination mount.
1630 *
1631 * (++) the cloned mount is propagated to all the mounts in the propagation
1632 * tree of the destination mount and the cloned mount is added to
1633 * the peer group of the source mount.
1634 * (+) the cloned mount is created under the destination mount and is marked
1635 * as shared. The cloned mount is added to the peer group of the source
1636 * mount.
1637 * (+++) the mount is propagated to all the mounts in the propagation tree
1638 * of the destination mount and the cloned mount is made slave
1639 * of the same master as that of the source mount. The cloned mount
1640 * is marked as 'shared and slave'.
1641 * (*) the cloned mount is made a slave of the same master as that of the
1642 * source mount.
1643 *
1644 * ---------------------------------------------------------------------------
1645 * | MOVE MOUNT OPERATION |
1646 * |**************************************************************************
1647 * | source-->| shared | private | slave | unbindable |
1648 * | dest | | | | |
1649 * | | | | | | |
1650 * | v | | | | |
1651 * |**************************************************************************
1652 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1653 * | | | | | |
1654 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1655 * ***************************************************************************
1656 *
1657 * (+) the mount is moved to the destination. And is then propagated to
1658 * all the mounts in the propagation tree of the destination mount.
1659 * (+*) the mount is moved to the destination.
1660 * (+++) the mount is moved to the destination and is then propagated to
1661 * all the mounts belonging to the destination mount's propagation tree.
1662 * the mount is marked as 'shared and slave'.
1663 * (*) the mount continues to be a slave at the new location.
1664 *
1665 * if the source mount is a tree, the operations explained above is
1666 * applied to each mount in the tree.
1667 * Must be called without spinlocks held, since this function can sleep
1668 * in allocations.
1669 */
1670 static int attach_recursive_mnt(struct mount *source_mnt,
1671 struct mount *dest_mnt,
1672 struct mountpoint *dest_mp,
1673 struct path *parent_path)
1674 {
1675 HLIST_HEAD(tree_list);
1676 struct mount *child, *p;
1677 struct hlist_node *n;
1678 int err;
1679
1680 if (IS_MNT_SHARED(dest_mnt)) {
1681 err = invent_group_ids(source_mnt, true);
1682 if (err)
1683 goto out;
1684 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1685 lock_mount_hash();
1686 if (err)
1687 goto out_cleanup_ids;
1688 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1689 set_mnt_shared(p);
1690 } else {
1691 lock_mount_hash();
1692 }
1693 if (parent_path) {
1694 detach_mnt(source_mnt, parent_path);
1695 attach_mnt(source_mnt, dest_mnt, dest_mp);
1696 touch_mnt_namespace(source_mnt->mnt_ns);
1697 } else {
1698 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1699 commit_tree(source_mnt, NULL);
1700 }
1701
1702 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1703 struct mount *q;
1704 hlist_del_init(&child->mnt_hash);
1705 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1706 child->mnt_mountpoint);
1707 commit_tree(child, q);
1708 }
1709 unlock_mount_hash();
1710
1711 return 0;
1712
1713 out_cleanup_ids:
1714 while (!hlist_empty(&tree_list)) {
1715 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1716 umount_tree(child, 0);
1717 }
1718 unlock_mount_hash();
1719 cleanup_group_ids(source_mnt, NULL);
1720 out:
1721 return err;
1722 }
1723
1724 static struct mountpoint *lock_mount(struct path *path)
1725 {
1726 struct vfsmount *mnt;
1727 struct dentry *dentry = path->dentry;
1728 retry:
1729 mutex_lock(&dentry->d_inode->i_mutex);
1730 if (unlikely(cant_mount(dentry))) {
1731 mutex_unlock(&dentry->d_inode->i_mutex);
1732 return ERR_PTR(-ENOENT);
1733 }
1734 namespace_lock();
1735 mnt = lookup_mnt(path);
1736 if (likely(!mnt)) {
1737 struct mountpoint *mp = new_mountpoint(dentry);
1738 if (IS_ERR(mp)) {
1739 namespace_unlock();
1740 mutex_unlock(&dentry->d_inode->i_mutex);
1741 return mp;
1742 }
1743 return mp;
1744 }
1745 namespace_unlock();
1746 mutex_unlock(&path->dentry->d_inode->i_mutex);
1747 path_put(path);
1748 path->mnt = mnt;
1749 dentry = path->dentry = dget(mnt->mnt_root);
1750 goto retry;
1751 }
1752
1753 static void unlock_mount(struct mountpoint *where)
1754 {
1755 struct dentry *dentry = where->m_dentry;
1756 put_mountpoint(where);
1757 namespace_unlock();
1758 mutex_unlock(&dentry->d_inode->i_mutex);
1759 }
1760
1761 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1762 {
1763 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1764 return -EINVAL;
1765
1766 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1767 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1768 return -ENOTDIR;
1769
1770 return attach_recursive_mnt(mnt, p, mp, NULL);
1771 }
1772
1773 /*
1774 * Sanity check the flags to change_mnt_propagation.
1775 */
1776
1777 static int flags_to_propagation_type(int flags)
1778 {
1779 int type = flags & ~(MS_REC | MS_SILENT);
1780
1781 /* Fail if any non-propagation flags are set */
1782 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1783 return 0;
1784 /* Only one propagation flag should be set */
1785 if (!is_power_of_2(type))
1786 return 0;
1787 return type;
1788 }
1789
1790 /*
1791 * recursively change the type of the mountpoint.
1792 */
1793 static int do_change_type(struct path *path, int flag)
1794 {
1795 struct mount *m;
1796 struct mount *mnt = real_mount(path->mnt);
1797 int recurse = flag & MS_REC;
1798 int type;
1799 int err = 0;
1800
1801 if (path->dentry != path->mnt->mnt_root)
1802 return -EINVAL;
1803
1804 type = flags_to_propagation_type(flag);
1805 if (!type)
1806 return -EINVAL;
1807
1808 namespace_lock();
1809 if (type == MS_SHARED) {
1810 err = invent_group_ids(mnt, recurse);
1811 if (err)
1812 goto out_unlock;
1813 }
1814
1815 lock_mount_hash();
1816 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1817 change_mnt_propagation(m, type);
1818 unlock_mount_hash();
1819
1820 out_unlock:
1821 namespace_unlock();
1822 return err;
1823 }
1824
1825 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1826 {
1827 struct mount *child;
1828 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1829 if (!is_subdir(child->mnt_mountpoint, dentry))
1830 continue;
1831
1832 if (child->mnt.mnt_flags & MNT_LOCKED)
1833 return true;
1834 }
1835 return false;
1836 }
1837
1838 /*
1839 * do loopback mount.
1840 */
1841 static int do_loopback(struct path *path, const char *old_name,
1842 int recurse)
1843 {
1844 struct path old_path;
1845 struct mount *mnt = NULL, *old, *parent;
1846 struct mountpoint *mp;
1847 int err;
1848 if (!old_name || !*old_name)
1849 return -EINVAL;
1850 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1851 if (err)
1852 return err;
1853
1854 err = -EINVAL;
1855 if (mnt_ns_loop(old_path.dentry))
1856 goto out;
1857
1858 mp = lock_mount(path);
1859 err = PTR_ERR(mp);
1860 if (IS_ERR(mp))
1861 goto out;
1862
1863 old = real_mount(old_path.mnt);
1864 parent = real_mount(path->mnt);
1865
1866 err = -EINVAL;
1867 if (IS_MNT_UNBINDABLE(old))
1868 goto out2;
1869
1870 if (!check_mnt(parent) || !check_mnt(old))
1871 goto out2;
1872
1873 if (!recurse && has_locked_children(old, old_path.dentry))
1874 goto out2;
1875
1876 if (recurse)
1877 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
1878 else
1879 mnt = clone_mnt(old, old_path.dentry, 0);
1880
1881 if (IS_ERR(mnt)) {
1882 err = PTR_ERR(mnt);
1883 goto out2;
1884 }
1885
1886 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1887
1888 err = graft_tree(mnt, parent, mp);
1889 if (err) {
1890 lock_mount_hash();
1891 umount_tree(mnt, 0);
1892 unlock_mount_hash();
1893 }
1894 out2:
1895 unlock_mount(mp);
1896 out:
1897 path_put(&old_path);
1898 return err;
1899 }
1900
1901 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1902 {
1903 int error = 0;
1904 int readonly_request = 0;
1905
1906 if (ms_flags & MS_RDONLY)
1907 readonly_request = 1;
1908 if (readonly_request == __mnt_is_readonly(mnt))
1909 return 0;
1910
1911 if (readonly_request)
1912 error = mnt_make_readonly(real_mount(mnt));
1913 else
1914 __mnt_unmake_readonly(real_mount(mnt));
1915 return error;
1916 }
1917
1918 /*
1919 * change filesystem flags. dir should be a physical root of filesystem.
1920 * If you've mounted a non-root directory somewhere and want to do remount
1921 * on it - tough luck.
1922 */
1923 static int do_remount(struct path *path, int flags, int mnt_flags,
1924 void *data)
1925 {
1926 int err;
1927 struct super_block *sb = path->mnt->mnt_sb;
1928 struct mount *mnt = real_mount(path->mnt);
1929
1930 if (!check_mnt(mnt))
1931 return -EINVAL;
1932
1933 if (path->dentry != path->mnt->mnt_root)
1934 return -EINVAL;
1935
1936 /* Don't allow changing of locked mnt flags.
1937 *
1938 * No locks need to be held here while testing the various
1939 * MNT_LOCK flags because those flags can never be cleared
1940 * once they are set.
1941 */
1942 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
1943 !(mnt_flags & MNT_READONLY)) {
1944 return -EPERM;
1945 }
1946 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
1947 !(mnt_flags & MNT_NODEV)) {
1948 return -EPERM;
1949 }
1950 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
1951 !(mnt_flags & MNT_NOSUID)) {
1952 return -EPERM;
1953 }
1954 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
1955 !(mnt_flags & MNT_NOEXEC)) {
1956 return -EPERM;
1957 }
1958 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
1959 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
1960 return -EPERM;
1961 }
1962
1963 err = security_sb_remount(sb, data);
1964 if (err)
1965 return err;
1966
1967 down_write(&sb->s_umount);
1968 if (flags & MS_BIND)
1969 err = change_mount_flags(path->mnt, flags);
1970 else if (!capable(CAP_SYS_ADMIN))
1971 err = -EPERM;
1972 else
1973 err = do_remount_sb(sb, flags, data, 0);
1974 if (!err) {
1975 lock_mount_hash();
1976 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
1977 mnt->mnt.mnt_flags = mnt_flags;
1978 touch_mnt_namespace(mnt->mnt_ns);
1979 unlock_mount_hash();
1980 }
1981 up_write(&sb->s_umount);
1982 return err;
1983 }
1984
1985 static inline int tree_contains_unbindable(struct mount *mnt)
1986 {
1987 struct mount *p;
1988 for (p = mnt; p; p = next_mnt(p, mnt)) {
1989 if (IS_MNT_UNBINDABLE(p))
1990 return 1;
1991 }
1992 return 0;
1993 }
1994
1995 static int do_move_mount(struct path *path, const char *old_name)
1996 {
1997 struct path old_path, parent_path;
1998 struct mount *p;
1999 struct mount *old;
2000 struct mountpoint *mp;
2001 int err;
2002 if (!old_name || !*old_name)
2003 return -EINVAL;
2004 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2005 if (err)
2006 return err;
2007
2008 mp = lock_mount(path);
2009 err = PTR_ERR(mp);
2010 if (IS_ERR(mp))
2011 goto out;
2012
2013 old = real_mount(old_path.mnt);
2014 p = real_mount(path->mnt);
2015
2016 err = -EINVAL;
2017 if (!check_mnt(p) || !check_mnt(old))
2018 goto out1;
2019
2020 if (old->mnt.mnt_flags & MNT_LOCKED)
2021 goto out1;
2022
2023 err = -EINVAL;
2024 if (old_path.dentry != old_path.mnt->mnt_root)
2025 goto out1;
2026
2027 if (!mnt_has_parent(old))
2028 goto out1;
2029
2030 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
2031 S_ISDIR(old_path.dentry->d_inode->i_mode))
2032 goto out1;
2033 /*
2034 * Don't move a mount residing in a shared parent.
2035 */
2036 if (IS_MNT_SHARED(old->mnt_parent))
2037 goto out1;
2038 /*
2039 * Don't move a mount tree containing unbindable mounts to a destination
2040 * mount which is shared.
2041 */
2042 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2043 goto out1;
2044 err = -ELOOP;
2045 for (; mnt_has_parent(p); p = p->mnt_parent)
2046 if (p == old)
2047 goto out1;
2048
2049 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2050 if (err)
2051 goto out1;
2052
2053 /* if the mount is moved, it should no longer be expire
2054 * automatically */
2055 list_del_init(&old->mnt_expire);
2056 out1:
2057 unlock_mount(mp);
2058 out:
2059 if (!err)
2060 path_put(&parent_path);
2061 path_put(&old_path);
2062 return err;
2063 }
2064
2065 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2066 {
2067 int err;
2068 const char *subtype = strchr(fstype, '.');
2069 if (subtype) {
2070 subtype++;
2071 err = -EINVAL;
2072 if (!subtype[0])
2073 goto err;
2074 } else
2075 subtype = "";
2076
2077 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2078 err = -ENOMEM;
2079 if (!mnt->mnt_sb->s_subtype)
2080 goto err;
2081 return mnt;
2082
2083 err:
2084 mntput(mnt);
2085 return ERR_PTR(err);
2086 }
2087
2088 /*
2089 * add a mount into a namespace's mount tree
2090 */
2091 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2092 {
2093 struct mountpoint *mp;
2094 struct mount *parent;
2095 int err;
2096
2097 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2098
2099 mp = lock_mount(path);
2100 if (IS_ERR(mp))
2101 return PTR_ERR(mp);
2102
2103 parent = real_mount(path->mnt);
2104 err = -EINVAL;
2105 if (unlikely(!check_mnt(parent))) {
2106 /* that's acceptable only for automounts done in private ns */
2107 if (!(mnt_flags & MNT_SHRINKABLE))
2108 goto unlock;
2109 /* ... and for those we'd better have mountpoint still alive */
2110 if (!parent->mnt_ns)
2111 goto unlock;
2112 }
2113
2114 /* Refuse the same filesystem on the same mount point */
2115 err = -EBUSY;
2116 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2117 path->mnt->mnt_root == path->dentry)
2118 goto unlock;
2119
2120 err = -EINVAL;
2121 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
2122 goto unlock;
2123
2124 newmnt->mnt.mnt_flags = mnt_flags;
2125 err = graft_tree(newmnt, parent, mp);
2126
2127 unlock:
2128 unlock_mount(mp);
2129 return err;
2130 }
2131
2132 /*
2133 * create a new mount for userspace and request it to be added into the
2134 * namespace's tree
2135 */
2136 static int do_new_mount(struct path *path, const char *fstype, int flags,
2137 int mnt_flags, const char *name, void *data)
2138 {
2139 struct file_system_type *type;
2140 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2141 struct vfsmount *mnt;
2142 int err;
2143
2144 if (!fstype)
2145 return -EINVAL;
2146
2147 type = get_fs_type(fstype);
2148 if (!type)
2149 return -ENODEV;
2150
2151 if (user_ns != &init_user_ns) {
2152 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2153 put_filesystem(type);
2154 return -EPERM;
2155 }
2156 /* Only in special cases allow devices from mounts
2157 * created outside the initial user namespace.
2158 */
2159 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2160 flags |= MS_NODEV;
2161 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2162 }
2163 }
2164
2165 mnt = vfs_kern_mount(type, flags, name, data);
2166 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2167 !mnt->mnt_sb->s_subtype)
2168 mnt = fs_set_subtype(mnt, fstype);
2169
2170 put_filesystem(type);
2171 if (IS_ERR(mnt))
2172 return PTR_ERR(mnt);
2173
2174 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2175 if (err)
2176 mntput(mnt);
2177 return err;
2178 }
2179
2180 int finish_automount(struct vfsmount *m, struct path *path)
2181 {
2182 struct mount *mnt = real_mount(m);
2183 int err;
2184 /* The new mount record should have at least 2 refs to prevent it being
2185 * expired before we get a chance to add it
2186 */
2187 BUG_ON(mnt_get_count(mnt) < 2);
2188
2189 if (m->mnt_sb == path->mnt->mnt_sb &&
2190 m->mnt_root == path->dentry) {
2191 err = -ELOOP;
2192 goto fail;
2193 }
2194
2195 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2196 if (!err)
2197 return 0;
2198 fail:
2199 /* remove m from any expiration list it may be on */
2200 if (!list_empty(&mnt->mnt_expire)) {
2201 namespace_lock();
2202 list_del_init(&mnt->mnt_expire);
2203 namespace_unlock();
2204 }
2205 mntput(m);
2206 mntput(m);
2207 return err;
2208 }
2209
2210 /**
2211 * mnt_set_expiry - Put a mount on an expiration list
2212 * @mnt: The mount to list.
2213 * @expiry_list: The list to add the mount to.
2214 */
2215 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2216 {
2217 namespace_lock();
2218
2219 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2220
2221 namespace_unlock();
2222 }
2223 EXPORT_SYMBOL(mnt_set_expiry);
2224
2225 /*
2226 * process a list of expirable mountpoints with the intent of discarding any
2227 * mountpoints that aren't in use and haven't been touched since last we came
2228 * here
2229 */
2230 void mark_mounts_for_expiry(struct list_head *mounts)
2231 {
2232 struct mount *mnt, *next;
2233 LIST_HEAD(graveyard);
2234
2235 if (list_empty(mounts))
2236 return;
2237
2238 namespace_lock();
2239 lock_mount_hash();
2240
2241 /* extract from the expiration list every vfsmount that matches the
2242 * following criteria:
2243 * - only referenced by its parent vfsmount
2244 * - still marked for expiry (marked on the last call here; marks are
2245 * cleared by mntput())
2246 */
2247 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2248 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2249 propagate_mount_busy(mnt, 1))
2250 continue;
2251 list_move(&mnt->mnt_expire, &graveyard);
2252 }
2253 while (!list_empty(&graveyard)) {
2254 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2255 touch_mnt_namespace(mnt->mnt_ns);
2256 umount_tree(mnt, 1);
2257 }
2258 unlock_mount_hash();
2259 namespace_unlock();
2260 }
2261
2262 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2263
2264 /*
2265 * Ripoff of 'select_parent()'
2266 *
2267 * search the list of submounts for a given mountpoint, and move any
2268 * shrinkable submounts to the 'graveyard' list.
2269 */
2270 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2271 {
2272 struct mount *this_parent = parent;
2273 struct list_head *next;
2274 int found = 0;
2275
2276 repeat:
2277 next = this_parent->mnt_mounts.next;
2278 resume:
2279 while (next != &this_parent->mnt_mounts) {
2280 struct list_head *tmp = next;
2281 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2282
2283 next = tmp->next;
2284 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2285 continue;
2286 /*
2287 * Descend a level if the d_mounts list is non-empty.
2288 */
2289 if (!list_empty(&mnt->mnt_mounts)) {
2290 this_parent = mnt;
2291 goto repeat;
2292 }
2293
2294 if (!propagate_mount_busy(mnt, 1)) {
2295 list_move_tail(&mnt->mnt_expire, graveyard);
2296 found++;
2297 }
2298 }
2299 /*
2300 * All done at this level ... ascend and resume the search
2301 */
2302 if (this_parent != parent) {
2303 next = this_parent->mnt_child.next;
2304 this_parent = this_parent->mnt_parent;
2305 goto resume;
2306 }
2307 return found;
2308 }
2309
2310 /*
2311 * process a list of expirable mountpoints with the intent of discarding any
2312 * submounts of a specific parent mountpoint
2313 *
2314 * mount_lock must be held for write
2315 */
2316 static void shrink_submounts(struct mount *mnt)
2317 {
2318 LIST_HEAD(graveyard);
2319 struct mount *m;
2320
2321 /* extract submounts of 'mountpoint' from the expiration list */
2322 while (select_submounts(mnt, &graveyard)) {
2323 while (!list_empty(&graveyard)) {
2324 m = list_first_entry(&graveyard, struct mount,
2325 mnt_expire);
2326 touch_mnt_namespace(m->mnt_ns);
2327 umount_tree(m, 1);
2328 }
2329 }
2330 }
2331
2332 /*
2333 * Some copy_from_user() implementations do not return the exact number of
2334 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2335 * Note that this function differs from copy_from_user() in that it will oops
2336 * on bad values of `to', rather than returning a short copy.
2337 */
2338 static long exact_copy_from_user(void *to, const void __user * from,
2339 unsigned long n)
2340 {
2341 char *t = to;
2342 const char __user *f = from;
2343 char c;
2344
2345 if (!access_ok(VERIFY_READ, from, n))
2346 return n;
2347
2348 while (n) {
2349 if (__get_user(c, f)) {
2350 memset(t, 0, n);
2351 break;
2352 }
2353 *t++ = c;
2354 f++;
2355 n--;
2356 }
2357 return n;
2358 }
2359
2360 int copy_mount_options(const void __user * data, unsigned long *where)
2361 {
2362 int i;
2363 unsigned long page;
2364 unsigned long size;
2365
2366 *where = 0;
2367 if (!data)
2368 return 0;
2369
2370 if (!(page = __get_free_page(GFP_KERNEL)))
2371 return -ENOMEM;
2372
2373 /* We only care that *some* data at the address the user
2374 * gave us is valid. Just in case, we'll zero
2375 * the remainder of the page.
2376 */
2377 /* copy_from_user cannot cross TASK_SIZE ! */
2378 size = TASK_SIZE - (unsigned long)data;
2379 if (size > PAGE_SIZE)
2380 size = PAGE_SIZE;
2381
2382 i = size - exact_copy_from_user((void *)page, data, size);
2383 if (!i) {
2384 free_page(page);
2385 return -EFAULT;
2386 }
2387 if (i != PAGE_SIZE)
2388 memset((char *)page + i, 0, PAGE_SIZE - i);
2389 *where = page;
2390 return 0;
2391 }
2392
2393 int copy_mount_string(const void __user *data, char **where)
2394 {
2395 char *tmp;
2396
2397 if (!data) {
2398 *where = NULL;
2399 return 0;
2400 }
2401
2402 tmp = strndup_user(data, PAGE_SIZE);
2403 if (IS_ERR(tmp))
2404 return PTR_ERR(tmp);
2405
2406 *where = tmp;
2407 return 0;
2408 }
2409
2410 /*
2411 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2412 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2413 *
2414 * data is a (void *) that can point to any structure up to
2415 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2416 * information (or be NULL).
2417 *
2418 * Pre-0.97 versions of mount() didn't have a flags word.
2419 * When the flags word was introduced its top half was required
2420 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2421 * Therefore, if this magic number is present, it carries no information
2422 * and must be discarded.
2423 */
2424 long do_mount(const char *dev_name, const char *dir_name,
2425 const char *type_page, unsigned long flags, void *data_page)
2426 {
2427 struct path path;
2428 int retval = 0;
2429 int mnt_flags = 0;
2430
2431 /* Discard magic */
2432 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2433 flags &= ~MS_MGC_MSK;
2434
2435 /* Basic sanity checks */
2436
2437 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2438 return -EINVAL;
2439
2440 if (data_page)
2441 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2442
2443 /* ... and get the mountpoint */
2444 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2445 if (retval)
2446 return retval;
2447
2448 retval = security_sb_mount(dev_name, &path,
2449 type_page, flags, data_page);
2450 if (!retval && !may_mount())
2451 retval = -EPERM;
2452 if (retval)
2453 goto dput_out;
2454
2455 /* Default to relatime unless overriden */
2456 if (!(flags & MS_NOATIME))
2457 mnt_flags |= MNT_RELATIME;
2458
2459 /* Separate the per-mountpoint flags */
2460 if (flags & MS_NOSUID)
2461 mnt_flags |= MNT_NOSUID;
2462 if (flags & MS_NODEV)
2463 mnt_flags |= MNT_NODEV;
2464 if (flags & MS_NOEXEC)
2465 mnt_flags |= MNT_NOEXEC;
2466 if (flags & MS_NOATIME)
2467 mnt_flags |= MNT_NOATIME;
2468 if (flags & MS_NODIRATIME)
2469 mnt_flags |= MNT_NODIRATIME;
2470 if (flags & MS_STRICTATIME)
2471 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2472 if (flags & MS_RDONLY)
2473 mnt_flags |= MNT_READONLY;
2474
2475 /* The default atime for remount is preservation */
2476 if ((flags & MS_REMOUNT) &&
2477 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2478 MS_STRICTATIME)) == 0)) {
2479 mnt_flags &= ~MNT_ATIME_MASK;
2480 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2481 }
2482
2483 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2484 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2485 MS_STRICTATIME);
2486
2487 if (flags & MS_REMOUNT)
2488 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2489 data_page);
2490 else if (flags & MS_BIND)
2491 retval = do_loopback(&path, dev_name, flags & MS_REC);
2492 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2493 retval = do_change_type(&path, flags);
2494 else if (flags & MS_MOVE)
2495 retval = do_move_mount(&path, dev_name);
2496 else
2497 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2498 dev_name, data_page);
2499 dput_out:
2500 path_put(&path);
2501 return retval;
2502 }
2503
2504 static void free_mnt_ns(struct mnt_namespace *ns)
2505 {
2506 proc_free_inum(ns->proc_inum);
2507 put_user_ns(ns->user_ns);
2508 kfree(ns);
2509 }
2510
2511 /*
2512 * Assign a sequence number so we can detect when we attempt to bind
2513 * mount a reference to an older mount namespace into the current
2514 * mount namespace, preventing reference counting loops. A 64bit
2515 * number incrementing at 10Ghz will take 12,427 years to wrap which
2516 * is effectively never, so we can ignore the possibility.
2517 */
2518 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2519
2520 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2521 {
2522 struct mnt_namespace *new_ns;
2523 int ret;
2524
2525 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2526 if (!new_ns)
2527 return ERR_PTR(-ENOMEM);
2528 ret = proc_alloc_inum(&new_ns->proc_inum);
2529 if (ret) {
2530 kfree(new_ns);
2531 return ERR_PTR(ret);
2532 }
2533 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2534 atomic_set(&new_ns->count, 1);
2535 new_ns->root = NULL;
2536 INIT_LIST_HEAD(&new_ns->list);
2537 init_waitqueue_head(&new_ns->poll);
2538 new_ns->event = 0;
2539 new_ns->user_ns = get_user_ns(user_ns);
2540 return new_ns;
2541 }
2542
2543 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2544 struct user_namespace *user_ns, struct fs_struct *new_fs)
2545 {
2546 struct mnt_namespace *new_ns;
2547 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2548 struct mount *p, *q;
2549 struct mount *old;
2550 struct mount *new;
2551 int copy_flags;
2552
2553 BUG_ON(!ns);
2554
2555 if (likely(!(flags & CLONE_NEWNS))) {
2556 get_mnt_ns(ns);
2557 return ns;
2558 }
2559
2560 old = ns->root;
2561
2562 new_ns = alloc_mnt_ns(user_ns);
2563 if (IS_ERR(new_ns))
2564 return new_ns;
2565
2566 namespace_lock();
2567 /* First pass: copy the tree topology */
2568 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2569 if (user_ns != ns->user_ns)
2570 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2571 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2572 if (IS_ERR(new)) {
2573 namespace_unlock();
2574 free_mnt_ns(new_ns);
2575 return ERR_CAST(new);
2576 }
2577 new_ns->root = new;
2578 list_add_tail(&new_ns->list, &new->mnt_list);
2579
2580 /*
2581 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2582 * as belonging to new namespace. We have already acquired a private
2583 * fs_struct, so tsk->fs->lock is not needed.
2584 */
2585 p = old;
2586 q = new;
2587 while (p) {
2588 q->mnt_ns = new_ns;
2589 if (new_fs) {
2590 if (&p->mnt == new_fs->root.mnt) {
2591 new_fs->root.mnt = mntget(&q->mnt);
2592 rootmnt = &p->mnt;
2593 }
2594 if (&p->mnt == new_fs->pwd.mnt) {
2595 new_fs->pwd.mnt = mntget(&q->mnt);
2596 pwdmnt = &p->mnt;
2597 }
2598 }
2599 p = next_mnt(p, old);
2600 q = next_mnt(q, new);
2601 if (!q)
2602 break;
2603 while (p->mnt.mnt_root != q->mnt.mnt_root)
2604 p = next_mnt(p, old);
2605 }
2606 namespace_unlock();
2607
2608 if (rootmnt)
2609 mntput(rootmnt);
2610 if (pwdmnt)
2611 mntput(pwdmnt);
2612
2613 return new_ns;
2614 }
2615
2616 /**
2617 * create_mnt_ns - creates a private namespace and adds a root filesystem
2618 * @mnt: pointer to the new root filesystem mountpoint
2619 */
2620 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2621 {
2622 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2623 if (!IS_ERR(new_ns)) {
2624 struct mount *mnt = real_mount(m);
2625 mnt->mnt_ns = new_ns;
2626 new_ns->root = mnt;
2627 list_add(&mnt->mnt_list, &new_ns->list);
2628 } else {
2629 mntput(m);
2630 }
2631 return new_ns;
2632 }
2633
2634 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2635 {
2636 struct mnt_namespace *ns;
2637 struct super_block *s;
2638 struct path path;
2639 int err;
2640
2641 ns = create_mnt_ns(mnt);
2642 if (IS_ERR(ns))
2643 return ERR_CAST(ns);
2644
2645 err = vfs_path_lookup(mnt->mnt_root, mnt,
2646 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2647
2648 put_mnt_ns(ns);
2649
2650 if (err)
2651 return ERR_PTR(err);
2652
2653 /* trade a vfsmount reference for active sb one */
2654 s = path.mnt->mnt_sb;
2655 atomic_inc(&s->s_active);
2656 mntput(path.mnt);
2657 /* lock the sucker */
2658 down_write(&s->s_umount);
2659 /* ... and return the root of (sub)tree on it */
2660 return path.dentry;
2661 }
2662 EXPORT_SYMBOL(mount_subtree);
2663
2664 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2665 char __user *, type, unsigned long, flags, void __user *, data)
2666 {
2667 int ret;
2668 char *kernel_type;
2669 struct filename *kernel_dir;
2670 char *kernel_dev;
2671 unsigned long data_page;
2672
2673 ret = copy_mount_string(type, &kernel_type);
2674 if (ret < 0)
2675 goto out_type;
2676
2677 kernel_dir = getname(dir_name);
2678 if (IS_ERR(kernel_dir)) {
2679 ret = PTR_ERR(kernel_dir);
2680 goto out_dir;
2681 }
2682
2683 ret = copy_mount_string(dev_name, &kernel_dev);
2684 if (ret < 0)
2685 goto out_dev;
2686
2687 ret = copy_mount_options(data, &data_page);
2688 if (ret < 0)
2689 goto out_data;
2690
2691 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2692 (void *) data_page);
2693
2694 free_page(data_page);
2695 out_data:
2696 kfree(kernel_dev);
2697 out_dev:
2698 putname(kernel_dir);
2699 out_dir:
2700 kfree(kernel_type);
2701 out_type:
2702 return ret;
2703 }
2704
2705 /*
2706 * Return true if path is reachable from root
2707 *
2708 * namespace_sem or mount_lock is held
2709 */
2710 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2711 const struct path *root)
2712 {
2713 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2714 dentry = mnt->mnt_mountpoint;
2715 mnt = mnt->mnt_parent;
2716 }
2717 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2718 }
2719
2720 int path_is_under(struct path *path1, struct path *path2)
2721 {
2722 int res;
2723 read_seqlock_excl(&mount_lock);
2724 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2725 read_sequnlock_excl(&mount_lock);
2726 return res;
2727 }
2728 EXPORT_SYMBOL(path_is_under);
2729
2730 /*
2731 * pivot_root Semantics:
2732 * Moves the root file system of the current process to the directory put_old,
2733 * makes new_root as the new root file system of the current process, and sets
2734 * root/cwd of all processes which had them on the current root to new_root.
2735 *
2736 * Restrictions:
2737 * The new_root and put_old must be directories, and must not be on the
2738 * same file system as the current process root. The put_old must be
2739 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2740 * pointed to by put_old must yield the same directory as new_root. No other
2741 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2742 *
2743 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2744 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2745 * in this situation.
2746 *
2747 * Notes:
2748 * - we don't move root/cwd if they are not at the root (reason: if something
2749 * cared enough to change them, it's probably wrong to force them elsewhere)
2750 * - it's okay to pick a root that isn't the root of a file system, e.g.
2751 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2752 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2753 * first.
2754 */
2755 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2756 const char __user *, put_old)
2757 {
2758 struct path new, old, parent_path, root_parent, root;
2759 struct mount *new_mnt, *root_mnt, *old_mnt;
2760 struct mountpoint *old_mp, *root_mp;
2761 int error;
2762
2763 if (!may_mount())
2764 return -EPERM;
2765
2766 error = user_path_dir(new_root, &new);
2767 if (error)
2768 goto out0;
2769
2770 error = user_path_dir(put_old, &old);
2771 if (error)
2772 goto out1;
2773
2774 error = security_sb_pivotroot(&old, &new);
2775 if (error)
2776 goto out2;
2777
2778 get_fs_root(current->fs, &root);
2779 old_mp = lock_mount(&old);
2780 error = PTR_ERR(old_mp);
2781 if (IS_ERR(old_mp))
2782 goto out3;
2783
2784 error = -EINVAL;
2785 new_mnt = real_mount(new.mnt);
2786 root_mnt = real_mount(root.mnt);
2787 old_mnt = real_mount(old.mnt);
2788 if (IS_MNT_SHARED(old_mnt) ||
2789 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2790 IS_MNT_SHARED(root_mnt->mnt_parent))
2791 goto out4;
2792 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2793 goto out4;
2794 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2795 goto out4;
2796 error = -ENOENT;
2797 if (d_unlinked(new.dentry))
2798 goto out4;
2799 error = -EBUSY;
2800 if (new_mnt == root_mnt || old_mnt == root_mnt)
2801 goto out4; /* loop, on the same file system */
2802 error = -EINVAL;
2803 if (root.mnt->mnt_root != root.dentry)
2804 goto out4; /* not a mountpoint */
2805 if (!mnt_has_parent(root_mnt))
2806 goto out4; /* not attached */
2807 root_mp = root_mnt->mnt_mp;
2808 if (new.mnt->mnt_root != new.dentry)
2809 goto out4; /* not a mountpoint */
2810 if (!mnt_has_parent(new_mnt))
2811 goto out4; /* not attached */
2812 /* make sure we can reach put_old from new_root */
2813 if (!is_path_reachable(old_mnt, old.dentry, &new))
2814 goto out4;
2815 root_mp->m_count++; /* pin it so it won't go away */
2816 lock_mount_hash();
2817 detach_mnt(new_mnt, &parent_path);
2818 detach_mnt(root_mnt, &root_parent);
2819 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2820 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2821 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2822 }
2823 /* mount old root on put_old */
2824 attach_mnt(root_mnt, old_mnt, old_mp);
2825 /* mount new_root on / */
2826 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2827 touch_mnt_namespace(current->nsproxy->mnt_ns);
2828 unlock_mount_hash();
2829 chroot_fs_refs(&root, &new);
2830 put_mountpoint(root_mp);
2831 error = 0;
2832 out4:
2833 unlock_mount(old_mp);
2834 if (!error) {
2835 path_put(&root_parent);
2836 path_put(&parent_path);
2837 }
2838 out3:
2839 path_put(&root);
2840 out2:
2841 path_put(&old);
2842 out1:
2843 path_put(&new);
2844 out0:
2845 return error;
2846 }
2847
2848 static void __init init_mount_tree(void)
2849 {
2850 struct vfsmount *mnt;
2851 struct mnt_namespace *ns;
2852 struct path root;
2853 struct file_system_type *type;
2854
2855 type = get_fs_type("rootfs");
2856 if (!type)
2857 panic("Can't find rootfs type");
2858 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2859 put_filesystem(type);
2860 if (IS_ERR(mnt))
2861 panic("Can't create rootfs");
2862
2863 ns = create_mnt_ns(mnt);
2864 if (IS_ERR(ns))
2865 panic("Can't allocate initial namespace");
2866
2867 init_task.nsproxy->mnt_ns = ns;
2868 get_mnt_ns(ns);
2869
2870 root.mnt = mnt;
2871 root.dentry = mnt->mnt_root;
2872
2873 set_fs_pwd(current->fs, &root);
2874 set_fs_root(current->fs, &root);
2875 }
2876
2877 void __init mnt_init(void)
2878 {
2879 unsigned u;
2880 int err;
2881
2882 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2883 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2884
2885 mount_hashtable = alloc_large_system_hash("Mount-cache",
2886 sizeof(struct hlist_head),
2887 mhash_entries, 19,
2888 0,
2889 &m_hash_shift, &m_hash_mask, 0, 0);
2890 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
2891 sizeof(struct hlist_head),
2892 mphash_entries, 19,
2893 0,
2894 &mp_hash_shift, &mp_hash_mask, 0, 0);
2895
2896 if (!mount_hashtable || !mountpoint_hashtable)
2897 panic("Failed to allocate mount hash table\n");
2898
2899 for (u = 0; u <= m_hash_mask; u++)
2900 INIT_HLIST_HEAD(&mount_hashtable[u]);
2901 for (u = 0; u <= mp_hash_mask; u++)
2902 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
2903
2904 kernfs_init();
2905
2906 err = sysfs_init();
2907 if (err)
2908 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2909 __func__, err);
2910 fs_kobj = kobject_create_and_add("fs", NULL);
2911 if (!fs_kobj)
2912 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2913 init_rootfs();
2914 init_mount_tree();
2915 }
2916
2917 void put_mnt_ns(struct mnt_namespace *ns)
2918 {
2919 if (!atomic_dec_and_test(&ns->count))
2920 return;
2921 drop_collected_mounts(&ns->root->mnt);
2922 free_mnt_ns(ns);
2923 }
2924
2925 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2926 {
2927 struct vfsmount *mnt;
2928 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2929 if (!IS_ERR(mnt)) {
2930 /*
2931 * it is a longterm mount, don't release mnt until
2932 * we unmount before file sys is unregistered
2933 */
2934 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2935 }
2936 return mnt;
2937 }
2938 EXPORT_SYMBOL_GPL(kern_mount_data);
2939
2940 void kern_unmount(struct vfsmount *mnt)
2941 {
2942 /* release long term mount so mount point can be released */
2943 if (!IS_ERR_OR_NULL(mnt)) {
2944 real_mount(mnt)->mnt_ns = NULL;
2945 synchronize_rcu(); /* yecchhh... */
2946 mntput(mnt);
2947 }
2948 }
2949 EXPORT_SYMBOL(kern_unmount);
2950
2951 bool our_mnt(struct vfsmount *mnt)
2952 {
2953 return check_mnt(real_mount(mnt));
2954 }
2955
2956 bool current_chrooted(void)
2957 {
2958 /* Does the current process have a non-standard root */
2959 struct path ns_root;
2960 struct path fs_root;
2961 bool chrooted;
2962
2963 /* Find the namespace root */
2964 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2965 ns_root.dentry = ns_root.mnt->mnt_root;
2966 path_get(&ns_root);
2967 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2968 ;
2969
2970 get_fs_root(current->fs, &fs_root);
2971
2972 chrooted = !path_equal(&fs_root, &ns_root);
2973
2974 path_put(&fs_root);
2975 path_put(&ns_root);
2976
2977 return chrooted;
2978 }
2979
2980 bool fs_fully_visible(struct file_system_type *type)
2981 {
2982 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2983 struct mount *mnt;
2984 bool visible = false;
2985
2986 if (unlikely(!ns))
2987 return false;
2988
2989 down_read(&namespace_sem);
2990 list_for_each_entry(mnt, &ns->list, mnt_list) {
2991 struct mount *child;
2992 if (mnt->mnt.mnt_sb->s_type != type)
2993 continue;
2994
2995 /* This mount is not fully visible if there are any child mounts
2996 * that cover anything except for empty directories.
2997 */
2998 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2999 struct inode *inode = child->mnt_mountpoint->d_inode;
3000 if (!S_ISDIR(inode->i_mode))
3001 goto next;
3002 if (inode->i_nlink > 2)
3003 goto next;
3004 }
3005 visible = true;
3006 goto found;
3007 next: ;
3008 }
3009 found:
3010 up_read(&namespace_sem);
3011 return visible;
3012 }
3013
3014 static void *mntns_get(struct task_struct *task)
3015 {
3016 struct mnt_namespace *ns = NULL;
3017 struct nsproxy *nsproxy;
3018
3019 task_lock(task);
3020 nsproxy = task->nsproxy;
3021 if (nsproxy) {
3022 ns = nsproxy->mnt_ns;
3023 get_mnt_ns(ns);
3024 }
3025 task_unlock(task);
3026
3027 return ns;
3028 }
3029
3030 static void mntns_put(void *ns)
3031 {
3032 put_mnt_ns(ns);
3033 }
3034
3035 static int mntns_install(struct nsproxy *nsproxy, void *ns)
3036 {
3037 struct fs_struct *fs = current->fs;
3038 struct mnt_namespace *mnt_ns = ns;
3039 struct path root;
3040
3041 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3042 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3043 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3044 return -EPERM;
3045
3046 if (fs->users != 1)
3047 return -EINVAL;
3048
3049 get_mnt_ns(mnt_ns);
3050 put_mnt_ns(nsproxy->mnt_ns);
3051 nsproxy->mnt_ns = mnt_ns;
3052
3053 /* Find the root */
3054 root.mnt = &mnt_ns->root->mnt;
3055 root.dentry = mnt_ns->root->mnt.mnt_root;
3056 path_get(&root);
3057 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3058 ;
3059
3060 /* Update the pwd and root */
3061 set_fs_pwd(fs, &root);
3062 set_fs_root(fs, &root);
3063
3064 path_put(&root);
3065 return 0;
3066 }
3067
3068 static unsigned int mntns_inum(void *ns)
3069 {
3070 struct mnt_namespace *mnt_ns = ns;
3071 return mnt_ns->proc_inum;
3072 }
3073
3074 const struct proc_ns_operations mntns_operations = {
3075 .name = "mnt",
3076 .type = CLONE_NEWNS,
3077 .get = mntns_get,
3078 .put = mntns_put,
3079 .install = mntns_install,
3080 .inum = mntns_inum,
3081 };