]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/namespace.c
net: phy: don't export gen10g_read_status
[mirror_ubuntu-jammy-kernel.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/memblock.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
29 #include <uapi/linux/mount.h>
30
31 #include "pnode.h"
32 #include "internal.h"
33
34 /* Maximum number of mounts in a mount namespace */
35 unsigned int sysctl_mount_max __read_mostly = 100000;
36
37 static unsigned int m_hash_mask __read_mostly;
38 static unsigned int m_hash_shift __read_mostly;
39 static unsigned int mp_hash_mask __read_mostly;
40 static unsigned int mp_hash_shift __read_mostly;
41
42 static __initdata unsigned long mhash_entries;
43 static int __init set_mhash_entries(char *str)
44 {
45 if (!str)
46 return 0;
47 mhash_entries = simple_strtoul(str, &str, 0);
48 return 1;
49 }
50 __setup("mhash_entries=", set_mhash_entries);
51
52 static __initdata unsigned long mphash_entries;
53 static int __init set_mphash_entries(char *str)
54 {
55 if (!str)
56 return 0;
57 mphash_entries = simple_strtoul(str, &str, 0);
58 return 1;
59 }
60 __setup("mphash_entries=", set_mphash_entries);
61
62 static u64 event;
63 static DEFINE_IDA(mnt_id_ida);
64 static DEFINE_IDA(mnt_group_ida);
65
66 static struct hlist_head *mount_hashtable __read_mostly;
67 static struct hlist_head *mountpoint_hashtable __read_mostly;
68 static struct kmem_cache *mnt_cache __read_mostly;
69 static DECLARE_RWSEM(namespace_sem);
70
71 /* /sys/fs */
72 struct kobject *fs_kobj;
73 EXPORT_SYMBOL_GPL(fs_kobj);
74
75 /*
76 * vfsmount lock may be taken for read to prevent changes to the
77 * vfsmount hash, ie. during mountpoint lookups or walking back
78 * up the tree.
79 *
80 * It should be taken for write in all cases where the vfsmount
81 * tree or hash is modified or when a vfsmount structure is modified.
82 */
83 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
84
85 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
86 {
87 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
88 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
89 tmp = tmp + (tmp >> m_hash_shift);
90 return &mount_hashtable[tmp & m_hash_mask];
91 }
92
93 static inline struct hlist_head *mp_hash(struct dentry *dentry)
94 {
95 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
96 tmp = tmp + (tmp >> mp_hash_shift);
97 return &mountpoint_hashtable[tmp & mp_hash_mask];
98 }
99
100 static int mnt_alloc_id(struct mount *mnt)
101 {
102 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
103
104 if (res < 0)
105 return res;
106 mnt->mnt_id = res;
107 return 0;
108 }
109
110 static void mnt_free_id(struct mount *mnt)
111 {
112 ida_free(&mnt_id_ida, mnt->mnt_id);
113 }
114
115 /*
116 * Allocate a new peer group ID
117 */
118 static int mnt_alloc_group_id(struct mount *mnt)
119 {
120 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
121
122 if (res < 0)
123 return res;
124 mnt->mnt_group_id = res;
125 return 0;
126 }
127
128 /*
129 * Release a peer group ID
130 */
131 void mnt_release_group_id(struct mount *mnt)
132 {
133 ida_free(&mnt_group_ida, mnt->mnt_group_id);
134 mnt->mnt_group_id = 0;
135 }
136
137 /*
138 * vfsmount lock must be held for read
139 */
140 static inline void mnt_add_count(struct mount *mnt, int n)
141 {
142 #ifdef CONFIG_SMP
143 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
144 #else
145 preempt_disable();
146 mnt->mnt_count += n;
147 preempt_enable();
148 #endif
149 }
150
151 /*
152 * vfsmount lock must be held for write
153 */
154 unsigned int mnt_get_count(struct mount *mnt)
155 {
156 #ifdef CONFIG_SMP
157 unsigned int count = 0;
158 int cpu;
159
160 for_each_possible_cpu(cpu) {
161 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
162 }
163
164 return count;
165 #else
166 return mnt->mnt_count;
167 #endif
168 }
169
170 static void drop_mountpoint(struct fs_pin *p)
171 {
172 struct mount *m = container_of(p, struct mount, mnt_umount);
173 dput(m->mnt_ex_mountpoint);
174 pin_remove(p);
175 mntput(&m->mnt);
176 }
177
178 static struct mount *alloc_vfsmnt(const char *name)
179 {
180 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
181 if (mnt) {
182 int err;
183
184 err = mnt_alloc_id(mnt);
185 if (err)
186 goto out_free_cache;
187
188 if (name) {
189 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
190 if (!mnt->mnt_devname)
191 goto out_free_id;
192 }
193
194 #ifdef CONFIG_SMP
195 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
196 if (!mnt->mnt_pcp)
197 goto out_free_devname;
198
199 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
200 #else
201 mnt->mnt_count = 1;
202 mnt->mnt_writers = 0;
203 #endif
204
205 INIT_HLIST_NODE(&mnt->mnt_hash);
206 INIT_LIST_HEAD(&mnt->mnt_child);
207 INIT_LIST_HEAD(&mnt->mnt_mounts);
208 INIT_LIST_HEAD(&mnt->mnt_list);
209 INIT_LIST_HEAD(&mnt->mnt_expire);
210 INIT_LIST_HEAD(&mnt->mnt_share);
211 INIT_LIST_HEAD(&mnt->mnt_slave_list);
212 INIT_LIST_HEAD(&mnt->mnt_slave);
213 INIT_HLIST_NODE(&mnt->mnt_mp_list);
214 INIT_LIST_HEAD(&mnt->mnt_umounting);
215 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
216 }
217 return mnt;
218
219 #ifdef CONFIG_SMP
220 out_free_devname:
221 kfree_const(mnt->mnt_devname);
222 #endif
223 out_free_id:
224 mnt_free_id(mnt);
225 out_free_cache:
226 kmem_cache_free(mnt_cache, mnt);
227 return NULL;
228 }
229
230 /*
231 * Most r/o checks on a fs are for operations that take
232 * discrete amounts of time, like a write() or unlink().
233 * We must keep track of when those operations start
234 * (for permission checks) and when they end, so that
235 * we can determine when writes are able to occur to
236 * a filesystem.
237 */
238 /*
239 * __mnt_is_readonly: check whether a mount is read-only
240 * @mnt: the mount to check for its write status
241 *
242 * This shouldn't be used directly ouside of the VFS.
243 * It does not guarantee that the filesystem will stay
244 * r/w, just that it is right *now*. This can not and
245 * should not be used in place of IS_RDONLY(inode).
246 * mnt_want/drop_write() will _keep_ the filesystem
247 * r/w.
248 */
249 bool __mnt_is_readonly(struct vfsmount *mnt)
250 {
251 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
252 }
253 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
254
255 static inline void mnt_inc_writers(struct mount *mnt)
256 {
257 #ifdef CONFIG_SMP
258 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
259 #else
260 mnt->mnt_writers++;
261 #endif
262 }
263
264 static inline void mnt_dec_writers(struct mount *mnt)
265 {
266 #ifdef CONFIG_SMP
267 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
268 #else
269 mnt->mnt_writers--;
270 #endif
271 }
272
273 static unsigned int mnt_get_writers(struct mount *mnt)
274 {
275 #ifdef CONFIG_SMP
276 unsigned int count = 0;
277 int cpu;
278
279 for_each_possible_cpu(cpu) {
280 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
281 }
282
283 return count;
284 #else
285 return mnt->mnt_writers;
286 #endif
287 }
288
289 static int mnt_is_readonly(struct vfsmount *mnt)
290 {
291 if (mnt->mnt_sb->s_readonly_remount)
292 return 1;
293 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
294 smp_rmb();
295 return __mnt_is_readonly(mnt);
296 }
297
298 /*
299 * Most r/o & frozen checks on a fs are for operations that take discrete
300 * amounts of time, like a write() or unlink(). We must keep track of when
301 * those operations start (for permission checks) and when they end, so that we
302 * can determine when writes are able to occur to a filesystem.
303 */
304 /**
305 * __mnt_want_write - get write access to a mount without freeze protection
306 * @m: the mount on which to take a write
307 *
308 * This tells the low-level filesystem that a write is about to be performed to
309 * it, and makes sure that writes are allowed (mnt it read-write) before
310 * returning success. This operation does not protect against filesystem being
311 * frozen. When the write operation is finished, __mnt_drop_write() must be
312 * called. This is effectively a refcount.
313 */
314 int __mnt_want_write(struct vfsmount *m)
315 {
316 struct mount *mnt = real_mount(m);
317 int ret = 0;
318
319 preempt_disable();
320 mnt_inc_writers(mnt);
321 /*
322 * The store to mnt_inc_writers must be visible before we pass
323 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
324 * incremented count after it has set MNT_WRITE_HOLD.
325 */
326 smp_mb();
327 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
328 cpu_relax();
329 /*
330 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
331 * be set to match its requirements. So we must not load that until
332 * MNT_WRITE_HOLD is cleared.
333 */
334 smp_rmb();
335 if (mnt_is_readonly(m)) {
336 mnt_dec_writers(mnt);
337 ret = -EROFS;
338 }
339 preempt_enable();
340
341 return ret;
342 }
343
344 /**
345 * mnt_want_write - get write access to a mount
346 * @m: the mount on which to take a write
347 *
348 * This tells the low-level filesystem that a write is about to be performed to
349 * it, and makes sure that writes are allowed (mount is read-write, filesystem
350 * is not frozen) before returning success. When the write operation is
351 * finished, mnt_drop_write() must be called. This is effectively a refcount.
352 */
353 int mnt_want_write(struct vfsmount *m)
354 {
355 int ret;
356
357 sb_start_write(m->mnt_sb);
358 ret = __mnt_want_write(m);
359 if (ret)
360 sb_end_write(m->mnt_sb);
361 return ret;
362 }
363 EXPORT_SYMBOL_GPL(mnt_want_write);
364
365 /**
366 * mnt_clone_write - get write access to a mount
367 * @mnt: the mount on which to take a write
368 *
369 * This is effectively like mnt_want_write, except
370 * it must only be used to take an extra write reference
371 * on a mountpoint that we already know has a write reference
372 * on it. This allows some optimisation.
373 *
374 * After finished, mnt_drop_write must be called as usual to
375 * drop the reference.
376 */
377 int mnt_clone_write(struct vfsmount *mnt)
378 {
379 /* superblock may be r/o */
380 if (__mnt_is_readonly(mnt))
381 return -EROFS;
382 preempt_disable();
383 mnt_inc_writers(real_mount(mnt));
384 preempt_enable();
385 return 0;
386 }
387 EXPORT_SYMBOL_GPL(mnt_clone_write);
388
389 /**
390 * __mnt_want_write_file - get write access to a file's mount
391 * @file: the file who's mount on which to take a write
392 *
393 * This is like __mnt_want_write, but it takes a file and can
394 * do some optimisations if the file is open for write already
395 */
396 int __mnt_want_write_file(struct file *file)
397 {
398 if (!(file->f_mode & FMODE_WRITER))
399 return __mnt_want_write(file->f_path.mnt);
400 else
401 return mnt_clone_write(file->f_path.mnt);
402 }
403
404 /**
405 * mnt_want_write_file - get write access to a file's mount
406 * @file: the file who's mount on which to take a write
407 *
408 * This is like mnt_want_write, but it takes a file and can
409 * do some optimisations if the file is open for write already
410 */
411 int mnt_want_write_file(struct file *file)
412 {
413 int ret;
414
415 sb_start_write(file_inode(file)->i_sb);
416 ret = __mnt_want_write_file(file);
417 if (ret)
418 sb_end_write(file_inode(file)->i_sb);
419 return ret;
420 }
421 EXPORT_SYMBOL_GPL(mnt_want_write_file);
422
423 /**
424 * __mnt_drop_write - give up write access to a mount
425 * @mnt: the mount on which to give up write access
426 *
427 * Tells the low-level filesystem that we are done
428 * performing writes to it. Must be matched with
429 * __mnt_want_write() call above.
430 */
431 void __mnt_drop_write(struct vfsmount *mnt)
432 {
433 preempt_disable();
434 mnt_dec_writers(real_mount(mnt));
435 preempt_enable();
436 }
437
438 /**
439 * mnt_drop_write - give up write access to a mount
440 * @mnt: the mount on which to give up write access
441 *
442 * Tells the low-level filesystem that we are done performing writes to it and
443 * also allows filesystem to be frozen again. Must be matched with
444 * mnt_want_write() call above.
445 */
446 void mnt_drop_write(struct vfsmount *mnt)
447 {
448 __mnt_drop_write(mnt);
449 sb_end_write(mnt->mnt_sb);
450 }
451 EXPORT_SYMBOL_GPL(mnt_drop_write);
452
453 void __mnt_drop_write_file(struct file *file)
454 {
455 __mnt_drop_write(file->f_path.mnt);
456 }
457
458 void mnt_drop_write_file(struct file *file)
459 {
460 __mnt_drop_write_file(file);
461 sb_end_write(file_inode(file)->i_sb);
462 }
463 EXPORT_SYMBOL(mnt_drop_write_file);
464
465 static int mnt_make_readonly(struct mount *mnt)
466 {
467 int ret = 0;
468
469 lock_mount_hash();
470 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
471 /*
472 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
473 * should be visible before we do.
474 */
475 smp_mb();
476
477 /*
478 * With writers on hold, if this value is zero, then there are
479 * definitely no active writers (although held writers may subsequently
480 * increment the count, they'll have to wait, and decrement it after
481 * seeing MNT_READONLY).
482 *
483 * It is OK to have counter incremented on one CPU and decremented on
484 * another: the sum will add up correctly. The danger would be when we
485 * sum up each counter, if we read a counter before it is incremented,
486 * but then read another CPU's count which it has been subsequently
487 * decremented from -- we would see more decrements than we should.
488 * MNT_WRITE_HOLD protects against this scenario, because
489 * mnt_want_write first increments count, then smp_mb, then spins on
490 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
491 * we're counting up here.
492 */
493 if (mnt_get_writers(mnt) > 0)
494 ret = -EBUSY;
495 else
496 mnt->mnt.mnt_flags |= MNT_READONLY;
497 /*
498 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
499 * that become unheld will see MNT_READONLY.
500 */
501 smp_wmb();
502 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
503 unlock_mount_hash();
504 return ret;
505 }
506
507 static int __mnt_unmake_readonly(struct mount *mnt)
508 {
509 lock_mount_hash();
510 mnt->mnt.mnt_flags &= ~MNT_READONLY;
511 unlock_mount_hash();
512 return 0;
513 }
514
515 int sb_prepare_remount_readonly(struct super_block *sb)
516 {
517 struct mount *mnt;
518 int err = 0;
519
520 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
521 if (atomic_long_read(&sb->s_remove_count))
522 return -EBUSY;
523
524 lock_mount_hash();
525 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
526 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
527 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
528 smp_mb();
529 if (mnt_get_writers(mnt) > 0) {
530 err = -EBUSY;
531 break;
532 }
533 }
534 }
535 if (!err && atomic_long_read(&sb->s_remove_count))
536 err = -EBUSY;
537
538 if (!err) {
539 sb->s_readonly_remount = 1;
540 smp_wmb();
541 }
542 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
543 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
544 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
545 }
546 unlock_mount_hash();
547
548 return err;
549 }
550
551 static void free_vfsmnt(struct mount *mnt)
552 {
553 kfree_const(mnt->mnt_devname);
554 #ifdef CONFIG_SMP
555 free_percpu(mnt->mnt_pcp);
556 #endif
557 kmem_cache_free(mnt_cache, mnt);
558 }
559
560 static void delayed_free_vfsmnt(struct rcu_head *head)
561 {
562 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
563 }
564
565 /* call under rcu_read_lock */
566 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
567 {
568 struct mount *mnt;
569 if (read_seqretry(&mount_lock, seq))
570 return 1;
571 if (bastard == NULL)
572 return 0;
573 mnt = real_mount(bastard);
574 mnt_add_count(mnt, 1);
575 smp_mb(); // see mntput_no_expire()
576 if (likely(!read_seqretry(&mount_lock, seq)))
577 return 0;
578 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
579 mnt_add_count(mnt, -1);
580 return 1;
581 }
582 lock_mount_hash();
583 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
584 mnt_add_count(mnt, -1);
585 unlock_mount_hash();
586 return 1;
587 }
588 unlock_mount_hash();
589 /* caller will mntput() */
590 return -1;
591 }
592
593 /* call under rcu_read_lock */
594 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
595 {
596 int res = __legitimize_mnt(bastard, seq);
597 if (likely(!res))
598 return true;
599 if (unlikely(res < 0)) {
600 rcu_read_unlock();
601 mntput(bastard);
602 rcu_read_lock();
603 }
604 return false;
605 }
606
607 /*
608 * find the first mount at @dentry on vfsmount @mnt.
609 * call under rcu_read_lock()
610 */
611 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
612 {
613 struct hlist_head *head = m_hash(mnt, dentry);
614 struct mount *p;
615
616 hlist_for_each_entry_rcu(p, head, mnt_hash)
617 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
618 return p;
619 return NULL;
620 }
621
622 /*
623 * lookup_mnt - Return the first child mount mounted at path
624 *
625 * "First" means first mounted chronologically. If you create the
626 * following mounts:
627 *
628 * mount /dev/sda1 /mnt
629 * mount /dev/sda2 /mnt
630 * mount /dev/sda3 /mnt
631 *
632 * Then lookup_mnt() on the base /mnt dentry in the root mount will
633 * return successively the root dentry and vfsmount of /dev/sda1, then
634 * /dev/sda2, then /dev/sda3, then NULL.
635 *
636 * lookup_mnt takes a reference to the found vfsmount.
637 */
638 struct vfsmount *lookup_mnt(const struct path *path)
639 {
640 struct mount *child_mnt;
641 struct vfsmount *m;
642 unsigned seq;
643
644 rcu_read_lock();
645 do {
646 seq = read_seqbegin(&mount_lock);
647 child_mnt = __lookup_mnt(path->mnt, path->dentry);
648 m = child_mnt ? &child_mnt->mnt : NULL;
649 } while (!legitimize_mnt(m, seq));
650 rcu_read_unlock();
651 return m;
652 }
653
654 /*
655 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
656 * current mount namespace.
657 *
658 * The common case is dentries are not mountpoints at all and that
659 * test is handled inline. For the slow case when we are actually
660 * dealing with a mountpoint of some kind, walk through all of the
661 * mounts in the current mount namespace and test to see if the dentry
662 * is a mountpoint.
663 *
664 * The mount_hashtable is not usable in the context because we
665 * need to identify all mounts that may be in the current mount
666 * namespace not just a mount that happens to have some specified
667 * parent mount.
668 */
669 bool __is_local_mountpoint(struct dentry *dentry)
670 {
671 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
672 struct mount *mnt;
673 bool is_covered = false;
674
675 if (!d_mountpoint(dentry))
676 goto out;
677
678 down_read(&namespace_sem);
679 list_for_each_entry(mnt, &ns->list, mnt_list) {
680 is_covered = (mnt->mnt_mountpoint == dentry);
681 if (is_covered)
682 break;
683 }
684 up_read(&namespace_sem);
685 out:
686 return is_covered;
687 }
688
689 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
690 {
691 struct hlist_head *chain = mp_hash(dentry);
692 struct mountpoint *mp;
693
694 hlist_for_each_entry(mp, chain, m_hash) {
695 if (mp->m_dentry == dentry) {
696 mp->m_count++;
697 return mp;
698 }
699 }
700 return NULL;
701 }
702
703 static struct mountpoint *get_mountpoint(struct dentry *dentry)
704 {
705 struct mountpoint *mp, *new = NULL;
706 int ret;
707
708 if (d_mountpoint(dentry)) {
709 /* might be worth a WARN_ON() */
710 if (d_unlinked(dentry))
711 return ERR_PTR(-ENOENT);
712 mountpoint:
713 read_seqlock_excl(&mount_lock);
714 mp = lookup_mountpoint(dentry);
715 read_sequnlock_excl(&mount_lock);
716 if (mp)
717 goto done;
718 }
719
720 if (!new)
721 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
722 if (!new)
723 return ERR_PTR(-ENOMEM);
724
725
726 /* Exactly one processes may set d_mounted */
727 ret = d_set_mounted(dentry);
728
729 /* Someone else set d_mounted? */
730 if (ret == -EBUSY)
731 goto mountpoint;
732
733 /* The dentry is not available as a mountpoint? */
734 mp = ERR_PTR(ret);
735 if (ret)
736 goto done;
737
738 /* Add the new mountpoint to the hash table */
739 read_seqlock_excl(&mount_lock);
740 new->m_dentry = dentry;
741 new->m_count = 1;
742 hlist_add_head(&new->m_hash, mp_hash(dentry));
743 INIT_HLIST_HEAD(&new->m_list);
744 read_sequnlock_excl(&mount_lock);
745
746 mp = new;
747 new = NULL;
748 done:
749 kfree(new);
750 return mp;
751 }
752
753 static void put_mountpoint(struct mountpoint *mp)
754 {
755 if (!--mp->m_count) {
756 struct dentry *dentry = mp->m_dentry;
757 BUG_ON(!hlist_empty(&mp->m_list));
758 spin_lock(&dentry->d_lock);
759 dentry->d_flags &= ~DCACHE_MOUNTED;
760 spin_unlock(&dentry->d_lock);
761 hlist_del(&mp->m_hash);
762 kfree(mp);
763 }
764 }
765
766 static inline int check_mnt(struct mount *mnt)
767 {
768 return mnt->mnt_ns == current->nsproxy->mnt_ns;
769 }
770
771 /*
772 * vfsmount lock must be held for write
773 */
774 static void touch_mnt_namespace(struct mnt_namespace *ns)
775 {
776 if (ns) {
777 ns->event = ++event;
778 wake_up_interruptible(&ns->poll);
779 }
780 }
781
782 /*
783 * vfsmount lock must be held for write
784 */
785 static void __touch_mnt_namespace(struct mnt_namespace *ns)
786 {
787 if (ns && ns->event != event) {
788 ns->event = event;
789 wake_up_interruptible(&ns->poll);
790 }
791 }
792
793 /*
794 * vfsmount lock must be held for write
795 */
796 static void unhash_mnt(struct mount *mnt)
797 {
798 mnt->mnt_parent = mnt;
799 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
800 list_del_init(&mnt->mnt_child);
801 hlist_del_init_rcu(&mnt->mnt_hash);
802 hlist_del_init(&mnt->mnt_mp_list);
803 put_mountpoint(mnt->mnt_mp);
804 mnt->mnt_mp = NULL;
805 }
806
807 /*
808 * vfsmount lock must be held for write
809 */
810 static void detach_mnt(struct mount *mnt, struct path *old_path)
811 {
812 old_path->dentry = mnt->mnt_mountpoint;
813 old_path->mnt = &mnt->mnt_parent->mnt;
814 unhash_mnt(mnt);
815 }
816
817 /*
818 * vfsmount lock must be held for write
819 */
820 static void umount_mnt(struct mount *mnt)
821 {
822 /* old mountpoint will be dropped when we can do that */
823 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
824 unhash_mnt(mnt);
825 }
826
827 /*
828 * vfsmount lock must be held for write
829 */
830 void mnt_set_mountpoint(struct mount *mnt,
831 struct mountpoint *mp,
832 struct mount *child_mnt)
833 {
834 mp->m_count++;
835 mnt_add_count(mnt, 1); /* essentially, that's mntget */
836 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
837 child_mnt->mnt_parent = mnt;
838 child_mnt->mnt_mp = mp;
839 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
840 }
841
842 static void __attach_mnt(struct mount *mnt, struct mount *parent)
843 {
844 hlist_add_head_rcu(&mnt->mnt_hash,
845 m_hash(&parent->mnt, mnt->mnt_mountpoint));
846 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
847 }
848
849 /*
850 * vfsmount lock must be held for write
851 */
852 static void attach_mnt(struct mount *mnt,
853 struct mount *parent,
854 struct mountpoint *mp)
855 {
856 mnt_set_mountpoint(parent, mp, mnt);
857 __attach_mnt(mnt, parent);
858 }
859
860 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
861 {
862 struct mountpoint *old_mp = mnt->mnt_mp;
863 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
864 struct mount *old_parent = mnt->mnt_parent;
865
866 list_del_init(&mnt->mnt_child);
867 hlist_del_init(&mnt->mnt_mp_list);
868 hlist_del_init_rcu(&mnt->mnt_hash);
869
870 attach_mnt(mnt, parent, mp);
871
872 put_mountpoint(old_mp);
873
874 /*
875 * Safely avoid even the suggestion this code might sleep or
876 * lock the mount hash by taking advantage of the knowledge that
877 * mnt_change_mountpoint will not release the final reference
878 * to a mountpoint.
879 *
880 * During mounting, the mount passed in as the parent mount will
881 * continue to use the old mountpoint and during unmounting, the
882 * old mountpoint will continue to exist until namespace_unlock,
883 * which happens well after mnt_change_mountpoint.
884 */
885 spin_lock(&old_mountpoint->d_lock);
886 old_mountpoint->d_lockref.count--;
887 spin_unlock(&old_mountpoint->d_lock);
888
889 mnt_add_count(old_parent, -1);
890 }
891
892 /*
893 * vfsmount lock must be held for write
894 */
895 static void commit_tree(struct mount *mnt)
896 {
897 struct mount *parent = mnt->mnt_parent;
898 struct mount *m;
899 LIST_HEAD(head);
900 struct mnt_namespace *n = parent->mnt_ns;
901
902 BUG_ON(parent == mnt);
903
904 list_add_tail(&head, &mnt->mnt_list);
905 list_for_each_entry(m, &head, mnt_list)
906 m->mnt_ns = n;
907
908 list_splice(&head, n->list.prev);
909
910 n->mounts += n->pending_mounts;
911 n->pending_mounts = 0;
912
913 __attach_mnt(mnt, parent);
914 touch_mnt_namespace(n);
915 }
916
917 static struct mount *next_mnt(struct mount *p, struct mount *root)
918 {
919 struct list_head *next = p->mnt_mounts.next;
920 if (next == &p->mnt_mounts) {
921 while (1) {
922 if (p == root)
923 return NULL;
924 next = p->mnt_child.next;
925 if (next != &p->mnt_parent->mnt_mounts)
926 break;
927 p = p->mnt_parent;
928 }
929 }
930 return list_entry(next, struct mount, mnt_child);
931 }
932
933 static struct mount *skip_mnt_tree(struct mount *p)
934 {
935 struct list_head *prev = p->mnt_mounts.prev;
936 while (prev != &p->mnt_mounts) {
937 p = list_entry(prev, struct mount, mnt_child);
938 prev = p->mnt_mounts.prev;
939 }
940 return p;
941 }
942
943 struct vfsmount *
944 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
945 {
946 struct mount *mnt;
947 struct dentry *root;
948
949 if (!type)
950 return ERR_PTR(-ENODEV);
951
952 mnt = alloc_vfsmnt(name);
953 if (!mnt)
954 return ERR_PTR(-ENOMEM);
955
956 if (flags & SB_KERNMOUNT)
957 mnt->mnt.mnt_flags = MNT_INTERNAL;
958
959 root = mount_fs(type, flags, name, data);
960 if (IS_ERR(root)) {
961 mnt_free_id(mnt);
962 free_vfsmnt(mnt);
963 return ERR_CAST(root);
964 }
965
966 mnt->mnt.mnt_root = root;
967 mnt->mnt.mnt_sb = root->d_sb;
968 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
969 mnt->mnt_parent = mnt;
970 lock_mount_hash();
971 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
972 unlock_mount_hash();
973 return &mnt->mnt;
974 }
975 EXPORT_SYMBOL_GPL(vfs_kern_mount);
976
977 struct vfsmount *
978 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
979 const char *name, void *data)
980 {
981 /* Until it is worked out how to pass the user namespace
982 * through from the parent mount to the submount don't support
983 * unprivileged mounts with submounts.
984 */
985 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
986 return ERR_PTR(-EPERM);
987
988 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
989 }
990 EXPORT_SYMBOL_GPL(vfs_submount);
991
992 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
993 int flag)
994 {
995 struct super_block *sb = old->mnt.mnt_sb;
996 struct mount *mnt;
997 int err;
998
999 mnt = alloc_vfsmnt(old->mnt_devname);
1000 if (!mnt)
1001 return ERR_PTR(-ENOMEM);
1002
1003 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1004 mnt->mnt_group_id = 0; /* not a peer of original */
1005 else
1006 mnt->mnt_group_id = old->mnt_group_id;
1007
1008 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1009 err = mnt_alloc_group_id(mnt);
1010 if (err)
1011 goto out_free;
1012 }
1013
1014 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1015 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1016 /* Don't allow unprivileged users to change mount flags */
1017 if (flag & CL_UNPRIVILEGED) {
1018 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1019
1020 if (mnt->mnt.mnt_flags & MNT_READONLY)
1021 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1022
1023 if (mnt->mnt.mnt_flags & MNT_NODEV)
1024 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1025
1026 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1027 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1028
1029 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1030 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1031 }
1032
1033 /* Don't allow unprivileged users to reveal what is under a mount */
1034 if ((flag & CL_UNPRIVILEGED) &&
1035 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1036 mnt->mnt.mnt_flags |= MNT_LOCKED;
1037
1038 atomic_inc(&sb->s_active);
1039 mnt->mnt.mnt_sb = sb;
1040 mnt->mnt.mnt_root = dget(root);
1041 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1042 mnt->mnt_parent = mnt;
1043 lock_mount_hash();
1044 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1045 unlock_mount_hash();
1046
1047 if ((flag & CL_SLAVE) ||
1048 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1049 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1050 mnt->mnt_master = old;
1051 CLEAR_MNT_SHARED(mnt);
1052 } else if (!(flag & CL_PRIVATE)) {
1053 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1054 list_add(&mnt->mnt_share, &old->mnt_share);
1055 if (IS_MNT_SLAVE(old))
1056 list_add(&mnt->mnt_slave, &old->mnt_slave);
1057 mnt->mnt_master = old->mnt_master;
1058 } else {
1059 CLEAR_MNT_SHARED(mnt);
1060 }
1061 if (flag & CL_MAKE_SHARED)
1062 set_mnt_shared(mnt);
1063
1064 /* stick the duplicate mount on the same expiry list
1065 * as the original if that was on one */
1066 if (flag & CL_EXPIRE) {
1067 if (!list_empty(&old->mnt_expire))
1068 list_add(&mnt->mnt_expire, &old->mnt_expire);
1069 }
1070
1071 return mnt;
1072
1073 out_free:
1074 mnt_free_id(mnt);
1075 free_vfsmnt(mnt);
1076 return ERR_PTR(err);
1077 }
1078
1079 static void cleanup_mnt(struct mount *mnt)
1080 {
1081 /*
1082 * This probably indicates that somebody messed
1083 * up a mnt_want/drop_write() pair. If this
1084 * happens, the filesystem was probably unable
1085 * to make r/w->r/o transitions.
1086 */
1087 /*
1088 * The locking used to deal with mnt_count decrement provides barriers,
1089 * so mnt_get_writers() below is safe.
1090 */
1091 WARN_ON(mnt_get_writers(mnt));
1092 if (unlikely(mnt->mnt_pins.first))
1093 mnt_pin_kill(mnt);
1094 fsnotify_vfsmount_delete(&mnt->mnt);
1095 dput(mnt->mnt.mnt_root);
1096 deactivate_super(mnt->mnt.mnt_sb);
1097 mnt_free_id(mnt);
1098 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1099 }
1100
1101 static void __cleanup_mnt(struct rcu_head *head)
1102 {
1103 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1104 }
1105
1106 static LLIST_HEAD(delayed_mntput_list);
1107 static void delayed_mntput(struct work_struct *unused)
1108 {
1109 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1110 struct mount *m, *t;
1111
1112 llist_for_each_entry_safe(m, t, node, mnt_llist)
1113 cleanup_mnt(m);
1114 }
1115 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1116
1117 static void mntput_no_expire(struct mount *mnt)
1118 {
1119 rcu_read_lock();
1120 if (likely(READ_ONCE(mnt->mnt_ns))) {
1121 /*
1122 * Since we don't do lock_mount_hash() here,
1123 * ->mnt_ns can change under us. However, if it's
1124 * non-NULL, then there's a reference that won't
1125 * be dropped until after an RCU delay done after
1126 * turning ->mnt_ns NULL. So if we observe it
1127 * non-NULL under rcu_read_lock(), the reference
1128 * we are dropping is not the final one.
1129 */
1130 mnt_add_count(mnt, -1);
1131 rcu_read_unlock();
1132 return;
1133 }
1134 lock_mount_hash();
1135 /*
1136 * make sure that if __legitimize_mnt() has not seen us grab
1137 * mount_lock, we'll see their refcount increment here.
1138 */
1139 smp_mb();
1140 mnt_add_count(mnt, -1);
1141 if (mnt_get_count(mnt)) {
1142 rcu_read_unlock();
1143 unlock_mount_hash();
1144 return;
1145 }
1146 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1147 rcu_read_unlock();
1148 unlock_mount_hash();
1149 return;
1150 }
1151 mnt->mnt.mnt_flags |= MNT_DOOMED;
1152 rcu_read_unlock();
1153
1154 list_del(&mnt->mnt_instance);
1155
1156 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1157 struct mount *p, *tmp;
1158 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1159 umount_mnt(p);
1160 }
1161 }
1162 unlock_mount_hash();
1163
1164 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1165 struct task_struct *task = current;
1166 if (likely(!(task->flags & PF_KTHREAD))) {
1167 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1168 if (!task_work_add(task, &mnt->mnt_rcu, true))
1169 return;
1170 }
1171 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1172 schedule_delayed_work(&delayed_mntput_work, 1);
1173 return;
1174 }
1175 cleanup_mnt(mnt);
1176 }
1177
1178 void mntput(struct vfsmount *mnt)
1179 {
1180 if (mnt) {
1181 struct mount *m = real_mount(mnt);
1182 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1183 if (unlikely(m->mnt_expiry_mark))
1184 m->mnt_expiry_mark = 0;
1185 mntput_no_expire(m);
1186 }
1187 }
1188 EXPORT_SYMBOL(mntput);
1189
1190 struct vfsmount *mntget(struct vfsmount *mnt)
1191 {
1192 if (mnt)
1193 mnt_add_count(real_mount(mnt), 1);
1194 return mnt;
1195 }
1196 EXPORT_SYMBOL(mntget);
1197
1198 /* path_is_mountpoint() - Check if path is a mount in the current
1199 * namespace.
1200 *
1201 * d_mountpoint() can only be used reliably to establish if a dentry is
1202 * not mounted in any namespace and that common case is handled inline.
1203 * d_mountpoint() isn't aware of the possibility there may be multiple
1204 * mounts using a given dentry in a different namespace. This function
1205 * checks if the passed in path is a mountpoint rather than the dentry
1206 * alone.
1207 */
1208 bool path_is_mountpoint(const struct path *path)
1209 {
1210 unsigned seq;
1211 bool res;
1212
1213 if (!d_mountpoint(path->dentry))
1214 return false;
1215
1216 rcu_read_lock();
1217 do {
1218 seq = read_seqbegin(&mount_lock);
1219 res = __path_is_mountpoint(path);
1220 } while (read_seqretry(&mount_lock, seq));
1221 rcu_read_unlock();
1222
1223 return res;
1224 }
1225 EXPORT_SYMBOL(path_is_mountpoint);
1226
1227 struct vfsmount *mnt_clone_internal(const struct path *path)
1228 {
1229 struct mount *p;
1230 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1231 if (IS_ERR(p))
1232 return ERR_CAST(p);
1233 p->mnt.mnt_flags |= MNT_INTERNAL;
1234 return &p->mnt;
1235 }
1236
1237 #ifdef CONFIG_PROC_FS
1238 /* iterator; we want it to have access to namespace_sem, thus here... */
1239 static void *m_start(struct seq_file *m, loff_t *pos)
1240 {
1241 struct proc_mounts *p = m->private;
1242
1243 down_read(&namespace_sem);
1244 if (p->cached_event == p->ns->event) {
1245 void *v = p->cached_mount;
1246 if (*pos == p->cached_index)
1247 return v;
1248 if (*pos == p->cached_index + 1) {
1249 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1250 return p->cached_mount = v;
1251 }
1252 }
1253
1254 p->cached_event = p->ns->event;
1255 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1256 p->cached_index = *pos;
1257 return p->cached_mount;
1258 }
1259
1260 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1261 {
1262 struct proc_mounts *p = m->private;
1263
1264 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1265 p->cached_index = *pos;
1266 return p->cached_mount;
1267 }
1268
1269 static void m_stop(struct seq_file *m, void *v)
1270 {
1271 up_read(&namespace_sem);
1272 }
1273
1274 static int m_show(struct seq_file *m, void *v)
1275 {
1276 struct proc_mounts *p = m->private;
1277 struct mount *r = list_entry(v, struct mount, mnt_list);
1278 return p->show(m, &r->mnt);
1279 }
1280
1281 const struct seq_operations mounts_op = {
1282 .start = m_start,
1283 .next = m_next,
1284 .stop = m_stop,
1285 .show = m_show,
1286 };
1287 #endif /* CONFIG_PROC_FS */
1288
1289 /**
1290 * may_umount_tree - check if a mount tree is busy
1291 * @mnt: root of mount tree
1292 *
1293 * This is called to check if a tree of mounts has any
1294 * open files, pwds, chroots or sub mounts that are
1295 * busy.
1296 */
1297 int may_umount_tree(struct vfsmount *m)
1298 {
1299 struct mount *mnt = real_mount(m);
1300 int actual_refs = 0;
1301 int minimum_refs = 0;
1302 struct mount *p;
1303 BUG_ON(!m);
1304
1305 /* write lock needed for mnt_get_count */
1306 lock_mount_hash();
1307 for (p = mnt; p; p = next_mnt(p, mnt)) {
1308 actual_refs += mnt_get_count(p);
1309 minimum_refs += 2;
1310 }
1311 unlock_mount_hash();
1312
1313 if (actual_refs > minimum_refs)
1314 return 0;
1315
1316 return 1;
1317 }
1318
1319 EXPORT_SYMBOL(may_umount_tree);
1320
1321 /**
1322 * may_umount - check if a mount point is busy
1323 * @mnt: root of mount
1324 *
1325 * This is called to check if a mount point has any
1326 * open files, pwds, chroots or sub mounts. If the
1327 * mount has sub mounts this will return busy
1328 * regardless of whether the sub mounts are busy.
1329 *
1330 * Doesn't take quota and stuff into account. IOW, in some cases it will
1331 * give false negatives. The main reason why it's here is that we need
1332 * a non-destructive way to look for easily umountable filesystems.
1333 */
1334 int may_umount(struct vfsmount *mnt)
1335 {
1336 int ret = 1;
1337 down_read(&namespace_sem);
1338 lock_mount_hash();
1339 if (propagate_mount_busy(real_mount(mnt), 2))
1340 ret = 0;
1341 unlock_mount_hash();
1342 up_read(&namespace_sem);
1343 return ret;
1344 }
1345
1346 EXPORT_SYMBOL(may_umount);
1347
1348 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1349
1350 static void namespace_unlock(void)
1351 {
1352 struct hlist_head head;
1353
1354 hlist_move_list(&unmounted, &head);
1355
1356 up_write(&namespace_sem);
1357
1358 if (likely(hlist_empty(&head)))
1359 return;
1360
1361 synchronize_rcu_expedited();
1362
1363 group_pin_kill(&head);
1364 }
1365
1366 static inline void namespace_lock(void)
1367 {
1368 down_write(&namespace_sem);
1369 }
1370
1371 enum umount_tree_flags {
1372 UMOUNT_SYNC = 1,
1373 UMOUNT_PROPAGATE = 2,
1374 UMOUNT_CONNECTED = 4,
1375 };
1376
1377 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1378 {
1379 /* Leaving mounts connected is only valid for lazy umounts */
1380 if (how & UMOUNT_SYNC)
1381 return true;
1382
1383 /* A mount without a parent has nothing to be connected to */
1384 if (!mnt_has_parent(mnt))
1385 return true;
1386
1387 /* Because the reference counting rules change when mounts are
1388 * unmounted and connected, umounted mounts may not be
1389 * connected to mounted mounts.
1390 */
1391 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1392 return true;
1393
1394 /* Has it been requested that the mount remain connected? */
1395 if (how & UMOUNT_CONNECTED)
1396 return false;
1397
1398 /* Is the mount locked such that it needs to remain connected? */
1399 if (IS_MNT_LOCKED(mnt))
1400 return false;
1401
1402 /* By default disconnect the mount */
1403 return true;
1404 }
1405
1406 /*
1407 * mount_lock must be held
1408 * namespace_sem must be held for write
1409 */
1410 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1411 {
1412 LIST_HEAD(tmp_list);
1413 struct mount *p;
1414
1415 if (how & UMOUNT_PROPAGATE)
1416 propagate_mount_unlock(mnt);
1417
1418 /* Gather the mounts to umount */
1419 for (p = mnt; p; p = next_mnt(p, mnt)) {
1420 p->mnt.mnt_flags |= MNT_UMOUNT;
1421 list_move(&p->mnt_list, &tmp_list);
1422 }
1423
1424 /* Hide the mounts from mnt_mounts */
1425 list_for_each_entry(p, &tmp_list, mnt_list) {
1426 list_del_init(&p->mnt_child);
1427 }
1428
1429 /* Add propogated mounts to the tmp_list */
1430 if (how & UMOUNT_PROPAGATE)
1431 propagate_umount(&tmp_list);
1432
1433 while (!list_empty(&tmp_list)) {
1434 struct mnt_namespace *ns;
1435 bool disconnect;
1436 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1437 list_del_init(&p->mnt_expire);
1438 list_del_init(&p->mnt_list);
1439 ns = p->mnt_ns;
1440 if (ns) {
1441 ns->mounts--;
1442 __touch_mnt_namespace(ns);
1443 }
1444 p->mnt_ns = NULL;
1445 if (how & UMOUNT_SYNC)
1446 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1447
1448 disconnect = disconnect_mount(p, how);
1449
1450 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1451 disconnect ? &unmounted : NULL);
1452 if (mnt_has_parent(p)) {
1453 mnt_add_count(p->mnt_parent, -1);
1454 if (!disconnect) {
1455 /* Don't forget about p */
1456 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1457 } else {
1458 umount_mnt(p);
1459 }
1460 }
1461 change_mnt_propagation(p, MS_PRIVATE);
1462 }
1463 }
1464
1465 static void shrink_submounts(struct mount *mnt);
1466
1467 static int do_umount(struct mount *mnt, int flags)
1468 {
1469 struct super_block *sb = mnt->mnt.mnt_sb;
1470 int retval;
1471
1472 retval = security_sb_umount(&mnt->mnt, flags);
1473 if (retval)
1474 return retval;
1475
1476 /*
1477 * Allow userspace to request a mountpoint be expired rather than
1478 * unmounting unconditionally. Unmount only happens if:
1479 * (1) the mark is already set (the mark is cleared by mntput())
1480 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1481 */
1482 if (flags & MNT_EXPIRE) {
1483 if (&mnt->mnt == current->fs->root.mnt ||
1484 flags & (MNT_FORCE | MNT_DETACH))
1485 return -EINVAL;
1486
1487 /*
1488 * probably don't strictly need the lock here if we examined
1489 * all race cases, but it's a slowpath.
1490 */
1491 lock_mount_hash();
1492 if (mnt_get_count(mnt) != 2) {
1493 unlock_mount_hash();
1494 return -EBUSY;
1495 }
1496 unlock_mount_hash();
1497
1498 if (!xchg(&mnt->mnt_expiry_mark, 1))
1499 return -EAGAIN;
1500 }
1501
1502 /*
1503 * If we may have to abort operations to get out of this
1504 * mount, and they will themselves hold resources we must
1505 * allow the fs to do things. In the Unix tradition of
1506 * 'Gee thats tricky lets do it in userspace' the umount_begin
1507 * might fail to complete on the first run through as other tasks
1508 * must return, and the like. Thats for the mount program to worry
1509 * about for the moment.
1510 */
1511
1512 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1513 sb->s_op->umount_begin(sb);
1514 }
1515
1516 /*
1517 * No sense to grab the lock for this test, but test itself looks
1518 * somewhat bogus. Suggestions for better replacement?
1519 * Ho-hum... In principle, we might treat that as umount + switch
1520 * to rootfs. GC would eventually take care of the old vfsmount.
1521 * Actually it makes sense, especially if rootfs would contain a
1522 * /reboot - static binary that would close all descriptors and
1523 * call reboot(9). Then init(8) could umount root and exec /reboot.
1524 */
1525 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1526 /*
1527 * Special case for "unmounting" root ...
1528 * we just try to remount it readonly.
1529 */
1530 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1531 return -EPERM;
1532 down_write(&sb->s_umount);
1533 if (!sb_rdonly(sb))
1534 retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1535 up_write(&sb->s_umount);
1536 return retval;
1537 }
1538
1539 namespace_lock();
1540 lock_mount_hash();
1541
1542 /* Recheck MNT_LOCKED with the locks held */
1543 retval = -EINVAL;
1544 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1545 goto out;
1546
1547 event++;
1548 if (flags & MNT_DETACH) {
1549 if (!list_empty(&mnt->mnt_list))
1550 umount_tree(mnt, UMOUNT_PROPAGATE);
1551 retval = 0;
1552 } else {
1553 shrink_submounts(mnt);
1554 retval = -EBUSY;
1555 if (!propagate_mount_busy(mnt, 2)) {
1556 if (!list_empty(&mnt->mnt_list))
1557 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1558 retval = 0;
1559 }
1560 }
1561 out:
1562 unlock_mount_hash();
1563 namespace_unlock();
1564 return retval;
1565 }
1566
1567 /*
1568 * __detach_mounts - lazily unmount all mounts on the specified dentry
1569 *
1570 * During unlink, rmdir, and d_drop it is possible to loose the path
1571 * to an existing mountpoint, and wind up leaking the mount.
1572 * detach_mounts allows lazily unmounting those mounts instead of
1573 * leaking them.
1574 *
1575 * The caller may hold dentry->d_inode->i_mutex.
1576 */
1577 void __detach_mounts(struct dentry *dentry)
1578 {
1579 struct mountpoint *mp;
1580 struct mount *mnt;
1581
1582 namespace_lock();
1583 lock_mount_hash();
1584 mp = lookup_mountpoint(dentry);
1585 if (IS_ERR_OR_NULL(mp))
1586 goto out_unlock;
1587
1588 event++;
1589 while (!hlist_empty(&mp->m_list)) {
1590 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1591 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1592 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1593 umount_mnt(mnt);
1594 }
1595 else umount_tree(mnt, UMOUNT_CONNECTED);
1596 }
1597 put_mountpoint(mp);
1598 out_unlock:
1599 unlock_mount_hash();
1600 namespace_unlock();
1601 }
1602
1603 /*
1604 * Is the caller allowed to modify his namespace?
1605 */
1606 static inline bool may_mount(void)
1607 {
1608 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1609 }
1610
1611 static inline bool may_mandlock(void)
1612 {
1613 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1614 return false;
1615 #endif
1616 return capable(CAP_SYS_ADMIN);
1617 }
1618
1619 /*
1620 * Now umount can handle mount points as well as block devices.
1621 * This is important for filesystems which use unnamed block devices.
1622 *
1623 * We now support a flag for forced unmount like the other 'big iron'
1624 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1625 */
1626
1627 int ksys_umount(char __user *name, int flags)
1628 {
1629 struct path path;
1630 struct mount *mnt;
1631 int retval;
1632 int lookup_flags = 0;
1633
1634 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1635 return -EINVAL;
1636
1637 if (!may_mount())
1638 return -EPERM;
1639
1640 if (!(flags & UMOUNT_NOFOLLOW))
1641 lookup_flags |= LOOKUP_FOLLOW;
1642
1643 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1644 if (retval)
1645 goto out;
1646 mnt = real_mount(path.mnt);
1647 retval = -EINVAL;
1648 if (path.dentry != path.mnt->mnt_root)
1649 goto dput_and_out;
1650 if (!check_mnt(mnt))
1651 goto dput_and_out;
1652 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1653 goto dput_and_out;
1654 retval = -EPERM;
1655 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1656 goto dput_and_out;
1657
1658 retval = do_umount(mnt, flags);
1659 dput_and_out:
1660 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1661 dput(path.dentry);
1662 mntput_no_expire(mnt);
1663 out:
1664 return retval;
1665 }
1666
1667 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1668 {
1669 return ksys_umount(name, flags);
1670 }
1671
1672 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1673
1674 /*
1675 * The 2.0 compatible umount. No flags.
1676 */
1677 SYSCALL_DEFINE1(oldumount, char __user *, name)
1678 {
1679 return ksys_umount(name, 0);
1680 }
1681
1682 #endif
1683
1684 static bool is_mnt_ns_file(struct dentry *dentry)
1685 {
1686 /* Is this a proxy for a mount namespace? */
1687 return dentry->d_op == &ns_dentry_operations &&
1688 dentry->d_fsdata == &mntns_operations;
1689 }
1690
1691 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1692 {
1693 return container_of(ns, struct mnt_namespace, ns);
1694 }
1695
1696 static bool mnt_ns_loop(struct dentry *dentry)
1697 {
1698 /* Could bind mounting the mount namespace inode cause a
1699 * mount namespace loop?
1700 */
1701 struct mnt_namespace *mnt_ns;
1702 if (!is_mnt_ns_file(dentry))
1703 return false;
1704
1705 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1706 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1707 }
1708
1709 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1710 int flag)
1711 {
1712 struct mount *res, *p, *q, *r, *parent;
1713
1714 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1715 return ERR_PTR(-EINVAL);
1716
1717 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1718 return ERR_PTR(-EINVAL);
1719
1720 res = q = clone_mnt(mnt, dentry, flag);
1721 if (IS_ERR(q))
1722 return q;
1723
1724 q->mnt_mountpoint = mnt->mnt_mountpoint;
1725
1726 p = mnt;
1727 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1728 struct mount *s;
1729 if (!is_subdir(r->mnt_mountpoint, dentry))
1730 continue;
1731
1732 for (s = r; s; s = next_mnt(s, r)) {
1733 if (!(flag & CL_COPY_UNBINDABLE) &&
1734 IS_MNT_UNBINDABLE(s)) {
1735 if (s->mnt.mnt_flags & MNT_LOCKED) {
1736 /* Both unbindable and locked. */
1737 q = ERR_PTR(-EPERM);
1738 goto out;
1739 } else {
1740 s = skip_mnt_tree(s);
1741 continue;
1742 }
1743 }
1744 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1745 is_mnt_ns_file(s->mnt.mnt_root)) {
1746 s = skip_mnt_tree(s);
1747 continue;
1748 }
1749 while (p != s->mnt_parent) {
1750 p = p->mnt_parent;
1751 q = q->mnt_parent;
1752 }
1753 p = s;
1754 parent = q;
1755 q = clone_mnt(p, p->mnt.mnt_root, flag);
1756 if (IS_ERR(q))
1757 goto out;
1758 lock_mount_hash();
1759 list_add_tail(&q->mnt_list, &res->mnt_list);
1760 attach_mnt(q, parent, p->mnt_mp);
1761 unlock_mount_hash();
1762 }
1763 }
1764 return res;
1765 out:
1766 if (res) {
1767 lock_mount_hash();
1768 umount_tree(res, UMOUNT_SYNC);
1769 unlock_mount_hash();
1770 }
1771 return q;
1772 }
1773
1774 /* Caller should check returned pointer for errors */
1775
1776 struct vfsmount *collect_mounts(const struct path *path)
1777 {
1778 struct mount *tree;
1779 namespace_lock();
1780 if (!check_mnt(real_mount(path->mnt)))
1781 tree = ERR_PTR(-EINVAL);
1782 else
1783 tree = copy_tree(real_mount(path->mnt), path->dentry,
1784 CL_COPY_ALL | CL_PRIVATE);
1785 namespace_unlock();
1786 if (IS_ERR(tree))
1787 return ERR_CAST(tree);
1788 return &tree->mnt;
1789 }
1790
1791 void drop_collected_mounts(struct vfsmount *mnt)
1792 {
1793 namespace_lock();
1794 lock_mount_hash();
1795 umount_tree(real_mount(mnt), 0);
1796 unlock_mount_hash();
1797 namespace_unlock();
1798 }
1799
1800 /**
1801 * clone_private_mount - create a private clone of a path
1802 *
1803 * This creates a new vfsmount, which will be the clone of @path. The new will
1804 * not be attached anywhere in the namespace and will be private (i.e. changes
1805 * to the originating mount won't be propagated into this).
1806 *
1807 * Release with mntput().
1808 */
1809 struct vfsmount *clone_private_mount(const struct path *path)
1810 {
1811 struct mount *old_mnt = real_mount(path->mnt);
1812 struct mount *new_mnt;
1813
1814 if (IS_MNT_UNBINDABLE(old_mnt))
1815 return ERR_PTR(-EINVAL);
1816
1817 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1818 if (IS_ERR(new_mnt))
1819 return ERR_CAST(new_mnt);
1820
1821 return &new_mnt->mnt;
1822 }
1823 EXPORT_SYMBOL_GPL(clone_private_mount);
1824
1825 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1826 struct vfsmount *root)
1827 {
1828 struct mount *mnt;
1829 int res = f(root, arg);
1830 if (res)
1831 return res;
1832 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1833 res = f(&mnt->mnt, arg);
1834 if (res)
1835 return res;
1836 }
1837 return 0;
1838 }
1839
1840 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1841 {
1842 struct mount *p;
1843
1844 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1845 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1846 mnt_release_group_id(p);
1847 }
1848 }
1849
1850 static int invent_group_ids(struct mount *mnt, bool recurse)
1851 {
1852 struct mount *p;
1853
1854 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1855 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1856 int err = mnt_alloc_group_id(p);
1857 if (err) {
1858 cleanup_group_ids(mnt, p);
1859 return err;
1860 }
1861 }
1862 }
1863
1864 return 0;
1865 }
1866
1867 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1868 {
1869 unsigned int max = READ_ONCE(sysctl_mount_max);
1870 unsigned int mounts = 0, old, pending, sum;
1871 struct mount *p;
1872
1873 for (p = mnt; p; p = next_mnt(p, mnt))
1874 mounts++;
1875
1876 old = ns->mounts;
1877 pending = ns->pending_mounts;
1878 sum = old + pending;
1879 if ((old > sum) ||
1880 (pending > sum) ||
1881 (max < sum) ||
1882 (mounts > (max - sum)))
1883 return -ENOSPC;
1884
1885 ns->pending_mounts = pending + mounts;
1886 return 0;
1887 }
1888
1889 /*
1890 * @source_mnt : mount tree to be attached
1891 * @nd : place the mount tree @source_mnt is attached
1892 * @parent_nd : if non-null, detach the source_mnt from its parent and
1893 * store the parent mount and mountpoint dentry.
1894 * (done when source_mnt is moved)
1895 *
1896 * NOTE: in the table below explains the semantics when a source mount
1897 * of a given type is attached to a destination mount of a given type.
1898 * ---------------------------------------------------------------------------
1899 * | BIND MOUNT OPERATION |
1900 * |**************************************************************************
1901 * | source-->| shared | private | slave | unbindable |
1902 * | dest | | | | |
1903 * | | | | | | |
1904 * | v | | | | |
1905 * |**************************************************************************
1906 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1907 * | | | | | |
1908 * |non-shared| shared (+) | private | slave (*) | invalid |
1909 * ***************************************************************************
1910 * A bind operation clones the source mount and mounts the clone on the
1911 * destination mount.
1912 *
1913 * (++) the cloned mount is propagated to all the mounts in the propagation
1914 * tree of the destination mount and the cloned mount is added to
1915 * the peer group of the source mount.
1916 * (+) the cloned mount is created under the destination mount and is marked
1917 * as shared. The cloned mount is added to the peer group of the source
1918 * mount.
1919 * (+++) the mount is propagated to all the mounts in the propagation tree
1920 * of the destination mount and the cloned mount is made slave
1921 * of the same master as that of the source mount. The cloned mount
1922 * is marked as 'shared and slave'.
1923 * (*) the cloned mount is made a slave of the same master as that of the
1924 * source mount.
1925 *
1926 * ---------------------------------------------------------------------------
1927 * | MOVE MOUNT OPERATION |
1928 * |**************************************************************************
1929 * | source-->| shared | private | slave | unbindable |
1930 * | dest | | | | |
1931 * | | | | | | |
1932 * | v | | | | |
1933 * |**************************************************************************
1934 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1935 * | | | | | |
1936 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1937 * ***************************************************************************
1938 *
1939 * (+) the mount is moved to the destination. And is then propagated to
1940 * all the mounts in the propagation tree of the destination mount.
1941 * (+*) the mount is moved to the destination.
1942 * (+++) the mount is moved to the destination and is then propagated to
1943 * all the mounts belonging to the destination mount's propagation tree.
1944 * the mount is marked as 'shared and slave'.
1945 * (*) the mount continues to be a slave at the new location.
1946 *
1947 * if the source mount is a tree, the operations explained above is
1948 * applied to each mount in the tree.
1949 * Must be called without spinlocks held, since this function can sleep
1950 * in allocations.
1951 */
1952 static int attach_recursive_mnt(struct mount *source_mnt,
1953 struct mount *dest_mnt,
1954 struct mountpoint *dest_mp,
1955 struct path *parent_path)
1956 {
1957 HLIST_HEAD(tree_list);
1958 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1959 struct mountpoint *smp;
1960 struct mount *child, *p;
1961 struct hlist_node *n;
1962 int err;
1963
1964 /* Preallocate a mountpoint in case the new mounts need
1965 * to be tucked under other mounts.
1966 */
1967 smp = get_mountpoint(source_mnt->mnt.mnt_root);
1968 if (IS_ERR(smp))
1969 return PTR_ERR(smp);
1970
1971 /* Is there space to add these mounts to the mount namespace? */
1972 if (!parent_path) {
1973 err = count_mounts(ns, source_mnt);
1974 if (err)
1975 goto out;
1976 }
1977
1978 if (IS_MNT_SHARED(dest_mnt)) {
1979 err = invent_group_ids(source_mnt, true);
1980 if (err)
1981 goto out;
1982 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1983 lock_mount_hash();
1984 if (err)
1985 goto out_cleanup_ids;
1986 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1987 set_mnt_shared(p);
1988 } else {
1989 lock_mount_hash();
1990 }
1991 if (parent_path) {
1992 detach_mnt(source_mnt, parent_path);
1993 attach_mnt(source_mnt, dest_mnt, dest_mp);
1994 touch_mnt_namespace(source_mnt->mnt_ns);
1995 } else {
1996 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1997 commit_tree(source_mnt);
1998 }
1999
2000 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2001 struct mount *q;
2002 hlist_del_init(&child->mnt_hash);
2003 q = __lookup_mnt(&child->mnt_parent->mnt,
2004 child->mnt_mountpoint);
2005 if (q)
2006 mnt_change_mountpoint(child, smp, q);
2007 commit_tree(child);
2008 }
2009 put_mountpoint(smp);
2010 unlock_mount_hash();
2011
2012 return 0;
2013
2014 out_cleanup_ids:
2015 while (!hlist_empty(&tree_list)) {
2016 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2017 child->mnt_parent->mnt_ns->pending_mounts = 0;
2018 umount_tree(child, UMOUNT_SYNC);
2019 }
2020 unlock_mount_hash();
2021 cleanup_group_ids(source_mnt, NULL);
2022 out:
2023 ns->pending_mounts = 0;
2024
2025 read_seqlock_excl(&mount_lock);
2026 put_mountpoint(smp);
2027 read_sequnlock_excl(&mount_lock);
2028
2029 return err;
2030 }
2031
2032 static struct mountpoint *lock_mount(struct path *path)
2033 {
2034 struct vfsmount *mnt;
2035 struct dentry *dentry = path->dentry;
2036 retry:
2037 inode_lock(dentry->d_inode);
2038 if (unlikely(cant_mount(dentry))) {
2039 inode_unlock(dentry->d_inode);
2040 return ERR_PTR(-ENOENT);
2041 }
2042 namespace_lock();
2043 mnt = lookup_mnt(path);
2044 if (likely(!mnt)) {
2045 struct mountpoint *mp = get_mountpoint(dentry);
2046 if (IS_ERR(mp)) {
2047 namespace_unlock();
2048 inode_unlock(dentry->d_inode);
2049 return mp;
2050 }
2051 return mp;
2052 }
2053 namespace_unlock();
2054 inode_unlock(path->dentry->d_inode);
2055 path_put(path);
2056 path->mnt = mnt;
2057 dentry = path->dentry = dget(mnt->mnt_root);
2058 goto retry;
2059 }
2060
2061 static void unlock_mount(struct mountpoint *where)
2062 {
2063 struct dentry *dentry = where->m_dentry;
2064
2065 read_seqlock_excl(&mount_lock);
2066 put_mountpoint(where);
2067 read_sequnlock_excl(&mount_lock);
2068
2069 namespace_unlock();
2070 inode_unlock(dentry->d_inode);
2071 }
2072
2073 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2074 {
2075 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2076 return -EINVAL;
2077
2078 if (d_is_dir(mp->m_dentry) !=
2079 d_is_dir(mnt->mnt.mnt_root))
2080 return -ENOTDIR;
2081
2082 return attach_recursive_mnt(mnt, p, mp, NULL);
2083 }
2084
2085 /*
2086 * Sanity check the flags to change_mnt_propagation.
2087 */
2088
2089 static int flags_to_propagation_type(int ms_flags)
2090 {
2091 int type = ms_flags & ~(MS_REC | MS_SILENT);
2092
2093 /* Fail if any non-propagation flags are set */
2094 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2095 return 0;
2096 /* Only one propagation flag should be set */
2097 if (!is_power_of_2(type))
2098 return 0;
2099 return type;
2100 }
2101
2102 /*
2103 * recursively change the type of the mountpoint.
2104 */
2105 static int do_change_type(struct path *path, int ms_flags)
2106 {
2107 struct mount *m;
2108 struct mount *mnt = real_mount(path->mnt);
2109 int recurse = ms_flags & MS_REC;
2110 int type;
2111 int err = 0;
2112
2113 if (path->dentry != path->mnt->mnt_root)
2114 return -EINVAL;
2115
2116 type = flags_to_propagation_type(ms_flags);
2117 if (!type)
2118 return -EINVAL;
2119
2120 namespace_lock();
2121 if (type == MS_SHARED) {
2122 err = invent_group_ids(mnt, recurse);
2123 if (err)
2124 goto out_unlock;
2125 }
2126
2127 lock_mount_hash();
2128 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2129 change_mnt_propagation(m, type);
2130 unlock_mount_hash();
2131
2132 out_unlock:
2133 namespace_unlock();
2134 return err;
2135 }
2136
2137 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2138 {
2139 struct mount *child;
2140 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2141 if (!is_subdir(child->mnt_mountpoint, dentry))
2142 continue;
2143
2144 if (child->mnt.mnt_flags & MNT_LOCKED)
2145 return true;
2146 }
2147 return false;
2148 }
2149
2150 /*
2151 * do loopback mount.
2152 */
2153 static int do_loopback(struct path *path, const char *old_name,
2154 int recurse)
2155 {
2156 struct path old_path;
2157 struct mount *mnt = NULL, *old, *parent;
2158 struct mountpoint *mp;
2159 int err;
2160 if (!old_name || !*old_name)
2161 return -EINVAL;
2162 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2163 if (err)
2164 return err;
2165
2166 err = -EINVAL;
2167 if (mnt_ns_loop(old_path.dentry))
2168 goto out;
2169
2170 mp = lock_mount(path);
2171 err = PTR_ERR(mp);
2172 if (IS_ERR(mp))
2173 goto out;
2174
2175 old = real_mount(old_path.mnt);
2176 parent = real_mount(path->mnt);
2177
2178 err = -EINVAL;
2179 if (IS_MNT_UNBINDABLE(old))
2180 goto out2;
2181
2182 if (!check_mnt(parent))
2183 goto out2;
2184
2185 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2186 goto out2;
2187
2188 if (!recurse && has_locked_children(old, old_path.dentry))
2189 goto out2;
2190
2191 if (recurse)
2192 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2193 else
2194 mnt = clone_mnt(old, old_path.dentry, 0);
2195
2196 if (IS_ERR(mnt)) {
2197 err = PTR_ERR(mnt);
2198 goto out2;
2199 }
2200
2201 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2202
2203 err = graft_tree(mnt, parent, mp);
2204 if (err) {
2205 lock_mount_hash();
2206 umount_tree(mnt, UMOUNT_SYNC);
2207 unlock_mount_hash();
2208 }
2209 out2:
2210 unlock_mount(mp);
2211 out:
2212 path_put(&old_path);
2213 return err;
2214 }
2215
2216 /*
2217 * Don't allow locked mount flags to be cleared.
2218 *
2219 * No locks need to be held here while testing the various MNT_LOCK
2220 * flags because those flags can never be cleared once they are set.
2221 */
2222 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2223 {
2224 unsigned int fl = mnt->mnt.mnt_flags;
2225
2226 if ((fl & MNT_LOCK_READONLY) &&
2227 !(mnt_flags & MNT_READONLY))
2228 return false;
2229
2230 if ((fl & MNT_LOCK_NODEV) &&
2231 !(mnt_flags & MNT_NODEV))
2232 return false;
2233
2234 if ((fl & MNT_LOCK_NOSUID) &&
2235 !(mnt_flags & MNT_NOSUID))
2236 return false;
2237
2238 if ((fl & MNT_LOCK_NOEXEC) &&
2239 !(mnt_flags & MNT_NOEXEC))
2240 return false;
2241
2242 if ((fl & MNT_LOCK_ATIME) &&
2243 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2244 return false;
2245
2246 return true;
2247 }
2248
2249 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2250 {
2251 bool readonly_request = (mnt_flags & MNT_READONLY);
2252
2253 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2254 return 0;
2255
2256 if (readonly_request)
2257 return mnt_make_readonly(mnt);
2258
2259 return __mnt_unmake_readonly(mnt);
2260 }
2261
2262 /*
2263 * Update the user-settable attributes on a mount. The caller must hold
2264 * sb->s_umount for writing.
2265 */
2266 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2267 {
2268 lock_mount_hash();
2269 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2270 mnt->mnt.mnt_flags = mnt_flags;
2271 touch_mnt_namespace(mnt->mnt_ns);
2272 unlock_mount_hash();
2273 }
2274
2275 /*
2276 * Handle reconfiguration of the mountpoint only without alteration of the
2277 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2278 * to mount(2).
2279 */
2280 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2281 {
2282 struct super_block *sb = path->mnt->mnt_sb;
2283 struct mount *mnt = real_mount(path->mnt);
2284 int ret;
2285
2286 if (!check_mnt(mnt))
2287 return -EINVAL;
2288
2289 if (path->dentry != mnt->mnt.mnt_root)
2290 return -EINVAL;
2291
2292 if (!can_change_locked_flags(mnt, mnt_flags))
2293 return -EPERM;
2294
2295 down_write(&sb->s_umount);
2296 ret = change_mount_ro_state(mnt, mnt_flags);
2297 if (ret == 0)
2298 set_mount_attributes(mnt, mnt_flags);
2299 up_write(&sb->s_umount);
2300 return ret;
2301 }
2302
2303 /*
2304 * change filesystem flags. dir should be a physical root of filesystem.
2305 * If you've mounted a non-root directory somewhere and want to do remount
2306 * on it - tough luck.
2307 */
2308 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2309 int mnt_flags, void *data)
2310 {
2311 int err;
2312 struct super_block *sb = path->mnt->mnt_sb;
2313 struct mount *mnt = real_mount(path->mnt);
2314 void *sec_opts = NULL;
2315
2316 if (!check_mnt(mnt))
2317 return -EINVAL;
2318
2319 if (path->dentry != path->mnt->mnt_root)
2320 return -EINVAL;
2321
2322 if (!can_change_locked_flags(mnt, mnt_flags))
2323 return -EPERM;
2324
2325 if (data && !(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)) {
2326 err = security_sb_eat_lsm_opts(data, &sec_opts);
2327 if (err)
2328 return err;
2329 }
2330 err = security_sb_remount(sb, sec_opts);
2331 security_free_mnt_opts(&sec_opts);
2332 if (err)
2333 return err;
2334
2335 down_write(&sb->s_umount);
2336 err = -EPERM;
2337 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2338 err = do_remount_sb(sb, sb_flags, data, 0);
2339 if (!err)
2340 set_mount_attributes(mnt, mnt_flags);
2341 }
2342 up_write(&sb->s_umount);
2343 return err;
2344 }
2345
2346 static inline int tree_contains_unbindable(struct mount *mnt)
2347 {
2348 struct mount *p;
2349 for (p = mnt; p; p = next_mnt(p, mnt)) {
2350 if (IS_MNT_UNBINDABLE(p))
2351 return 1;
2352 }
2353 return 0;
2354 }
2355
2356 static int do_move_mount(struct path *path, const char *old_name)
2357 {
2358 struct path old_path, parent_path;
2359 struct mount *p;
2360 struct mount *old;
2361 struct mountpoint *mp;
2362 int err;
2363 if (!old_name || !*old_name)
2364 return -EINVAL;
2365 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2366 if (err)
2367 return err;
2368
2369 mp = lock_mount(path);
2370 err = PTR_ERR(mp);
2371 if (IS_ERR(mp))
2372 goto out;
2373
2374 old = real_mount(old_path.mnt);
2375 p = real_mount(path->mnt);
2376
2377 err = -EINVAL;
2378 if (!check_mnt(p) || !check_mnt(old))
2379 goto out1;
2380
2381 if (old->mnt.mnt_flags & MNT_LOCKED)
2382 goto out1;
2383
2384 err = -EINVAL;
2385 if (old_path.dentry != old_path.mnt->mnt_root)
2386 goto out1;
2387
2388 if (!mnt_has_parent(old))
2389 goto out1;
2390
2391 if (d_is_dir(path->dentry) !=
2392 d_is_dir(old_path.dentry))
2393 goto out1;
2394 /*
2395 * Don't move a mount residing in a shared parent.
2396 */
2397 if (IS_MNT_SHARED(old->mnt_parent))
2398 goto out1;
2399 /*
2400 * Don't move a mount tree containing unbindable mounts to a destination
2401 * mount which is shared.
2402 */
2403 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2404 goto out1;
2405 err = -ELOOP;
2406 for (; mnt_has_parent(p); p = p->mnt_parent)
2407 if (p == old)
2408 goto out1;
2409
2410 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2411 if (err)
2412 goto out1;
2413
2414 /* if the mount is moved, it should no longer be expire
2415 * automatically */
2416 list_del_init(&old->mnt_expire);
2417 out1:
2418 unlock_mount(mp);
2419 out:
2420 if (!err)
2421 path_put(&parent_path);
2422 path_put(&old_path);
2423 return err;
2424 }
2425
2426 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2427 {
2428 int err;
2429 const char *subtype = strchr(fstype, '.');
2430 if (subtype) {
2431 subtype++;
2432 err = -EINVAL;
2433 if (!subtype[0])
2434 goto err;
2435 } else
2436 subtype = "";
2437
2438 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2439 err = -ENOMEM;
2440 if (!mnt->mnt_sb->s_subtype)
2441 goto err;
2442 return mnt;
2443
2444 err:
2445 mntput(mnt);
2446 return ERR_PTR(err);
2447 }
2448
2449 /*
2450 * add a mount into a namespace's mount tree
2451 */
2452 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2453 {
2454 struct mountpoint *mp;
2455 struct mount *parent;
2456 int err;
2457
2458 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2459
2460 mp = lock_mount(path);
2461 if (IS_ERR(mp))
2462 return PTR_ERR(mp);
2463
2464 parent = real_mount(path->mnt);
2465 err = -EINVAL;
2466 if (unlikely(!check_mnt(parent))) {
2467 /* that's acceptable only for automounts done in private ns */
2468 if (!(mnt_flags & MNT_SHRINKABLE))
2469 goto unlock;
2470 /* ... and for those we'd better have mountpoint still alive */
2471 if (!parent->mnt_ns)
2472 goto unlock;
2473 }
2474
2475 /* Refuse the same filesystem on the same mount point */
2476 err = -EBUSY;
2477 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2478 path->mnt->mnt_root == path->dentry)
2479 goto unlock;
2480
2481 err = -EINVAL;
2482 if (d_is_symlink(newmnt->mnt.mnt_root))
2483 goto unlock;
2484
2485 newmnt->mnt.mnt_flags = mnt_flags;
2486 err = graft_tree(newmnt, parent, mp);
2487
2488 unlock:
2489 unlock_mount(mp);
2490 return err;
2491 }
2492
2493 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2494
2495 /*
2496 * create a new mount for userspace and request it to be added into the
2497 * namespace's tree
2498 */
2499 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2500 int mnt_flags, const char *name, void *data)
2501 {
2502 struct file_system_type *type;
2503 struct vfsmount *mnt;
2504 int err;
2505
2506 if (!fstype)
2507 return -EINVAL;
2508
2509 type = get_fs_type(fstype);
2510 if (!type)
2511 return -ENODEV;
2512
2513 mnt = vfs_kern_mount(type, sb_flags, name, data);
2514 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2515 !mnt->mnt_sb->s_subtype)
2516 mnt = fs_set_subtype(mnt, fstype);
2517
2518 put_filesystem(type);
2519 if (IS_ERR(mnt))
2520 return PTR_ERR(mnt);
2521
2522 if (mount_too_revealing(mnt, &mnt_flags)) {
2523 mntput(mnt);
2524 return -EPERM;
2525 }
2526
2527 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2528 if (err)
2529 mntput(mnt);
2530 return err;
2531 }
2532
2533 int finish_automount(struct vfsmount *m, struct path *path)
2534 {
2535 struct mount *mnt = real_mount(m);
2536 int err;
2537 /* The new mount record should have at least 2 refs to prevent it being
2538 * expired before we get a chance to add it
2539 */
2540 BUG_ON(mnt_get_count(mnt) < 2);
2541
2542 if (m->mnt_sb == path->mnt->mnt_sb &&
2543 m->mnt_root == path->dentry) {
2544 err = -ELOOP;
2545 goto fail;
2546 }
2547
2548 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2549 if (!err)
2550 return 0;
2551 fail:
2552 /* remove m from any expiration list it may be on */
2553 if (!list_empty(&mnt->mnt_expire)) {
2554 namespace_lock();
2555 list_del_init(&mnt->mnt_expire);
2556 namespace_unlock();
2557 }
2558 mntput(m);
2559 mntput(m);
2560 return err;
2561 }
2562
2563 /**
2564 * mnt_set_expiry - Put a mount on an expiration list
2565 * @mnt: The mount to list.
2566 * @expiry_list: The list to add the mount to.
2567 */
2568 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2569 {
2570 namespace_lock();
2571
2572 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2573
2574 namespace_unlock();
2575 }
2576 EXPORT_SYMBOL(mnt_set_expiry);
2577
2578 /*
2579 * process a list of expirable mountpoints with the intent of discarding any
2580 * mountpoints that aren't in use and haven't been touched since last we came
2581 * here
2582 */
2583 void mark_mounts_for_expiry(struct list_head *mounts)
2584 {
2585 struct mount *mnt, *next;
2586 LIST_HEAD(graveyard);
2587
2588 if (list_empty(mounts))
2589 return;
2590
2591 namespace_lock();
2592 lock_mount_hash();
2593
2594 /* extract from the expiration list every vfsmount that matches the
2595 * following criteria:
2596 * - only referenced by its parent vfsmount
2597 * - still marked for expiry (marked on the last call here; marks are
2598 * cleared by mntput())
2599 */
2600 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2601 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2602 propagate_mount_busy(mnt, 1))
2603 continue;
2604 list_move(&mnt->mnt_expire, &graveyard);
2605 }
2606 while (!list_empty(&graveyard)) {
2607 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2608 touch_mnt_namespace(mnt->mnt_ns);
2609 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2610 }
2611 unlock_mount_hash();
2612 namespace_unlock();
2613 }
2614
2615 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2616
2617 /*
2618 * Ripoff of 'select_parent()'
2619 *
2620 * search the list of submounts for a given mountpoint, and move any
2621 * shrinkable submounts to the 'graveyard' list.
2622 */
2623 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2624 {
2625 struct mount *this_parent = parent;
2626 struct list_head *next;
2627 int found = 0;
2628
2629 repeat:
2630 next = this_parent->mnt_mounts.next;
2631 resume:
2632 while (next != &this_parent->mnt_mounts) {
2633 struct list_head *tmp = next;
2634 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2635
2636 next = tmp->next;
2637 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2638 continue;
2639 /*
2640 * Descend a level if the d_mounts list is non-empty.
2641 */
2642 if (!list_empty(&mnt->mnt_mounts)) {
2643 this_parent = mnt;
2644 goto repeat;
2645 }
2646
2647 if (!propagate_mount_busy(mnt, 1)) {
2648 list_move_tail(&mnt->mnt_expire, graveyard);
2649 found++;
2650 }
2651 }
2652 /*
2653 * All done at this level ... ascend and resume the search
2654 */
2655 if (this_parent != parent) {
2656 next = this_parent->mnt_child.next;
2657 this_parent = this_parent->mnt_parent;
2658 goto resume;
2659 }
2660 return found;
2661 }
2662
2663 /*
2664 * process a list of expirable mountpoints with the intent of discarding any
2665 * submounts of a specific parent mountpoint
2666 *
2667 * mount_lock must be held for write
2668 */
2669 static void shrink_submounts(struct mount *mnt)
2670 {
2671 LIST_HEAD(graveyard);
2672 struct mount *m;
2673
2674 /* extract submounts of 'mountpoint' from the expiration list */
2675 while (select_submounts(mnt, &graveyard)) {
2676 while (!list_empty(&graveyard)) {
2677 m = list_first_entry(&graveyard, struct mount,
2678 mnt_expire);
2679 touch_mnt_namespace(m->mnt_ns);
2680 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2681 }
2682 }
2683 }
2684
2685 /*
2686 * Some copy_from_user() implementations do not return the exact number of
2687 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2688 * Note that this function differs from copy_from_user() in that it will oops
2689 * on bad values of `to', rather than returning a short copy.
2690 */
2691 static long exact_copy_from_user(void *to, const void __user * from,
2692 unsigned long n)
2693 {
2694 char *t = to;
2695 const char __user *f = from;
2696 char c;
2697
2698 if (!access_ok(from, n))
2699 return n;
2700
2701 current->kernel_uaccess_faults_ok++;
2702 while (n) {
2703 if (__get_user(c, f)) {
2704 memset(t, 0, n);
2705 break;
2706 }
2707 *t++ = c;
2708 f++;
2709 n--;
2710 }
2711 current->kernel_uaccess_faults_ok--;
2712 return n;
2713 }
2714
2715 void *copy_mount_options(const void __user * data)
2716 {
2717 int i;
2718 unsigned long size;
2719 char *copy;
2720
2721 if (!data)
2722 return NULL;
2723
2724 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2725 if (!copy)
2726 return ERR_PTR(-ENOMEM);
2727
2728 /* We only care that *some* data at the address the user
2729 * gave us is valid. Just in case, we'll zero
2730 * the remainder of the page.
2731 */
2732 /* copy_from_user cannot cross TASK_SIZE ! */
2733 size = TASK_SIZE - (unsigned long)data;
2734 if (size > PAGE_SIZE)
2735 size = PAGE_SIZE;
2736
2737 i = size - exact_copy_from_user(copy, data, size);
2738 if (!i) {
2739 kfree(copy);
2740 return ERR_PTR(-EFAULT);
2741 }
2742 if (i != PAGE_SIZE)
2743 memset(copy + i, 0, PAGE_SIZE - i);
2744 return copy;
2745 }
2746
2747 char *copy_mount_string(const void __user *data)
2748 {
2749 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2750 }
2751
2752 /*
2753 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2754 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2755 *
2756 * data is a (void *) that can point to any structure up to
2757 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2758 * information (or be NULL).
2759 *
2760 * Pre-0.97 versions of mount() didn't have a flags word.
2761 * When the flags word was introduced its top half was required
2762 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2763 * Therefore, if this magic number is present, it carries no information
2764 * and must be discarded.
2765 */
2766 long do_mount(const char *dev_name, const char __user *dir_name,
2767 const char *type_page, unsigned long flags, void *data_page)
2768 {
2769 struct path path;
2770 unsigned int mnt_flags = 0, sb_flags;
2771 int retval = 0;
2772
2773 /* Discard magic */
2774 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2775 flags &= ~MS_MGC_MSK;
2776
2777 /* Basic sanity checks */
2778 if (data_page)
2779 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2780
2781 if (flags & MS_NOUSER)
2782 return -EINVAL;
2783
2784 /* ... and get the mountpoint */
2785 retval = user_path(dir_name, &path);
2786 if (retval)
2787 return retval;
2788
2789 retval = security_sb_mount(dev_name, &path,
2790 type_page, flags, data_page);
2791 if (!retval && !may_mount())
2792 retval = -EPERM;
2793 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
2794 retval = -EPERM;
2795 if (retval)
2796 goto dput_out;
2797
2798 /* Default to relatime unless overriden */
2799 if (!(flags & MS_NOATIME))
2800 mnt_flags |= MNT_RELATIME;
2801
2802 /* Separate the per-mountpoint flags */
2803 if (flags & MS_NOSUID)
2804 mnt_flags |= MNT_NOSUID;
2805 if (flags & MS_NODEV)
2806 mnt_flags |= MNT_NODEV;
2807 if (flags & MS_NOEXEC)
2808 mnt_flags |= MNT_NOEXEC;
2809 if (flags & MS_NOATIME)
2810 mnt_flags |= MNT_NOATIME;
2811 if (flags & MS_NODIRATIME)
2812 mnt_flags |= MNT_NODIRATIME;
2813 if (flags & MS_STRICTATIME)
2814 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2815 if (flags & MS_RDONLY)
2816 mnt_flags |= MNT_READONLY;
2817
2818 /* The default atime for remount is preservation */
2819 if ((flags & MS_REMOUNT) &&
2820 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2821 MS_STRICTATIME)) == 0)) {
2822 mnt_flags &= ~MNT_ATIME_MASK;
2823 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2824 }
2825
2826 sb_flags = flags & (SB_RDONLY |
2827 SB_SYNCHRONOUS |
2828 SB_MANDLOCK |
2829 SB_DIRSYNC |
2830 SB_SILENT |
2831 SB_POSIXACL |
2832 SB_LAZYTIME |
2833 SB_I_VERSION);
2834
2835 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
2836 retval = do_reconfigure_mnt(&path, mnt_flags);
2837 else if (flags & MS_REMOUNT)
2838 retval = do_remount(&path, flags, sb_flags, mnt_flags,
2839 data_page);
2840 else if (flags & MS_BIND)
2841 retval = do_loopback(&path, dev_name, flags & MS_REC);
2842 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2843 retval = do_change_type(&path, flags);
2844 else if (flags & MS_MOVE)
2845 retval = do_move_mount(&path, dev_name);
2846 else
2847 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
2848 dev_name, data_page);
2849 dput_out:
2850 path_put(&path);
2851 return retval;
2852 }
2853
2854 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2855 {
2856 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2857 }
2858
2859 static void dec_mnt_namespaces(struct ucounts *ucounts)
2860 {
2861 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2862 }
2863
2864 static void free_mnt_ns(struct mnt_namespace *ns)
2865 {
2866 ns_free_inum(&ns->ns);
2867 dec_mnt_namespaces(ns->ucounts);
2868 put_user_ns(ns->user_ns);
2869 kfree(ns);
2870 }
2871
2872 /*
2873 * Assign a sequence number so we can detect when we attempt to bind
2874 * mount a reference to an older mount namespace into the current
2875 * mount namespace, preventing reference counting loops. A 64bit
2876 * number incrementing at 10Ghz will take 12,427 years to wrap which
2877 * is effectively never, so we can ignore the possibility.
2878 */
2879 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2880
2881 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2882 {
2883 struct mnt_namespace *new_ns;
2884 struct ucounts *ucounts;
2885 int ret;
2886
2887 ucounts = inc_mnt_namespaces(user_ns);
2888 if (!ucounts)
2889 return ERR_PTR(-ENOSPC);
2890
2891 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2892 if (!new_ns) {
2893 dec_mnt_namespaces(ucounts);
2894 return ERR_PTR(-ENOMEM);
2895 }
2896 ret = ns_alloc_inum(&new_ns->ns);
2897 if (ret) {
2898 kfree(new_ns);
2899 dec_mnt_namespaces(ucounts);
2900 return ERR_PTR(ret);
2901 }
2902 new_ns->ns.ops = &mntns_operations;
2903 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2904 atomic_set(&new_ns->count, 1);
2905 new_ns->root = NULL;
2906 INIT_LIST_HEAD(&new_ns->list);
2907 init_waitqueue_head(&new_ns->poll);
2908 new_ns->event = 0;
2909 new_ns->user_ns = get_user_ns(user_ns);
2910 new_ns->ucounts = ucounts;
2911 new_ns->mounts = 0;
2912 new_ns->pending_mounts = 0;
2913 return new_ns;
2914 }
2915
2916 __latent_entropy
2917 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2918 struct user_namespace *user_ns, struct fs_struct *new_fs)
2919 {
2920 struct mnt_namespace *new_ns;
2921 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2922 struct mount *p, *q;
2923 struct mount *old;
2924 struct mount *new;
2925 int copy_flags;
2926
2927 BUG_ON(!ns);
2928
2929 if (likely(!(flags & CLONE_NEWNS))) {
2930 get_mnt_ns(ns);
2931 return ns;
2932 }
2933
2934 old = ns->root;
2935
2936 new_ns = alloc_mnt_ns(user_ns);
2937 if (IS_ERR(new_ns))
2938 return new_ns;
2939
2940 namespace_lock();
2941 /* First pass: copy the tree topology */
2942 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2943 if (user_ns != ns->user_ns)
2944 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2945 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2946 if (IS_ERR(new)) {
2947 namespace_unlock();
2948 free_mnt_ns(new_ns);
2949 return ERR_CAST(new);
2950 }
2951 new_ns->root = new;
2952 list_add_tail(&new_ns->list, &new->mnt_list);
2953
2954 /*
2955 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2956 * as belonging to new namespace. We have already acquired a private
2957 * fs_struct, so tsk->fs->lock is not needed.
2958 */
2959 p = old;
2960 q = new;
2961 while (p) {
2962 q->mnt_ns = new_ns;
2963 new_ns->mounts++;
2964 if (new_fs) {
2965 if (&p->mnt == new_fs->root.mnt) {
2966 new_fs->root.mnt = mntget(&q->mnt);
2967 rootmnt = &p->mnt;
2968 }
2969 if (&p->mnt == new_fs->pwd.mnt) {
2970 new_fs->pwd.mnt = mntget(&q->mnt);
2971 pwdmnt = &p->mnt;
2972 }
2973 }
2974 p = next_mnt(p, old);
2975 q = next_mnt(q, new);
2976 if (!q)
2977 break;
2978 while (p->mnt.mnt_root != q->mnt.mnt_root)
2979 p = next_mnt(p, old);
2980 }
2981 namespace_unlock();
2982
2983 if (rootmnt)
2984 mntput(rootmnt);
2985 if (pwdmnt)
2986 mntput(pwdmnt);
2987
2988 return new_ns;
2989 }
2990
2991 /**
2992 * create_mnt_ns - creates a private namespace and adds a root filesystem
2993 * @mnt: pointer to the new root filesystem mountpoint
2994 */
2995 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2996 {
2997 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2998 if (!IS_ERR(new_ns)) {
2999 struct mount *mnt = real_mount(m);
3000 mnt->mnt_ns = new_ns;
3001 new_ns->root = mnt;
3002 new_ns->mounts++;
3003 list_add(&mnt->mnt_list, &new_ns->list);
3004 } else {
3005 mntput(m);
3006 }
3007 return new_ns;
3008 }
3009
3010 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3011 {
3012 struct mnt_namespace *ns;
3013 struct super_block *s;
3014 struct path path;
3015 int err;
3016
3017 ns = create_mnt_ns(mnt);
3018 if (IS_ERR(ns))
3019 return ERR_CAST(ns);
3020
3021 err = vfs_path_lookup(mnt->mnt_root, mnt,
3022 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3023
3024 put_mnt_ns(ns);
3025
3026 if (err)
3027 return ERR_PTR(err);
3028
3029 /* trade a vfsmount reference for active sb one */
3030 s = path.mnt->mnt_sb;
3031 atomic_inc(&s->s_active);
3032 mntput(path.mnt);
3033 /* lock the sucker */
3034 down_write(&s->s_umount);
3035 /* ... and return the root of (sub)tree on it */
3036 return path.dentry;
3037 }
3038 EXPORT_SYMBOL(mount_subtree);
3039
3040 int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
3041 unsigned long flags, void __user *data)
3042 {
3043 int ret;
3044 char *kernel_type;
3045 char *kernel_dev;
3046 void *options;
3047
3048 kernel_type = copy_mount_string(type);
3049 ret = PTR_ERR(kernel_type);
3050 if (IS_ERR(kernel_type))
3051 goto out_type;
3052
3053 kernel_dev = copy_mount_string(dev_name);
3054 ret = PTR_ERR(kernel_dev);
3055 if (IS_ERR(kernel_dev))
3056 goto out_dev;
3057
3058 options = copy_mount_options(data);
3059 ret = PTR_ERR(options);
3060 if (IS_ERR(options))
3061 goto out_data;
3062
3063 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3064
3065 kfree(options);
3066 out_data:
3067 kfree(kernel_dev);
3068 out_dev:
3069 kfree(kernel_type);
3070 out_type:
3071 return ret;
3072 }
3073
3074 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3075 char __user *, type, unsigned long, flags, void __user *, data)
3076 {
3077 return ksys_mount(dev_name, dir_name, type, flags, data);
3078 }
3079
3080 /*
3081 * Return true if path is reachable from root
3082 *
3083 * namespace_sem or mount_lock is held
3084 */
3085 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3086 const struct path *root)
3087 {
3088 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3089 dentry = mnt->mnt_mountpoint;
3090 mnt = mnt->mnt_parent;
3091 }
3092 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3093 }
3094
3095 bool path_is_under(const struct path *path1, const struct path *path2)
3096 {
3097 bool res;
3098 read_seqlock_excl(&mount_lock);
3099 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3100 read_sequnlock_excl(&mount_lock);
3101 return res;
3102 }
3103 EXPORT_SYMBOL(path_is_under);
3104
3105 /*
3106 * pivot_root Semantics:
3107 * Moves the root file system of the current process to the directory put_old,
3108 * makes new_root as the new root file system of the current process, and sets
3109 * root/cwd of all processes which had them on the current root to new_root.
3110 *
3111 * Restrictions:
3112 * The new_root and put_old must be directories, and must not be on the
3113 * same file system as the current process root. The put_old must be
3114 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3115 * pointed to by put_old must yield the same directory as new_root. No other
3116 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3117 *
3118 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3119 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3120 * in this situation.
3121 *
3122 * Notes:
3123 * - we don't move root/cwd if they are not at the root (reason: if something
3124 * cared enough to change them, it's probably wrong to force them elsewhere)
3125 * - it's okay to pick a root that isn't the root of a file system, e.g.
3126 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3127 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3128 * first.
3129 */
3130 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3131 const char __user *, put_old)
3132 {
3133 struct path new, old, parent_path, root_parent, root;
3134 struct mount *new_mnt, *root_mnt, *old_mnt;
3135 struct mountpoint *old_mp, *root_mp;
3136 int error;
3137
3138 if (!may_mount())
3139 return -EPERM;
3140
3141 error = user_path_dir(new_root, &new);
3142 if (error)
3143 goto out0;
3144
3145 error = user_path_dir(put_old, &old);
3146 if (error)
3147 goto out1;
3148
3149 error = security_sb_pivotroot(&old, &new);
3150 if (error)
3151 goto out2;
3152
3153 get_fs_root(current->fs, &root);
3154 old_mp = lock_mount(&old);
3155 error = PTR_ERR(old_mp);
3156 if (IS_ERR(old_mp))
3157 goto out3;
3158
3159 error = -EINVAL;
3160 new_mnt = real_mount(new.mnt);
3161 root_mnt = real_mount(root.mnt);
3162 old_mnt = real_mount(old.mnt);
3163 if (IS_MNT_SHARED(old_mnt) ||
3164 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3165 IS_MNT_SHARED(root_mnt->mnt_parent))
3166 goto out4;
3167 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3168 goto out4;
3169 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3170 goto out4;
3171 error = -ENOENT;
3172 if (d_unlinked(new.dentry))
3173 goto out4;
3174 error = -EBUSY;
3175 if (new_mnt == root_mnt || old_mnt == root_mnt)
3176 goto out4; /* loop, on the same file system */
3177 error = -EINVAL;
3178 if (root.mnt->mnt_root != root.dentry)
3179 goto out4; /* not a mountpoint */
3180 if (!mnt_has_parent(root_mnt))
3181 goto out4; /* not attached */
3182 root_mp = root_mnt->mnt_mp;
3183 if (new.mnt->mnt_root != new.dentry)
3184 goto out4; /* not a mountpoint */
3185 if (!mnt_has_parent(new_mnt))
3186 goto out4; /* not attached */
3187 /* make sure we can reach put_old from new_root */
3188 if (!is_path_reachable(old_mnt, old.dentry, &new))
3189 goto out4;
3190 /* make certain new is below the root */
3191 if (!is_path_reachable(new_mnt, new.dentry, &root))
3192 goto out4;
3193 root_mp->m_count++; /* pin it so it won't go away */
3194 lock_mount_hash();
3195 detach_mnt(new_mnt, &parent_path);
3196 detach_mnt(root_mnt, &root_parent);
3197 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3198 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3199 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3200 }
3201 /* mount old root on put_old */
3202 attach_mnt(root_mnt, old_mnt, old_mp);
3203 /* mount new_root on / */
3204 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3205 touch_mnt_namespace(current->nsproxy->mnt_ns);
3206 /* A moved mount should not expire automatically */
3207 list_del_init(&new_mnt->mnt_expire);
3208 put_mountpoint(root_mp);
3209 unlock_mount_hash();
3210 chroot_fs_refs(&root, &new);
3211 error = 0;
3212 out4:
3213 unlock_mount(old_mp);
3214 if (!error) {
3215 path_put(&root_parent);
3216 path_put(&parent_path);
3217 }
3218 out3:
3219 path_put(&root);
3220 out2:
3221 path_put(&old);
3222 out1:
3223 path_put(&new);
3224 out0:
3225 return error;
3226 }
3227
3228 static void __init init_mount_tree(void)
3229 {
3230 struct vfsmount *mnt;
3231 struct mnt_namespace *ns;
3232 struct path root;
3233 struct file_system_type *type;
3234
3235 type = get_fs_type("rootfs");
3236 if (!type)
3237 panic("Can't find rootfs type");
3238 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3239 put_filesystem(type);
3240 if (IS_ERR(mnt))
3241 panic("Can't create rootfs");
3242
3243 ns = create_mnt_ns(mnt);
3244 if (IS_ERR(ns))
3245 panic("Can't allocate initial namespace");
3246
3247 init_task.nsproxy->mnt_ns = ns;
3248 get_mnt_ns(ns);
3249
3250 root.mnt = mnt;
3251 root.dentry = mnt->mnt_root;
3252 mnt->mnt_flags |= MNT_LOCKED;
3253
3254 set_fs_pwd(current->fs, &root);
3255 set_fs_root(current->fs, &root);
3256 }
3257
3258 void __init mnt_init(void)
3259 {
3260 int err;
3261
3262 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3263 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3264
3265 mount_hashtable = alloc_large_system_hash("Mount-cache",
3266 sizeof(struct hlist_head),
3267 mhash_entries, 19,
3268 HASH_ZERO,
3269 &m_hash_shift, &m_hash_mask, 0, 0);
3270 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3271 sizeof(struct hlist_head),
3272 mphash_entries, 19,
3273 HASH_ZERO,
3274 &mp_hash_shift, &mp_hash_mask, 0, 0);
3275
3276 if (!mount_hashtable || !mountpoint_hashtable)
3277 panic("Failed to allocate mount hash table\n");
3278
3279 kernfs_init();
3280
3281 err = sysfs_init();
3282 if (err)
3283 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3284 __func__, err);
3285 fs_kobj = kobject_create_and_add("fs", NULL);
3286 if (!fs_kobj)
3287 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3288 init_rootfs();
3289 init_mount_tree();
3290 }
3291
3292 void put_mnt_ns(struct mnt_namespace *ns)
3293 {
3294 if (!atomic_dec_and_test(&ns->count))
3295 return;
3296 drop_collected_mounts(&ns->root->mnt);
3297 free_mnt_ns(ns);
3298 }
3299
3300 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3301 {
3302 struct vfsmount *mnt;
3303 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
3304 if (!IS_ERR(mnt)) {
3305 /*
3306 * it is a longterm mount, don't release mnt until
3307 * we unmount before file sys is unregistered
3308 */
3309 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3310 }
3311 return mnt;
3312 }
3313 EXPORT_SYMBOL_GPL(kern_mount_data);
3314
3315 void kern_unmount(struct vfsmount *mnt)
3316 {
3317 /* release long term mount so mount point can be released */
3318 if (!IS_ERR_OR_NULL(mnt)) {
3319 real_mount(mnt)->mnt_ns = NULL;
3320 synchronize_rcu(); /* yecchhh... */
3321 mntput(mnt);
3322 }
3323 }
3324 EXPORT_SYMBOL(kern_unmount);
3325
3326 bool our_mnt(struct vfsmount *mnt)
3327 {
3328 return check_mnt(real_mount(mnt));
3329 }
3330
3331 bool current_chrooted(void)
3332 {
3333 /* Does the current process have a non-standard root */
3334 struct path ns_root;
3335 struct path fs_root;
3336 bool chrooted;
3337
3338 /* Find the namespace root */
3339 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3340 ns_root.dentry = ns_root.mnt->mnt_root;
3341 path_get(&ns_root);
3342 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3343 ;
3344
3345 get_fs_root(current->fs, &fs_root);
3346
3347 chrooted = !path_equal(&fs_root, &ns_root);
3348
3349 path_put(&fs_root);
3350 path_put(&ns_root);
3351
3352 return chrooted;
3353 }
3354
3355 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3356 int *new_mnt_flags)
3357 {
3358 int new_flags = *new_mnt_flags;
3359 struct mount *mnt;
3360 bool visible = false;
3361
3362 down_read(&namespace_sem);
3363 list_for_each_entry(mnt, &ns->list, mnt_list) {
3364 struct mount *child;
3365 int mnt_flags;
3366
3367 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3368 continue;
3369
3370 /* This mount is not fully visible if it's root directory
3371 * is not the root directory of the filesystem.
3372 */
3373 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3374 continue;
3375
3376 /* A local view of the mount flags */
3377 mnt_flags = mnt->mnt.mnt_flags;
3378
3379 /* Don't miss readonly hidden in the superblock flags */
3380 if (sb_rdonly(mnt->mnt.mnt_sb))
3381 mnt_flags |= MNT_LOCK_READONLY;
3382
3383 /* Verify the mount flags are equal to or more permissive
3384 * than the proposed new mount.
3385 */
3386 if ((mnt_flags & MNT_LOCK_READONLY) &&
3387 !(new_flags & MNT_READONLY))
3388 continue;
3389 if ((mnt_flags & MNT_LOCK_ATIME) &&
3390 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3391 continue;
3392
3393 /* This mount is not fully visible if there are any
3394 * locked child mounts that cover anything except for
3395 * empty directories.
3396 */
3397 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3398 struct inode *inode = child->mnt_mountpoint->d_inode;
3399 /* Only worry about locked mounts */
3400 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3401 continue;
3402 /* Is the directory permanetly empty? */
3403 if (!is_empty_dir_inode(inode))
3404 goto next;
3405 }
3406 /* Preserve the locked attributes */
3407 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3408 MNT_LOCK_ATIME);
3409 visible = true;
3410 goto found;
3411 next: ;
3412 }
3413 found:
3414 up_read(&namespace_sem);
3415 return visible;
3416 }
3417
3418 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3419 {
3420 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3421 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3422 unsigned long s_iflags;
3423
3424 if (ns->user_ns == &init_user_ns)
3425 return false;
3426
3427 /* Can this filesystem be too revealing? */
3428 s_iflags = mnt->mnt_sb->s_iflags;
3429 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3430 return false;
3431
3432 if ((s_iflags & required_iflags) != required_iflags) {
3433 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3434 required_iflags);
3435 return true;
3436 }
3437
3438 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3439 }
3440
3441 bool mnt_may_suid(struct vfsmount *mnt)
3442 {
3443 /*
3444 * Foreign mounts (accessed via fchdir or through /proc
3445 * symlinks) are always treated as if they are nosuid. This
3446 * prevents namespaces from trusting potentially unsafe
3447 * suid/sgid bits, file caps, or security labels that originate
3448 * in other namespaces.
3449 */
3450 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3451 current_in_userns(mnt->mnt_sb->s_user_ns);
3452 }
3453
3454 static struct ns_common *mntns_get(struct task_struct *task)
3455 {
3456 struct ns_common *ns = NULL;
3457 struct nsproxy *nsproxy;
3458
3459 task_lock(task);
3460 nsproxy = task->nsproxy;
3461 if (nsproxy) {
3462 ns = &nsproxy->mnt_ns->ns;
3463 get_mnt_ns(to_mnt_ns(ns));
3464 }
3465 task_unlock(task);
3466
3467 return ns;
3468 }
3469
3470 static void mntns_put(struct ns_common *ns)
3471 {
3472 put_mnt_ns(to_mnt_ns(ns));
3473 }
3474
3475 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3476 {
3477 struct fs_struct *fs = current->fs;
3478 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3479 struct path root;
3480 int err;
3481
3482 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3483 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3484 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3485 return -EPERM;
3486
3487 if (fs->users != 1)
3488 return -EINVAL;
3489
3490 get_mnt_ns(mnt_ns);
3491 old_mnt_ns = nsproxy->mnt_ns;
3492 nsproxy->mnt_ns = mnt_ns;
3493
3494 /* Find the root */
3495 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3496 "/", LOOKUP_DOWN, &root);
3497 if (err) {
3498 /* revert to old namespace */
3499 nsproxy->mnt_ns = old_mnt_ns;
3500 put_mnt_ns(mnt_ns);
3501 return err;
3502 }
3503
3504 put_mnt_ns(old_mnt_ns);
3505
3506 /* Update the pwd and root */
3507 set_fs_pwd(fs, &root);
3508 set_fs_root(fs, &root);
3509
3510 path_put(&root);
3511 return 0;
3512 }
3513
3514 static struct user_namespace *mntns_owner(struct ns_common *ns)
3515 {
3516 return to_mnt_ns(ns)->user_ns;
3517 }
3518
3519 const struct proc_ns_operations mntns_operations = {
3520 .name = "mnt",
3521 .type = CLONE_NEWNS,
3522 .get = mntns_get,
3523 .put = mntns_put,
3524 .install = mntns_install,
3525 .owner = mntns_owner,
3526 };