]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/namespace.c
Merge tag 'libnvdimm-fixes-5.9-rc6' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / fs / namespace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/task_work.h>
29 #include <linux/sched/task.h>
30 #include <uapi/linux/mount.h>
31 #include <linux/fs_context.h>
32 #include <linux/shmem_fs.h>
33
34 #include "pnode.h"
35 #include "internal.h"
36
37 /* Maximum number of mounts in a mount namespace */
38 unsigned int sysctl_mount_max __read_mostly = 100000;
39
40 static unsigned int m_hash_mask __read_mostly;
41 static unsigned int m_hash_shift __read_mostly;
42 static unsigned int mp_hash_mask __read_mostly;
43 static unsigned int mp_hash_shift __read_mostly;
44
45 static __initdata unsigned long mhash_entries;
46 static int __init set_mhash_entries(char *str)
47 {
48 if (!str)
49 return 0;
50 mhash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52 }
53 __setup("mhash_entries=", set_mhash_entries);
54
55 static __initdata unsigned long mphash_entries;
56 static int __init set_mphash_entries(char *str)
57 {
58 if (!str)
59 return 0;
60 mphash_entries = simple_strtoul(str, &str, 0);
61 return 1;
62 }
63 __setup("mphash_entries=", set_mphash_entries);
64
65 static u64 event;
66 static DEFINE_IDA(mnt_id_ida);
67 static DEFINE_IDA(mnt_group_ida);
68
69 static struct hlist_head *mount_hashtable __read_mostly;
70 static struct hlist_head *mountpoint_hashtable __read_mostly;
71 static struct kmem_cache *mnt_cache __read_mostly;
72 static DECLARE_RWSEM(namespace_sem);
73 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
74 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
75
76 /* /sys/fs */
77 struct kobject *fs_kobj;
78 EXPORT_SYMBOL_GPL(fs_kobj);
79
80 /*
81 * vfsmount lock may be taken for read to prevent changes to the
82 * vfsmount hash, ie. during mountpoint lookups or walking back
83 * up the tree.
84 *
85 * It should be taken for write in all cases where the vfsmount
86 * tree or hash is modified or when a vfsmount structure is modified.
87 */
88 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
89
90 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
91 {
92 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
93 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
94 tmp = tmp + (tmp >> m_hash_shift);
95 return &mount_hashtable[tmp & m_hash_mask];
96 }
97
98 static inline struct hlist_head *mp_hash(struct dentry *dentry)
99 {
100 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
101 tmp = tmp + (tmp >> mp_hash_shift);
102 return &mountpoint_hashtable[tmp & mp_hash_mask];
103 }
104
105 static int mnt_alloc_id(struct mount *mnt)
106 {
107 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
108
109 if (res < 0)
110 return res;
111 mnt->mnt_id = res;
112 return 0;
113 }
114
115 static void mnt_free_id(struct mount *mnt)
116 {
117 ida_free(&mnt_id_ida, mnt->mnt_id);
118 }
119
120 /*
121 * Allocate a new peer group ID
122 */
123 static int mnt_alloc_group_id(struct mount *mnt)
124 {
125 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
126
127 if (res < 0)
128 return res;
129 mnt->mnt_group_id = res;
130 return 0;
131 }
132
133 /*
134 * Release a peer group ID
135 */
136 void mnt_release_group_id(struct mount *mnt)
137 {
138 ida_free(&mnt_group_ida, mnt->mnt_group_id);
139 mnt->mnt_group_id = 0;
140 }
141
142 /*
143 * vfsmount lock must be held for read
144 */
145 static inline void mnt_add_count(struct mount *mnt, int n)
146 {
147 #ifdef CONFIG_SMP
148 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
149 #else
150 preempt_disable();
151 mnt->mnt_count += n;
152 preempt_enable();
153 #endif
154 }
155
156 /*
157 * vfsmount lock must be held for write
158 */
159 unsigned int mnt_get_count(struct mount *mnt)
160 {
161 #ifdef CONFIG_SMP
162 unsigned int count = 0;
163 int cpu;
164
165 for_each_possible_cpu(cpu) {
166 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
167 }
168
169 return count;
170 #else
171 return mnt->mnt_count;
172 #endif
173 }
174
175 static struct mount *alloc_vfsmnt(const char *name)
176 {
177 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
178 if (mnt) {
179 int err;
180
181 err = mnt_alloc_id(mnt);
182 if (err)
183 goto out_free_cache;
184
185 if (name) {
186 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
187 if (!mnt->mnt_devname)
188 goto out_free_id;
189 }
190
191 #ifdef CONFIG_SMP
192 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
193 if (!mnt->mnt_pcp)
194 goto out_free_devname;
195
196 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
197 #else
198 mnt->mnt_count = 1;
199 mnt->mnt_writers = 0;
200 #endif
201
202 INIT_HLIST_NODE(&mnt->mnt_hash);
203 INIT_LIST_HEAD(&mnt->mnt_child);
204 INIT_LIST_HEAD(&mnt->mnt_mounts);
205 INIT_LIST_HEAD(&mnt->mnt_list);
206 INIT_LIST_HEAD(&mnt->mnt_expire);
207 INIT_LIST_HEAD(&mnt->mnt_share);
208 INIT_LIST_HEAD(&mnt->mnt_slave_list);
209 INIT_LIST_HEAD(&mnt->mnt_slave);
210 INIT_HLIST_NODE(&mnt->mnt_mp_list);
211 INIT_LIST_HEAD(&mnt->mnt_umounting);
212 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
213 }
214 return mnt;
215
216 #ifdef CONFIG_SMP
217 out_free_devname:
218 kfree_const(mnt->mnt_devname);
219 #endif
220 out_free_id:
221 mnt_free_id(mnt);
222 out_free_cache:
223 kmem_cache_free(mnt_cache, mnt);
224 return NULL;
225 }
226
227 /*
228 * Most r/o checks on a fs are for operations that take
229 * discrete amounts of time, like a write() or unlink().
230 * We must keep track of when those operations start
231 * (for permission checks) and when they end, so that
232 * we can determine when writes are able to occur to
233 * a filesystem.
234 */
235 /*
236 * __mnt_is_readonly: check whether a mount is read-only
237 * @mnt: the mount to check for its write status
238 *
239 * This shouldn't be used directly ouside of the VFS.
240 * It does not guarantee that the filesystem will stay
241 * r/w, just that it is right *now*. This can not and
242 * should not be used in place of IS_RDONLY(inode).
243 * mnt_want/drop_write() will _keep_ the filesystem
244 * r/w.
245 */
246 bool __mnt_is_readonly(struct vfsmount *mnt)
247 {
248 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
249 }
250 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
251
252 static inline void mnt_inc_writers(struct mount *mnt)
253 {
254 #ifdef CONFIG_SMP
255 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
256 #else
257 mnt->mnt_writers++;
258 #endif
259 }
260
261 static inline void mnt_dec_writers(struct mount *mnt)
262 {
263 #ifdef CONFIG_SMP
264 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
265 #else
266 mnt->mnt_writers--;
267 #endif
268 }
269
270 static unsigned int mnt_get_writers(struct mount *mnt)
271 {
272 #ifdef CONFIG_SMP
273 unsigned int count = 0;
274 int cpu;
275
276 for_each_possible_cpu(cpu) {
277 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
278 }
279
280 return count;
281 #else
282 return mnt->mnt_writers;
283 #endif
284 }
285
286 static int mnt_is_readonly(struct vfsmount *mnt)
287 {
288 if (mnt->mnt_sb->s_readonly_remount)
289 return 1;
290 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
291 smp_rmb();
292 return __mnt_is_readonly(mnt);
293 }
294
295 /*
296 * Most r/o & frozen checks on a fs are for operations that take discrete
297 * amounts of time, like a write() or unlink(). We must keep track of when
298 * those operations start (for permission checks) and when they end, so that we
299 * can determine when writes are able to occur to a filesystem.
300 */
301 /**
302 * __mnt_want_write - get write access to a mount without freeze protection
303 * @m: the mount on which to take a write
304 *
305 * This tells the low-level filesystem that a write is about to be performed to
306 * it, and makes sure that writes are allowed (mnt it read-write) before
307 * returning success. This operation does not protect against filesystem being
308 * frozen. When the write operation is finished, __mnt_drop_write() must be
309 * called. This is effectively a refcount.
310 */
311 int __mnt_want_write(struct vfsmount *m)
312 {
313 struct mount *mnt = real_mount(m);
314 int ret = 0;
315
316 preempt_disable();
317 mnt_inc_writers(mnt);
318 /*
319 * The store to mnt_inc_writers must be visible before we pass
320 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
321 * incremented count after it has set MNT_WRITE_HOLD.
322 */
323 smp_mb();
324 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
325 cpu_relax();
326 /*
327 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
328 * be set to match its requirements. So we must not load that until
329 * MNT_WRITE_HOLD is cleared.
330 */
331 smp_rmb();
332 if (mnt_is_readonly(m)) {
333 mnt_dec_writers(mnt);
334 ret = -EROFS;
335 }
336 preempt_enable();
337
338 return ret;
339 }
340
341 /**
342 * mnt_want_write - get write access to a mount
343 * @m: the mount on which to take a write
344 *
345 * This tells the low-level filesystem that a write is about to be performed to
346 * it, and makes sure that writes are allowed (mount is read-write, filesystem
347 * is not frozen) before returning success. When the write operation is
348 * finished, mnt_drop_write() must be called. This is effectively a refcount.
349 */
350 int mnt_want_write(struct vfsmount *m)
351 {
352 int ret;
353
354 sb_start_write(m->mnt_sb);
355 ret = __mnt_want_write(m);
356 if (ret)
357 sb_end_write(m->mnt_sb);
358 return ret;
359 }
360 EXPORT_SYMBOL_GPL(mnt_want_write);
361
362 /**
363 * mnt_clone_write - get write access to a mount
364 * @mnt: the mount on which to take a write
365 *
366 * This is effectively like mnt_want_write, except
367 * it must only be used to take an extra write reference
368 * on a mountpoint that we already know has a write reference
369 * on it. This allows some optimisation.
370 *
371 * After finished, mnt_drop_write must be called as usual to
372 * drop the reference.
373 */
374 int mnt_clone_write(struct vfsmount *mnt)
375 {
376 /* superblock may be r/o */
377 if (__mnt_is_readonly(mnt))
378 return -EROFS;
379 preempt_disable();
380 mnt_inc_writers(real_mount(mnt));
381 preempt_enable();
382 return 0;
383 }
384 EXPORT_SYMBOL_GPL(mnt_clone_write);
385
386 /**
387 * __mnt_want_write_file - get write access to a file's mount
388 * @file: the file who's mount on which to take a write
389 *
390 * This is like __mnt_want_write, but it takes a file and can
391 * do some optimisations if the file is open for write already
392 */
393 int __mnt_want_write_file(struct file *file)
394 {
395 if (!(file->f_mode & FMODE_WRITER))
396 return __mnt_want_write(file->f_path.mnt);
397 else
398 return mnt_clone_write(file->f_path.mnt);
399 }
400
401 /**
402 * mnt_want_write_file - get write access to a file's mount
403 * @file: the file who's mount on which to take a write
404 *
405 * This is like mnt_want_write, but it takes a file and can
406 * do some optimisations if the file is open for write already
407 */
408 int mnt_want_write_file(struct file *file)
409 {
410 int ret;
411
412 sb_start_write(file_inode(file)->i_sb);
413 ret = __mnt_want_write_file(file);
414 if (ret)
415 sb_end_write(file_inode(file)->i_sb);
416 return ret;
417 }
418 EXPORT_SYMBOL_GPL(mnt_want_write_file);
419
420 /**
421 * __mnt_drop_write - give up write access to a mount
422 * @mnt: the mount on which to give up write access
423 *
424 * Tells the low-level filesystem that we are done
425 * performing writes to it. Must be matched with
426 * __mnt_want_write() call above.
427 */
428 void __mnt_drop_write(struct vfsmount *mnt)
429 {
430 preempt_disable();
431 mnt_dec_writers(real_mount(mnt));
432 preempt_enable();
433 }
434
435 /**
436 * mnt_drop_write - give up write access to a mount
437 * @mnt: the mount on which to give up write access
438 *
439 * Tells the low-level filesystem that we are done performing writes to it and
440 * also allows filesystem to be frozen again. Must be matched with
441 * mnt_want_write() call above.
442 */
443 void mnt_drop_write(struct vfsmount *mnt)
444 {
445 __mnt_drop_write(mnt);
446 sb_end_write(mnt->mnt_sb);
447 }
448 EXPORT_SYMBOL_GPL(mnt_drop_write);
449
450 void __mnt_drop_write_file(struct file *file)
451 {
452 __mnt_drop_write(file->f_path.mnt);
453 }
454
455 void mnt_drop_write_file(struct file *file)
456 {
457 __mnt_drop_write_file(file);
458 sb_end_write(file_inode(file)->i_sb);
459 }
460 EXPORT_SYMBOL(mnt_drop_write_file);
461
462 static int mnt_make_readonly(struct mount *mnt)
463 {
464 int ret = 0;
465
466 lock_mount_hash();
467 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
468 /*
469 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
470 * should be visible before we do.
471 */
472 smp_mb();
473
474 /*
475 * With writers on hold, if this value is zero, then there are
476 * definitely no active writers (although held writers may subsequently
477 * increment the count, they'll have to wait, and decrement it after
478 * seeing MNT_READONLY).
479 *
480 * It is OK to have counter incremented on one CPU and decremented on
481 * another: the sum will add up correctly. The danger would be when we
482 * sum up each counter, if we read a counter before it is incremented,
483 * but then read another CPU's count which it has been subsequently
484 * decremented from -- we would see more decrements than we should.
485 * MNT_WRITE_HOLD protects against this scenario, because
486 * mnt_want_write first increments count, then smp_mb, then spins on
487 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
488 * we're counting up here.
489 */
490 if (mnt_get_writers(mnt) > 0)
491 ret = -EBUSY;
492 else
493 mnt->mnt.mnt_flags |= MNT_READONLY;
494 /*
495 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
496 * that become unheld will see MNT_READONLY.
497 */
498 smp_wmb();
499 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
500 unlock_mount_hash();
501 return ret;
502 }
503
504 static int __mnt_unmake_readonly(struct mount *mnt)
505 {
506 lock_mount_hash();
507 mnt->mnt.mnt_flags &= ~MNT_READONLY;
508 unlock_mount_hash();
509 return 0;
510 }
511
512 int sb_prepare_remount_readonly(struct super_block *sb)
513 {
514 struct mount *mnt;
515 int err = 0;
516
517 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
518 if (atomic_long_read(&sb->s_remove_count))
519 return -EBUSY;
520
521 lock_mount_hash();
522 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
523 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
524 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
525 smp_mb();
526 if (mnt_get_writers(mnt) > 0) {
527 err = -EBUSY;
528 break;
529 }
530 }
531 }
532 if (!err && atomic_long_read(&sb->s_remove_count))
533 err = -EBUSY;
534
535 if (!err) {
536 sb->s_readonly_remount = 1;
537 smp_wmb();
538 }
539 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
540 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
541 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
542 }
543 unlock_mount_hash();
544
545 return err;
546 }
547
548 static void free_vfsmnt(struct mount *mnt)
549 {
550 kfree_const(mnt->mnt_devname);
551 #ifdef CONFIG_SMP
552 free_percpu(mnt->mnt_pcp);
553 #endif
554 kmem_cache_free(mnt_cache, mnt);
555 }
556
557 static void delayed_free_vfsmnt(struct rcu_head *head)
558 {
559 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
560 }
561
562 /* call under rcu_read_lock */
563 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
564 {
565 struct mount *mnt;
566 if (read_seqretry(&mount_lock, seq))
567 return 1;
568 if (bastard == NULL)
569 return 0;
570 mnt = real_mount(bastard);
571 mnt_add_count(mnt, 1);
572 smp_mb(); // see mntput_no_expire()
573 if (likely(!read_seqretry(&mount_lock, seq)))
574 return 0;
575 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
576 mnt_add_count(mnt, -1);
577 return 1;
578 }
579 lock_mount_hash();
580 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
581 mnt_add_count(mnt, -1);
582 unlock_mount_hash();
583 return 1;
584 }
585 unlock_mount_hash();
586 /* caller will mntput() */
587 return -1;
588 }
589
590 /* call under rcu_read_lock */
591 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
592 {
593 int res = __legitimize_mnt(bastard, seq);
594 if (likely(!res))
595 return true;
596 if (unlikely(res < 0)) {
597 rcu_read_unlock();
598 mntput(bastard);
599 rcu_read_lock();
600 }
601 return false;
602 }
603
604 /*
605 * find the first mount at @dentry on vfsmount @mnt.
606 * call under rcu_read_lock()
607 */
608 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
609 {
610 struct hlist_head *head = m_hash(mnt, dentry);
611 struct mount *p;
612
613 hlist_for_each_entry_rcu(p, head, mnt_hash)
614 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
615 return p;
616 return NULL;
617 }
618
619 /*
620 * lookup_mnt - Return the first child mount mounted at path
621 *
622 * "First" means first mounted chronologically. If you create the
623 * following mounts:
624 *
625 * mount /dev/sda1 /mnt
626 * mount /dev/sda2 /mnt
627 * mount /dev/sda3 /mnt
628 *
629 * Then lookup_mnt() on the base /mnt dentry in the root mount will
630 * return successively the root dentry and vfsmount of /dev/sda1, then
631 * /dev/sda2, then /dev/sda3, then NULL.
632 *
633 * lookup_mnt takes a reference to the found vfsmount.
634 */
635 struct vfsmount *lookup_mnt(const struct path *path)
636 {
637 struct mount *child_mnt;
638 struct vfsmount *m;
639 unsigned seq;
640
641 rcu_read_lock();
642 do {
643 seq = read_seqbegin(&mount_lock);
644 child_mnt = __lookup_mnt(path->mnt, path->dentry);
645 m = child_mnt ? &child_mnt->mnt : NULL;
646 } while (!legitimize_mnt(m, seq));
647 rcu_read_unlock();
648 return m;
649 }
650
651 static inline void lock_ns_list(struct mnt_namespace *ns)
652 {
653 spin_lock(&ns->ns_lock);
654 }
655
656 static inline void unlock_ns_list(struct mnt_namespace *ns)
657 {
658 spin_unlock(&ns->ns_lock);
659 }
660
661 static inline bool mnt_is_cursor(struct mount *mnt)
662 {
663 return mnt->mnt.mnt_flags & MNT_CURSOR;
664 }
665
666 /*
667 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
668 * current mount namespace.
669 *
670 * The common case is dentries are not mountpoints at all and that
671 * test is handled inline. For the slow case when we are actually
672 * dealing with a mountpoint of some kind, walk through all of the
673 * mounts in the current mount namespace and test to see if the dentry
674 * is a mountpoint.
675 *
676 * The mount_hashtable is not usable in the context because we
677 * need to identify all mounts that may be in the current mount
678 * namespace not just a mount that happens to have some specified
679 * parent mount.
680 */
681 bool __is_local_mountpoint(struct dentry *dentry)
682 {
683 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
684 struct mount *mnt;
685 bool is_covered = false;
686
687 down_read(&namespace_sem);
688 lock_ns_list(ns);
689 list_for_each_entry(mnt, &ns->list, mnt_list) {
690 if (mnt_is_cursor(mnt))
691 continue;
692 is_covered = (mnt->mnt_mountpoint == dentry);
693 if (is_covered)
694 break;
695 }
696 unlock_ns_list(ns);
697 up_read(&namespace_sem);
698
699 return is_covered;
700 }
701
702 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
703 {
704 struct hlist_head *chain = mp_hash(dentry);
705 struct mountpoint *mp;
706
707 hlist_for_each_entry(mp, chain, m_hash) {
708 if (mp->m_dentry == dentry) {
709 mp->m_count++;
710 return mp;
711 }
712 }
713 return NULL;
714 }
715
716 static struct mountpoint *get_mountpoint(struct dentry *dentry)
717 {
718 struct mountpoint *mp, *new = NULL;
719 int ret;
720
721 if (d_mountpoint(dentry)) {
722 /* might be worth a WARN_ON() */
723 if (d_unlinked(dentry))
724 return ERR_PTR(-ENOENT);
725 mountpoint:
726 read_seqlock_excl(&mount_lock);
727 mp = lookup_mountpoint(dentry);
728 read_sequnlock_excl(&mount_lock);
729 if (mp)
730 goto done;
731 }
732
733 if (!new)
734 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
735 if (!new)
736 return ERR_PTR(-ENOMEM);
737
738
739 /* Exactly one processes may set d_mounted */
740 ret = d_set_mounted(dentry);
741
742 /* Someone else set d_mounted? */
743 if (ret == -EBUSY)
744 goto mountpoint;
745
746 /* The dentry is not available as a mountpoint? */
747 mp = ERR_PTR(ret);
748 if (ret)
749 goto done;
750
751 /* Add the new mountpoint to the hash table */
752 read_seqlock_excl(&mount_lock);
753 new->m_dentry = dget(dentry);
754 new->m_count = 1;
755 hlist_add_head(&new->m_hash, mp_hash(dentry));
756 INIT_HLIST_HEAD(&new->m_list);
757 read_sequnlock_excl(&mount_lock);
758
759 mp = new;
760 new = NULL;
761 done:
762 kfree(new);
763 return mp;
764 }
765
766 /*
767 * vfsmount lock must be held. Additionally, the caller is responsible
768 * for serializing calls for given disposal list.
769 */
770 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
771 {
772 if (!--mp->m_count) {
773 struct dentry *dentry = mp->m_dentry;
774 BUG_ON(!hlist_empty(&mp->m_list));
775 spin_lock(&dentry->d_lock);
776 dentry->d_flags &= ~DCACHE_MOUNTED;
777 spin_unlock(&dentry->d_lock);
778 dput_to_list(dentry, list);
779 hlist_del(&mp->m_hash);
780 kfree(mp);
781 }
782 }
783
784 /* called with namespace_lock and vfsmount lock */
785 static void put_mountpoint(struct mountpoint *mp)
786 {
787 __put_mountpoint(mp, &ex_mountpoints);
788 }
789
790 static inline int check_mnt(struct mount *mnt)
791 {
792 return mnt->mnt_ns == current->nsproxy->mnt_ns;
793 }
794
795 /*
796 * vfsmount lock must be held for write
797 */
798 static void touch_mnt_namespace(struct mnt_namespace *ns)
799 {
800 if (ns) {
801 ns->event = ++event;
802 wake_up_interruptible(&ns->poll);
803 }
804 }
805
806 /*
807 * vfsmount lock must be held for write
808 */
809 static void __touch_mnt_namespace(struct mnt_namespace *ns)
810 {
811 if (ns && ns->event != event) {
812 ns->event = event;
813 wake_up_interruptible(&ns->poll);
814 }
815 }
816
817 /*
818 * vfsmount lock must be held for write
819 */
820 static struct mountpoint *unhash_mnt(struct mount *mnt)
821 {
822 struct mountpoint *mp;
823 mnt->mnt_parent = mnt;
824 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
825 list_del_init(&mnt->mnt_child);
826 hlist_del_init_rcu(&mnt->mnt_hash);
827 hlist_del_init(&mnt->mnt_mp_list);
828 mp = mnt->mnt_mp;
829 mnt->mnt_mp = NULL;
830 return mp;
831 }
832
833 /*
834 * vfsmount lock must be held for write
835 */
836 static void umount_mnt(struct mount *mnt)
837 {
838 put_mountpoint(unhash_mnt(mnt));
839 }
840
841 /*
842 * vfsmount lock must be held for write
843 */
844 void mnt_set_mountpoint(struct mount *mnt,
845 struct mountpoint *mp,
846 struct mount *child_mnt)
847 {
848 mp->m_count++;
849 mnt_add_count(mnt, 1); /* essentially, that's mntget */
850 child_mnt->mnt_mountpoint = mp->m_dentry;
851 child_mnt->mnt_parent = mnt;
852 child_mnt->mnt_mp = mp;
853 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
854 }
855
856 static void __attach_mnt(struct mount *mnt, struct mount *parent)
857 {
858 hlist_add_head_rcu(&mnt->mnt_hash,
859 m_hash(&parent->mnt, mnt->mnt_mountpoint));
860 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
861 }
862
863 /*
864 * vfsmount lock must be held for write
865 */
866 static void attach_mnt(struct mount *mnt,
867 struct mount *parent,
868 struct mountpoint *mp)
869 {
870 mnt_set_mountpoint(parent, mp, mnt);
871 __attach_mnt(mnt, parent);
872 }
873
874 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
875 {
876 struct mountpoint *old_mp = mnt->mnt_mp;
877 struct mount *old_parent = mnt->mnt_parent;
878
879 list_del_init(&mnt->mnt_child);
880 hlist_del_init(&mnt->mnt_mp_list);
881 hlist_del_init_rcu(&mnt->mnt_hash);
882
883 attach_mnt(mnt, parent, mp);
884
885 put_mountpoint(old_mp);
886 mnt_add_count(old_parent, -1);
887 }
888
889 /*
890 * vfsmount lock must be held for write
891 */
892 static void commit_tree(struct mount *mnt)
893 {
894 struct mount *parent = mnt->mnt_parent;
895 struct mount *m;
896 LIST_HEAD(head);
897 struct mnt_namespace *n = parent->mnt_ns;
898
899 BUG_ON(parent == mnt);
900
901 list_add_tail(&head, &mnt->mnt_list);
902 list_for_each_entry(m, &head, mnt_list)
903 m->mnt_ns = n;
904
905 list_splice(&head, n->list.prev);
906
907 n->mounts += n->pending_mounts;
908 n->pending_mounts = 0;
909
910 __attach_mnt(mnt, parent);
911 touch_mnt_namespace(n);
912 }
913
914 static struct mount *next_mnt(struct mount *p, struct mount *root)
915 {
916 struct list_head *next = p->mnt_mounts.next;
917 if (next == &p->mnt_mounts) {
918 while (1) {
919 if (p == root)
920 return NULL;
921 next = p->mnt_child.next;
922 if (next != &p->mnt_parent->mnt_mounts)
923 break;
924 p = p->mnt_parent;
925 }
926 }
927 return list_entry(next, struct mount, mnt_child);
928 }
929
930 static struct mount *skip_mnt_tree(struct mount *p)
931 {
932 struct list_head *prev = p->mnt_mounts.prev;
933 while (prev != &p->mnt_mounts) {
934 p = list_entry(prev, struct mount, mnt_child);
935 prev = p->mnt_mounts.prev;
936 }
937 return p;
938 }
939
940 /**
941 * vfs_create_mount - Create a mount for a configured superblock
942 * @fc: The configuration context with the superblock attached
943 *
944 * Create a mount to an already configured superblock. If necessary, the
945 * caller should invoke vfs_get_tree() before calling this.
946 *
947 * Note that this does not attach the mount to anything.
948 */
949 struct vfsmount *vfs_create_mount(struct fs_context *fc)
950 {
951 struct mount *mnt;
952
953 if (!fc->root)
954 return ERR_PTR(-EINVAL);
955
956 mnt = alloc_vfsmnt(fc->source ?: "none");
957 if (!mnt)
958 return ERR_PTR(-ENOMEM);
959
960 if (fc->sb_flags & SB_KERNMOUNT)
961 mnt->mnt.mnt_flags = MNT_INTERNAL;
962
963 atomic_inc(&fc->root->d_sb->s_active);
964 mnt->mnt.mnt_sb = fc->root->d_sb;
965 mnt->mnt.mnt_root = dget(fc->root);
966 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
967 mnt->mnt_parent = mnt;
968
969 lock_mount_hash();
970 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
971 unlock_mount_hash();
972 return &mnt->mnt;
973 }
974 EXPORT_SYMBOL(vfs_create_mount);
975
976 struct vfsmount *fc_mount(struct fs_context *fc)
977 {
978 int err = vfs_get_tree(fc);
979 if (!err) {
980 up_write(&fc->root->d_sb->s_umount);
981 return vfs_create_mount(fc);
982 }
983 return ERR_PTR(err);
984 }
985 EXPORT_SYMBOL(fc_mount);
986
987 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
988 int flags, const char *name,
989 void *data)
990 {
991 struct fs_context *fc;
992 struct vfsmount *mnt;
993 int ret = 0;
994
995 if (!type)
996 return ERR_PTR(-EINVAL);
997
998 fc = fs_context_for_mount(type, flags);
999 if (IS_ERR(fc))
1000 return ERR_CAST(fc);
1001
1002 if (name)
1003 ret = vfs_parse_fs_string(fc, "source",
1004 name, strlen(name));
1005 if (!ret)
1006 ret = parse_monolithic_mount_data(fc, data);
1007 if (!ret)
1008 mnt = fc_mount(fc);
1009 else
1010 mnt = ERR_PTR(ret);
1011
1012 put_fs_context(fc);
1013 return mnt;
1014 }
1015 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1016
1017 struct vfsmount *
1018 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1019 const char *name, void *data)
1020 {
1021 /* Until it is worked out how to pass the user namespace
1022 * through from the parent mount to the submount don't support
1023 * unprivileged mounts with submounts.
1024 */
1025 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1026 return ERR_PTR(-EPERM);
1027
1028 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1029 }
1030 EXPORT_SYMBOL_GPL(vfs_submount);
1031
1032 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1033 int flag)
1034 {
1035 struct super_block *sb = old->mnt.mnt_sb;
1036 struct mount *mnt;
1037 int err;
1038
1039 mnt = alloc_vfsmnt(old->mnt_devname);
1040 if (!mnt)
1041 return ERR_PTR(-ENOMEM);
1042
1043 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1044 mnt->mnt_group_id = 0; /* not a peer of original */
1045 else
1046 mnt->mnt_group_id = old->mnt_group_id;
1047
1048 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1049 err = mnt_alloc_group_id(mnt);
1050 if (err)
1051 goto out_free;
1052 }
1053
1054 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1055 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1056
1057 atomic_inc(&sb->s_active);
1058 mnt->mnt.mnt_sb = sb;
1059 mnt->mnt.mnt_root = dget(root);
1060 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1061 mnt->mnt_parent = mnt;
1062 lock_mount_hash();
1063 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1064 unlock_mount_hash();
1065
1066 if ((flag & CL_SLAVE) ||
1067 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1068 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1069 mnt->mnt_master = old;
1070 CLEAR_MNT_SHARED(mnt);
1071 } else if (!(flag & CL_PRIVATE)) {
1072 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1073 list_add(&mnt->mnt_share, &old->mnt_share);
1074 if (IS_MNT_SLAVE(old))
1075 list_add(&mnt->mnt_slave, &old->mnt_slave);
1076 mnt->mnt_master = old->mnt_master;
1077 } else {
1078 CLEAR_MNT_SHARED(mnt);
1079 }
1080 if (flag & CL_MAKE_SHARED)
1081 set_mnt_shared(mnt);
1082
1083 /* stick the duplicate mount on the same expiry list
1084 * as the original if that was on one */
1085 if (flag & CL_EXPIRE) {
1086 if (!list_empty(&old->mnt_expire))
1087 list_add(&mnt->mnt_expire, &old->mnt_expire);
1088 }
1089
1090 return mnt;
1091
1092 out_free:
1093 mnt_free_id(mnt);
1094 free_vfsmnt(mnt);
1095 return ERR_PTR(err);
1096 }
1097
1098 static void cleanup_mnt(struct mount *mnt)
1099 {
1100 struct hlist_node *p;
1101 struct mount *m;
1102 /*
1103 * The warning here probably indicates that somebody messed
1104 * up a mnt_want/drop_write() pair. If this happens, the
1105 * filesystem was probably unable to make r/w->r/o transitions.
1106 * The locking used to deal with mnt_count decrement provides barriers,
1107 * so mnt_get_writers() below is safe.
1108 */
1109 WARN_ON(mnt_get_writers(mnt));
1110 if (unlikely(mnt->mnt_pins.first))
1111 mnt_pin_kill(mnt);
1112 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1113 hlist_del(&m->mnt_umount);
1114 mntput(&m->mnt);
1115 }
1116 fsnotify_vfsmount_delete(&mnt->mnt);
1117 dput(mnt->mnt.mnt_root);
1118 deactivate_super(mnt->mnt.mnt_sb);
1119 mnt_free_id(mnt);
1120 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1121 }
1122
1123 static void __cleanup_mnt(struct rcu_head *head)
1124 {
1125 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1126 }
1127
1128 static LLIST_HEAD(delayed_mntput_list);
1129 static void delayed_mntput(struct work_struct *unused)
1130 {
1131 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1132 struct mount *m, *t;
1133
1134 llist_for_each_entry_safe(m, t, node, mnt_llist)
1135 cleanup_mnt(m);
1136 }
1137 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1138
1139 static void mntput_no_expire(struct mount *mnt)
1140 {
1141 LIST_HEAD(list);
1142
1143 rcu_read_lock();
1144 if (likely(READ_ONCE(mnt->mnt_ns))) {
1145 /*
1146 * Since we don't do lock_mount_hash() here,
1147 * ->mnt_ns can change under us. However, if it's
1148 * non-NULL, then there's a reference that won't
1149 * be dropped until after an RCU delay done after
1150 * turning ->mnt_ns NULL. So if we observe it
1151 * non-NULL under rcu_read_lock(), the reference
1152 * we are dropping is not the final one.
1153 */
1154 mnt_add_count(mnt, -1);
1155 rcu_read_unlock();
1156 return;
1157 }
1158 lock_mount_hash();
1159 /*
1160 * make sure that if __legitimize_mnt() has not seen us grab
1161 * mount_lock, we'll see their refcount increment here.
1162 */
1163 smp_mb();
1164 mnt_add_count(mnt, -1);
1165 if (mnt_get_count(mnt)) {
1166 rcu_read_unlock();
1167 unlock_mount_hash();
1168 return;
1169 }
1170 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1171 rcu_read_unlock();
1172 unlock_mount_hash();
1173 return;
1174 }
1175 mnt->mnt.mnt_flags |= MNT_DOOMED;
1176 rcu_read_unlock();
1177
1178 list_del(&mnt->mnt_instance);
1179
1180 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1181 struct mount *p, *tmp;
1182 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1183 __put_mountpoint(unhash_mnt(p), &list);
1184 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1185 }
1186 }
1187 unlock_mount_hash();
1188 shrink_dentry_list(&list);
1189
1190 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1191 struct task_struct *task = current;
1192 if (likely(!(task->flags & PF_KTHREAD))) {
1193 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1194 if (!task_work_add(task, &mnt->mnt_rcu, true))
1195 return;
1196 }
1197 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1198 schedule_delayed_work(&delayed_mntput_work, 1);
1199 return;
1200 }
1201 cleanup_mnt(mnt);
1202 }
1203
1204 void mntput(struct vfsmount *mnt)
1205 {
1206 if (mnt) {
1207 struct mount *m = real_mount(mnt);
1208 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1209 if (unlikely(m->mnt_expiry_mark))
1210 m->mnt_expiry_mark = 0;
1211 mntput_no_expire(m);
1212 }
1213 }
1214 EXPORT_SYMBOL(mntput);
1215
1216 struct vfsmount *mntget(struct vfsmount *mnt)
1217 {
1218 if (mnt)
1219 mnt_add_count(real_mount(mnt), 1);
1220 return mnt;
1221 }
1222 EXPORT_SYMBOL(mntget);
1223
1224 /* path_is_mountpoint() - Check if path is a mount in the current
1225 * namespace.
1226 *
1227 * d_mountpoint() can only be used reliably to establish if a dentry is
1228 * not mounted in any namespace and that common case is handled inline.
1229 * d_mountpoint() isn't aware of the possibility there may be multiple
1230 * mounts using a given dentry in a different namespace. This function
1231 * checks if the passed in path is a mountpoint rather than the dentry
1232 * alone.
1233 */
1234 bool path_is_mountpoint(const struct path *path)
1235 {
1236 unsigned seq;
1237 bool res;
1238
1239 if (!d_mountpoint(path->dentry))
1240 return false;
1241
1242 rcu_read_lock();
1243 do {
1244 seq = read_seqbegin(&mount_lock);
1245 res = __path_is_mountpoint(path);
1246 } while (read_seqretry(&mount_lock, seq));
1247 rcu_read_unlock();
1248
1249 return res;
1250 }
1251 EXPORT_SYMBOL(path_is_mountpoint);
1252
1253 struct vfsmount *mnt_clone_internal(const struct path *path)
1254 {
1255 struct mount *p;
1256 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1257 if (IS_ERR(p))
1258 return ERR_CAST(p);
1259 p->mnt.mnt_flags |= MNT_INTERNAL;
1260 return &p->mnt;
1261 }
1262
1263 #ifdef CONFIG_PROC_FS
1264 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1265 struct list_head *p)
1266 {
1267 struct mount *mnt, *ret = NULL;
1268
1269 lock_ns_list(ns);
1270 list_for_each_continue(p, &ns->list) {
1271 mnt = list_entry(p, typeof(*mnt), mnt_list);
1272 if (!mnt_is_cursor(mnt)) {
1273 ret = mnt;
1274 break;
1275 }
1276 }
1277 unlock_ns_list(ns);
1278
1279 return ret;
1280 }
1281
1282 /* iterator; we want it to have access to namespace_sem, thus here... */
1283 static void *m_start(struct seq_file *m, loff_t *pos)
1284 {
1285 struct proc_mounts *p = m->private;
1286 struct list_head *prev;
1287
1288 down_read(&namespace_sem);
1289 if (!*pos) {
1290 prev = &p->ns->list;
1291 } else {
1292 prev = &p->cursor.mnt_list;
1293
1294 /* Read after we'd reached the end? */
1295 if (list_empty(prev))
1296 return NULL;
1297 }
1298
1299 return mnt_list_next(p->ns, prev);
1300 }
1301
1302 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1303 {
1304 struct proc_mounts *p = m->private;
1305 struct mount *mnt = v;
1306
1307 ++*pos;
1308 return mnt_list_next(p->ns, &mnt->mnt_list);
1309 }
1310
1311 static void m_stop(struct seq_file *m, void *v)
1312 {
1313 struct proc_mounts *p = m->private;
1314 struct mount *mnt = v;
1315
1316 lock_ns_list(p->ns);
1317 if (mnt)
1318 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1319 else
1320 list_del_init(&p->cursor.mnt_list);
1321 unlock_ns_list(p->ns);
1322 up_read(&namespace_sem);
1323 }
1324
1325 static int m_show(struct seq_file *m, void *v)
1326 {
1327 struct proc_mounts *p = m->private;
1328 struct mount *r = v;
1329 return p->show(m, &r->mnt);
1330 }
1331
1332 const struct seq_operations mounts_op = {
1333 .start = m_start,
1334 .next = m_next,
1335 .stop = m_stop,
1336 .show = m_show,
1337 };
1338
1339 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1340 {
1341 down_read(&namespace_sem);
1342 lock_ns_list(ns);
1343 list_del(&cursor->mnt_list);
1344 unlock_ns_list(ns);
1345 up_read(&namespace_sem);
1346 }
1347 #endif /* CONFIG_PROC_FS */
1348
1349 /**
1350 * may_umount_tree - check if a mount tree is busy
1351 * @mnt: root of mount tree
1352 *
1353 * This is called to check if a tree of mounts has any
1354 * open files, pwds, chroots or sub mounts that are
1355 * busy.
1356 */
1357 int may_umount_tree(struct vfsmount *m)
1358 {
1359 struct mount *mnt = real_mount(m);
1360 int actual_refs = 0;
1361 int minimum_refs = 0;
1362 struct mount *p;
1363 BUG_ON(!m);
1364
1365 /* write lock needed for mnt_get_count */
1366 lock_mount_hash();
1367 for (p = mnt; p; p = next_mnt(p, mnt)) {
1368 actual_refs += mnt_get_count(p);
1369 minimum_refs += 2;
1370 }
1371 unlock_mount_hash();
1372
1373 if (actual_refs > minimum_refs)
1374 return 0;
1375
1376 return 1;
1377 }
1378
1379 EXPORT_SYMBOL(may_umount_tree);
1380
1381 /**
1382 * may_umount - check if a mount point is busy
1383 * @mnt: root of mount
1384 *
1385 * This is called to check if a mount point has any
1386 * open files, pwds, chroots or sub mounts. If the
1387 * mount has sub mounts this will return busy
1388 * regardless of whether the sub mounts are busy.
1389 *
1390 * Doesn't take quota and stuff into account. IOW, in some cases it will
1391 * give false negatives. The main reason why it's here is that we need
1392 * a non-destructive way to look for easily umountable filesystems.
1393 */
1394 int may_umount(struct vfsmount *mnt)
1395 {
1396 int ret = 1;
1397 down_read(&namespace_sem);
1398 lock_mount_hash();
1399 if (propagate_mount_busy(real_mount(mnt), 2))
1400 ret = 0;
1401 unlock_mount_hash();
1402 up_read(&namespace_sem);
1403 return ret;
1404 }
1405
1406 EXPORT_SYMBOL(may_umount);
1407
1408 static void namespace_unlock(void)
1409 {
1410 struct hlist_head head;
1411 struct hlist_node *p;
1412 struct mount *m;
1413 LIST_HEAD(list);
1414
1415 hlist_move_list(&unmounted, &head);
1416 list_splice_init(&ex_mountpoints, &list);
1417
1418 up_write(&namespace_sem);
1419
1420 shrink_dentry_list(&list);
1421
1422 if (likely(hlist_empty(&head)))
1423 return;
1424
1425 synchronize_rcu_expedited();
1426
1427 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1428 hlist_del(&m->mnt_umount);
1429 mntput(&m->mnt);
1430 }
1431 }
1432
1433 static inline void namespace_lock(void)
1434 {
1435 down_write(&namespace_sem);
1436 }
1437
1438 enum umount_tree_flags {
1439 UMOUNT_SYNC = 1,
1440 UMOUNT_PROPAGATE = 2,
1441 UMOUNT_CONNECTED = 4,
1442 };
1443
1444 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1445 {
1446 /* Leaving mounts connected is only valid for lazy umounts */
1447 if (how & UMOUNT_SYNC)
1448 return true;
1449
1450 /* A mount without a parent has nothing to be connected to */
1451 if (!mnt_has_parent(mnt))
1452 return true;
1453
1454 /* Because the reference counting rules change when mounts are
1455 * unmounted and connected, umounted mounts may not be
1456 * connected to mounted mounts.
1457 */
1458 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1459 return true;
1460
1461 /* Has it been requested that the mount remain connected? */
1462 if (how & UMOUNT_CONNECTED)
1463 return false;
1464
1465 /* Is the mount locked such that it needs to remain connected? */
1466 if (IS_MNT_LOCKED(mnt))
1467 return false;
1468
1469 /* By default disconnect the mount */
1470 return true;
1471 }
1472
1473 /*
1474 * mount_lock must be held
1475 * namespace_sem must be held for write
1476 */
1477 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1478 {
1479 LIST_HEAD(tmp_list);
1480 struct mount *p;
1481
1482 if (how & UMOUNT_PROPAGATE)
1483 propagate_mount_unlock(mnt);
1484
1485 /* Gather the mounts to umount */
1486 for (p = mnt; p; p = next_mnt(p, mnt)) {
1487 p->mnt.mnt_flags |= MNT_UMOUNT;
1488 list_move(&p->mnt_list, &tmp_list);
1489 }
1490
1491 /* Hide the mounts from mnt_mounts */
1492 list_for_each_entry(p, &tmp_list, mnt_list) {
1493 list_del_init(&p->mnt_child);
1494 }
1495
1496 /* Add propogated mounts to the tmp_list */
1497 if (how & UMOUNT_PROPAGATE)
1498 propagate_umount(&tmp_list);
1499
1500 while (!list_empty(&tmp_list)) {
1501 struct mnt_namespace *ns;
1502 bool disconnect;
1503 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1504 list_del_init(&p->mnt_expire);
1505 list_del_init(&p->mnt_list);
1506 ns = p->mnt_ns;
1507 if (ns) {
1508 ns->mounts--;
1509 __touch_mnt_namespace(ns);
1510 }
1511 p->mnt_ns = NULL;
1512 if (how & UMOUNT_SYNC)
1513 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1514
1515 disconnect = disconnect_mount(p, how);
1516 if (mnt_has_parent(p)) {
1517 mnt_add_count(p->mnt_parent, -1);
1518 if (!disconnect) {
1519 /* Don't forget about p */
1520 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1521 } else {
1522 umount_mnt(p);
1523 }
1524 }
1525 change_mnt_propagation(p, MS_PRIVATE);
1526 if (disconnect)
1527 hlist_add_head(&p->mnt_umount, &unmounted);
1528 }
1529 }
1530
1531 static void shrink_submounts(struct mount *mnt);
1532
1533 static int do_umount_root(struct super_block *sb)
1534 {
1535 int ret = 0;
1536
1537 down_write(&sb->s_umount);
1538 if (!sb_rdonly(sb)) {
1539 struct fs_context *fc;
1540
1541 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1542 SB_RDONLY);
1543 if (IS_ERR(fc)) {
1544 ret = PTR_ERR(fc);
1545 } else {
1546 ret = parse_monolithic_mount_data(fc, NULL);
1547 if (!ret)
1548 ret = reconfigure_super(fc);
1549 put_fs_context(fc);
1550 }
1551 }
1552 up_write(&sb->s_umount);
1553 return ret;
1554 }
1555
1556 static int do_umount(struct mount *mnt, int flags)
1557 {
1558 struct super_block *sb = mnt->mnt.mnt_sb;
1559 int retval;
1560
1561 retval = security_sb_umount(&mnt->mnt, flags);
1562 if (retval)
1563 return retval;
1564
1565 /*
1566 * Allow userspace to request a mountpoint be expired rather than
1567 * unmounting unconditionally. Unmount only happens if:
1568 * (1) the mark is already set (the mark is cleared by mntput())
1569 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1570 */
1571 if (flags & MNT_EXPIRE) {
1572 if (&mnt->mnt == current->fs->root.mnt ||
1573 flags & (MNT_FORCE | MNT_DETACH))
1574 return -EINVAL;
1575
1576 /*
1577 * probably don't strictly need the lock here if we examined
1578 * all race cases, but it's a slowpath.
1579 */
1580 lock_mount_hash();
1581 if (mnt_get_count(mnt) != 2) {
1582 unlock_mount_hash();
1583 return -EBUSY;
1584 }
1585 unlock_mount_hash();
1586
1587 if (!xchg(&mnt->mnt_expiry_mark, 1))
1588 return -EAGAIN;
1589 }
1590
1591 /*
1592 * If we may have to abort operations to get out of this
1593 * mount, and they will themselves hold resources we must
1594 * allow the fs to do things. In the Unix tradition of
1595 * 'Gee thats tricky lets do it in userspace' the umount_begin
1596 * might fail to complete on the first run through as other tasks
1597 * must return, and the like. Thats for the mount program to worry
1598 * about for the moment.
1599 */
1600
1601 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1602 sb->s_op->umount_begin(sb);
1603 }
1604
1605 /*
1606 * No sense to grab the lock for this test, but test itself looks
1607 * somewhat bogus. Suggestions for better replacement?
1608 * Ho-hum... In principle, we might treat that as umount + switch
1609 * to rootfs. GC would eventually take care of the old vfsmount.
1610 * Actually it makes sense, especially if rootfs would contain a
1611 * /reboot - static binary that would close all descriptors and
1612 * call reboot(9). Then init(8) could umount root and exec /reboot.
1613 */
1614 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1615 /*
1616 * Special case for "unmounting" root ...
1617 * we just try to remount it readonly.
1618 */
1619 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1620 return -EPERM;
1621 return do_umount_root(sb);
1622 }
1623
1624 namespace_lock();
1625 lock_mount_hash();
1626
1627 /* Recheck MNT_LOCKED with the locks held */
1628 retval = -EINVAL;
1629 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1630 goto out;
1631
1632 event++;
1633 if (flags & MNT_DETACH) {
1634 if (!list_empty(&mnt->mnt_list))
1635 umount_tree(mnt, UMOUNT_PROPAGATE);
1636 retval = 0;
1637 } else {
1638 shrink_submounts(mnt);
1639 retval = -EBUSY;
1640 if (!propagate_mount_busy(mnt, 2)) {
1641 if (!list_empty(&mnt->mnt_list))
1642 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1643 retval = 0;
1644 }
1645 }
1646 out:
1647 unlock_mount_hash();
1648 namespace_unlock();
1649 return retval;
1650 }
1651
1652 /*
1653 * __detach_mounts - lazily unmount all mounts on the specified dentry
1654 *
1655 * During unlink, rmdir, and d_drop it is possible to loose the path
1656 * to an existing mountpoint, and wind up leaking the mount.
1657 * detach_mounts allows lazily unmounting those mounts instead of
1658 * leaking them.
1659 *
1660 * The caller may hold dentry->d_inode->i_mutex.
1661 */
1662 void __detach_mounts(struct dentry *dentry)
1663 {
1664 struct mountpoint *mp;
1665 struct mount *mnt;
1666
1667 namespace_lock();
1668 lock_mount_hash();
1669 mp = lookup_mountpoint(dentry);
1670 if (!mp)
1671 goto out_unlock;
1672
1673 event++;
1674 while (!hlist_empty(&mp->m_list)) {
1675 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1676 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1677 umount_mnt(mnt);
1678 hlist_add_head(&mnt->mnt_umount, &unmounted);
1679 }
1680 else umount_tree(mnt, UMOUNT_CONNECTED);
1681 }
1682 put_mountpoint(mp);
1683 out_unlock:
1684 unlock_mount_hash();
1685 namespace_unlock();
1686 }
1687
1688 /*
1689 * Is the caller allowed to modify his namespace?
1690 */
1691 static inline bool may_mount(void)
1692 {
1693 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1694 }
1695
1696 #ifdef CONFIG_MANDATORY_FILE_LOCKING
1697 static inline bool may_mandlock(void)
1698 {
1699 return capable(CAP_SYS_ADMIN);
1700 }
1701 #else
1702 static inline bool may_mandlock(void)
1703 {
1704 pr_warn("VFS: \"mand\" mount option not supported");
1705 return false;
1706 }
1707 #endif
1708
1709 static int can_umount(const struct path *path, int flags)
1710 {
1711 struct mount *mnt = real_mount(path->mnt);
1712
1713 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1714 return -EINVAL;
1715 if (!may_mount())
1716 return -EPERM;
1717 if (path->dentry != path->mnt->mnt_root)
1718 return -EINVAL;
1719 if (!check_mnt(mnt))
1720 return -EINVAL;
1721 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1722 return -EINVAL;
1723 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1724 return -EPERM;
1725 return 0;
1726 }
1727
1728 int path_umount(struct path *path, int flags)
1729 {
1730 struct mount *mnt = real_mount(path->mnt);
1731 int ret;
1732
1733 ret = can_umount(path, flags);
1734 if (!ret)
1735 ret = do_umount(mnt, flags);
1736
1737 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1738 dput(path->dentry);
1739 mntput_no_expire(mnt);
1740 return ret;
1741 }
1742
1743 static int ksys_umount(char __user *name, int flags)
1744 {
1745 int lookup_flags = LOOKUP_MOUNTPOINT;
1746 struct path path;
1747 int ret;
1748
1749 if (!(flags & UMOUNT_NOFOLLOW))
1750 lookup_flags |= LOOKUP_FOLLOW;
1751 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1752 if (ret)
1753 return ret;
1754 return path_umount(&path, flags);
1755 }
1756
1757 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1758 {
1759 return ksys_umount(name, flags);
1760 }
1761
1762 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1763
1764 /*
1765 * The 2.0 compatible umount. No flags.
1766 */
1767 SYSCALL_DEFINE1(oldumount, char __user *, name)
1768 {
1769 return ksys_umount(name, 0);
1770 }
1771
1772 #endif
1773
1774 static bool is_mnt_ns_file(struct dentry *dentry)
1775 {
1776 /* Is this a proxy for a mount namespace? */
1777 return dentry->d_op == &ns_dentry_operations &&
1778 dentry->d_fsdata == &mntns_operations;
1779 }
1780
1781 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1782 {
1783 return container_of(ns, struct mnt_namespace, ns);
1784 }
1785
1786 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1787 {
1788 return &mnt->ns;
1789 }
1790
1791 static bool mnt_ns_loop(struct dentry *dentry)
1792 {
1793 /* Could bind mounting the mount namespace inode cause a
1794 * mount namespace loop?
1795 */
1796 struct mnt_namespace *mnt_ns;
1797 if (!is_mnt_ns_file(dentry))
1798 return false;
1799
1800 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1801 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1802 }
1803
1804 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1805 int flag)
1806 {
1807 struct mount *res, *p, *q, *r, *parent;
1808
1809 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1810 return ERR_PTR(-EINVAL);
1811
1812 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1813 return ERR_PTR(-EINVAL);
1814
1815 res = q = clone_mnt(mnt, dentry, flag);
1816 if (IS_ERR(q))
1817 return q;
1818
1819 q->mnt_mountpoint = mnt->mnt_mountpoint;
1820
1821 p = mnt;
1822 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1823 struct mount *s;
1824 if (!is_subdir(r->mnt_mountpoint, dentry))
1825 continue;
1826
1827 for (s = r; s; s = next_mnt(s, r)) {
1828 if (!(flag & CL_COPY_UNBINDABLE) &&
1829 IS_MNT_UNBINDABLE(s)) {
1830 if (s->mnt.mnt_flags & MNT_LOCKED) {
1831 /* Both unbindable and locked. */
1832 q = ERR_PTR(-EPERM);
1833 goto out;
1834 } else {
1835 s = skip_mnt_tree(s);
1836 continue;
1837 }
1838 }
1839 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1840 is_mnt_ns_file(s->mnt.mnt_root)) {
1841 s = skip_mnt_tree(s);
1842 continue;
1843 }
1844 while (p != s->mnt_parent) {
1845 p = p->mnt_parent;
1846 q = q->mnt_parent;
1847 }
1848 p = s;
1849 parent = q;
1850 q = clone_mnt(p, p->mnt.mnt_root, flag);
1851 if (IS_ERR(q))
1852 goto out;
1853 lock_mount_hash();
1854 list_add_tail(&q->mnt_list, &res->mnt_list);
1855 attach_mnt(q, parent, p->mnt_mp);
1856 unlock_mount_hash();
1857 }
1858 }
1859 return res;
1860 out:
1861 if (res) {
1862 lock_mount_hash();
1863 umount_tree(res, UMOUNT_SYNC);
1864 unlock_mount_hash();
1865 }
1866 return q;
1867 }
1868
1869 /* Caller should check returned pointer for errors */
1870
1871 struct vfsmount *collect_mounts(const struct path *path)
1872 {
1873 struct mount *tree;
1874 namespace_lock();
1875 if (!check_mnt(real_mount(path->mnt)))
1876 tree = ERR_PTR(-EINVAL);
1877 else
1878 tree = copy_tree(real_mount(path->mnt), path->dentry,
1879 CL_COPY_ALL | CL_PRIVATE);
1880 namespace_unlock();
1881 if (IS_ERR(tree))
1882 return ERR_CAST(tree);
1883 return &tree->mnt;
1884 }
1885
1886 static void free_mnt_ns(struct mnt_namespace *);
1887 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1888
1889 void dissolve_on_fput(struct vfsmount *mnt)
1890 {
1891 struct mnt_namespace *ns;
1892 namespace_lock();
1893 lock_mount_hash();
1894 ns = real_mount(mnt)->mnt_ns;
1895 if (ns) {
1896 if (is_anon_ns(ns))
1897 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1898 else
1899 ns = NULL;
1900 }
1901 unlock_mount_hash();
1902 namespace_unlock();
1903 if (ns)
1904 free_mnt_ns(ns);
1905 }
1906
1907 void drop_collected_mounts(struct vfsmount *mnt)
1908 {
1909 namespace_lock();
1910 lock_mount_hash();
1911 umount_tree(real_mount(mnt), 0);
1912 unlock_mount_hash();
1913 namespace_unlock();
1914 }
1915
1916 /**
1917 * clone_private_mount - create a private clone of a path
1918 *
1919 * This creates a new vfsmount, which will be the clone of @path. The new will
1920 * not be attached anywhere in the namespace and will be private (i.e. changes
1921 * to the originating mount won't be propagated into this).
1922 *
1923 * Release with mntput().
1924 */
1925 struct vfsmount *clone_private_mount(const struct path *path)
1926 {
1927 struct mount *old_mnt = real_mount(path->mnt);
1928 struct mount *new_mnt;
1929
1930 if (IS_MNT_UNBINDABLE(old_mnt))
1931 return ERR_PTR(-EINVAL);
1932
1933 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1934 if (IS_ERR(new_mnt))
1935 return ERR_CAST(new_mnt);
1936
1937 /* Longterm mount to be removed by kern_unmount*() */
1938 new_mnt->mnt_ns = MNT_NS_INTERNAL;
1939
1940 return &new_mnt->mnt;
1941 }
1942 EXPORT_SYMBOL_GPL(clone_private_mount);
1943
1944 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1945 struct vfsmount *root)
1946 {
1947 struct mount *mnt;
1948 int res = f(root, arg);
1949 if (res)
1950 return res;
1951 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1952 res = f(&mnt->mnt, arg);
1953 if (res)
1954 return res;
1955 }
1956 return 0;
1957 }
1958
1959 static void lock_mnt_tree(struct mount *mnt)
1960 {
1961 struct mount *p;
1962
1963 for (p = mnt; p; p = next_mnt(p, mnt)) {
1964 int flags = p->mnt.mnt_flags;
1965 /* Don't allow unprivileged users to change mount flags */
1966 flags |= MNT_LOCK_ATIME;
1967
1968 if (flags & MNT_READONLY)
1969 flags |= MNT_LOCK_READONLY;
1970
1971 if (flags & MNT_NODEV)
1972 flags |= MNT_LOCK_NODEV;
1973
1974 if (flags & MNT_NOSUID)
1975 flags |= MNT_LOCK_NOSUID;
1976
1977 if (flags & MNT_NOEXEC)
1978 flags |= MNT_LOCK_NOEXEC;
1979 /* Don't allow unprivileged users to reveal what is under a mount */
1980 if (list_empty(&p->mnt_expire))
1981 flags |= MNT_LOCKED;
1982 p->mnt.mnt_flags = flags;
1983 }
1984 }
1985
1986 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1987 {
1988 struct mount *p;
1989
1990 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1991 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1992 mnt_release_group_id(p);
1993 }
1994 }
1995
1996 static int invent_group_ids(struct mount *mnt, bool recurse)
1997 {
1998 struct mount *p;
1999
2000 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2001 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2002 int err = mnt_alloc_group_id(p);
2003 if (err) {
2004 cleanup_group_ids(mnt, p);
2005 return err;
2006 }
2007 }
2008 }
2009
2010 return 0;
2011 }
2012
2013 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2014 {
2015 unsigned int max = READ_ONCE(sysctl_mount_max);
2016 unsigned int mounts = 0, old, pending, sum;
2017 struct mount *p;
2018
2019 for (p = mnt; p; p = next_mnt(p, mnt))
2020 mounts++;
2021
2022 old = ns->mounts;
2023 pending = ns->pending_mounts;
2024 sum = old + pending;
2025 if ((old > sum) ||
2026 (pending > sum) ||
2027 (max < sum) ||
2028 (mounts > (max - sum)))
2029 return -ENOSPC;
2030
2031 ns->pending_mounts = pending + mounts;
2032 return 0;
2033 }
2034
2035 /*
2036 * @source_mnt : mount tree to be attached
2037 * @nd : place the mount tree @source_mnt is attached
2038 * @parent_nd : if non-null, detach the source_mnt from its parent and
2039 * store the parent mount and mountpoint dentry.
2040 * (done when source_mnt is moved)
2041 *
2042 * NOTE: in the table below explains the semantics when a source mount
2043 * of a given type is attached to a destination mount of a given type.
2044 * ---------------------------------------------------------------------------
2045 * | BIND MOUNT OPERATION |
2046 * |**************************************************************************
2047 * | source-->| shared | private | slave | unbindable |
2048 * | dest | | | | |
2049 * | | | | | | |
2050 * | v | | | | |
2051 * |**************************************************************************
2052 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2053 * | | | | | |
2054 * |non-shared| shared (+) | private | slave (*) | invalid |
2055 * ***************************************************************************
2056 * A bind operation clones the source mount and mounts the clone on the
2057 * destination mount.
2058 *
2059 * (++) the cloned mount is propagated to all the mounts in the propagation
2060 * tree of the destination mount and the cloned mount is added to
2061 * the peer group of the source mount.
2062 * (+) the cloned mount is created under the destination mount and is marked
2063 * as shared. The cloned mount is added to the peer group of the source
2064 * mount.
2065 * (+++) the mount is propagated to all the mounts in the propagation tree
2066 * of the destination mount and the cloned mount is made slave
2067 * of the same master as that of the source mount. The cloned mount
2068 * is marked as 'shared and slave'.
2069 * (*) the cloned mount is made a slave of the same master as that of the
2070 * source mount.
2071 *
2072 * ---------------------------------------------------------------------------
2073 * | MOVE MOUNT OPERATION |
2074 * |**************************************************************************
2075 * | source-->| shared | private | slave | unbindable |
2076 * | dest | | | | |
2077 * | | | | | | |
2078 * | v | | | | |
2079 * |**************************************************************************
2080 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2081 * | | | | | |
2082 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2083 * ***************************************************************************
2084 *
2085 * (+) the mount is moved to the destination. And is then propagated to
2086 * all the mounts in the propagation tree of the destination mount.
2087 * (+*) the mount is moved to the destination.
2088 * (+++) the mount is moved to the destination and is then propagated to
2089 * all the mounts belonging to the destination mount's propagation tree.
2090 * the mount is marked as 'shared and slave'.
2091 * (*) the mount continues to be a slave at the new location.
2092 *
2093 * if the source mount is a tree, the operations explained above is
2094 * applied to each mount in the tree.
2095 * Must be called without spinlocks held, since this function can sleep
2096 * in allocations.
2097 */
2098 static int attach_recursive_mnt(struct mount *source_mnt,
2099 struct mount *dest_mnt,
2100 struct mountpoint *dest_mp,
2101 bool moving)
2102 {
2103 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2104 HLIST_HEAD(tree_list);
2105 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2106 struct mountpoint *smp;
2107 struct mount *child, *p;
2108 struct hlist_node *n;
2109 int err;
2110
2111 /* Preallocate a mountpoint in case the new mounts need
2112 * to be tucked under other mounts.
2113 */
2114 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2115 if (IS_ERR(smp))
2116 return PTR_ERR(smp);
2117
2118 /* Is there space to add these mounts to the mount namespace? */
2119 if (!moving) {
2120 err = count_mounts(ns, source_mnt);
2121 if (err)
2122 goto out;
2123 }
2124
2125 if (IS_MNT_SHARED(dest_mnt)) {
2126 err = invent_group_ids(source_mnt, true);
2127 if (err)
2128 goto out;
2129 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2130 lock_mount_hash();
2131 if (err)
2132 goto out_cleanup_ids;
2133 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2134 set_mnt_shared(p);
2135 } else {
2136 lock_mount_hash();
2137 }
2138 if (moving) {
2139 unhash_mnt(source_mnt);
2140 attach_mnt(source_mnt, dest_mnt, dest_mp);
2141 touch_mnt_namespace(source_mnt->mnt_ns);
2142 } else {
2143 if (source_mnt->mnt_ns) {
2144 /* move from anon - the caller will destroy */
2145 list_del_init(&source_mnt->mnt_ns->list);
2146 }
2147 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2148 commit_tree(source_mnt);
2149 }
2150
2151 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2152 struct mount *q;
2153 hlist_del_init(&child->mnt_hash);
2154 q = __lookup_mnt(&child->mnt_parent->mnt,
2155 child->mnt_mountpoint);
2156 if (q)
2157 mnt_change_mountpoint(child, smp, q);
2158 /* Notice when we are propagating across user namespaces */
2159 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2160 lock_mnt_tree(child);
2161 child->mnt.mnt_flags &= ~MNT_LOCKED;
2162 commit_tree(child);
2163 }
2164 put_mountpoint(smp);
2165 unlock_mount_hash();
2166
2167 return 0;
2168
2169 out_cleanup_ids:
2170 while (!hlist_empty(&tree_list)) {
2171 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2172 child->mnt_parent->mnt_ns->pending_mounts = 0;
2173 umount_tree(child, UMOUNT_SYNC);
2174 }
2175 unlock_mount_hash();
2176 cleanup_group_ids(source_mnt, NULL);
2177 out:
2178 ns->pending_mounts = 0;
2179
2180 read_seqlock_excl(&mount_lock);
2181 put_mountpoint(smp);
2182 read_sequnlock_excl(&mount_lock);
2183
2184 return err;
2185 }
2186
2187 static struct mountpoint *lock_mount(struct path *path)
2188 {
2189 struct vfsmount *mnt;
2190 struct dentry *dentry = path->dentry;
2191 retry:
2192 inode_lock(dentry->d_inode);
2193 if (unlikely(cant_mount(dentry))) {
2194 inode_unlock(dentry->d_inode);
2195 return ERR_PTR(-ENOENT);
2196 }
2197 namespace_lock();
2198 mnt = lookup_mnt(path);
2199 if (likely(!mnt)) {
2200 struct mountpoint *mp = get_mountpoint(dentry);
2201 if (IS_ERR(mp)) {
2202 namespace_unlock();
2203 inode_unlock(dentry->d_inode);
2204 return mp;
2205 }
2206 return mp;
2207 }
2208 namespace_unlock();
2209 inode_unlock(path->dentry->d_inode);
2210 path_put(path);
2211 path->mnt = mnt;
2212 dentry = path->dentry = dget(mnt->mnt_root);
2213 goto retry;
2214 }
2215
2216 static void unlock_mount(struct mountpoint *where)
2217 {
2218 struct dentry *dentry = where->m_dentry;
2219
2220 read_seqlock_excl(&mount_lock);
2221 put_mountpoint(where);
2222 read_sequnlock_excl(&mount_lock);
2223
2224 namespace_unlock();
2225 inode_unlock(dentry->d_inode);
2226 }
2227
2228 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2229 {
2230 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2231 return -EINVAL;
2232
2233 if (d_is_dir(mp->m_dentry) !=
2234 d_is_dir(mnt->mnt.mnt_root))
2235 return -ENOTDIR;
2236
2237 return attach_recursive_mnt(mnt, p, mp, false);
2238 }
2239
2240 /*
2241 * Sanity check the flags to change_mnt_propagation.
2242 */
2243
2244 static int flags_to_propagation_type(int ms_flags)
2245 {
2246 int type = ms_flags & ~(MS_REC | MS_SILENT);
2247
2248 /* Fail if any non-propagation flags are set */
2249 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2250 return 0;
2251 /* Only one propagation flag should be set */
2252 if (!is_power_of_2(type))
2253 return 0;
2254 return type;
2255 }
2256
2257 /*
2258 * recursively change the type of the mountpoint.
2259 */
2260 static int do_change_type(struct path *path, int ms_flags)
2261 {
2262 struct mount *m;
2263 struct mount *mnt = real_mount(path->mnt);
2264 int recurse = ms_flags & MS_REC;
2265 int type;
2266 int err = 0;
2267
2268 if (path->dentry != path->mnt->mnt_root)
2269 return -EINVAL;
2270
2271 type = flags_to_propagation_type(ms_flags);
2272 if (!type)
2273 return -EINVAL;
2274
2275 namespace_lock();
2276 if (type == MS_SHARED) {
2277 err = invent_group_ids(mnt, recurse);
2278 if (err)
2279 goto out_unlock;
2280 }
2281
2282 lock_mount_hash();
2283 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2284 change_mnt_propagation(m, type);
2285 unlock_mount_hash();
2286
2287 out_unlock:
2288 namespace_unlock();
2289 return err;
2290 }
2291
2292 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2293 {
2294 struct mount *child;
2295 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2296 if (!is_subdir(child->mnt_mountpoint, dentry))
2297 continue;
2298
2299 if (child->mnt.mnt_flags & MNT_LOCKED)
2300 return true;
2301 }
2302 return false;
2303 }
2304
2305 static struct mount *__do_loopback(struct path *old_path, int recurse)
2306 {
2307 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2308
2309 if (IS_MNT_UNBINDABLE(old))
2310 return mnt;
2311
2312 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2313 return mnt;
2314
2315 if (!recurse && has_locked_children(old, old_path->dentry))
2316 return mnt;
2317
2318 if (recurse)
2319 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2320 else
2321 mnt = clone_mnt(old, old_path->dentry, 0);
2322
2323 if (!IS_ERR(mnt))
2324 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2325
2326 return mnt;
2327 }
2328
2329 /*
2330 * do loopback mount.
2331 */
2332 static int do_loopback(struct path *path, const char *old_name,
2333 int recurse)
2334 {
2335 struct path old_path;
2336 struct mount *mnt = NULL, *parent;
2337 struct mountpoint *mp;
2338 int err;
2339 if (!old_name || !*old_name)
2340 return -EINVAL;
2341 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2342 if (err)
2343 return err;
2344
2345 err = -EINVAL;
2346 if (mnt_ns_loop(old_path.dentry))
2347 goto out;
2348
2349 mp = lock_mount(path);
2350 if (IS_ERR(mp)) {
2351 err = PTR_ERR(mp);
2352 goto out;
2353 }
2354
2355 parent = real_mount(path->mnt);
2356 if (!check_mnt(parent))
2357 goto out2;
2358
2359 mnt = __do_loopback(&old_path, recurse);
2360 if (IS_ERR(mnt)) {
2361 err = PTR_ERR(mnt);
2362 goto out2;
2363 }
2364
2365 err = graft_tree(mnt, parent, mp);
2366 if (err) {
2367 lock_mount_hash();
2368 umount_tree(mnt, UMOUNT_SYNC);
2369 unlock_mount_hash();
2370 }
2371 out2:
2372 unlock_mount(mp);
2373 out:
2374 path_put(&old_path);
2375 return err;
2376 }
2377
2378 static struct file *open_detached_copy(struct path *path, bool recursive)
2379 {
2380 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2381 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2382 struct mount *mnt, *p;
2383 struct file *file;
2384
2385 if (IS_ERR(ns))
2386 return ERR_CAST(ns);
2387
2388 namespace_lock();
2389 mnt = __do_loopback(path, recursive);
2390 if (IS_ERR(mnt)) {
2391 namespace_unlock();
2392 free_mnt_ns(ns);
2393 return ERR_CAST(mnt);
2394 }
2395
2396 lock_mount_hash();
2397 for (p = mnt; p; p = next_mnt(p, mnt)) {
2398 p->mnt_ns = ns;
2399 ns->mounts++;
2400 }
2401 ns->root = mnt;
2402 list_add_tail(&ns->list, &mnt->mnt_list);
2403 mntget(&mnt->mnt);
2404 unlock_mount_hash();
2405 namespace_unlock();
2406
2407 mntput(path->mnt);
2408 path->mnt = &mnt->mnt;
2409 file = dentry_open(path, O_PATH, current_cred());
2410 if (IS_ERR(file))
2411 dissolve_on_fput(path->mnt);
2412 else
2413 file->f_mode |= FMODE_NEED_UNMOUNT;
2414 return file;
2415 }
2416
2417 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2418 {
2419 struct file *file;
2420 struct path path;
2421 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2422 bool detached = flags & OPEN_TREE_CLONE;
2423 int error;
2424 int fd;
2425
2426 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2427
2428 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2429 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2430 OPEN_TREE_CLOEXEC))
2431 return -EINVAL;
2432
2433 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2434 return -EINVAL;
2435
2436 if (flags & AT_NO_AUTOMOUNT)
2437 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2438 if (flags & AT_SYMLINK_NOFOLLOW)
2439 lookup_flags &= ~LOOKUP_FOLLOW;
2440 if (flags & AT_EMPTY_PATH)
2441 lookup_flags |= LOOKUP_EMPTY;
2442
2443 if (detached && !may_mount())
2444 return -EPERM;
2445
2446 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2447 if (fd < 0)
2448 return fd;
2449
2450 error = user_path_at(dfd, filename, lookup_flags, &path);
2451 if (unlikely(error)) {
2452 file = ERR_PTR(error);
2453 } else {
2454 if (detached)
2455 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2456 else
2457 file = dentry_open(&path, O_PATH, current_cred());
2458 path_put(&path);
2459 }
2460 if (IS_ERR(file)) {
2461 put_unused_fd(fd);
2462 return PTR_ERR(file);
2463 }
2464 fd_install(fd, file);
2465 return fd;
2466 }
2467
2468 /*
2469 * Don't allow locked mount flags to be cleared.
2470 *
2471 * No locks need to be held here while testing the various MNT_LOCK
2472 * flags because those flags can never be cleared once they are set.
2473 */
2474 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2475 {
2476 unsigned int fl = mnt->mnt.mnt_flags;
2477
2478 if ((fl & MNT_LOCK_READONLY) &&
2479 !(mnt_flags & MNT_READONLY))
2480 return false;
2481
2482 if ((fl & MNT_LOCK_NODEV) &&
2483 !(mnt_flags & MNT_NODEV))
2484 return false;
2485
2486 if ((fl & MNT_LOCK_NOSUID) &&
2487 !(mnt_flags & MNT_NOSUID))
2488 return false;
2489
2490 if ((fl & MNT_LOCK_NOEXEC) &&
2491 !(mnt_flags & MNT_NOEXEC))
2492 return false;
2493
2494 if ((fl & MNT_LOCK_ATIME) &&
2495 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2496 return false;
2497
2498 return true;
2499 }
2500
2501 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2502 {
2503 bool readonly_request = (mnt_flags & MNT_READONLY);
2504
2505 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2506 return 0;
2507
2508 if (readonly_request)
2509 return mnt_make_readonly(mnt);
2510
2511 return __mnt_unmake_readonly(mnt);
2512 }
2513
2514 /*
2515 * Update the user-settable attributes on a mount. The caller must hold
2516 * sb->s_umount for writing.
2517 */
2518 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2519 {
2520 lock_mount_hash();
2521 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2522 mnt->mnt.mnt_flags = mnt_flags;
2523 touch_mnt_namespace(mnt->mnt_ns);
2524 unlock_mount_hash();
2525 }
2526
2527 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2528 {
2529 struct super_block *sb = mnt->mnt_sb;
2530
2531 if (!__mnt_is_readonly(mnt) &&
2532 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2533 char *buf = (char *)__get_free_page(GFP_KERNEL);
2534 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2535 struct tm tm;
2536
2537 time64_to_tm(sb->s_time_max, 0, &tm);
2538
2539 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2540 sb->s_type->name,
2541 is_mounted(mnt) ? "remounted" : "mounted",
2542 mntpath,
2543 tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2544
2545 free_page((unsigned long)buf);
2546 }
2547 }
2548
2549 /*
2550 * Handle reconfiguration of the mountpoint only without alteration of the
2551 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2552 * to mount(2).
2553 */
2554 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2555 {
2556 struct super_block *sb = path->mnt->mnt_sb;
2557 struct mount *mnt = real_mount(path->mnt);
2558 int ret;
2559
2560 if (!check_mnt(mnt))
2561 return -EINVAL;
2562
2563 if (path->dentry != mnt->mnt.mnt_root)
2564 return -EINVAL;
2565
2566 if (!can_change_locked_flags(mnt, mnt_flags))
2567 return -EPERM;
2568
2569 down_write(&sb->s_umount);
2570 ret = change_mount_ro_state(mnt, mnt_flags);
2571 if (ret == 0)
2572 set_mount_attributes(mnt, mnt_flags);
2573 up_write(&sb->s_umount);
2574
2575 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2576
2577 return ret;
2578 }
2579
2580 /*
2581 * change filesystem flags. dir should be a physical root of filesystem.
2582 * If you've mounted a non-root directory somewhere and want to do remount
2583 * on it - tough luck.
2584 */
2585 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2586 int mnt_flags, void *data)
2587 {
2588 int err;
2589 struct super_block *sb = path->mnt->mnt_sb;
2590 struct mount *mnt = real_mount(path->mnt);
2591 struct fs_context *fc;
2592
2593 if (!check_mnt(mnt))
2594 return -EINVAL;
2595
2596 if (path->dentry != path->mnt->mnt_root)
2597 return -EINVAL;
2598
2599 if (!can_change_locked_flags(mnt, mnt_flags))
2600 return -EPERM;
2601
2602 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2603 if (IS_ERR(fc))
2604 return PTR_ERR(fc);
2605
2606 fc->oldapi = true;
2607 err = parse_monolithic_mount_data(fc, data);
2608 if (!err) {
2609 down_write(&sb->s_umount);
2610 err = -EPERM;
2611 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2612 err = reconfigure_super(fc);
2613 if (!err)
2614 set_mount_attributes(mnt, mnt_flags);
2615 }
2616 up_write(&sb->s_umount);
2617 }
2618
2619 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2620
2621 put_fs_context(fc);
2622 return err;
2623 }
2624
2625 static inline int tree_contains_unbindable(struct mount *mnt)
2626 {
2627 struct mount *p;
2628 for (p = mnt; p; p = next_mnt(p, mnt)) {
2629 if (IS_MNT_UNBINDABLE(p))
2630 return 1;
2631 }
2632 return 0;
2633 }
2634
2635 /*
2636 * Check that there aren't references to earlier/same mount namespaces in the
2637 * specified subtree. Such references can act as pins for mount namespaces
2638 * that aren't checked by the mount-cycle checking code, thereby allowing
2639 * cycles to be made.
2640 */
2641 static bool check_for_nsfs_mounts(struct mount *subtree)
2642 {
2643 struct mount *p;
2644 bool ret = false;
2645
2646 lock_mount_hash();
2647 for (p = subtree; p; p = next_mnt(p, subtree))
2648 if (mnt_ns_loop(p->mnt.mnt_root))
2649 goto out;
2650
2651 ret = true;
2652 out:
2653 unlock_mount_hash();
2654 return ret;
2655 }
2656
2657 static int do_move_mount(struct path *old_path, struct path *new_path)
2658 {
2659 struct mnt_namespace *ns;
2660 struct mount *p;
2661 struct mount *old;
2662 struct mount *parent;
2663 struct mountpoint *mp, *old_mp;
2664 int err;
2665 bool attached;
2666
2667 mp = lock_mount(new_path);
2668 if (IS_ERR(mp))
2669 return PTR_ERR(mp);
2670
2671 old = real_mount(old_path->mnt);
2672 p = real_mount(new_path->mnt);
2673 parent = old->mnt_parent;
2674 attached = mnt_has_parent(old);
2675 old_mp = old->mnt_mp;
2676 ns = old->mnt_ns;
2677
2678 err = -EINVAL;
2679 /* The mountpoint must be in our namespace. */
2680 if (!check_mnt(p))
2681 goto out;
2682
2683 /* The thing moved must be mounted... */
2684 if (!is_mounted(&old->mnt))
2685 goto out;
2686
2687 /* ... and either ours or the root of anon namespace */
2688 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2689 goto out;
2690
2691 if (old->mnt.mnt_flags & MNT_LOCKED)
2692 goto out;
2693
2694 if (old_path->dentry != old_path->mnt->mnt_root)
2695 goto out;
2696
2697 if (d_is_dir(new_path->dentry) !=
2698 d_is_dir(old_path->dentry))
2699 goto out;
2700 /*
2701 * Don't move a mount residing in a shared parent.
2702 */
2703 if (attached && IS_MNT_SHARED(parent))
2704 goto out;
2705 /*
2706 * Don't move a mount tree containing unbindable mounts to a destination
2707 * mount which is shared.
2708 */
2709 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2710 goto out;
2711 err = -ELOOP;
2712 if (!check_for_nsfs_mounts(old))
2713 goto out;
2714 for (; mnt_has_parent(p); p = p->mnt_parent)
2715 if (p == old)
2716 goto out;
2717
2718 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2719 attached);
2720 if (err)
2721 goto out;
2722
2723 /* if the mount is moved, it should no longer be expire
2724 * automatically */
2725 list_del_init(&old->mnt_expire);
2726 if (attached)
2727 put_mountpoint(old_mp);
2728 out:
2729 unlock_mount(mp);
2730 if (!err) {
2731 if (attached)
2732 mntput_no_expire(parent);
2733 else
2734 free_mnt_ns(ns);
2735 }
2736 return err;
2737 }
2738
2739 static int do_move_mount_old(struct path *path, const char *old_name)
2740 {
2741 struct path old_path;
2742 int err;
2743
2744 if (!old_name || !*old_name)
2745 return -EINVAL;
2746
2747 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2748 if (err)
2749 return err;
2750
2751 err = do_move_mount(&old_path, path);
2752 path_put(&old_path);
2753 return err;
2754 }
2755
2756 /*
2757 * add a mount into a namespace's mount tree
2758 */
2759 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2760 struct path *path, int mnt_flags)
2761 {
2762 struct mount *parent = real_mount(path->mnt);
2763
2764 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2765
2766 if (unlikely(!check_mnt(parent))) {
2767 /* that's acceptable only for automounts done in private ns */
2768 if (!(mnt_flags & MNT_SHRINKABLE))
2769 return -EINVAL;
2770 /* ... and for those we'd better have mountpoint still alive */
2771 if (!parent->mnt_ns)
2772 return -EINVAL;
2773 }
2774
2775 /* Refuse the same filesystem on the same mount point */
2776 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2777 path->mnt->mnt_root == path->dentry)
2778 return -EBUSY;
2779
2780 if (d_is_symlink(newmnt->mnt.mnt_root))
2781 return -EINVAL;
2782
2783 newmnt->mnt.mnt_flags = mnt_flags;
2784 return graft_tree(newmnt, parent, mp);
2785 }
2786
2787 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2788
2789 /*
2790 * Create a new mount using a superblock configuration and request it
2791 * be added to the namespace tree.
2792 */
2793 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2794 unsigned int mnt_flags)
2795 {
2796 struct vfsmount *mnt;
2797 struct mountpoint *mp;
2798 struct super_block *sb = fc->root->d_sb;
2799 int error;
2800
2801 error = security_sb_kern_mount(sb);
2802 if (!error && mount_too_revealing(sb, &mnt_flags))
2803 error = -EPERM;
2804
2805 if (unlikely(error)) {
2806 fc_drop_locked(fc);
2807 return error;
2808 }
2809
2810 up_write(&sb->s_umount);
2811
2812 mnt = vfs_create_mount(fc);
2813 if (IS_ERR(mnt))
2814 return PTR_ERR(mnt);
2815
2816 mnt_warn_timestamp_expiry(mountpoint, mnt);
2817
2818 mp = lock_mount(mountpoint);
2819 if (IS_ERR(mp)) {
2820 mntput(mnt);
2821 return PTR_ERR(mp);
2822 }
2823 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2824 unlock_mount(mp);
2825 if (error < 0)
2826 mntput(mnt);
2827 return error;
2828 }
2829
2830 /*
2831 * create a new mount for userspace and request it to be added into the
2832 * namespace's tree
2833 */
2834 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2835 int mnt_flags, const char *name, void *data)
2836 {
2837 struct file_system_type *type;
2838 struct fs_context *fc;
2839 const char *subtype = NULL;
2840 int err = 0;
2841
2842 if (!fstype)
2843 return -EINVAL;
2844
2845 type = get_fs_type(fstype);
2846 if (!type)
2847 return -ENODEV;
2848
2849 if (type->fs_flags & FS_HAS_SUBTYPE) {
2850 subtype = strchr(fstype, '.');
2851 if (subtype) {
2852 subtype++;
2853 if (!*subtype) {
2854 put_filesystem(type);
2855 return -EINVAL;
2856 }
2857 }
2858 }
2859
2860 fc = fs_context_for_mount(type, sb_flags);
2861 put_filesystem(type);
2862 if (IS_ERR(fc))
2863 return PTR_ERR(fc);
2864
2865 if (subtype)
2866 err = vfs_parse_fs_string(fc, "subtype",
2867 subtype, strlen(subtype));
2868 if (!err && name)
2869 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2870 if (!err)
2871 err = parse_monolithic_mount_data(fc, data);
2872 if (!err && !mount_capable(fc))
2873 err = -EPERM;
2874 if (!err)
2875 err = vfs_get_tree(fc);
2876 if (!err)
2877 err = do_new_mount_fc(fc, path, mnt_flags);
2878
2879 put_fs_context(fc);
2880 return err;
2881 }
2882
2883 int finish_automount(struct vfsmount *m, struct path *path)
2884 {
2885 struct dentry *dentry = path->dentry;
2886 struct mountpoint *mp;
2887 struct mount *mnt;
2888 int err;
2889
2890 if (!m)
2891 return 0;
2892 if (IS_ERR(m))
2893 return PTR_ERR(m);
2894
2895 mnt = real_mount(m);
2896 /* The new mount record should have at least 2 refs to prevent it being
2897 * expired before we get a chance to add it
2898 */
2899 BUG_ON(mnt_get_count(mnt) < 2);
2900
2901 if (m->mnt_sb == path->mnt->mnt_sb &&
2902 m->mnt_root == dentry) {
2903 err = -ELOOP;
2904 goto discard;
2905 }
2906
2907 /*
2908 * we don't want to use lock_mount() - in this case finding something
2909 * that overmounts our mountpoint to be means "quitely drop what we've
2910 * got", not "try to mount it on top".
2911 */
2912 inode_lock(dentry->d_inode);
2913 namespace_lock();
2914 if (unlikely(cant_mount(dentry))) {
2915 err = -ENOENT;
2916 goto discard_locked;
2917 }
2918 rcu_read_lock();
2919 if (unlikely(__lookup_mnt(path->mnt, dentry))) {
2920 rcu_read_unlock();
2921 err = 0;
2922 goto discard_locked;
2923 }
2924 rcu_read_unlock();
2925 mp = get_mountpoint(dentry);
2926 if (IS_ERR(mp)) {
2927 err = PTR_ERR(mp);
2928 goto discard_locked;
2929 }
2930
2931 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2932 unlock_mount(mp);
2933 if (unlikely(err))
2934 goto discard;
2935 mntput(m);
2936 return 0;
2937
2938 discard_locked:
2939 namespace_unlock();
2940 inode_unlock(dentry->d_inode);
2941 discard:
2942 /* remove m from any expiration list it may be on */
2943 if (!list_empty(&mnt->mnt_expire)) {
2944 namespace_lock();
2945 list_del_init(&mnt->mnt_expire);
2946 namespace_unlock();
2947 }
2948 mntput(m);
2949 mntput(m);
2950 return err;
2951 }
2952
2953 /**
2954 * mnt_set_expiry - Put a mount on an expiration list
2955 * @mnt: The mount to list.
2956 * @expiry_list: The list to add the mount to.
2957 */
2958 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2959 {
2960 namespace_lock();
2961
2962 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2963
2964 namespace_unlock();
2965 }
2966 EXPORT_SYMBOL(mnt_set_expiry);
2967
2968 /*
2969 * process a list of expirable mountpoints with the intent of discarding any
2970 * mountpoints that aren't in use and haven't been touched since last we came
2971 * here
2972 */
2973 void mark_mounts_for_expiry(struct list_head *mounts)
2974 {
2975 struct mount *mnt, *next;
2976 LIST_HEAD(graveyard);
2977
2978 if (list_empty(mounts))
2979 return;
2980
2981 namespace_lock();
2982 lock_mount_hash();
2983
2984 /* extract from the expiration list every vfsmount that matches the
2985 * following criteria:
2986 * - only referenced by its parent vfsmount
2987 * - still marked for expiry (marked on the last call here; marks are
2988 * cleared by mntput())
2989 */
2990 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2991 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2992 propagate_mount_busy(mnt, 1))
2993 continue;
2994 list_move(&mnt->mnt_expire, &graveyard);
2995 }
2996 while (!list_empty(&graveyard)) {
2997 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2998 touch_mnt_namespace(mnt->mnt_ns);
2999 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3000 }
3001 unlock_mount_hash();
3002 namespace_unlock();
3003 }
3004
3005 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3006
3007 /*
3008 * Ripoff of 'select_parent()'
3009 *
3010 * search the list of submounts for a given mountpoint, and move any
3011 * shrinkable submounts to the 'graveyard' list.
3012 */
3013 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3014 {
3015 struct mount *this_parent = parent;
3016 struct list_head *next;
3017 int found = 0;
3018
3019 repeat:
3020 next = this_parent->mnt_mounts.next;
3021 resume:
3022 while (next != &this_parent->mnt_mounts) {
3023 struct list_head *tmp = next;
3024 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3025
3026 next = tmp->next;
3027 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3028 continue;
3029 /*
3030 * Descend a level if the d_mounts list is non-empty.
3031 */
3032 if (!list_empty(&mnt->mnt_mounts)) {
3033 this_parent = mnt;
3034 goto repeat;
3035 }
3036
3037 if (!propagate_mount_busy(mnt, 1)) {
3038 list_move_tail(&mnt->mnt_expire, graveyard);
3039 found++;
3040 }
3041 }
3042 /*
3043 * All done at this level ... ascend and resume the search
3044 */
3045 if (this_parent != parent) {
3046 next = this_parent->mnt_child.next;
3047 this_parent = this_parent->mnt_parent;
3048 goto resume;
3049 }
3050 return found;
3051 }
3052
3053 /*
3054 * process a list of expirable mountpoints with the intent of discarding any
3055 * submounts of a specific parent mountpoint
3056 *
3057 * mount_lock must be held for write
3058 */
3059 static void shrink_submounts(struct mount *mnt)
3060 {
3061 LIST_HEAD(graveyard);
3062 struct mount *m;
3063
3064 /* extract submounts of 'mountpoint' from the expiration list */
3065 while (select_submounts(mnt, &graveyard)) {
3066 while (!list_empty(&graveyard)) {
3067 m = list_first_entry(&graveyard, struct mount,
3068 mnt_expire);
3069 touch_mnt_namespace(m->mnt_ns);
3070 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3071 }
3072 }
3073 }
3074
3075 void *copy_mount_options(const void __user * data)
3076 {
3077 char *copy;
3078 unsigned size;
3079
3080 if (!data)
3081 return NULL;
3082
3083 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3084 if (!copy)
3085 return ERR_PTR(-ENOMEM);
3086
3087 size = PAGE_SIZE - offset_in_page(data);
3088
3089 if (copy_from_user(copy, data, size)) {
3090 kfree(copy);
3091 return ERR_PTR(-EFAULT);
3092 }
3093 if (size != PAGE_SIZE) {
3094 if (copy_from_user(copy + size, data + size, PAGE_SIZE - size))
3095 memset(copy + size, 0, PAGE_SIZE - size);
3096 }
3097 return copy;
3098 }
3099
3100 char *copy_mount_string(const void __user *data)
3101 {
3102 return data ? strndup_user(data, PATH_MAX) : NULL;
3103 }
3104
3105 /*
3106 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3107 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3108 *
3109 * data is a (void *) that can point to any structure up to
3110 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3111 * information (or be NULL).
3112 *
3113 * Pre-0.97 versions of mount() didn't have a flags word.
3114 * When the flags word was introduced its top half was required
3115 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3116 * Therefore, if this magic number is present, it carries no information
3117 * and must be discarded.
3118 */
3119 int path_mount(const char *dev_name, struct path *path,
3120 const char *type_page, unsigned long flags, void *data_page)
3121 {
3122 unsigned int mnt_flags = 0, sb_flags;
3123 int ret;
3124
3125 /* Discard magic */
3126 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3127 flags &= ~MS_MGC_MSK;
3128
3129 /* Basic sanity checks */
3130 if (data_page)
3131 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3132
3133 if (flags & MS_NOUSER)
3134 return -EINVAL;
3135
3136 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3137 if (ret)
3138 return ret;
3139 if (!may_mount())
3140 return -EPERM;
3141 if ((flags & SB_MANDLOCK) && !may_mandlock())
3142 return -EPERM;
3143
3144 /* Default to relatime unless overriden */
3145 if (!(flags & MS_NOATIME))
3146 mnt_flags |= MNT_RELATIME;
3147
3148 /* Separate the per-mountpoint flags */
3149 if (flags & MS_NOSUID)
3150 mnt_flags |= MNT_NOSUID;
3151 if (flags & MS_NODEV)
3152 mnt_flags |= MNT_NODEV;
3153 if (flags & MS_NOEXEC)
3154 mnt_flags |= MNT_NOEXEC;
3155 if (flags & MS_NOATIME)
3156 mnt_flags |= MNT_NOATIME;
3157 if (flags & MS_NODIRATIME)
3158 mnt_flags |= MNT_NODIRATIME;
3159 if (flags & MS_STRICTATIME)
3160 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3161 if (flags & MS_RDONLY)
3162 mnt_flags |= MNT_READONLY;
3163
3164 /* The default atime for remount is preservation */
3165 if ((flags & MS_REMOUNT) &&
3166 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3167 MS_STRICTATIME)) == 0)) {
3168 mnt_flags &= ~MNT_ATIME_MASK;
3169 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3170 }
3171
3172 sb_flags = flags & (SB_RDONLY |
3173 SB_SYNCHRONOUS |
3174 SB_MANDLOCK |
3175 SB_DIRSYNC |
3176 SB_SILENT |
3177 SB_POSIXACL |
3178 SB_LAZYTIME |
3179 SB_I_VERSION);
3180
3181 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3182 return do_reconfigure_mnt(path, mnt_flags);
3183 if (flags & MS_REMOUNT)
3184 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3185 if (flags & MS_BIND)
3186 return do_loopback(path, dev_name, flags & MS_REC);
3187 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3188 return do_change_type(path, flags);
3189 if (flags & MS_MOVE)
3190 return do_move_mount_old(path, dev_name);
3191
3192 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3193 data_page);
3194 }
3195
3196 long do_mount(const char *dev_name, const char __user *dir_name,
3197 const char *type_page, unsigned long flags, void *data_page)
3198 {
3199 struct path path;
3200 int ret;
3201
3202 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3203 if (ret)
3204 return ret;
3205 ret = path_mount(dev_name, &path, type_page, flags, data_page);
3206 path_put(&path);
3207 return ret;
3208 }
3209
3210 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3211 {
3212 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3213 }
3214
3215 static void dec_mnt_namespaces(struct ucounts *ucounts)
3216 {
3217 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3218 }
3219
3220 static void free_mnt_ns(struct mnt_namespace *ns)
3221 {
3222 if (!is_anon_ns(ns))
3223 ns_free_inum(&ns->ns);
3224 dec_mnt_namespaces(ns->ucounts);
3225 put_user_ns(ns->user_ns);
3226 kfree(ns);
3227 }
3228
3229 /*
3230 * Assign a sequence number so we can detect when we attempt to bind
3231 * mount a reference to an older mount namespace into the current
3232 * mount namespace, preventing reference counting loops. A 64bit
3233 * number incrementing at 10Ghz will take 12,427 years to wrap which
3234 * is effectively never, so we can ignore the possibility.
3235 */
3236 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3237
3238 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3239 {
3240 struct mnt_namespace *new_ns;
3241 struct ucounts *ucounts;
3242 int ret;
3243
3244 ucounts = inc_mnt_namespaces(user_ns);
3245 if (!ucounts)
3246 return ERR_PTR(-ENOSPC);
3247
3248 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3249 if (!new_ns) {
3250 dec_mnt_namespaces(ucounts);
3251 return ERR_PTR(-ENOMEM);
3252 }
3253 if (!anon) {
3254 ret = ns_alloc_inum(&new_ns->ns);
3255 if (ret) {
3256 kfree(new_ns);
3257 dec_mnt_namespaces(ucounts);
3258 return ERR_PTR(ret);
3259 }
3260 }
3261 new_ns->ns.ops = &mntns_operations;
3262 if (!anon)
3263 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3264 atomic_set(&new_ns->count, 1);
3265 INIT_LIST_HEAD(&new_ns->list);
3266 init_waitqueue_head(&new_ns->poll);
3267 spin_lock_init(&new_ns->ns_lock);
3268 new_ns->user_ns = get_user_ns(user_ns);
3269 new_ns->ucounts = ucounts;
3270 return new_ns;
3271 }
3272
3273 __latent_entropy
3274 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3275 struct user_namespace *user_ns, struct fs_struct *new_fs)
3276 {
3277 struct mnt_namespace *new_ns;
3278 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3279 struct mount *p, *q;
3280 struct mount *old;
3281 struct mount *new;
3282 int copy_flags;
3283
3284 BUG_ON(!ns);
3285
3286 if (likely(!(flags & CLONE_NEWNS))) {
3287 get_mnt_ns(ns);
3288 return ns;
3289 }
3290
3291 old = ns->root;
3292
3293 new_ns = alloc_mnt_ns(user_ns, false);
3294 if (IS_ERR(new_ns))
3295 return new_ns;
3296
3297 namespace_lock();
3298 /* First pass: copy the tree topology */
3299 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3300 if (user_ns != ns->user_ns)
3301 copy_flags |= CL_SHARED_TO_SLAVE;
3302 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3303 if (IS_ERR(new)) {
3304 namespace_unlock();
3305 free_mnt_ns(new_ns);
3306 return ERR_CAST(new);
3307 }
3308 if (user_ns != ns->user_ns) {
3309 lock_mount_hash();
3310 lock_mnt_tree(new);
3311 unlock_mount_hash();
3312 }
3313 new_ns->root = new;
3314 list_add_tail(&new_ns->list, &new->mnt_list);
3315
3316 /*
3317 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3318 * as belonging to new namespace. We have already acquired a private
3319 * fs_struct, so tsk->fs->lock is not needed.
3320 */
3321 p = old;
3322 q = new;
3323 while (p) {
3324 q->mnt_ns = new_ns;
3325 new_ns->mounts++;
3326 if (new_fs) {
3327 if (&p->mnt == new_fs->root.mnt) {
3328 new_fs->root.mnt = mntget(&q->mnt);
3329 rootmnt = &p->mnt;
3330 }
3331 if (&p->mnt == new_fs->pwd.mnt) {
3332 new_fs->pwd.mnt = mntget(&q->mnt);
3333 pwdmnt = &p->mnt;
3334 }
3335 }
3336 p = next_mnt(p, old);
3337 q = next_mnt(q, new);
3338 if (!q)
3339 break;
3340 while (p->mnt.mnt_root != q->mnt.mnt_root)
3341 p = next_mnt(p, old);
3342 }
3343 namespace_unlock();
3344
3345 if (rootmnt)
3346 mntput(rootmnt);
3347 if (pwdmnt)
3348 mntput(pwdmnt);
3349
3350 return new_ns;
3351 }
3352
3353 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3354 {
3355 struct mount *mnt = real_mount(m);
3356 struct mnt_namespace *ns;
3357 struct super_block *s;
3358 struct path path;
3359 int err;
3360
3361 ns = alloc_mnt_ns(&init_user_ns, true);
3362 if (IS_ERR(ns)) {
3363 mntput(m);
3364 return ERR_CAST(ns);
3365 }
3366 mnt->mnt_ns = ns;
3367 ns->root = mnt;
3368 ns->mounts++;
3369 list_add(&mnt->mnt_list, &ns->list);
3370
3371 err = vfs_path_lookup(m->mnt_root, m,
3372 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3373
3374 put_mnt_ns(ns);
3375
3376 if (err)
3377 return ERR_PTR(err);
3378
3379 /* trade a vfsmount reference for active sb one */
3380 s = path.mnt->mnt_sb;
3381 atomic_inc(&s->s_active);
3382 mntput(path.mnt);
3383 /* lock the sucker */
3384 down_write(&s->s_umount);
3385 /* ... and return the root of (sub)tree on it */
3386 return path.dentry;
3387 }
3388 EXPORT_SYMBOL(mount_subtree);
3389
3390 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3391 char __user *, type, unsigned long, flags, void __user *, data)
3392 {
3393 int ret;
3394 char *kernel_type;
3395 char *kernel_dev;
3396 void *options;
3397
3398 kernel_type = copy_mount_string(type);
3399 ret = PTR_ERR(kernel_type);
3400 if (IS_ERR(kernel_type))
3401 goto out_type;
3402
3403 kernel_dev = copy_mount_string(dev_name);
3404 ret = PTR_ERR(kernel_dev);
3405 if (IS_ERR(kernel_dev))
3406 goto out_dev;
3407
3408 options = copy_mount_options(data);
3409 ret = PTR_ERR(options);
3410 if (IS_ERR(options))
3411 goto out_data;
3412
3413 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3414
3415 kfree(options);
3416 out_data:
3417 kfree(kernel_dev);
3418 out_dev:
3419 kfree(kernel_type);
3420 out_type:
3421 return ret;
3422 }
3423
3424 /*
3425 * Create a kernel mount representation for a new, prepared superblock
3426 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3427 */
3428 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3429 unsigned int, attr_flags)
3430 {
3431 struct mnt_namespace *ns;
3432 struct fs_context *fc;
3433 struct file *file;
3434 struct path newmount;
3435 struct mount *mnt;
3436 struct fd f;
3437 unsigned int mnt_flags = 0;
3438 long ret;
3439
3440 if (!may_mount())
3441 return -EPERM;
3442
3443 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3444 return -EINVAL;
3445
3446 if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3447 MOUNT_ATTR_NOSUID |
3448 MOUNT_ATTR_NODEV |
3449 MOUNT_ATTR_NOEXEC |
3450 MOUNT_ATTR__ATIME |
3451 MOUNT_ATTR_NODIRATIME))
3452 return -EINVAL;
3453
3454 if (attr_flags & MOUNT_ATTR_RDONLY)
3455 mnt_flags |= MNT_READONLY;
3456 if (attr_flags & MOUNT_ATTR_NOSUID)
3457 mnt_flags |= MNT_NOSUID;
3458 if (attr_flags & MOUNT_ATTR_NODEV)
3459 mnt_flags |= MNT_NODEV;
3460 if (attr_flags & MOUNT_ATTR_NOEXEC)
3461 mnt_flags |= MNT_NOEXEC;
3462 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3463 mnt_flags |= MNT_NODIRATIME;
3464
3465 switch (attr_flags & MOUNT_ATTR__ATIME) {
3466 case MOUNT_ATTR_STRICTATIME:
3467 break;
3468 case MOUNT_ATTR_NOATIME:
3469 mnt_flags |= MNT_NOATIME;
3470 break;
3471 case MOUNT_ATTR_RELATIME:
3472 mnt_flags |= MNT_RELATIME;
3473 break;
3474 default:
3475 return -EINVAL;
3476 }
3477
3478 f = fdget(fs_fd);
3479 if (!f.file)
3480 return -EBADF;
3481
3482 ret = -EINVAL;
3483 if (f.file->f_op != &fscontext_fops)
3484 goto err_fsfd;
3485
3486 fc = f.file->private_data;
3487
3488 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3489 if (ret < 0)
3490 goto err_fsfd;
3491
3492 /* There must be a valid superblock or we can't mount it */
3493 ret = -EINVAL;
3494 if (!fc->root)
3495 goto err_unlock;
3496
3497 ret = -EPERM;
3498 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3499 pr_warn("VFS: Mount too revealing\n");
3500 goto err_unlock;
3501 }
3502
3503 ret = -EBUSY;
3504 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3505 goto err_unlock;
3506
3507 ret = -EPERM;
3508 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3509 goto err_unlock;
3510
3511 newmount.mnt = vfs_create_mount(fc);
3512 if (IS_ERR(newmount.mnt)) {
3513 ret = PTR_ERR(newmount.mnt);
3514 goto err_unlock;
3515 }
3516 newmount.dentry = dget(fc->root);
3517 newmount.mnt->mnt_flags = mnt_flags;
3518
3519 /* We've done the mount bit - now move the file context into more or
3520 * less the same state as if we'd done an fspick(). We don't want to
3521 * do any memory allocation or anything like that at this point as we
3522 * don't want to have to handle any errors incurred.
3523 */
3524 vfs_clean_context(fc);
3525
3526 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3527 if (IS_ERR(ns)) {
3528 ret = PTR_ERR(ns);
3529 goto err_path;
3530 }
3531 mnt = real_mount(newmount.mnt);
3532 mnt->mnt_ns = ns;
3533 ns->root = mnt;
3534 ns->mounts = 1;
3535 list_add(&mnt->mnt_list, &ns->list);
3536 mntget(newmount.mnt);
3537
3538 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3539 * it, not just simply put it.
3540 */
3541 file = dentry_open(&newmount, O_PATH, fc->cred);
3542 if (IS_ERR(file)) {
3543 dissolve_on_fput(newmount.mnt);
3544 ret = PTR_ERR(file);
3545 goto err_path;
3546 }
3547 file->f_mode |= FMODE_NEED_UNMOUNT;
3548
3549 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3550 if (ret >= 0)
3551 fd_install(ret, file);
3552 else
3553 fput(file);
3554
3555 err_path:
3556 path_put(&newmount);
3557 err_unlock:
3558 mutex_unlock(&fc->uapi_mutex);
3559 err_fsfd:
3560 fdput(f);
3561 return ret;
3562 }
3563
3564 /*
3565 * Move a mount from one place to another. In combination with
3566 * fsopen()/fsmount() this is used to install a new mount and in combination
3567 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3568 * a mount subtree.
3569 *
3570 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3571 */
3572 SYSCALL_DEFINE5(move_mount,
3573 int, from_dfd, const char __user *, from_pathname,
3574 int, to_dfd, const char __user *, to_pathname,
3575 unsigned int, flags)
3576 {
3577 struct path from_path, to_path;
3578 unsigned int lflags;
3579 int ret = 0;
3580
3581 if (!may_mount())
3582 return -EPERM;
3583
3584 if (flags & ~MOVE_MOUNT__MASK)
3585 return -EINVAL;
3586
3587 /* If someone gives a pathname, they aren't permitted to move
3588 * from an fd that requires unmount as we can't get at the flag
3589 * to clear it afterwards.
3590 */
3591 lflags = 0;
3592 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3593 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3594 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3595
3596 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3597 if (ret < 0)
3598 return ret;
3599
3600 lflags = 0;
3601 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3602 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3603 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3604
3605 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3606 if (ret < 0)
3607 goto out_from;
3608
3609 ret = security_move_mount(&from_path, &to_path);
3610 if (ret < 0)
3611 goto out_to;
3612
3613 ret = do_move_mount(&from_path, &to_path);
3614
3615 out_to:
3616 path_put(&to_path);
3617 out_from:
3618 path_put(&from_path);
3619 return ret;
3620 }
3621
3622 /*
3623 * Return true if path is reachable from root
3624 *
3625 * namespace_sem or mount_lock is held
3626 */
3627 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3628 const struct path *root)
3629 {
3630 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3631 dentry = mnt->mnt_mountpoint;
3632 mnt = mnt->mnt_parent;
3633 }
3634 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3635 }
3636
3637 bool path_is_under(const struct path *path1, const struct path *path2)
3638 {
3639 bool res;
3640 read_seqlock_excl(&mount_lock);
3641 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3642 read_sequnlock_excl(&mount_lock);
3643 return res;
3644 }
3645 EXPORT_SYMBOL(path_is_under);
3646
3647 /*
3648 * pivot_root Semantics:
3649 * Moves the root file system of the current process to the directory put_old,
3650 * makes new_root as the new root file system of the current process, and sets
3651 * root/cwd of all processes which had them on the current root to new_root.
3652 *
3653 * Restrictions:
3654 * The new_root and put_old must be directories, and must not be on the
3655 * same file system as the current process root. The put_old must be
3656 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3657 * pointed to by put_old must yield the same directory as new_root. No other
3658 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3659 *
3660 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3661 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3662 * in this situation.
3663 *
3664 * Notes:
3665 * - we don't move root/cwd if they are not at the root (reason: if something
3666 * cared enough to change them, it's probably wrong to force them elsewhere)
3667 * - it's okay to pick a root that isn't the root of a file system, e.g.
3668 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3669 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3670 * first.
3671 */
3672 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3673 const char __user *, put_old)
3674 {
3675 struct path new, old, root;
3676 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3677 struct mountpoint *old_mp, *root_mp;
3678 int error;
3679
3680 if (!may_mount())
3681 return -EPERM;
3682
3683 error = user_path_at(AT_FDCWD, new_root,
3684 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3685 if (error)
3686 goto out0;
3687
3688 error = user_path_at(AT_FDCWD, put_old,
3689 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3690 if (error)
3691 goto out1;
3692
3693 error = security_sb_pivotroot(&old, &new);
3694 if (error)
3695 goto out2;
3696
3697 get_fs_root(current->fs, &root);
3698 old_mp = lock_mount(&old);
3699 error = PTR_ERR(old_mp);
3700 if (IS_ERR(old_mp))
3701 goto out3;
3702
3703 error = -EINVAL;
3704 new_mnt = real_mount(new.mnt);
3705 root_mnt = real_mount(root.mnt);
3706 old_mnt = real_mount(old.mnt);
3707 ex_parent = new_mnt->mnt_parent;
3708 root_parent = root_mnt->mnt_parent;
3709 if (IS_MNT_SHARED(old_mnt) ||
3710 IS_MNT_SHARED(ex_parent) ||
3711 IS_MNT_SHARED(root_parent))
3712 goto out4;
3713 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3714 goto out4;
3715 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3716 goto out4;
3717 error = -ENOENT;
3718 if (d_unlinked(new.dentry))
3719 goto out4;
3720 error = -EBUSY;
3721 if (new_mnt == root_mnt || old_mnt == root_mnt)
3722 goto out4; /* loop, on the same file system */
3723 error = -EINVAL;
3724 if (root.mnt->mnt_root != root.dentry)
3725 goto out4; /* not a mountpoint */
3726 if (!mnt_has_parent(root_mnt))
3727 goto out4; /* not attached */
3728 if (new.mnt->mnt_root != new.dentry)
3729 goto out4; /* not a mountpoint */
3730 if (!mnt_has_parent(new_mnt))
3731 goto out4; /* not attached */
3732 /* make sure we can reach put_old from new_root */
3733 if (!is_path_reachable(old_mnt, old.dentry, &new))
3734 goto out4;
3735 /* make certain new is below the root */
3736 if (!is_path_reachable(new_mnt, new.dentry, &root))
3737 goto out4;
3738 lock_mount_hash();
3739 umount_mnt(new_mnt);
3740 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
3741 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3742 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3743 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3744 }
3745 /* mount old root on put_old */
3746 attach_mnt(root_mnt, old_mnt, old_mp);
3747 /* mount new_root on / */
3748 attach_mnt(new_mnt, root_parent, root_mp);
3749 mnt_add_count(root_parent, -1);
3750 touch_mnt_namespace(current->nsproxy->mnt_ns);
3751 /* A moved mount should not expire automatically */
3752 list_del_init(&new_mnt->mnt_expire);
3753 put_mountpoint(root_mp);
3754 unlock_mount_hash();
3755 chroot_fs_refs(&root, &new);
3756 error = 0;
3757 out4:
3758 unlock_mount(old_mp);
3759 if (!error)
3760 mntput_no_expire(ex_parent);
3761 out3:
3762 path_put(&root);
3763 out2:
3764 path_put(&old);
3765 out1:
3766 path_put(&new);
3767 out0:
3768 return error;
3769 }
3770
3771 static void __init init_mount_tree(void)
3772 {
3773 struct vfsmount *mnt;
3774 struct mount *m;
3775 struct mnt_namespace *ns;
3776 struct path root;
3777
3778 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
3779 if (IS_ERR(mnt))
3780 panic("Can't create rootfs");
3781
3782 ns = alloc_mnt_ns(&init_user_ns, false);
3783 if (IS_ERR(ns))
3784 panic("Can't allocate initial namespace");
3785 m = real_mount(mnt);
3786 m->mnt_ns = ns;
3787 ns->root = m;
3788 ns->mounts = 1;
3789 list_add(&m->mnt_list, &ns->list);
3790 init_task.nsproxy->mnt_ns = ns;
3791 get_mnt_ns(ns);
3792
3793 root.mnt = mnt;
3794 root.dentry = mnt->mnt_root;
3795 mnt->mnt_flags |= MNT_LOCKED;
3796
3797 set_fs_pwd(current->fs, &root);
3798 set_fs_root(current->fs, &root);
3799 }
3800
3801 void __init mnt_init(void)
3802 {
3803 int err;
3804
3805 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3806 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3807
3808 mount_hashtable = alloc_large_system_hash("Mount-cache",
3809 sizeof(struct hlist_head),
3810 mhash_entries, 19,
3811 HASH_ZERO,
3812 &m_hash_shift, &m_hash_mask, 0, 0);
3813 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3814 sizeof(struct hlist_head),
3815 mphash_entries, 19,
3816 HASH_ZERO,
3817 &mp_hash_shift, &mp_hash_mask, 0, 0);
3818
3819 if (!mount_hashtable || !mountpoint_hashtable)
3820 panic("Failed to allocate mount hash table\n");
3821
3822 kernfs_init();
3823
3824 err = sysfs_init();
3825 if (err)
3826 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3827 __func__, err);
3828 fs_kobj = kobject_create_and_add("fs", NULL);
3829 if (!fs_kobj)
3830 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3831 shmem_init();
3832 init_rootfs();
3833 init_mount_tree();
3834 }
3835
3836 void put_mnt_ns(struct mnt_namespace *ns)
3837 {
3838 if (!atomic_dec_and_test(&ns->count))
3839 return;
3840 drop_collected_mounts(&ns->root->mnt);
3841 free_mnt_ns(ns);
3842 }
3843
3844 struct vfsmount *kern_mount(struct file_system_type *type)
3845 {
3846 struct vfsmount *mnt;
3847 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
3848 if (!IS_ERR(mnt)) {
3849 /*
3850 * it is a longterm mount, don't release mnt until
3851 * we unmount before file sys is unregistered
3852 */
3853 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3854 }
3855 return mnt;
3856 }
3857 EXPORT_SYMBOL_GPL(kern_mount);
3858
3859 void kern_unmount(struct vfsmount *mnt)
3860 {
3861 /* release long term mount so mount point can be released */
3862 if (!IS_ERR_OR_NULL(mnt)) {
3863 real_mount(mnt)->mnt_ns = NULL;
3864 synchronize_rcu(); /* yecchhh... */
3865 mntput(mnt);
3866 }
3867 }
3868 EXPORT_SYMBOL(kern_unmount);
3869
3870 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
3871 {
3872 unsigned int i;
3873
3874 for (i = 0; i < num; i++)
3875 if (mnt[i])
3876 real_mount(mnt[i])->mnt_ns = NULL;
3877 synchronize_rcu_expedited();
3878 for (i = 0; i < num; i++)
3879 mntput(mnt[i]);
3880 }
3881 EXPORT_SYMBOL(kern_unmount_array);
3882
3883 bool our_mnt(struct vfsmount *mnt)
3884 {
3885 return check_mnt(real_mount(mnt));
3886 }
3887
3888 bool current_chrooted(void)
3889 {
3890 /* Does the current process have a non-standard root */
3891 struct path ns_root;
3892 struct path fs_root;
3893 bool chrooted;
3894
3895 /* Find the namespace root */
3896 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3897 ns_root.dentry = ns_root.mnt->mnt_root;
3898 path_get(&ns_root);
3899 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3900 ;
3901
3902 get_fs_root(current->fs, &fs_root);
3903
3904 chrooted = !path_equal(&fs_root, &ns_root);
3905
3906 path_put(&fs_root);
3907 path_put(&ns_root);
3908
3909 return chrooted;
3910 }
3911
3912 static bool mnt_already_visible(struct mnt_namespace *ns,
3913 const struct super_block *sb,
3914 int *new_mnt_flags)
3915 {
3916 int new_flags = *new_mnt_flags;
3917 struct mount *mnt;
3918 bool visible = false;
3919
3920 down_read(&namespace_sem);
3921 lock_ns_list(ns);
3922 list_for_each_entry(mnt, &ns->list, mnt_list) {
3923 struct mount *child;
3924 int mnt_flags;
3925
3926 if (mnt_is_cursor(mnt))
3927 continue;
3928
3929 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
3930 continue;
3931
3932 /* This mount is not fully visible if it's root directory
3933 * is not the root directory of the filesystem.
3934 */
3935 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3936 continue;
3937
3938 /* A local view of the mount flags */
3939 mnt_flags = mnt->mnt.mnt_flags;
3940
3941 /* Don't miss readonly hidden in the superblock flags */
3942 if (sb_rdonly(mnt->mnt.mnt_sb))
3943 mnt_flags |= MNT_LOCK_READONLY;
3944
3945 /* Verify the mount flags are equal to or more permissive
3946 * than the proposed new mount.
3947 */
3948 if ((mnt_flags & MNT_LOCK_READONLY) &&
3949 !(new_flags & MNT_READONLY))
3950 continue;
3951 if ((mnt_flags & MNT_LOCK_ATIME) &&
3952 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3953 continue;
3954
3955 /* This mount is not fully visible if there are any
3956 * locked child mounts that cover anything except for
3957 * empty directories.
3958 */
3959 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3960 struct inode *inode = child->mnt_mountpoint->d_inode;
3961 /* Only worry about locked mounts */
3962 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3963 continue;
3964 /* Is the directory permanetly empty? */
3965 if (!is_empty_dir_inode(inode))
3966 goto next;
3967 }
3968 /* Preserve the locked attributes */
3969 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3970 MNT_LOCK_ATIME);
3971 visible = true;
3972 goto found;
3973 next: ;
3974 }
3975 found:
3976 unlock_ns_list(ns);
3977 up_read(&namespace_sem);
3978 return visible;
3979 }
3980
3981 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
3982 {
3983 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3984 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3985 unsigned long s_iflags;
3986
3987 if (ns->user_ns == &init_user_ns)
3988 return false;
3989
3990 /* Can this filesystem be too revealing? */
3991 s_iflags = sb->s_iflags;
3992 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3993 return false;
3994
3995 if ((s_iflags & required_iflags) != required_iflags) {
3996 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3997 required_iflags);
3998 return true;
3999 }
4000
4001 return !mnt_already_visible(ns, sb, new_mnt_flags);
4002 }
4003
4004 bool mnt_may_suid(struct vfsmount *mnt)
4005 {
4006 /*
4007 * Foreign mounts (accessed via fchdir or through /proc
4008 * symlinks) are always treated as if they are nosuid. This
4009 * prevents namespaces from trusting potentially unsafe
4010 * suid/sgid bits, file caps, or security labels that originate
4011 * in other namespaces.
4012 */
4013 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4014 current_in_userns(mnt->mnt_sb->s_user_ns);
4015 }
4016
4017 static struct ns_common *mntns_get(struct task_struct *task)
4018 {
4019 struct ns_common *ns = NULL;
4020 struct nsproxy *nsproxy;
4021
4022 task_lock(task);
4023 nsproxy = task->nsproxy;
4024 if (nsproxy) {
4025 ns = &nsproxy->mnt_ns->ns;
4026 get_mnt_ns(to_mnt_ns(ns));
4027 }
4028 task_unlock(task);
4029
4030 return ns;
4031 }
4032
4033 static void mntns_put(struct ns_common *ns)
4034 {
4035 put_mnt_ns(to_mnt_ns(ns));
4036 }
4037
4038 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4039 {
4040 struct nsproxy *nsproxy = nsset->nsproxy;
4041 struct fs_struct *fs = nsset->fs;
4042 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4043 struct user_namespace *user_ns = nsset->cred->user_ns;
4044 struct path root;
4045 int err;
4046
4047 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4048 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4049 !ns_capable(user_ns, CAP_SYS_ADMIN))
4050 return -EPERM;
4051
4052 if (is_anon_ns(mnt_ns))
4053 return -EINVAL;
4054
4055 if (fs->users != 1)
4056 return -EINVAL;
4057
4058 get_mnt_ns(mnt_ns);
4059 old_mnt_ns = nsproxy->mnt_ns;
4060 nsproxy->mnt_ns = mnt_ns;
4061
4062 /* Find the root */
4063 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4064 "/", LOOKUP_DOWN, &root);
4065 if (err) {
4066 /* revert to old namespace */
4067 nsproxy->mnt_ns = old_mnt_ns;
4068 put_mnt_ns(mnt_ns);
4069 return err;
4070 }
4071
4072 put_mnt_ns(old_mnt_ns);
4073
4074 /* Update the pwd and root */
4075 set_fs_pwd(fs, &root);
4076 set_fs_root(fs, &root);
4077
4078 path_put(&root);
4079 return 0;
4080 }
4081
4082 static struct user_namespace *mntns_owner(struct ns_common *ns)
4083 {
4084 return to_mnt_ns(ns)->user_ns;
4085 }
4086
4087 const struct proc_ns_operations mntns_operations = {
4088 .name = "mnt",
4089 .type = CLONE_NEWNS,
4090 .get = mntns_get,
4091 .put = mntns_put,
4092 .install = mntns_install,
4093 .owner = mntns_owner,
4094 };