]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/namespace.c
[PATCH] count ghost references to vfsmounts
[mirror_ubuntu-bionic-kernel.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/quotaops.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <linux/log2.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include "pnode.h"
32 #include "internal.h"
33
34 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
35 #define HASH_SIZE (1UL << HASH_SHIFT)
36
37 /* spinlock for vfsmount related operations, inplace of dcache_lock */
38 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
39
40 static int event;
41
42 static struct list_head *mount_hashtable __read_mostly;
43 static struct kmem_cache *mnt_cache __read_mostly;
44 static struct rw_semaphore namespace_sem;
45
46 /* /sys/fs */
47 struct kobject *fs_kobj;
48 EXPORT_SYMBOL_GPL(fs_kobj);
49
50 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
51 {
52 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
53 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
54 tmp = tmp + (tmp >> HASH_SHIFT);
55 return tmp & (HASH_SIZE - 1);
56 }
57
58 struct vfsmount *alloc_vfsmnt(const char *name)
59 {
60 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
61 if (mnt) {
62 atomic_set(&mnt->mnt_count, 1);
63 INIT_LIST_HEAD(&mnt->mnt_hash);
64 INIT_LIST_HEAD(&mnt->mnt_child);
65 INIT_LIST_HEAD(&mnt->mnt_mounts);
66 INIT_LIST_HEAD(&mnt->mnt_list);
67 INIT_LIST_HEAD(&mnt->mnt_expire);
68 INIT_LIST_HEAD(&mnt->mnt_share);
69 INIT_LIST_HEAD(&mnt->mnt_slave_list);
70 INIT_LIST_HEAD(&mnt->mnt_slave);
71 if (name) {
72 int size = strlen(name) + 1;
73 char *newname = kmalloc(size, GFP_KERNEL);
74 if (newname) {
75 memcpy(newname, name, size);
76 mnt->mnt_devname = newname;
77 }
78 }
79 }
80 return mnt;
81 }
82
83 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
84 {
85 mnt->mnt_sb = sb;
86 mnt->mnt_root = dget(sb->s_root);
87 return 0;
88 }
89
90 EXPORT_SYMBOL(simple_set_mnt);
91
92 void free_vfsmnt(struct vfsmount *mnt)
93 {
94 kfree(mnt->mnt_devname);
95 kmem_cache_free(mnt_cache, mnt);
96 }
97
98 /*
99 * find the first or last mount at @dentry on vfsmount @mnt depending on
100 * @dir. If @dir is set return the first mount else return the last mount.
101 */
102 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
103 int dir)
104 {
105 struct list_head *head = mount_hashtable + hash(mnt, dentry);
106 struct list_head *tmp = head;
107 struct vfsmount *p, *found = NULL;
108
109 for (;;) {
110 tmp = dir ? tmp->next : tmp->prev;
111 p = NULL;
112 if (tmp == head)
113 break;
114 p = list_entry(tmp, struct vfsmount, mnt_hash);
115 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
116 found = p;
117 break;
118 }
119 }
120 return found;
121 }
122
123 /*
124 * lookup_mnt increments the ref count before returning
125 * the vfsmount struct.
126 */
127 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
128 {
129 struct vfsmount *child_mnt;
130 spin_lock(&vfsmount_lock);
131 if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
132 mntget(child_mnt);
133 spin_unlock(&vfsmount_lock);
134 return child_mnt;
135 }
136
137 static inline int check_mnt(struct vfsmount *mnt)
138 {
139 return mnt->mnt_ns == current->nsproxy->mnt_ns;
140 }
141
142 static void touch_mnt_namespace(struct mnt_namespace *ns)
143 {
144 if (ns) {
145 ns->event = ++event;
146 wake_up_interruptible(&ns->poll);
147 }
148 }
149
150 static void __touch_mnt_namespace(struct mnt_namespace *ns)
151 {
152 if (ns && ns->event != event) {
153 ns->event = event;
154 wake_up_interruptible(&ns->poll);
155 }
156 }
157
158 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
159 {
160 old_path->dentry = mnt->mnt_mountpoint;
161 old_path->mnt = mnt->mnt_parent;
162 mnt->mnt_parent = mnt;
163 mnt->mnt_mountpoint = mnt->mnt_root;
164 list_del_init(&mnt->mnt_child);
165 list_del_init(&mnt->mnt_hash);
166 old_path->dentry->d_mounted--;
167 }
168
169 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
170 struct vfsmount *child_mnt)
171 {
172 child_mnt->mnt_parent = mntget(mnt);
173 child_mnt->mnt_mountpoint = dget(dentry);
174 dentry->d_mounted++;
175 }
176
177 static void attach_mnt(struct vfsmount *mnt, struct path *path)
178 {
179 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
180 list_add_tail(&mnt->mnt_hash, mount_hashtable +
181 hash(path->mnt, path->dentry));
182 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
183 }
184
185 /*
186 * the caller must hold vfsmount_lock
187 */
188 static void commit_tree(struct vfsmount *mnt)
189 {
190 struct vfsmount *parent = mnt->mnt_parent;
191 struct vfsmount *m;
192 LIST_HEAD(head);
193 struct mnt_namespace *n = parent->mnt_ns;
194
195 BUG_ON(parent == mnt);
196
197 list_add_tail(&head, &mnt->mnt_list);
198 list_for_each_entry(m, &head, mnt_list)
199 m->mnt_ns = n;
200 list_splice(&head, n->list.prev);
201
202 list_add_tail(&mnt->mnt_hash, mount_hashtable +
203 hash(parent, mnt->mnt_mountpoint));
204 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
205 touch_mnt_namespace(n);
206 }
207
208 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
209 {
210 struct list_head *next = p->mnt_mounts.next;
211 if (next == &p->mnt_mounts) {
212 while (1) {
213 if (p == root)
214 return NULL;
215 next = p->mnt_child.next;
216 if (next != &p->mnt_parent->mnt_mounts)
217 break;
218 p = p->mnt_parent;
219 }
220 }
221 return list_entry(next, struct vfsmount, mnt_child);
222 }
223
224 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
225 {
226 struct list_head *prev = p->mnt_mounts.prev;
227 while (prev != &p->mnt_mounts) {
228 p = list_entry(prev, struct vfsmount, mnt_child);
229 prev = p->mnt_mounts.prev;
230 }
231 return p;
232 }
233
234 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
235 int flag)
236 {
237 struct super_block *sb = old->mnt_sb;
238 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
239
240 if (mnt) {
241 mnt->mnt_flags = old->mnt_flags;
242 atomic_inc(&sb->s_active);
243 mnt->mnt_sb = sb;
244 mnt->mnt_root = dget(root);
245 mnt->mnt_mountpoint = mnt->mnt_root;
246 mnt->mnt_parent = mnt;
247
248 if (flag & CL_SLAVE) {
249 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
250 mnt->mnt_master = old;
251 CLEAR_MNT_SHARED(mnt);
252 } else if (!(flag & CL_PRIVATE)) {
253 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
254 list_add(&mnt->mnt_share, &old->mnt_share);
255 if (IS_MNT_SLAVE(old))
256 list_add(&mnt->mnt_slave, &old->mnt_slave);
257 mnt->mnt_master = old->mnt_master;
258 }
259 if (flag & CL_MAKE_SHARED)
260 set_mnt_shared(mnt);
261
262 /* stick the duplicate mount on the same expiry list
263 * as the original if that was on one */
264 if (flag & CL_EXPIRE) {
265 spin_lock(&vfsmount_lock);
266 if (!list_empty(&old->mnt_expire))
267 list_add(&mnt->mnt_expire, &old->mnt_expire);
268 spin_unlock(&vfsmount_lock);
269 }
270 }
271 return mnt;
272 }
273
274 static inline void __mntput(struct vfsmount *mnt)
275 {
276 struct super_block *sb = mnt->mnt_sb;
277 dput(mnt->mnt_root);
278 free_vfsmnt(mnt);
279 deactivate_super(sb);
280 }
281
282 void mntput_no_expire(struct vfsmount *mnt)
283 {
284 repeat:
285 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
286 if (likely(!mnt->mnt_pinned)) {
287 spin_unlock(&vfsmount_lock);
288 __mntput(mnt);
289 return;
290 }
291 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
292 mnt->mnt_pinned = 0;
293 spin_unlock(&vfsmount_lock);
294 acct_auto_close_mnt(mnt);
295 security_sb_umount_close(mnt);
296 goto repeat;
297 }
298 }
299
300 EXPORT_SYMBOL(mntput_no_expire);
301
302 void mnt_pin(struct vfsmount *mnt)
303 {
304 spin_lock(&vfsmount_lock);
305 mnt->mnt_pinned++;
306 spin_unlock(&vfsmount_lock);
307 }
308
309 EXPORT_SYMBOL(mnt_pin);
310
311 void mnt_unpin(struct vfsmount *mnt)
312 {
313 spin_lock(&vfsmount_lock);
314 if (mnt->mnt_pinned) {
315 atomic_inc(&mnt->mnt_count);
316 mnt->mnt_pinned--;
317 }
318 spin_unlock(&vfsmount_lock);
319 }
320
321 EXPORT_SYMBOL(mnt_unpin);
322
323 static inline void mangle(struct seq_file *m, const char *s)
324 {
325 seq_escape(m, s, " \t\n\\");
326 }
327
328 /*
329 * Simple .show_options callback for filesystems which don't want to
330 * implement more complex mount option showing.
331 *
332 * See also save_mount_options().
333 */
334 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
335 {
336 const char *options = mnt->mnt_sb->s_options;
337
338 if (options != NULL && options[0]) {
339 seq_putc(m, ',');
340 mangle(m, options);
341 }
342
343 return 0;
344 }
345 EXPORT_SYMBOL(generic_show_options);
346
347 /*
348 * If filesystem uses generic_show_options(), this function should be
349 * called from the fill_super() callback.
350 *
351 * The .remount_fs callback usually needs to be handled in a special
352 * way, to make sure, that previous options are not overwritten if the
353 * remount fails.
354 *
355 * Also note, that if the filesystem's .remount_fs function doesn't
356 * reset all options to their default value, but changes only newly
357 * given options, then the displayed options will not reflect reality
358 * any more.
359 */
360 void save_mount_options(struct super_block *sb, char *options)
361 {
362 kfree(sb->s_options);
363 sb->s_options = kstrdup(options, GFP_KERNEL);
364 }
365 EXPORT_SYMBOL(save_mount_options);
366
367 /* iterator */
368 static void *m_start(struct seq_file *m, loff_t *pos)
369 {
370 struct mnt_namespace *n = m->private;
371
372 down_read(&namespace_sem);
373 return seq_list_start(&n->list, *pos);
374 }
375
376 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
377 {
378 struct mnt_namespace *n = m->private;
379
380 return seq_list_next(v, &n->list, pos);
381 }
382
383 static void m_stop(struct seq_file *m, void *v)
384 {
385 up_read(&namespace_sem);
386 }
387
388 static int show_vfsmnt(struct seq_file *m, void *v)
389 {
390 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
391 int err = 0;
392 static struct proc_fs_info {
393 int flag;
394 char *str;
395 } fs_info[] = {
396 { MS_SYNCHRONOUS, ",sync" },
397 { MS_DIRSYNC, ",dirsync" },
398 { MS_MANDLOCK, ",mand" },
399 { 0, NULL }
400 };
401 static struct proc_fs_info mnt_info[] = {
402 { MNT_NOSUID, ",nosuid" },
403 { MNT_NODEV, ",nodev" },
404 { MNT_NOEXEC, ",noexec" },
405 { MNT_NOATIME, ",noatime" },
406 { MNT_NODIRATIME, ",nodiratime" },
407 { MNT_RELATIME, ",relatime" },
408 { 0, NULL }
409 };
410 struct proc_fs_info *fs_infop;
411 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
412
413 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
414 seq_putc(m, ' ');
415 seq_path(m, &mnt_path, " \t\n\\");
416 seq_putc(m, ' ');
417 mangle(m, mnt->mnt_sb->s_type->name);
418 if (mnt->mnt_sb->s_subtype && mnt->mnt_sb->s_subtype[0]) {
419 seq_putc(m, '.');
420 mangle(m, mnt->mnt_sb->s_subtype);
421 }
422 seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
423 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
424 if (mnt->mnt_sb->s_flags & fs_infop->flag)
425 seq_puts(m, fs_infop->str);
426 }
427 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
428 if (mnt->mnt_flags & fs_infop->flag)
429 seq_puts(m, fs_infop->str);
430 }
431 if (mnt->mnt_sb->s_op->show_options)
432 err = mnt->mnt_sb->s_op->show_options(m, mnt);
433 seq_puts(m, " 0 0\n");
434 return err;
435 }
436
437 struct seq_operations mounts_op = {
438 .start = m_start,
439 .next = m_next,
440 .stop = m_stop,
441 .show = show_vfsmnt
442 };
443
444 static int show_vfsstat(struct seq_file *m, void *v)
445 {
446 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
447 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
448 int err = 0;
449
450 /* device */
451 if (mnt->mnt_devname) {
452 seq_puts(m, "device ");
453 mangle(m, mnt->mnt_devname);
454 } else
455 seq_puts(m, "no device");
456
457 /* mount point */
458 seq_puts(m, " mounted on ");
459 seq_path(m, &mnt_path, " \t\n\\");
460 seq_putc(m, ' ');
461
462 /* file system type */
463 seq_puts(m, "with fstype ");
464 mangle(m, mnt->mnt_sb->s_type->name);
465
466 /* optional statistics */
467 if (mnt->mnt_sb->s_op->show_stats) {
468 seq_putc(m, ' ');
469 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
470 }
471
472 seq_putc(m, '\n');
473 return err;
474 }
475
476 struct seq_operations mountstats_op = {
477 .start = m_start,
478 .next = m_next,
479 .stop = m_stop,
480 .show = show_vfsstat,
481 };
482
483 /**
484 * may_umount_tree - check if a mount tree is busy
485 * @mnt: root of mount tree
486 *
487 * This is called to check if a tree of mounts has any
488 * open files, pwds, chroots or sub mounts that are
489 * busy.
490 */
491 int may_umount_tree(struct vfsmount *mnt)
492 {
493 int actual_refs = 0;
494 int minimum_refs = 0;
495 struct vfsmount *p;
496
497 spin_lock(&vfsmount_lock);
498 for (p = mnt; p; p = next_mnt(p, mnt)) {
499 actual_refs += atomic_read(&p->mnt_count);
500 minimum_refs += 2;
501 }
502 spin_unlock(&vfsmount_lock);
503
504 if (actual_refs > minimum_refs)
505 return 0;
506
507 return 1;
508 }
509
510 EXPORT_SYMBOL(may_umount_tree);
511
512 /**
513 * may_umount - check if a mount point is busy
514 * @mnt: root of mount
515 *
516 * This is called to check if a mount point has any
517 * open files, pwds, chroots or sub mounts. If the
518 * mount has sub mounts this will return busy
519 * regardless of whether the sub mounts are busy.
520 *
521 * Doesn't take quota and stuff into account. IOW, in some cases it will
522 * give false negatives. The main reason why it's here is that we need
523 * a non-destructive way to look for easily umountable filesystems.
524 */
525 int may_umount(struct vfsmount *mnt)
526 {
527 int ret = 1;
528 spin_lock(&vfsmount_lock);
529 if (propagate_mount_busy(mnt, 2))
530 ret = 0;
531 spin_unlock(&vfsmount_lock);
532 return ret;
533 }
534
535 EXPORT_SYMBOL(may_umount);
536
537 void release_mounts(struct list_head *head)
538 {
539 struct vfsmount *mnt;
540 while (!list_empty(head)) {
541 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
542 list_del_init(&mnt->mnt_hash);
543 if (mnt->mnt_parent != mnt) {
544 struct dentry *dentry;
545 struct vfsmount *m;
546 spin_lock(&vfsmount_lock);
547 dentry = mnt->mnt_mountpoint;
548 m = mnt->mnt_parent;
549 mnt->mnt_mountpoint = mnt->mnt_root;
550 mnt->mnt_parent = mnt;
551 m->mnt_ghosts--;
552 spin_unlock(&vfsmount_lock);
553 dput(dentry);
554 mntput(m);
555 }
556 mntput(mnt);
557 }
558 }
559
560 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
561 {
562 struct vfsmount *p;
563
564 for (p = mnt; p; p = next_mnt(p, mnt))
565 list_move(&p->mnt_hash, kill);
566
567 if (propagate)
568 propagate_umount(kill);
569
570 list_for_each_entry(p, kill, mnt_hash) {
571 list_del_init(&p->mnt_expire);
572 list_del_init(&p->mnt_list);
573 __touch_mnt_namespace(p->mnt_ns);
574 p->mnt_ns = NULL;
575 list_del_init(&p->mnt_child);
576 if (p->mnt_parent != p) {
577 p->mnt_parent->mnt_ghosts++;
578 p->mnt_mountpoint->d_mounted--;
579 }
580 change_mnt_propagation(p, MS_PRIVATE);
581 }
582 }
583
584 static int do_umount(struct vfsmount *mnt, int flags)
585 {
586 struct super_block *sb = mnt->mnt_sb;
587 int retval;
588 LIST_HEAD(umount_list);
589
590 retval = security_sb_umount(mnt, flags);
591 if (retval)
592 return retval;
593
594 /*
595 * Allow userspace to request a mountpoint be expired rather than
596 * unmounting unconditionally. Unmount only happens if:
597 * (1) the mark is already set (the mark is cleared by mntput())
598 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
599 */
600 if (flags & MNT_EXPIRE) {
601 if (mnt == current->fs->root.mnt ||
602 flags & (MNT_FORCE | MNT_DETACH))
603 return -EINVAL;
604
605 if (atomic_read(&mnt->mnt_count) != 2)
606 return -EBUSY;
607
608 if (!xchg(&mnt->mnt_expiry_mark, 1))
609 return -EAGAIN;
610 }
611
612 /*
613 * If we may have to abort operations to get out of this
614 * mount, and they will themselves hold resources we must
615 * allow the fs to do things. In the Unix tradition of
616 * 'Gee thats tricky lets do it in userspace' the umount_begin
617 * might fail to complete on the first run through as other tasks
618 * must return, and the like. Thats for the mount program to worry
619 * about for the moment.
620 */
621
622 lock_kernel();
623 if (sb->s_op->umount_begin)
624 sb->s_op->umount_begin(mnt, flags);
625 unlock_kernel();
626
627 /*
628 * No sense to grab the lock for this test, but test itself looks
629 * somewhat bogus. Suggestions for better replacement?
630 * Ho-hum... In principle, we might treat that as umount + switch
631 * to rootfs. GC would eventually take care of the old vfsmount.
632 * Actually it makes sense, especially if rootfs would contain a
633 * /reboot - static binary that would close all descriptors and
634 * call reboot(9). Then init(8) could umount root and exec /reboot.
635 */
636 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
637 /*
638 * Special case for "unmounting" root ...
639 * we just try to remount it readonly.
640 */
641 down_write(&sb->s_umount);
642 if (!(sb->s_flags & MS_RDONLY)) {
643 lock_kernel();
644 DQUOT_OFF(sb);
645 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
646 unlock_kernel();
647 }
648 up_write(&sb->s_umount);
649 return retval;
650 }
651
652 down_write(&namespace_sem);
653 spin_lock(&vfsmount_lock);
654 event++;
655
656 retval = -EBUSY;
657 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
658 if (!list_empty(&mnt->mnt_list))
659 umount_tree(mnt, 1, &umount_list);
660 retval = 0;
661 }
662 spin_unlock(&vfsmount_lock);
663 if (retval)
664 security_sb_umount_busy(mnt);
665 up_write(&namespace_sem);
666 release_mounts(&umount_list);
667 return retval;
668 }
669
670 /*
671 * Now umount can handle mount points as well as block devices.
672 * This is important for filesystems which use unnamed block devices.
673 *
674 * We now support a flag for forced unmount like the other 'big iron'
675 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
676 */
677
678 asmlinkage long sys_umount(char __user * name, int flags)
679 {
680 struct nameidata nd;
681 int retval;
682
683 retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
684 if (retval)
685 goto out;
686 retval = -EINVAL;
687 if (nd.path.dentry != nd.path.mnt->mnt_root)
688 goto dput_and_out;
689 if (!check_mnt(nd.path.mnt))
690 goto dput_and_out;
691
692 retval = -EPERM;
693 if (!capable(CAP_SYS_ADMIN))
694 goto dput_and_out;
695
696 retval = do_umount(nd.path.mnt, flags);
697 dput_and_out:
698 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
699 dput(nd.path.dentry);
700 mntput_no_expire(nd.path.mnt);
701 out:
702 return retval;
703 }
704
705 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
706
707 /*
708 * The 2.0 compatible umount. No flags.
709 */
710 asmlinkage long sys_oldumount(char __user * name)
711 {
712 return sys_umount(name, 0);
713 }
714
715 #endif
716
717 static int mount_is_safe(struct nameidata *nd)
718 {
719 if (capable(CAP_SYS_ADMIN))
720 return 0;
721 return -EPERM;
722 #ifdef notyet
723 if (S_ISLNK(nd->path.dentry->d_inode->i_mode))
724 return -EPERM;
725 if (nd->path.dentry->d_inode->i_mode & S_ISVTX) {
726 if (current->uid != nd->path.dentry->d_inode->i_uid)
727 return -EPERM;
728 }
729 if (vfs_permission(nd, MAY_WRITE))
730 return -EPERM;
731 return 0;
732 #endif
733 }
734
735 static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
736 {
737 while (1) {
738 if (d == dentry)
739 return 1;
740 if (d == NULL || d == d->d_parent)
741 return 0;
742 d = d->d_parent;
743 }
744 }
745
746 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
747 int flag)
748 {
749 struct vfsmount *res, *p, *q, *r, *s;
750 struct path path;
751
752 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
753 return NULL;
754
755 res = q = clone_mnt(mnt, dentry, flag);
756 if (!q)
757 goto Enomem;
758 q->mnt_mountpoint = mnt->mnt_mountpoint;
759
760 p = mnt;
761 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
762 if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
763 continue;
764
765 for (s = r; s; s = next_mnt(s, r)) {
766 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
767 s = skip_mnt_tree(s);
768 continue;
769 }
770 while (p != s->mnt_parent) {
771 p = p->mnt_parent;
772 q = q->mnt_parent;
773 }
774 p = s;
775 path.mnt = q;
776 path.dentry = p->mnt_mountpoint;
777 q = clone_mnt(p, p->mnt_root, flag);
778 if (!q)
779 goto Enomem;
780 spin_lock(&vfsmount_lock);
781 list_add_tail(&q->mnt_list, &res->mnt_list);
782 attach_mnt(q, &path);
783 spin_unlock(&vfsmount_lock);
784 }
785 }
786 return res;
787 Enomem:
788 if (res) {
789 LIST_HEAD(umount_list);
790 spin_lock(&vfsmount_lock);
791 umount_tree(res, 0, &umount_list);
792 spin_unlock(&vfsmount_lock);
793 release_mounts(&umount_list);
794 }
795 return NULL;
796 }
797
798 struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
799 {
800 struct vfsmount *tree;
801 down_read(&namespace_sem);
802 tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
803 up_read(&namespace_sem);
804 return tree;
805 }
806
807 void drop_collected_mounts(struct vfsmount *mnt)
808 {
809 LIST_HEAD(umount_list);
810 down_read(&namespace_sem);
811 spin_lock(&vfsmount_lock);
812 umount_tree(mnt, 0, &umount_list);
813 spin_unlock(&vfsmount_lock);
814 up_read(&namespace_sem);
815 release_mounts(&umount_list);
816 }
817
818 /*
819 * @source_mnt : mount tree to be attached
820 * @nd : place the mount tree @source_mnt is attached
821 * @parent_nd : if non-null, detach the source_mnt from its parent and
822 * store the parent mount and mountpoint dentry.
823 * (done when source_mnt is moved)
824 *
825 * NOTE: in the table below explains the semantics when a source mount
826 * of a given type is attached to a destination mount of a given type.
827 * ---------------------------------------------------------------------------
828 * | BIND MOUNT OPERATION |
829 * |**************************************************************************
830 * | source-->| shared | private | slave | unbindable |
831 * | dest | | | | |
832 * | | | | | | |
833 * | v | | | | |
834 * |**************************************************************************
835 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
836 * | | | | | |
837 * |non-shared| shared (+) | private | slave (*) | invalid |
838 * ***************************************************************************
839 * A bind operation clones the source mount and mounts the clone on the
840 * destination mount.
841 *
842 * (++) the cloned mount is propagated to all the mounts in the propagation
843 * tree of the destination mount and the cloned mount is added to
844 * the peer group of the source mount.
845 * (+) the cloned mount is created under the destination mount and is marked
846 * as shared. The cloned mount is added to the peer group of the source
847 * mount.
848 * (+++) the mount is propagated to all the mounts in the propagation tree
849 * of the destination mount and the cloned mount is made slave
850 * of the same master as that of the source mount. The cloned mount
851 * is marked as 'shared and slave'.
852 * (*) the cloned mount is made a slave of the same master as that of the
853 * source mount.
854 *
855 * ---------------------------------------------------------------------------
856 * | MOVE MOUNT OPERATION |
857 * |**************************************************************************
858 * | source-->| shared | private | slave | unbindable |
859 * | dest | | | | |
860 * | | | | | | |
861 * | v | | | | |
862 * |**************************************************************************
863 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
864 * | | | | | |
865 * |non-shared| shared (+*) | private | slave (*) | unbindable |
866 * ***************************************************************************
867 *
868 * (+) the mount is moved to the destination. And is then propagated to
869 * all the mounts in the propagation tree of the destination mount.
870 * (+*) the mount is moved to the destination.
871 * (+++) the mount is moved to the destination and is then propagated to
872 * all the mounts belonging to the destination mount's propagation tree.
873 * the mount is marked as 'shared and slave'.
874 * (*) the mount continues to be a slave at the new location.
875 *
876 * if the source mount is a tree, the operations explained above is
877 * applied to each mount in the tree.
878 * Must be called without spinlocks held, since this function can sleep
879 * in allocations.
880 */
881 static int attach_recursive_mnt(struct vfsmount *source_mnt,
882 struct path *path, struct path *parent_path)
883 {
884 LIST_HEAD(tree_list);
885 struct vfsmount *dest_mnt = path->mnt;
886 struct dentry *dest_dentry = path->dentry;
887 struct vfsmount *child, *p;
888
889 if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
890 return -EINVAL;
891
892 if (IS_MNT_SHARED(dest_mnt)) {
893 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
894 set_mnt_shared(p);
895 }
896
897 spin_lock(&vfsmount_lock);
898 if (parent_path) {
899 detach_mnt(source_mnt, parent_path);
900 attach_mnt(source_mnt, path);
901 touch_mnt_namespace(current->nsproxy->mnt_ns);
902 } else {
903 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
904 commit_tree(source_mnt);
905 }
906
907 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
908 list_del_init(&child->mnt_hash);
909 commit_tree(child);
910 }
911 spin_unlock(&vfsmount_lock);
912 return 0;
913 }
914
915 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
916 {
917 int err;
918 if (mnt->mnt_sb->s_flags & MS_NOUSER)
919 return -EINVAL;
920
921 if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
922 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
923 return -ENOTDIR;
924
925 err = -ENOENT;
926 mutex_lock(&nd->path.dentry->d_inode->i_mutex);
927 if (IS_DEADDIR(nd->path.dentry->d_inode))
928 goto out_unlock;
929
930 err = security_sb_check_sb(mnt, nd);
931 if (err)
932 goto out_unlock;
933
934 err = -ENOENT;
935 if (IS_ROOT(nd->path.dentry) || !d_unhashed(nd->path.dentry))
936 err = attach_recursive_mnt(mnt, &nd->path, NULL);
937 out_unlock:
938 mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
939 if (!err)
940 security_sb_post_addmount(mnt, nd);
941 return err;
942 }
943
944 /*
945 * recursively change the type of the mountpoint.
946 * noinline this do_mount helper to save do_mount stack space.
947 */
948 static noinline int do_change_type(struct nameidata *nd, int flag)
949 {
950 struct vfsmount *m, *mnt = nd->path.mnt;
951 int recurse = flag & MS_REC;
952 int type = flag & ~MS_REC;
953
954 if (!capable(CAP_SYS_ADMIN))
955 return -EPERM;
956
957 if (nd->path.dentry != nd->path.mnt->mnt_root)
958 return -EINVAL;
959
960 down_write(&namespace_sem);
961 spin_lock(&vfsmount_lock);
962 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
963 change_mnt_propagation(m, type);
964 spin_unlock(&vfsmount_lock);
965 up_write(&namespace_sem);
966 return 0;
967 }
968
969 /*
970 * do loopback mount.
971 * noinline this do_mount helper to save do_mount stack space.
972 */
973 static noinline int do_loopback(struct nameidata *nd, char *old_name,
974 int recurse)
975 {
976 struct nameidata old_nd;
977 struct vfsmount *mnt = NULL;
978 int err = mount_is_safe(nd);
979 if (err)
980 return err;
981 if (!old_name || !*old_name)
982 return -EINVAL;
983 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
984 if (err)
985 return err;
986
987 down_write(&namespace_sem);
988 err = -EINVAL;
989 if (IS_MNT_UNBINDABLE(old_nd.path.mnt))
990 goto out;
991
992 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
993 goto out;
994
995 err = -ENOMEM;
996 if (recurse)
997 mnt = copy_tree(old_nd.path.mnt, old_nd.path.dentry, 0);
998 else
999 mnt = clone_mnt(old_nd.path.mnt, old_nd.path.dentry, 0);
1000
1001 if (!mnt)
1002 goto out;
1003
1004 err = graft_tree(mnt, nd);
1005 if (err) {
1006 LIST_HEAD(umount_list);
1007 spin_lock(&vfsmount_lock);
1008 umount_tree(mnt, 0, &umount_list);
1009 spin_unlock(&vfsmount_lock);
1010 release_mounts(&umount_list);
1011 }
1012
1013 out:
1014 up_write(&namespace_sem);
1015 path_put(&old_nd.path);
1016 return err;
1017 }
1018
1019 /*
1020 * change filesystem flags. dir should be a physical root of filesystem.
1021 * If you've mounted a non-root directory somewhere and want to do remount
1022 * on it - tough luck.
1023 * noinline this do_mount helper to save do_mount stack space.
1024 */
1025 static noinline int do_remount(struct nameidata *nd, int flags, int mnt_flags,
1026 void *data)
1027 {
1028 int err;
1029 struct super_block *sb = nd->path.mnt->mnt_sb;
1030
1031 if (!capable(CAP_SYS_ADMIN))
1032 return -EPERM;
1033
1034 if (!check_mnt(nd->path.mnt))
1035 return -EINVAL;
1036
1037 if (nd->path.dentry != nd->path.mnt->mnt_root)
1038 return -EINVAL;
1039
1040 down_write(&sb->s_umount);
1041 err = do_remount_sb(sb, flags, data, 0);
1042 if (!err)
1043 nd->path.mnt->mnt_flags = mnt_flags;
1044 up_write(&sb->s_umount);
1045 if (!err)
1046 security_sb_post_remount(nd->path.mnt, flags, data);
1047 return err;
1048 }
1049
1050 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1051 {
1052 struct vfsmount *p;
1053 for (p = mnt; p; p = next_mnt(p, mnt)) {
1054 if (IS_MNT_UNBINDABLE(p))
1055 return 1;
1056 }
1057 return 0;
1058 }
1059
1060 /*
1061 * noinline this do_mount helper to save do_mount stack space.
1062 */
1063 static noinline int do_move_mount(struct nameidata *nd, char *old_name)
1064 {
1065 struct nameidata old_nd;
1066 struct path parent_path;
1067 struct vfsmount *p;
1068 int err = 0;
1069 if (!capable(CAP_SYS_ADMIN))
1070 return -EPERM;
1071 if (!old_name || !*old_name)
1072 return -EINVAL;
1073 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1074 if (err)
1075 return err;
1076
1077 down_write(&namespace_sem);
1078 while (d_mountpoint(nd->path.dentry) &&
1079 follow_down(&nd->path.mnt, &nd->path.dentry))
1080 ;
1081 err = -EINVAL;
1082 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
1083 goto out;
1084
1085 err = -ENOENT;
1086 mutex_lock(&nd->path.dentry->d_inode->i_mutex);
1087 if (IS_DEADDIR(nd->path.dentry->d_inode))
1088 goto out1;
1089
1090 if (!IS_ROOT(nd->path.dentry) && d_unhashed(nd->path.dentry))
1091 goto out1;
1092
1093 err = -EINVAL;
1094 if (old_nd.path.dentry != old_nd.path.mnt->mnt_root)
1095 goto out1;
1096
1097 if (old_nd.path.mnt == old_nd.path.mnt->mnt_parent)
1098 goto out1;
1099
1100 if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
1101 S_ISDIR(old_nd.path.dentry->d_inode->i_mode))
1102 goto out1;
1103 /*
1104 * Don't move a mount residing in a shared parent.
1105 */
1106 if (old_nd.path.mnt->mnt_parent &&
1107 IS_MNT_SHARED(old_nd.path.mnt->mnt_parent))
1108 goto out1;
1109 /*
1110 * Don't move a mount tree containing unbindable mounts to a destination
1111 * mount which is shared.
1112 */
1113 if (IS_MNT_SHARED(nd->path.mnt) &&
1114 tree_contains_unbindable(old_nd.path.mnt))
1115 goto out1;
1116 err = -ELOOP;
1117 for (p = nd->path.mnt; p->mnt_parent != p; p = p->mnt_parent)
1118 if (p == old_nd.path.mnt)
1119 goto out1;
1120
1121 err = attach_recursive_mnt(old_nd.path.mnt, &nd->path, &parent_path);
1122 if (err)
1123 goto out1;
1124
1125 spin_lock(&vfsmount_lock);
1126 /* if the mount is moved, it should no longer be expire
1127 * automatically */
1128 list_del_init(&old_nd.path.mnt->mnt_expire);
1129 spin_unlock(&vfsmount_lock);
1130 out1:
1131 mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
1132 out:
1133 up_write(&namespace_sem);
1134 if (!err)
1135 path_put(&parent_path);
1136 path_put(&old_nd.path);
1137 return err;
1138 }
1139
1140 /*
1141 * create a new mount for userspace and request it to be added into the
1142 * namespace's tree
1143 * noinline this do_mount helper to save do_mount stack space.
1144 */
1145 static noinline int do_new_mount(struct nameidata *nd, char *type, int flags,
1146 int mnt_flags, char *name, void *data)
1147 {
1148 struct vfsmount *mnt;
1149
1150 if (!type || !memchr(type, 0, PAGE_SIZE))
1151 return -EINVAL;
1152
1153 /* we need capabilities... */
1154 if (!capable(CAP_SYS_ADMIN))
1155 return -EPERM;
1156
1157 mnt = do_kern_mount(type, flags, name, data);
1158 if (IS_ERR(mnt))
1159 return PTR_ERR(mnt);
1160
1161 return do_add_mount(mnt, nd, mnt_flags, NULL);
1162 }
1163
1164 /*
1165 * add a mount into a namespace's mount tree
1166 * - provide the option of adding the new mount to an expiration list
1167 */
1168 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1169 int mnt_flags, struct list_head *fslist)
1170 {
1171 int err;
1172
1173 down_write(&namespace_sem);
1174 /* Something was mounted here while we slept */
1175 while (d_mountpoint(nd->path.dentry) &&
1176 follow_down(&nd->path.mnt, &nd->path.dentry))
1177 ;
1178 err = -EINVAL;
1179 if (!check_mnt(nd->path.mnt))
1180 goto unlock;
1181
1182 /* Refuse the same filesystem on the same mount point */
1183 err = -EBUSY;
1184 if (nd->path.mnt->mnt_sb == newmnt->mnt_sb &&
1185 nd->path.mnt->mnt_root == nd->path.dentry)
1186 goto unlock;
1187
1188 err = -EINVAL;
1189 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1190 goto unlock;
1191
1192 newmnt->mnt_flags = mnt_flags;
1193 if ((err = graft_tree(newmnt, nd)))
1194 goto unlock;
1195
1196 if (fslist) {
1197 /* add to the specified expiration list */
1198 spin_lock(&vfsmount_lock);
1199 list_add_tail(&newmnt->mnt_expire, fslist);
1200 spin_unlock(&vfsmount_lock);
1201 }
1202 up_write(&namespace_sem);
1203 return 0;
1204
1205 unlock:
1206 up_write(&namespace_sem);
1207 mntput(newmnt);
1208 return err;
1209 }
1210
1211 EXPORT_SYMBOL_GPL(do_add_mount);
1212
1213 static void expire_mount(struct vfsmount *mnt, struct list_head *mounts,
1214 struct list_head *umounts)
1215 {
1216 spin_lock(&vfsmount_lock);
1217
1218 /*
1219 * Check if mount is still attached, if not, let whoever holds it deal
1220 * with the sucker
1221 */
1222 if (mnt->mnt_parent == mnt) {
1223 spin_unlock(&vfsmount_lock);
1224 return;
1225 }
1226
1227 /*
1228 * Check that it is still dead: the count should now be 2 - as
1229 * contributed by the vfsmount parent and the mntget above
1230 */
1231 if (!propagate_mount_busy(mnt, 2)) {
1232 /* delete from the namespace */
1233 touch_mnt_namespace(mnt->mnt_ns);
1234 list_del_init(&mnt->mnt_list);
1235 mnt->mnt_ns = NULL;
1236 umount_tree(mnt, 1, umounts);
1237 spin_unlock(&vfsmount_lock);
1238 } else {
1239 /*
1240 * Someone brought it back to life whilst we didn't have any
1241 * locks held so return it to the expiration list
1242 */
1243 list_add_tail(&mnt->mnt_expire, mounts);
1244 spin_unlock(&vfsmount_lock);
1245 }
1246 }
1247
1248 /*
1249 * go through the vfsmounts we've just consigned to the graveyard to
1250 * - check that they're still dead
1251 * - delete the vfsmount from the appropriate namespace under lock
1252 * - dispose of the corpse
1253 */
1254 static void expire_mount_list(struct list_head *graveyard, struct list_head *mounts)
1255 {
1256 struct mnt_namespace *ns;
1257 struct vfsmount *mnt;
1258
1259 while (!list_empty(graveyard)) {
1260 LIST_HEAD(umounts);
1261 mnt = list_first_entry(graveyard, struct vfsmount, mnt_expire);
1262 list_del_init(&mnt->mnt_expire);
1263
1264 /* don't do anything if the namespace is dead - all the
1265 * vfsmounts from it are going away anyway */
1266 ns = mnt->mnt_ns;
1267 if (!ns || !ns->root)
1268 continue;
1269 get_mnt_ns(ns);
1270
1271 spin_unlock(&vfsmount_lock);
1272 down_write(&namespace_sem);
1273 expire_mount(mnt, mounts, &umounts);
1274 up_write(&namespace_sem);
1275 release_mounts(&umounts);
1276 mntput(mnt);
1277 put_mnt_ns(ns);
1278 spin_lock(&vfsmount_lock);
1279 }
1280 }
1281
1282 /*
1283 * process a list of expirable mountpoints with the intent of discarding any
1284 * mountpoints that aren't in use and haven't been touched since last we came
1285 * here
1286 */
1287 void mark_mounts_for_expiry(struct list_head *mounts)
1288 {
1289 struct vfsmount *mnt, *next;
1290 LIST_HEAD(graveyard);
1291
1292 if (list_empty(mounts))
1293 return;
1294
1295 spin_lock(&vfsmount_lock);
1296
1297 /* extract from the expiration list every vfsmount that matches the
1298 * following criteria:
1299 * - only referenced by its parent vfsmount
1300 * - still marked for expiry (marked on the last call here; marks are
1301 * cleared by mntput())
1302 */
1303 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1304 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1305 atomic_read(&mnt->mnt_count) != 1)
1306 continue;
1307
1308 mntget(mnt);
1309 list_move(&mnt->mnt_expire, &graveyard);
1310 }
1311
1312 expire_mount_list(&graveyard, mounts);
1313
1314 spin_unlock(&vfsmount_lock);
1315 }
1316
1317 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1318
1319 /*
1320 * Ripoff of 'select_parent()'
1321 *
1322 * search the list of submounts for a given mountpoint, and move any
1323 * shrinkable submounts to the 'graveyard' list.
1324 */
1325 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1326 {
1327 struct vfsmount *this_parent = parent;
1328 struct list_head *next;
1329 int found = 0;
1330
1331 repeat:
1332 next = this_parent->mnt_mounts.next;
1333 resume:
1334 while (next != &this_parent->mnt_mounts) {
1335 struct list_head *tmp = next;
1336 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1337
1338 next = tmp->next;
1339 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1340 continue;
1341 /*
1342 * Descend a level if the d_mounts list is non-empty.
1343 */
1344 if (!list_empty(&mnt->mnt_mounts)) {
1345 this_parent = mnt;
1346 goto repeat;
1347 }
1348
1349 if (!propagate_mount_busy(mnt, 1)) {
1350 mntget(mnt);
1351 list_move_tail(&mnt->mnt_expire, graveyard);
1352 found++;
1353 }
1354 }
1355 /*
1356 * All done at this level ... ascend and resume the search
1357 */
1358 if (this_parent != parent) {
1359 next = this_parent->mnt_child.next;
1360 this_parent = this_parent->mnt_parent;
1361 goto resume;
1362 }
1363 return found;
1364 }
1365
1366 /*
1367 * process a list of expirable mountpoints with the intent of discarding any
1368 * submounts of a specific parent mountpoint
1369 */
1370 void shrink_submounts(struct vfsmount *mountpoint, struct list_head *mounts)
1371 {
1372 LIST_HEAD(graveyard);
1373 int found;
1374
1375 spin_lock(&vfsmount_lock);
1376
1377 /* extract submounts of 'mountpoint' from the expiration list */
1378 while ((found = select_submounts(mountpoint, &graveyard)) != 0)
1379 expire_mount_list(&graveyard, mounts);
1380
1381 spin_unlock(&vfsmount_lock);
1382 }
1383
1384 EXPORT_SYMBOL_GPL(shrink_submounts);
1385
1386 /*
1387 * Some copy_from_user() implementations do not return the exact number of
1388 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1389 * Note that this function differs from copy_from_user() in that it will oops
1390 * on bad values of `to', rather than returning a short copy.
1391 */
1392 static long exact_copy_from_user(void *to, const void __user * from,
1393 unsigned long n)
1394 {
1395 char *t = to;
1396 const char __user *f = from;
1397 char c;
1398
1399 if (!access_ok(VERIFY_READ, from, n))
1400 return n;
1401
1402 while (n) {
1403 if (__get_user(c, f)) {
1404 memset(t, 0, n);
1405 break;
1406 }
1407 *t++ = c;
1408 f++;
1409 n--;
1410 }
1411 return n;
1412 }
1413
1414 int copy_mount_options(const void __user * data, unsigned long *where)
1415 {
1416 int i;
1417 unsigned long page;
1418 unsigned long size;
1419
1420 *where = 0;
1421 if (!data)
1422 return 0;
1423
1424 if (!(page = __get_free_page(GFP_KERNEL)))
1425 return -ENOMEM;
1426
1427 /* We only care that *some* data at the address the user
1428 * gave us is valid. Just in case, we'll zero
1429 * the remainder of the page.
1430 */
1431 /* copy_from_user cannot cross TASK_SIZE ! */
1432 size = TASK_SIZE - (unsigned long)data;
1433 if (size > PAGE_SIZE)
1434 size = PAGE_SIZE;
1435
1436 i = size - exact_copy_from_user((void *)page, data, size);
1437 if (!i) {
1438 free_page(page);
1439 return -EFAULT;
1440 }
1441 if (i != PAGE_SIZE)
1442 memset((char *)page + i, 0, PAGE_SIZE - i);
1443 *where = page;
1444 return 0;
1445 }
1446
1447 /*
1448 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1449 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1450 *
1451 * data is a (void *) that can point to any structure up to
1452 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1453 * information (or be NULL).
1454 *
1455 * Pre-0.97 versions of mount() didn't have a flags word.
1456 * When the flags word was introduced its top half was required
1457 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1458 * Therefore, if this magic number is present, it carries no information
1459 * and must be discarded.
1460 */
1461 long do_mount(char *dev_name, char *dir_name, char *type_page,
1462 unsigned long flags, void *data_page)
1463 {
1464 struct nameidata nd;
1465 int retval = 0;
1466 int mnt_flags = 0;
1467
1468 /* Discard magic */
1469 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1470 flags &= ~MS_MGC_MSK;
1471
1472 /* Basic sanity checks */
1473
1474 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1475 return -EINVAL;
1476 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1477 return -EINVAL;
1478
1479 if (data_page)
1480 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1481
1482 /* Separate the per-mountpoint flags */
1483 if (flags & MS_NOSUID)
1484 mnt_flags |= MNT_NOSUID;
1485 if (flags & MS_NODEV)
1486 mnt_flags |= MNT_NODEV;
1487 if (flags & MS_NOEXEC)
1488 mnt_flags |= MNT_NOEXEC;
1489 if (flags & MS_NOATIME)
1490 mnt_flags |= MNT_NOATIME;
1491 if (flags & MS_NODIRATIME)
1492 mnt_flags |= MNT_NODIRATIME;
1493 if (flags & MS_RELATIME)
1494 mnt_flags |= MNT_RELATIME;
1495
1496 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1497 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
1498
1499 /* ... and get the mountpoint */
1500 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1501 if (retval)
1502 return retval;
1503
1504 retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
1505 if (retval)
1506 goto dput_out;
1507
1508 if (flags & MS_REMOUNT)
1509 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1510 data_page);
1511 else if (flags & MS_BIND)
1512 retval = do_loopback(&nd, dev_name, flags & MS_REC);
1513 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1514 retval = do_change_type(&nd, flags);
1515 else if (flags & MS_MOVE)
1516 retval = do_move_mount(&nd, dev_name);
1517 else
1518 retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1519 dev_name, data_page);
1520 dput_out:
1521 path_put(&nd.path);
1522 return retval;
1523 }
1524
1525 /*
1526 * Allocate a new namespace structure and populate it with contents
1527 * copied from the namespace of the passed in task structure.
1528 */
1529 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1530 struct fs_struct *fs)
1531 {
1532 struct mnt_namespace *new_ns;
1533 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1534 struct vfsmount *p, *q;
1535
1536 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1537 if (!new_ns)
1538 return ERR_PTR(-ENOMEM);
1539
1540 atomic_set(&new_ns->count, 1);
1541 INIT_LIST_HEAD(&new_ns->list);
1542 init_waitqueue_head(&new_ns->poll);
1543 new_ns->event = 0;
1544
1545 down_write(&namespace_sem);
1546 /* First pass: copy the tree topology */
1547 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1548 CL_COPY_ALL | CL_EXPIRE);
1549 if (!new_ns->root) {
1550 up_write(&namespace_sem);
1551 kfree(new_ns);
1552 return ERR_PTR(-ENOMEM);;
1553 }
1554 spin_lock(&vfsmount_lock);
1555 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1556 spin_unlock(&vfsmount_lock);
1557
1558 /*
1559 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1560 * as belonging to new namespace. We have already acquired a private
1561 * fs_struct, so tsk->fs->lock is not needed.
1562 */
1563 p = mnt_ns->root;
1564 q = new_ns->root;
1565 while (p) {
1566 q->mnt_ns = new_ns;
1567 if (fs) {
1568 if (p == fs->root.mnt) {
1569 rootmnt = p;
1570 fs->root.mnt = mntget(q);
1571 }
1572 if (p == fs->pwd.mnt) {
1573 pwdmnt = p;
1574 fs->pwd.mnt = mntget(q);
1575 }
1576 if (p == fs->altroot.mnt) {
1577 altrootmnt = p;
1578 fs->altroot.mnt = mntget(q);
1579 }
1580 }
1581 p = next_mnt(p, mnt_ns->root);
1582 q = next_mnt(q, new_ns->root);
1583 }
1584 up_write(&namespace_sem);
1585
1586 if (rootmnt)
1587 mntput(rootmnt);
1588 if (pwdmnt)
1589 mntput(pwdmnt);
1590 if (altrootmnt)
1591 mntput(altrootmnt);
1592
1593 return new_ns;
1594 }
1595
1596 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
1597 struct fs_struct *new_fs)
1598 {
1599 struct mnt_namespace *new_ns;
1600
1601 BUG_ON(!ns);
1602 get_mnt_ns(ns);
1603
1604 if (!(flags & CLONE_NEWNS))
1605 return ns;
1606
1607 new_ns = dup_mnt_ns(ns, new_fs);
1608
1609 put_mnt_ns(ns);
1610 return new_ns;
1611 }
1612
1613 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1614 char __user * type, unsigned long flags,
1615 void __user * data)
1616 {
1617 int retval;
1618 unsigned long data_page;
1619 unsigned long type_page;
1620 unsigned long dev_page;
1621 char *dir_page;
1622
1623 retval = copy_mount_options(type, &type_page);
1624 if (retval < 0)
1625 return retval;
1626
1627 dir_page = getname(dir_name);
1628 retval = PTR_ERR(dir_page);
1629 if (IS_ERR(dir_page))
1630 goto out1;
1631
1632 retval = copy_mount_options(dev_name, &dev_page);
1633 if (retval < 0)
1634 goto out2;
1635
1636 retval = copy_mount_options(data, &data_page);
1637 if (retval < 0)
1638 goto out3;
1639
1640 lock_kernel();
1641 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
1642 flags, (void *)data_page);
1643 unlock_kernel();
1644 free_page(data_page);
1645
1646 out3:
1647 free_page(dev_page);
1648 out2:
1649 putname(dir_page);
1650 out1:
1651 free_page(type_page);
1652 return retval;
1653 }
1654
1655 /*
1656 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1657 * It can block. Requires the big lock held.
1658 */
1659 void set_fs_root(struct fs_struct *fs, struct path *path)
1660 {
1661 struct path old_root;
1662
1663 write_lock(&fs->lock);
1664 old_root = fs->root;
1665 fs->root = *path;
1666 path_get(path);
1667 write_unlock(&fs->lock);
1668 if (old_root.dentry)
1669 path_put(&old_root);
1670 }
1671
1672 /*
1673 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1674 * It can block. Requires the big lock held.
1675 */
1676 void set_fs_pwd(struct fs_struct *fs, struct path *path)
1677 {
1678 struct path old_pwd;
1679
1680 write_lock(&fs->lock);
1681 old_pwd = fs->pwd;
1682 fs->pwd = *path;
1683 path_get(path);
1684 write_unlock(&fs->lock);
1685
1686 if (old_pwd.dentry)
1687 path_put(&old_pwd);
1688 }
1689
1690 static void chroot_fs_refs(struct path *old_root, struct path *new_root)
1691 {
1692 struct task_struct *g, *p;
1693 struct fs_struct *fs;
1694
1695 read_lock(&tasklist_lock);
1696 do_each_thread(g, p) {
1697 task_lock(p);
1698 fs = p->fs;
1699 if (fs) {
1700 atomic_inc(&fs->count);
1701 task_unlock(p);
1702 if (fs->root.dentry == old_root->dentry
1703 && fs->root.mnt == old_root->mnt)
1704 set_fs_root(fs, new_root);
1705 if (fs->pwd.dentry == old_root->dentry
1706 && fs->pwd.mnt == old_root->mnt)
1707 set_fs_pwd(fs, new_root);
1708 put_fs_struct(fs);
1709 } else
1710 task_unlock(p);
1711 } while_each_thread(g, p);
1712 read_unlock(&tasklist_lock);
1713 }
1714
1715 /*
1716 * pivot_root Semantics:
1717 * Moves the root file system of the current process to the directory put_old,
1718 * makes new_root as the new root file system of the current process, and sets
1719 * root/cwd of all processes which had them on the current root to new_root.
1720 *
1721 * Restrictions:
1722 * The new_root and put_old must be directories, and must not be on the
1723 * same file system as the current process root. The put_old must be
1724 * underneath new_root, i.e. adding a non-zero number of /.. to the string
1725 * pointed to by put_old must yield the same directory as new_root. No other
1726 * file system may be mounted on put_old. After all, new_root is a mountpoint.
1727 *
1728 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
1729 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
1730 * in this situation.
1731 *
1732 * Notes:
1733 * - we don't move root/cwd if they are not at the root (reason: if something
1734 * cared enough to change them, it's probably wrong to force them elsewhere)
1735 * - it's okay to pick a root that isn't the root of a file system, e.g.
1736 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1737 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1738 * first.
1739 */
1740 asmlinkage long sys_pivot_root(const char __user * new_root,
1741 const char __user * put_old)
1742 {
1743 struct vfsmount *tmp;
1744 struct nameidata new_nd, old_nd, user_nd;
1745 struct path parent_path, root_parent;
1746 int error;
1747
1748 if (!capable(CAP_SYS_ADMIN))
1749 return -EPERM;
1750
1751 lock_kernel();
1752
1753 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
1754 &new_nd);
1755 if (error)
1756 goto out0;
1757 error = -EINVAL;
1758 if (!check_mnt(new_nd.path.mnt))
1759 goto out1;
1760
1761 error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1762 if (error)
1763 goto out1;
1764
1765 error = security_sb_pivotroot(&old_nd, &new_nd);
1766 if (error) {
1767 path_put(&old_nd.path);
1768 goto out1;
1769 }
1770
1771 read_lock(&current->fs->lock);
1772 user_nd.path = current->fs->root;
1773 path_get(&current->fs->root);
1774 read_unlock(&current->fs->lock);
1775 down_write(&namespace_sem);
1776 mutex_lock(&old_nd.path.dentry->d_inode->i_mutex);
1777 error = -EINVAL;
1778 if (IS_MNT_SHARED(old_nd.path.mnt) ||
1779 IS_MNT_SHARED(new_nd.path.mnt->mnt_parent) ||
1780 IS_MNT_SHARED(user_nd.path.mnt->mnt_parent))
1781 goto out2;
1782 if (!check_mnt(user_nd.path.mnt))
1783 goto out2;
1784 error = -ENOENT;
1785 if (IS_DEADDIR(new_nd.path.dentry->d_inode))
1786 goto out2;
1787 if (d_unhashed(new_nd.path.dentry) && !IS_ROOT(new_nd.path.dentry))
1788 goto out2;
1789 if (d_unhashed(old_nd.path.dentry) && !IS_ROOT(old_nd.path.dentry))
1790 goto out2;
1791 error = -EBUSY;
1792 if (new_nd.path.mnt == user_nd.path.mnt ||
1793 old_nd.path.mnt == user_nd.path.mnt)
1794 goto out2; /* loop, on the same file system */
1795 error = -EINVAL;
1796 if (user_nd.path.mnt->mnt_root != user_nd.path.dentry)
1797 goto out2; /* not a mountpoint */
1798 if (user_nd.path.mnt->mnt_parent == user_nd.path.mnt)
1799 goto out2; /* not attached */
1800 if (new_nd.path.mnt->mnt_root != new_nd.path.dentry)
1801 goto out2; /* not a mountpoint */
1802 if (new_nd.path.mnt->mnt_parent == new_nd.path.mnt)
1803 goto out2; /* not attached */
1804 /* make sure we can reach put_old from new_root */
1805 tmp = old_nd.path.mnt;
1806 spin_lock(&vfsmount_lock);
1807 if (tmp != new_nd.path.mnt) {
1808 for (;;) {
1809 if (tmp->mnt_parent == tmp)
1810 goto out3; /* already mounted on put_old */
1811 if (tmp->mnt_parent == new_nd.path.mnt)
1812 break;
1813 tmp = tmp->mnt_parent;
1814 }
1815 if (!is_subdir(tmp->mnt_mountpoint, new_nd.path.dentry))
1816 goto out3;
1817 } else if (!is_subdir(old_nd.path.dentry, new_nd.path.dentry))
1818 goto out3;
1819 detach_mnt(new_nd.path.mnt, &parent_path);
1820 detach_mnt(user_nd.path.mnt, &root_parent);
1821 /* mount old root on put_old */
1822 attach_mnt(user_nd.path.mnt, &old_nd.path);
1823 /* mount new_root on / */
1824 attach_mnt(new_nd.path.mnt, &root_parent);
1825 touch_mnt_namespace(current->nsproxy->mnt_ns);
1826 spin_unlock(&vfsmount_lock);
1827 chroot_fs_refs(&user_nd.path, &new_nd.path);
1828 security_sb_post_pivotroot(&user_nd, &new_nd);
1829 error = 0;
1830 path_put(&root_parent);
1831 path_put(&parent_path);
1832 out2:
1833 mutex_unlock(&old_nd.path.dentry->d_inode->i_mutex);
1834 up_write(&namespace_sem);
1835 path_put(&user_nd.path);
1836 path_put(&old_nd.path);
1837 out1:
1838 path_put(&new_nd.path);
1839 out0:
1840 unlock_kernel();
1841 return error;
1842 out3:
1843 spin_unlock(&vfsmount_lock);
1844 goto out2;
1845 }
1846
1847 static void __init init_mount_tree(void)
1848 {
1849 struct vfsmount *mnt;
1850 struct mnt_namespace *ns;
1851 struct path root;
1852
1853 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
1854 if (IS_ERR(mnt))
1855 panic("Can't create rootfs");
1856 ns = kmalloc(sizeof(*ns), GFP_KERNEL);
1857 if (!ns)
1858 panic("Can't allocate initial namespace");
1859 atomic_set(&ns->count, 1);
1860 INIT_LIST_HEAD(&ns->list);
1861 init_waitqueue_head(&ns->poll);
1862 ns->event = 0;
1863 list_add(&mnt->mnt_list, &ns->list);
1864 ns->root = mnt;
1865 mnt->mnt_ns = ns;
1866
1867 init_task.nsproxy->mnt_ns = ns;
1868 get_mnt_ns(ns);
1869
1870 root.mnt = ns->root;
1871 root.dentry = ns->root->mnt_root;
1872
1873 set_fs_pwd(current->fs, &root);
1874 set_fs_root(current->fs, &root);
1875 }
1876
1877 void __init mnt_init(void)
1878 {
1879 unsigned u;
1880 int err;
1881
1882 init_rwsem(&namespace_sem);
1883
1884 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
1885 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1886
1887 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1888
1889 if (!mount_hashtable)
1890 panic("Failed to allocate mount hash table\n");
1891
1892 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
1893
1894 for (u = 0; u < HASH_SIZE; u++)
1895 INIT_LIST_HEAD(&mount_hashtable[u]);
1896
1897 err = sysfs_init();
1898 if (err)
1899 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
1900 __FUNCTION__, err);
1901 fs_kobj = kobject_create_and_add("fs", NULL);
1902 if (!fs_kobj)
1903 printk(KERN_WARNING "%s: kobj create error\n", __FUNCTION__);
1904 init_rootfs();
1905 init_mount_tree();
1906 }
1907
1908 void __put_mnt_ns(struct mnt_namespace *ns)
1909 {
1910 struct vfsmount *root = ns->root;
1911 LIST_HEAD(umount_list);
1912 ns->root = NULL;
1913 spin_unlock(&vfsmount_lock);
1914 down_write(&namespace_sem);
1915 spin_lock(&vfsmount_lock);
1916 umount_tree(root, 0, &umount_list);
1917 spin_unlock(&vfsmount_lock);
1918 up_write(&namespace_sem);
1919 release_mounts(&umount_list);
1920 kfree(ns);
1921 }