]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/namespace.c
NFS: LOOKUP_DIRECTORY is also ok with symlinks
[mirror_ubuntu-jammy-kernel.git] / fs / namespace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34
35 #include "pnode.h"
36 #include "internal.h"
37
38 /* Maximum number of mounts in a mount namespace */
39 unsigned int sysctl_mount_max __read_mostly = 100000;
40
41 static unsigned int m_hash_mask __read_mostly;
42 static unsigned int m_hash_shift __read_mostly;
43 static unsigned int mp_hash_mask __read_mostly;
44 static unsigned int mp_hash_shift __read_mostly;
45
46 static __initdata unsigned long mhash_entries;
47 static int __init set_mhash_entries(char *str)
48 {
49 if (!str)
50 return 0;
51 mhash_entries = simple_strtoul(str, &str, 0);
52 return 1;
53 }
54 __setup("mhash_entries=", set_mhash_entries);
55
56 static __initdata unsigned long mphash_entries;
57 static int __init set_mphash_entries(char *str)
58 {
59 if (!str)
60 return 0;
61 mphash_entries = simple_strtoul(str, &str, 0);
62 return 1;
63 }
64 __setup("mphash_entries=", set_mphash_entries);
65
66 static u64 event;
67 static DEFINE_IDA(mnt_id_ida);
68 static DEFINE_IDA(mnt_group_ida);
69
70 static struct hlist_head *mount_hashtable __read_mostly;
71 static struct hlist_head *mountpoint_hashtable __read_mostly;
72 static struct kmem_cache *mnt_cache __read_mostly;
73 static DECLARE_RWSEM(namespace_sem);
74 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
75 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
76
77 struct mount_kattr {
78 unsigned int attr_set;
79 unsigned int attr_clr;
80 unsigned int propagation;
81 unsigned int lookup_flags;
82 bool recurse;
83 struct user_namespace *mnt_userns;
84 };
85
86 /* /sys/fs */
87 struct kobject *fs_kobj;
88 EXPORT_SYMBOL_GPL(fs_kobj);
89
90 /*
91 * vfsmount lock may be taken for read to prevent changes to the
92 * vfsmount hash, ie. during mountpoint lookups or walking back
93 * up the tree.
94 *
95 * It should be taken for write in all cases where the vfsmount
96 * tree or hash is modified or when a vfsmount structure is modified.
97 */
98 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99
100 static inline void lock_mount_hash(void)
101 {
102 write_seqlock(&mount_lock);
103 }
104
105 static inline void unlock_mount_hash(void)
106 {
107 write_sequnlock(&mount_lock);
108 }
109
110 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
111 {
112 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
113 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
114 tmp = tmp + (tmp >> m_hash_shift);
115 return &mount_hashtable[tmp & m_hash_mask];
116 }
117
118 static inline struct hlist_head *mp_hash(struct dentry *dentry)
119 {
120 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
121 tmp = tmp + (tmp >> mp_hash_shift);
122 return &mountpoint_hashtable[tmp & mp_hash_mask];
123 }
124
125 static int mnt_alloc_id(struct mount *mnt)
126 {
127 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
128
129 if (res < 0)
130 return res;
131 mnt->mnt_id = res;
132 return 0;
133 }
134
135 static void mnt_free_id(struct mount *mnt)
136 {
137 ida_free(&mnt_id_ida, mnt->mnt_id);
138 }
139
140 /*
141 * Allocate a new peer group ID
142 */
143 static int mnt_alloc_group_id(struct mount *mnt)
144 {
145 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
146
147 if (res < 0)
148 return res;
149 mnt->mnt_group_id = res;
150 return 0;
151 }
152
153 /*
154 * Release a peer group ID
155 */
156 void mnt_release_group_id(struct mount *mnt)
157 {
158 ida_free(&mnt_group_ida, mnt->mnt_group_id);
159 mnt->mnt_group_id = 0;
160 }
161
162 /*
163 * vfsmount lock must be held for read
164 */
165 static inline void mnt_add_count(struct mount *mnt, int n)
166 {
167 #ifdef CONFIG_SMP
168 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
169 #else
170 preempt_disable();
171 mnt->mnt_count += n;
172 preempt_enable();
173 #endif
174 }
175
176 /*
177 * vfsmount lock must be held for write
178 */
179 int mnt_get_count(struct mount *mnt)
180 {
181 #ifdef CONFIG_SMP
182 int count = 0;
183 int cpu;
184
185 for_each_possible_cpu(cpu) {
186 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
187 }
188
189 return count;
190 #else
191 return mnt->mnt_count;
192 #endif
193 }
194
195 static struct mount *alloc_vfsmnt(const char *name)
196 {
197 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
198 if (mnt) {
199 int err;
200
201 err = mnt_alloc_id(mnt);
202 if (err)
203 goto out_free_cache;
204
205 if (name) {
206 mnt->mnt_devname = kstrdup_const(name,
207 GFP_KERNEL_ACCOUNT);
208 if (!mnt->mnt_devname)
209 goto out_free_id;
210 }
211
212 #ifdef CONFIG_SMP
213 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
214 if (!mnt->mnt_pcp)
215 goto out_free_devname;
216
217 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
218 #else
219 mnt->mnt_count = 1;
220 mnt->mnt_writers = 0;
221 #endif
222
223 INIT_HLIST_NODE(&mnt->mnt_hash);
224 INIT_LIST_HEAD(&mnt->mnt_child);
225 INIT_LIST_HEAD(&mnt->mnt_mounts);
226 INIT_LIST_HEAD(&mnt->mnt_list);
227 INIT_LIST_HEAD(&mnt->mnt_expire);
228 INIT_LIST_HEAD(&mnt->mnt_share);
229 INIT_LIST_HEAD(&mnt->mnt_slave_list);
230 INIT_LIST_HEAD(&mnt->mnt_slave);
231 INIT_HLIST_NODE(&mnt->mnt_mp_list);
232 INIT_LIST_HEAD(&mnt->mnt_umounting);
233 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
234 mnt->mnt.mnt_userns = &init_user_ns;
235 }
236 return mnt;
237
238 #ifdef CONFIG_SMP
239 out_free_devname:
240 kfree_const(mnt->mnt_devname);
241 #endif
242 out_free_id:
243 mnt_free_id(mnt);
244 out_free_cache:
245 kmem_cache_free(mnt_cache, mnt);
246 return NULL;
247 }
248
249 /*
250 * Most r/o checks on a fs are for operations that take
251 * discrete amounts of time, like a write() or unlink().
252 * We must keep track of when those operations start
253 * (for permission checks) and when they end, so that
254 * we can determine when writes are able to occur to
255 * a filesystem.
256 */
257 /*
258 * __mnt_is_readonly: check whether a mount is read-only
259 * @mnt: the mount to check for its write status
260 *
261 * This shouldn't be used directly ouside of the VFS.
262 * It does not guarantee that the filesystem will stay
263 * r/w, just that it is right *now*. This can not and
264 * should not be used in place of IS_RDONLY(inode).
265 * mnt_want/drop_write() will _keep_ the filesystem
266 * r/w.
267 */
268 bool __mnt_is_readonly(struct vfsmount *mnt)
269 {
270 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
271 }
272 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
273
274 static inline void mnt_inc_writers(struct mount *mnt)
275 {
276 #ifdef CONFIG_SMP
277 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
278 #else
279 mnt->mnt_writers++;
280 #endif
281 }
282
283 static inline void mnt_dec_writers(struct mount *mnt)
284 {
285 #ifdef CONFIG_SMP
286 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
287 #else
288 mnt->mnt_writers--;
289 #endif
290 }
291
292 static unsigned int mnt_get_writers(struct mount *mnt)
293 {
294 #ifdef CONFIG_SMP
295 unsigned int count = 0;
296 int cpu;
297
298 for_each_possible_cpu(cpu) {
299 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
300 }
301
302 return count;
303 #else
304 return mnt->mnt_writers;
305 #endif
306 }
307
308 static int mnt_is_readonly(struct vfsmount *mnt)
309 {
310 if (mnt->mnt_sb->s_readonly_remount)
311 return 1;
312 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
313 smp_rmb();
314 return __mnt_is_readonly(mnt);
315 }
316
317 /*
318 * Most r/o & frozen checks on a fs are for operations that take discrete
319 * amounts of time, like a write() or unlink(). We must keep track of when
320 * those operations start (for permission checks) and when they end, so that we
321 * can determine when writes are able to occur to a filesystem.
322 */
323 /**
324 * __mnt_want_write - get write access to a mount without freeze protection
325 * @m: the mount on which to take a write
326 *
327 * This tells the low-level filesystem that a write is about to be performed to
328 * it, and makes sure that writes are allowed (mnt it read-write) before
329 * returning success. This operation does not protect against filesystem being
330 * frozen. When the write operation is finished, __mnt_drop_write() must be
331 * called. This is effectively a refcount.
332 */
333 int __mnt_want_write(struct vfsmount *m)
334 {
335 struct mount *mnt = real_mount(m);
336 int ret = 0;
337
338 preempt_disable();
339 mnt_inc_writers(mnt);
340 /*
341 * The store to mnt_inc_writers must be visible before we pass
342 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
343 * incremented count after it has set MNT_WRITE_HOLD.
344 */
345 smp_mb();
346 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
347 cpu_relax();
348 /*
349 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
350 * be set to match its requirements. So we must not load that until
351 * MNT_WRITE_HOLD is cleared.
352 */
353 smp_rmb();
354 if (mnt_is_readonly(m)) {
355 mnt_dec_writers(mnt);
356 ret = -EROFS;
357 }
358 preempt_enable();
359
360 return ret;
361 }
362
363 /**
364 * mnt_want_write - get write access to a mount
365 * @m: the mount on which to take a write
366 *
367 * This tells the low-level filesystem that a write is about to be performed to
368 * it, and makes sure that writes are allowed (mount is read-write, filesystem
369 * is not frozen) before returning success. When the write operation is
370 * finished, mnt_drop_write() must be called. This is effectively a refcount.
371 */
372 int mnt_want_write(struct vfsmount *m)
373 {
374 int ret;
375
376 sb_start_write(m->mnt_sb);
377 ret = __mnt_want_write(m);
378 if (ret)
379 sb_end_write(m->mnt_sb);
380 return ret;
381 }
382 EXPORT_SYMBOL_GPL(mnt_want_write);
383
384 /**
385 * __mnt_want_write_file - get write access to a file's mount
386 * @file: the file who's mount on which to take a write
387 *
388 * This is like __mnt_want_write, but if the file is already open for writing it
389 * skips incrementing mnt_writers (since the open file already has a reference)
390 * and instead only does the check for emergency r/o remounts. This must be
391 * paired with __mnt_drop_write_file.
392 */
393 int __mnt_want_write_file(struct file *file)
394 {
395 if (file->f_mode & FMODE_WRITER) {
396 /*
397 * Superblock may have become readonly while there are still
398 * writable fd's, e.g. due to a fs error with errors=remount-ro
399 */
400 if (__mnt_is_readonly(file->f_path.mnt))
401 return -EROFS;
402 return 0;
403 }
404 return __mnt_want_write(file->f_path.mnt);
405 }
406
407 /**
408 * mnt_want_write_file - get write access to a file's mount
409 * @file: the file who's mount on which to take a write
410 *
411 * This is like mnt_want_write, but if the file is already open for writing it
412 * skips incrementing mnt_writers (since the open file already has a reference)
413 * and instead only does the freeze protection and the check for emergency r/o
414 * remounts. This must be paired with mnt_drop_write_file.
415 */
416 int mnt_want_write_file(struct file *file)
417 {
418 int ret;
419
420 sb_start_write(file_inode(file)->i_sb);
421 ret = __mnt_want_write_file(file);
422 if (ret)
423 sb_end_write(file_inode(file)->i_sb);
424 return ret;
425 }
426 EXPORT_SYMBOL_GPL(mnt_want_write_file);
427
428 /**
429 * __mnt_drop_write - give up write access to a mount
430 * @mnt: the mount on which to give up write access
431 *
432 * Tells the low-level filesystem that we are done
433 * performing writes to it. Must be matched with
434 * __mnt_want_write() call above.
435 */
436 void __mnt_drop_write(struct vfsmount *mnt)
437 {
438 preempt_disable();
439 mnt_dec_writers(real_mount(mnt));
440 preempt_enable();
441 }
442 EXPORT_SYMBOL_GPL(__mnt_drop_write);
443
444 /**
445 * mnt_drop_write - give up write access to a mount
446 * @mnt: the mount on which to give up write access
447 *
448 * Tells the low-level filesystem that we are done performing writes to it and
449 * also allows filesystem to be frozen again. Must be matched with
450 * mnt_want_write() call above.
451 */
452 void mnt_drop_write(struct vfsmount *mnt)
453 {
454 __mnt_drop_write(mnt);
455 sb_end_write(mnt->mnt_sb);
456 }
457 EXPORT_SYMBOL_GPL(mnt_drop_write);
458
459 void __mnt_drop_write_file(struct file *file)
460 {
461 if (!(file->f_mode & FMODE_WRITER))
462 __mnt_drop_write(file->f_path.mnt);
463 }
464
465 void mnt_drop_write_file(struct file *file)
466 {
467 __mnt_drop_write_file(file);
468 sb_end_write(file_inode(file)->i_sb);
469 }
470 EXPORT_SYMBOL(mnt_drop_write_file);
471
472 static inline int mnt_hold_writers(struct mount *mnt)
473 {
474 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
475 /*
476 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
477 * should be visible before we do.
478 */
479 smp_mb();
480
481 /*
482 * With writers on hold, if this value is zero, then there are
483 * definitely no active writers (although held writers may subsequently
484 * increment the count, they'll have to wait, and decrement it after
485 * seeing MNT_READONLY).
486 *
487 * It is OK to have counter incremented on one CPU and decremented on
488 * another: the sum will add up correctly. The danger would be when we
489 * sum up each counter, if we read a counter before it is incremented,
490 * but then read another CPU's count which it has been subsequently
491 * decremented from -- we would see more decrements than we should.
492 * MNT_WRITE_HOLD protects against this scenario, because
493 * mnt_want_write first increments count, then smp_mb, then spins on
494 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
495 * we're counting up here.
496 */
497 if (mnt_get_writers(mnt) > 0)
498 return -EBUSY;
499
500 return 0;
501 }
502
503 static inline void mnt_unhold_writers(struct mount *mnt)
504 {
505 /*
506 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
507 * that become unheld will see MNT_READONLY.
508 */
509 smp_wmb();
510 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
511 }
512
513 static int mnt_make_readonly(struct mount *mnt)
514 {
515 int ret;
516
517 ret = mnt_hold_writers(mnt);
518 if (!ret)
519 mnt->mnt.mnt_flags |= MNT_READONLY;
520 mnt_unhold_writers(mnt);
521 return ret;
522 }
523
524 int sb_prepare_remount_readonly(struct super_block *sb)
525 {
526 struct mount *mnt;
527 int err = 0;
528
529 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
530 if (atomic_long_read(&sb->s_remove_count))
531 return -EBUSY;
532
533 lock_mount_hash();
534 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
535 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
536 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
537 smp_mb();
538 if (mnt_get_writers(mnt) > 0) {
539 err = -EBUSY;
540 break;
541 }
542 }
543 }
544 if (!err && atomic_long_read(&sb->s_remove_count))
545 err = -EBUSY;
546
547 if (!err) {
548 sb->s_readonly_remount = 1;
549 smp_wmb();
550 }
551 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
552 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
553 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
554 }
555 unlock_mount_hash();
556
557 return err;
558 }
559
560 static void free_vfsmnt(struct mount *mnt)
561 {
562 struct user_namespace *mnt_userns;
563
564 mnt_userns = mnt_user_ns(&mnt->mnt);
565 if (mnt_userns != &init_user_ns)
566 put_user_ns(mnt_userns);
567 kfree_const(mnt->mnt_devname);
568 #ifdef CONFIG_SMP
569 free_percpu(mnt->mnt_pcp);
570 #endif
571 kmem_cache_free(mnt_cache, mnt);
572 }
573
574 static void delayed_free_vfsmnt(struct rcu_head *head)
575 {
576 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
577 }
578
579 /* call under rcu_read_lock */
580 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
581 {
582 struct mount *mnt;
583 if (read_seqretry(&mount_lock, seq))
584 return 1;
585 if (bastard == NULL)
586 return 0;
587 mnt = real_mount(bastard);
588 mnt_add_count(mnt, 1);
589 smp_mb(); // see mntput_no_expire()
590 if (likely(!read_seqretry(&mount_lock, seq)))
591 return 0;
592 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
593 mnt_add_count(mnt, -1);
594 return 1;
595 }
596 lock_mount_hash();
597 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
598 mnt_add_count(mnt, -1);
599 unlock_mount_hash();
600 return 1;
601 }
602 unlock_mount_hash();
603 /* caller will mntput() */
604 return -1;
605 }
606
607 /* call under rcu_read_lock */
608 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
609 {
610 int res = __legitimize_mnt(bastard, seq);
611 if (likely(!res))
612 return true;
613 if (unlikely(res < 0)) {
614 rcu_read_unlock();
615 mntput(bastard);
616 rcu_read_lock();
617 }
618 return false;
619 }
620
621 /*
622 * find the first mount at @dentry on vfsmount @mnt.
623 * call under rcu_read_lock()
624 */
625 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
626 {
627 struct hlist_head *head = m_hash(mnt, dentry);
628 struct mount *p;
629
630 hlist_for_each_entry_rcu(p, head, mnt_hash)
631 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
632 return p;
633 return NULL;
634 }
635
636 /*
637 * lookup_mnt - Return the first child mount mounted at path
638 *
639 * "First" means first mounted chronologically. If you create the
640 * following mounts:
641 *
642 * mount /dev/sda1 /mnt
643 * mount /dev/sda2 /mnt
644 * mount /dev/sda3 /mnt
645 *
646 * Then lookup_mnt() on the base /mnt dentry in the root mount will
647 * return successively the root dentry and vfsmount of /dev/sda1, then
648 * /dev/sda2, then /dev/sda3, then NULL.
649 *
650 * lookup_mnt takes a reference to the found vfsmount.
651 */
652 struct vfsmount *lookup_mnt(const struct path *path)
653 {
654 struct mount *child_mnt;
655 struct vfsmount *m;
656 unsigned seq;
657
658 rcu_read_lock();
659 do {
660 seq = read_seqbegin(&mount_lock);
661 child_mnt = __lookup_mnt(path->mnt, path->dentry);
662 m = child_mnt ? &child_mnt->mnt : NULL;
663 } while (!legitimize_mnt(m, seq));
664 rcu_read_unlock();
665 return m;
666 }
667
668 static inline void lock_ns_list(struct mnt_namespace *ns)
669 {
670 spin_lock(&ns->ns_lock);
671 }
672
673 static inline void unlock_ns_list(struct mnt_namespace *ns)
674 {
675 spin_unlock(&ns->ns_lock);
676 }
677
678 static inline bool mnt_is_cursor(struct mount *mnt)
679 {
680 return mnt->mnt.mnt_flags & MNT_CURSOR;
681 }
682
683 /*
684 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
685 * current mount namespace.
686 *
687 * The common case is dentries are not mountpoints at all and that
688 * test is handled inline. For the slow case when we are actually
689 * dealing with a mountpoint of some kind, walk through all of the
690 * mounts in the current mount namespace and test to see if the dentry
691 * is a mountpoint.
692 *
693 * The mount_hashtable is not usable in the context because we
694 * need to identify all mounts that may be in the current mount
695 * namespace not just a mount that happens to have some specified
696 * parent mount.
697 */
698 bool __is_local_mountpoint(struct dentry *dentry)
699 {
700 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
701 struct mount *mnt;
702 bool is_covered = false;
703
704 down_read(&namespace_sem);
705 lock_ns_list(ns);
706 list_for_each_entry(mnt, &ns->list, mnt_list) {
707 if (mnt_is_cursor(mnt))
708 continue;
709 is_covered = (mnt->mnt_mountpoint == dentry);
710 if (is_covered)
711 break;
712 }
713 unlock_ns_list(ns);
714 up_read(&namespace_sem);
715
716 return is_covered;
717 }
718
719 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
720 {
721 struct hlist_head *chain = mp_hash(dentry);
722 struct mountpoint *mp;
723
724 hlist_for_each_entry(mp, chain, m_hash) {
725 if (mp->m_dentry == dentry) {
726 mp->m_count++;
727 return mp;
728 }
729 }
730 return NULL;
731 }
732
733 static struct mountpoint *get_mountpoint(struct dentry *dentry)
734 {
735 struct mountpoint *mp, *new = NULL;
736 int ret;
737
738 if (d_mountpoint(dentry)) {
739 /* might be worth a WARN_ON() */
740 if (d_unlinked(dentry))
741 return ERR_PTR(-ENOENT);
742 mountpoint:
743 read_seqlock_excl(&mount_lock);
744 mp = lookup_mountpoint(dentry);
745 read_sequnlock_excl(&mount_lock);
746 if (mp)
747 goto done;
748 }
749
750 if (!new)
751 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
752 if (!new)
753 return ERR_PTR(-ENOMEM);
754
755
756 /* Exactly one processes may set d_mounted */
757 ret = d_set_mounted(dentry);
758
759 /* Someone else set d_mounted? */
760 if (ret == -EBUSY)
761 goto mountpoint;
762
763 /* The dentry is not available as a mountpoint? */
764 mp = ERR_PTR(ret);
765 if (ret)
766 goto done;
767
768 /* Add the new mountpoint to the hash table */
769 read_seqlock_excl(&mount_lock);
770 new->m_dentry = dget(dentry);
771 new->m_count = 1;
772 hlist_add_head(&new->m_hash, mp_hash(dentry));
773 INIT_HLIST_HEAD(&new->m_list);
774 read_sequnlock_excl(&mount_lock);
775
776 mp = new;
777 new = NULL;
778 done:
779 kfree(new);
780 return mp;
781 }
782
783 /*
784 * vfsmount lock must be held. Additionally, the caller is responsible
785 * for serializing calls for given disposal list.
786 */
787 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
788 {
789 if (!--mp->m_count) {
790 struct dentry *dentry = mp->m_dentry;
791 BUG_ON(!hlist_empty(&mp->m_list));
792 spin_lock(&dentry->d_lock);
793 dentry->d_flags &= ~DCACHE_MOUNTED;
794 spin_unlock(&dentry->d_lock);
795 dput_to_list(dentry, list);
796 hlist_del(&mp->m_hash);
797 kfree(mp);
798 }
799 }
800
801 /* called with namespace_lock and vfsmount lock */
802 static void put_mountpoint(struct mountpoint *mp)
803 {
804 __put_mountpoint(mp, &ex_mountpoints);
805 }
806
807 static inline int check_mnt(struct mount *mnt)
808 {
809 return mnt->mnt_ns == current->nsproxy->mnt_ns;
810 }
811
812 /* for aufs, CONFIG_AUFS_BR_FUSE */
813 int is_current_mnt_ns(struct vfsmount *mnt)
814 {
815 return check_mnt(real_mount(mnt));
816 }
817 EXPORT_SYMBOL_GPL(is_current_mnt_ns);
818
819 /*
820 * vfsmount lock must be held for write
821 */
822 static void touch_mnt_namespace(struct mnt_namespace *ns)
823 {
824 if (ns) {
825 ns->event = ++event;
826 wake_up_interruptible(&ns->poll);
827 }
828 }
829
830 /*
831 * vfsmount lock must be held for write
832 */
833 static void __touch_mnt_namespace(struct mnt_namespace *ns)
834 {
835 if (ns && ns->event != event) {
836 ns->event = event;
837 wake_up_interruptible(&ns->poll);
838 }
839 }
840
841 /*
842 * vfsmount lock must be held for write
843 */
844 static struct mountpoint *unhash_mnt(struct mount *mnt)
845 {
846 struct mountpoint *mp;
847 mnt->mnt_parent = mnt;
848 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
849 list_del_init(&mnt->mnt_child);
850 hlist_del_init_rcu(&mnt->mnt_hash);
851 hlist_del_init(&mnt->mnt_mp_list);
852 mp = mnt->mnt_mp;
853 mnt->mnt_mp = NULL;
854 return mp;
855 }
856
857 /*
858 * vfsmount lock must be held for write
859 */
860 static void umount_mnt(struct mount *mnt)
861 {
862 put_mountpoint(unhash_mnt(mnt));
863 }
864
865 /*
866 * vfsmount lock must be held for write
867 */
868 void mnt_set_mountpoint(struct mount *mnt,
869 struct mountpoint *mp,
870 struct mount *child_mnt)
871 {
872 mp->m_count++;
873 mnt_add_count(mnt, 1); /* essentially, that's mntget */
874 child_mnt->mnt_mountpoint = mp->m_dentry;
875 child_mnt->mnt_parent = mnt;
876 child_mnt->mnt_mp = mp;
877 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
878 }
879
880 static void __attach_mnt(struct mount *mnt, struct mount *parent)
881 {
882 hlist_add_head_rcu(&mnt->mnt_hash,
883 m_hash(&parent->mnt, mnt->mnt_mountpoint));
884 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
885 }
886
887 /*
888 * vfsmount lock must be held for write
889 */
890 static void attach_mnt(struct mount *mnt,
891 struct mount *parent,
892 struct mountpoint *mp)
893 {
894 mnt_set_mountpoint(parent, mp, mnt);
895 __attach_mnt(mnt, parent);
896 }
897
898 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
899 {
900 struct mountpoint *old_mp = mnt->mnt_mp;
901 struct mount *old_parent = mnt->mnt_parent;
902
903 list_del_init(&mnt->mnt_child);
904 hlist_del_init(&mnt->mnt_mp_list);
905 hlist_del_init_rcu(&mnt->mnt_hash);
906
907 attach_mnt(mnt, parent, mp);
908
909 put_mountpoint(old_mp);
910 mnt_add_count(old_parent, -1);
911 }
912
913 /*
914 * vfsmount lock must be held for write
915 */
916 static void commit_tree(struct mount *mnt)
917 {
918 struct mount *parent = mnt->mnt_parent;
919 struct mount *m;
920 LIST_HEAD(head);
921 struct mnt_namespace *n = parent->mnt_ns;
922
923 BUG_ON(parent == mnt);
924
925 list_add_tail(&head, &mnt->mnt_list);
926 list_for_each_entry(m, &head, mnt_list)
927 m->mnt_ns = n;
928
929 list_splice(&head, n->list.prev);
930
931 n->mounts += n->pending_mounts;
932 n->pending_mounts = 0;
933
934 __attach_mnt(mnt, parent);
935 touch_mnt_namespace(n);
936 }
937
938 static struct mount *next_mnt(struct mount *p, struct mount *root)
939 {
940 struct list_head *next = p->mnt_mounts.next;
941 if (next == &p->mnt_mounts) {
942 while (1) {
943 if (p == root)
944 return NULL;
945 next = p->mnt_child.next;
946 if (next != &p->mnt_parent->mnt_mounts)
947 break;
948 p = p->mnt_parent;
949 }
950 }
951 return list_entry(next, struct mount, mnt_child);
952 }
953
954 static struct mount *skip_mnt_tree(struct mount *p)
955 {
956 struct list_head *prev = p->mnt_mounts.prev;
957 while (prev != &p->mnt_mounts) {
958 p = list_entry(prev, struct mount, mnt_child);
959 prev = p->mnt_mounts.prev;
960 }
961 return p;
962 }
963
964 /**
965 * vfs_create_mount - Create a mount for a configured superblock
966 * @fc: The configuration context with the superblock attached
967 *
968 * Create a mount to an already configured superblock. If necessary, the
969 * caller should invoke vfs_get_tree() before calling this.
970 *
971 * Note that this does not attach the mount to anything.
972 */
973 struct vfsmount *vfs_create_mount(struct fs_context *fc)
974 {
975 struct mount *mnt;
976
977 if (!fc->root)
978 return ERR_PTR(-EINVAL);
979
980 mnt = alloc_vfsmnt(fc->source ?: "none");
981 if (!mnt)
982 return ERR_PTR(-ENOMEM);
983
984 if (fc->sb_flags & SB_KERNMOUNT)
985 mnt->mnt.mnt_flags = MNT_INTERNAL;
986
987 atomic_inc(&fc->root->d_sb->s_active);
988 mnt->mnt.mnt_sb = fc->root->d_sb;
989 mnt->mnt.mnt_root = dget(fc->root);
990 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
991 mnt->mnt_parent = mnt;
992
993 lock_mount_hash();
994 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
995 unlock_mount_hash();
996 return &mnt->mnt;
997 }
998 EXPORT_SYMBOL(vfs_create_mount);
999
1000 struct vfsmount *fc_mount(struct fs_context *fc)
1001 {
1002 int err = vfs_get_tree(fc);
1003 if (!err) {
1004 up_write(&fc->root->d_sb->s_umount);
1005 return vfs_create_mount(fc);
1006 }
1007 return ERR_PTR(err);
1008 }
1009 EXPORT_SYMBOL(fc_mount);
1010
1011 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1012 int flags, const char *name,
1013 void *data)
1014 {
1015 struct fs_context *fc;
1016 struct vfsmount *mnt;
1017 int ret = 0;
1018
1019 if (!type)
1020 return ERR_PTR(-EINVAL);
1021
1022 fc = fs_context_for_mount(type, flags);
1023 if (IS_ERR(fc))
1024 return ERR_CAST(fc);
1025
1026 if (name)
1027 ret = vfs_parse_fs_string(fc, "source",
1028 name, strlen(name));
1029 if (!ret)
1030 ret = parse_monolithic_mount_data(fc, data);
1031 if (!ret)
1032 mnt = fc_mount(fc);
1033 else
1034 mnt = ERR_PTR(ret);
1035
1036 put_fs_context(fc);
1037 return mnt;
1038 }
1039 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1040
1041 struct vfsmount *
1042 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1043 const char *name, void *data)
1044 {
1045 /* Until it is worked out how to pass the user namespace
1046 * through from the parent mount to the submount don't support
1047 * unprivileged mounts with submounts.
1048 */
1049 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1050 return ERR_PTR(-EPERM);
1051
1052 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1053 }
1054 EXPORT_SYMBOL_GPL(vfs_submount);
1055
1056 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1057 int flag)
1058 {
1059 struct super_block *sb = old->mnt.mnt_sb;
1060 struct mount *mnt;
1061 int err;
1062
1063 mnt = alloc_vfsmnt(old->mnt_devname);
1064 if (!mnt)
1065 return ERR_PTR(-ENOMEM);
1066
1067 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1068 mnt->mnt_group_id = 0; /* not a peer of original */
1069 else
1070 mnt->mnt_group_id = old->mnt_group_id;
1071
1072 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1073 err = mnt_alloc_group_id(mnt);
1074 if (err)
1075 goto out_free;
1076 }
1077
1078 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1079 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1080
1081 atomic_inc(&sb->s_active);
1082 mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt);
1083 if (mnt->mnt.mnt_userns != &init_user_ns)
1084 mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns);
1085 mnt->mnt.mnt_sb = sb;
1086 mnt->mnt.mnt_root = dget(root);
1087 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1088 mnt->mnt_parent = mnt;
1089 lock_mount_hash();
1090 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1091 unlock_mount_hash();
1092
1093 if ((flag & CL_SLAVE) ||
1094 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1095 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1096 mnt->mnt_master = old;
1097 CLEAR_MNT_SHARED(mnt);
1098 } else if (!(flag & CL_PRIVATE)) {
1099 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1100 list_add(&mnt->mnt_share, &old->mnt_share);
1101 if (IS_MNT_SLAVE(old))
1102 list_add(&mnt->mnt_slave, &old->mnt_slave);
1103 mnt->mnt_master = old->mnt_master;
1104 } else {
1105 CLEAR_MNT_SHARED(mnt);
1106 }
1107 if (flag & CL_MAKE_SHARED)
1108 set_mnt_shared(mnt);
1109
1110 /* stick the duplicate mount on the same expiry list
1111 * as the original if that was on one */
1112 if (flag & CL_EXPIRE) {
1113 if (!list_empty(&old->mnt_expire))
1114 list_add(&mnt->mnt_expire, &old->mnt_expire);
1115 }
1116
1117 return mnt;
1118
1119 out_free:
1120 mnt_free_id(mnt);
1121 free_vfsmnt(mnt);
1122 return ERR_PTR(err);
1123 }
1124
1125 static void cleanup_mnt(struct mount *mnt)
1126 {
1127 struct hlist_node *p;
1128 struct mount *m;
1129 /*
1130 * The warning here probably indicates that somebody messed
1131 * up a mnt_want/drop_write() pair. If this happens, the
1132 * filesystem was probably unable to make r/w->r/o transitions.
1133 * The locking used to deal with mnt_count decrement provides barriers,
1134 * so mnt_get_writers() below is safe.
1135 */
1136 WARN_ON(mnt_get_writers(mnt));
1137 if (unlikely(mnt->mnt_pins.first))
1138 mnt_pin_kill(mnt);
1139 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1140 hlist_del(&m->mnt_umount);
1141 mntput(&m->mnt);
1142 }
1143 fsnotify_vfsmount_delete(&mnt->mnt);
1144 dput(mnt->mnt.mnt_root);
1145 deactivate_super(mnt->mnt.mnt_sb);
1146 mnt_free_id(mnt);
1147 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1148 }
1149
1150 static void __cleanup_mnt(struct rcu_head *head)
1151 {
1152 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1153 }
1154
1155 static LLIST_HEAD(delayed_mntput_list);
1156 static void delayed_mntput(struct work_struct *unused)
1157 {
1158 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1159 struct mount *m, *t;
1160
1161 llist_for_each_entry_safe(m, t, node, mnt_llist)
1162 cleanup_mnt(m);
1163 }
1164 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1165
1166 static void mntput_no_expire(struct mount *mnt)
1167 {
1168 LIST_HEAD(list);
1169 int count;
1170
1171 rcu_read_lock();
1172 if (likely(READ_ONCE(mnt->mnt_ns))) {
1173 /*
1174 * Since we don't do lock_mount_hash() here,
1175 * ->mnt_ns can change under us. However, if it's
1176 * non-NULL, then there's a reference that won't
1177 * be dropped until after an RCU delay done after
1178 * turning ->mnt_ns NULL. So if we observe it
1179 * non-NULL under rcu_read_lock(), the reference
1180 * we are dropping is not the final one.
1181 */
1182 mnt_add_count(mnt, -1);
1183 rcu_read_unlock();
1184 return;
1185 }
1186 lock_mount_hash();
1187 /*
1188 * make sure that if __legitimize_mnt() has not seen us grab
1189 * mount_lock, we'll see their refcount increment here.
1190 */
1191 smp_mb();
1192 mnt_add_count(mnt, -1);
1193 count = mnt_get_count(mnt);
1194 if (count != 0) {
1195 WARN_ON(count < 0);
1196 rcu_read_unlock();
1197 unlock_mount_hash();
1198 return;
1199 }
1200 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1201 rcu_read_unlock();
1202 unlock_mount_hash();
1203 return;
1204 }
1205 mnt->mnt.mnt_flags |= MNT_DOOMED;
1206 rcu_read_unlock();
1207
1208 list_del(&mnt->mnt_instance);
1209
1210 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1211 struct mount *p, *tmp;
1212 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1213 __put_mountpoint(unhash_mnt(p), &list);
1214 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1215 }
1216 }
1217 unlock_mount_hash();
1218 shrink_dentry_list(&list);
1219
1220 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1221 struct task_struct *task = current;
1222 if (likely(!(task->flags & PF_KTHREAD))) {
1223 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1224 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1225 return;
1226 }
1227 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1228 schedule_delayed_work(&delayed_mntput_work, 1);
1229 return;
1230 }
1231 cleanup_mnt(mnt);
1232 }
1233
1234 void mntput(struct vfsmount *mnt)
1235 {
1236 if (mnt) {
1237 struct mount *m = real_mount(mnt);
1238 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1239 if (unlikely(m->mnt_expiry_mark))
1240 m->mnt_expiry_mark = 0;
1241 mntput_no_expire(m);
1242 }
1243 }
1244 EXPORT_SYMBOL(mntput);
1245
1246 struct vfsmount *mntget(struct vfsmount *mnt)
1247 {
1248 if (mnt)
1249 mnt_add_count(real_mount(mnt), 1);
1250 return mnt;
1251 }
1252 EXPORT_SYMBOL(mntget);
1253
1254 /**
1255 * path_is_mountpoint() - Check if path is a mount in the current namespace.
1256 * @path: path to check
1257 *
1258 * d_mountpoint() can only be used reliably to establish if a dentry is
1259 * not mounted in any namespace and that common case is handled inline.
1260 * d_mountpoint() isn't aware of the possibility there may be multiple
1261 * mounts using a given dentry in a different namespace. This function
1262 * checks if the passed in path is a mountpoint rather than the dentry
1263 * alone.
1264 */
1265 bool path_is_mountpoint(const struct path *path)
1266 {
1267 unsigned seq;
1268 bool res;
1269
1270 if (!d_mountpoint(path->dentry))
1271 return false;
1272
1273 rcu_read_lock();
1274 do {
1275 seq = read_seqbegin(&mount_lock);
1276 res = __path_is_mountpoint(path);
1277 } while (read_seqretry(&mount_lock, seq));
1278 rcu_read_unlock();
1279
1280 return res;
1281 }
1282 EXPORT_SYMBOL(path_is_mountpoint);
1283
1284 struct vfsmount *mnt_clone_internal(const struct path *path)
1285 {
1286 struct mount *p;
1287 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1288 if (IS_ERR(p))
1289 return ERR_CAST(p);
1290 p->mnt.mnt_flags |= MNT_INTERNAL;
1291 return &p->mnt;
1292 }
1293
1294 #ifdef CONFIG_PROC_FS
1295 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1296 struct list_head *p)
1297 {
1298 struct mount *mnt, *ret = NULL;
1299
1300 lock_ns_list(ns);
1301 list_for_each_continue(p, &ns->list) {
1302 mnt = list_entry(p, typeof(*mnt), mnt_list);
1303 if (!mnt_is_cursor(mnt)) {
1304 ret = mnt;
1305 break;
1306 }
1307 }
1308 unlock_ns_list(ns);
1309
1310 return ret;
1311 }
1312
1313 /* iterator; we want it to have access to namespace_sem, thus here... */
1314 static void *m_start(struct seq_file *m, loff_t *pos)
1315 {
1316 struct proc_mounts *p = m->private;
1317 struct list_head *prev;
1318
1319 down_read(&namespace_sem);
1320 if (!*pos) {
1321 prev = &p->ns->list;
1322 } else {
1323 prev = &p->cursor.mnt_list;
1324
1325 /* Read after we'd reached the end? */
1326 if (list_empty(prev))
1327 return NULL;
1328 }
1329
1330 return mnt_list_next(p->ns, prev);
1331 }
1332
1333 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1334 {
1335 struct proc_mounts *p = m->private;
1336 struct mount *mnt = v;
1337
1338 ++*pos;
1339 return mnt_list_next(p->ns, &mnt->mnt_list);
1340 }
1341
1342 static void m_stop(struct seq_file *m, void *v)
1343 {
1344 struct proc_mounts *p = m->private;
1345 struct mount *mnt = v;
1346
1347 lock_ns_list(p->ns);
1348 if (mnt)
1349 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1350 else
1351 list_del_init(&p->cursor.mnt_list);
1352 unlock_ns_list(p->ns);
1353 up_read(&namespace_sem);
1354 }
1355
1356 static int m_show(struct seq_file *m, void *v)
1357 {
1358 struct proc_mounts *p = m->private;
1359 struct mount *r = v;
1360 return p->show(m, &r->mnt);
1361 }
1362
1363 const struct seq_operations mounts_op = {
1364 .start = m_start,
1365 .next = m_next,
1366 .stop = m_stop,
1367 .show = m_show,
1368 };
1369
1370 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1371 {
1372 down_read(&namespace_sem);
1373 lock_ns_list(ns);
1374 list_del(&cursor->mnt_list);
1375 unlock_ns_list(ns);
1376 up_read(&namespace_sem);
1377 }
1378 #endif /* CONFIG_PROC_FS */
1379
1380 /**
1381 * may_umount_tree - check if a mount tree is busy
1382 * @m: root of mount tree
1383 *
1384 * This is called to check if a tree of mounts has any
1385 * open files, pwds, chroots or sub mounts that are
1386 * busy.
1387 */
1388 int may_umount_tree(struct vfsmount *m)
1389 {
1390 struct mount *mnt = real_mount(m);
1391 int actual_refs = 0;
1392 int minimum_refs = 0;
1393 struct mount *p;
1394 BUG_ON(!m);
1395
1396 /* write lock needed for mnt_get_count */
1397 lock_mount_hash();
1398 for (p = mnt; p; p = next_mnt(p, mnt)) {
1399 actual_refs += mnt_get_count(p);
1400 minimum_refs += 2;
1401 }
1402 unlock_mount_hash();
1403
1404 if (actual_refs > minimum_refs)
1405 return 0;
1406
1407 return 1;
1408 }
1409
1410 EXPORT_SYMBOL(may_umount_tree);
1411
1412 /**
1413 * may_umount - check if a mount point is busy
1414 * @mnt: root of mount
1415 *
1416 * This is called to check if a mount point has any
1417 * open files, pwds, chroots or sub mounts. If the
1418 * mount has sub mounts this will return busy
1419 * regardless of whether the sub mounts are busy.
1420 *
1421 * Doesn't take quota and stuff into account. IOW, in some cases it will
1422 * give false negatives. The main reason why it's here is that we need
1423 * a non-destructive way to look for easily umountable filesystems.
1424 */
1425 int may_umount(struct vfsmount *mnt)
1426 {
1427 int ret = 1;
1428 down_read(&namespace_sem);
1429 lock_mount_hash();
1430 if (propagate_mount_busy(real_mount(mnt), 2))
1431 ret = 0;
1432 unlock_mount_hash();
1433 up_read(&namespace_sem);
1434 return ret;
1435 }
1436
1437 EXPORT_SYMBOL(may_umount);
1438
1439 static void namespace_unlock(void)
1440 {
1441 struct hlist_head head;
1442 struct hlist_node *p;
1443 struct mount *m;
1444 LIST_HEAD(list);
1445
1446 hlist_move_list(&unmounted, &head);
1447 list_splice_init(&ex_mountpoints, &list);
1448
1449 up_write(&namespace_sem);
1450
1451 shrink_dentry_list(&list);
1452
1453 if (likely(hlist_empty(&head)))
1454 return;
1455
1456 synchronize_rcu_expedited();
1457
1458 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1459 hlist_del(&m->mnt_umount);
1460 mntput(&m->mnt);
1461 }
1462 }
1463
1464 static inline void namespace_lock(void)
1465 {
1466 down_write(&namespace_sem);
1467 }
1468
1469 enum umount_tree_flags {
1470 UMOUNT_SYNC = 1,
1471 UMOUNT_PROPAGATE = 2,
1472 UMOUNT_CONNECTED = 4,
1473 };
1474
1475 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1476 {
1477 /* Leaving mounts connected is only valid for lazy umounts */
1478 if (how & UMOUNT_SYNC)
1479 return true;
1480
1481 /* A mount without a parent has nothing to be connected to */
1482 if (!mnt_has_parent(mnt))
1483 return true;
1484
1485 /* Because the reference counting rules change when mounts are
1486 * unmounted and connected, umounted mounts may not be
1487 * connected to mounted mounts.
1488 */
1489 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1490 return true;
1491
1492 /* Has it been requested that the mount remain connected? */
1493 if (how & UMOUNT_CONNECTED)
1494 return false;
1495
1496 /* Is the mount locked such that it needs to remain connected? */
1497 if (IS_MNT_LOCKED(mnt))
1498 return false;
1499
1500 /* By default disconnect the mount */
1501 return true;
1502 }
1503
1504 /*
1505 * mount_lock must be held
1506 * namespace_sem must be held for write
1507 */
1508 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1509 {
1510 LIST_HEAD(tmp_list);
1511 struct mount *p;
1512
1513 if (how & UMOUNT_PROPAGATE)
1514 propagate_mount_unlock(mnt);
1515
1516 /* Gather the mounts to umount */
1517 for (p = mnt; p; p = next_mnt(p, mnt)) {
1518 p->mnt.mnt_flags |= MNT_UMOUNT;
1519 list_move(&p->mnt_list, &tmp_list);
1520 }
1521
1522 /* Hide the mounts from mnt_mounts */
1523 list_for_each_entry(p, &tmp_list, mnt_list) {
1524 list_del_init(&p->mnt_child);
1525 }
1526
1527 /* Add propogated mounts to the tmp_list */
1528 if (how & UMOUNT_PROPAGATE)
1529 propagate_umount(&tmp_list);
1530
1531 while (!list_empty(&tmp_list)) {
1532 struct mnt_namespace *ns;
1533 bool disconnect;
1534 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1535 list_del_init(&p->mnt_expire);
1536 list_del_init(&p->mnt_list);
1537 ns = p->mnt_ns;
1538 if (ns) {
1539 ns->mounts--;
1540 __touch_mnt_namespace(ns);
1541 }
1542 p->mnt_ns = NULL;
1543 if (how & UMOUNT_SYNC)
1544 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1545
1546 disconnect = disconnect_mount(p, how);
1547 if (mnt_has_parent(p)) {
1548 mnt_add_count(p->mnt_parent, -1);
1549 if (!disconnect) {
1550 /* Don't forget about p */
1551 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1552 } else {
1553 umount_mnt(p);
1554 }
1555 }
1556 change_mnt_propagation(p, MS_PRIVATE);
1557 if (disconnect)
1558 hlist_add_head(&p->mnt_umount, &unmounted);
1559 }
1560 }
1561
1562 static void shrink_submounts(struct mount *mnt);
1563
1564 static int do_umount_root(struct super_block *sb)
1565 {
1566 int ret = 0;
1567
1568 down_write(&sb->s_umount);
1569 if (!sb_rdonly(sb)) {
1570 struct fs_context *fc;
1571
1572 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1573 SB_RDONLY);
1574 if (IS_ERR(fc)) {
1575 ret = PTR_ERR(fc);
1576 } else {
1577 ret = parse_monolithic_mount_data(fc, NULL);
1578 if (!ret)
1579 ret = reconfigure_super(fc);
1580 put_fs_context(fc);
1581 }
1582 }
1583 up_write(&sb->s_umount);
1584 return ret;
1585 }
1586
1587 static int do_umount(struct mount *mnt, int flags)
1588 {
1589 struct super_block *sb = mnt->mnt.mnt_sb;
1590 int retval;
1591
1592 retval = security_sb_umount(&mnt->mnt, flags);
1593 if (retval)
1594 return retval;
1595
1596 /*
1597 * Allow userspace to request a mountpoint be expired rather than
1598 * unmounting unconditionally. Unmount only happens if:
1599 * (1) the mark is already set (the mark is cleared by mntput())
1600 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1601 */
1602 if (flags & MNT_EXPIRE) {
1603 if (&mnt->mnt == current->fs->root.mnt ||
1604 flags & (MNT_FORCE | MNT_DETACH))
1605 return -EINVAL;
1606
1607 /*
1608 * probably don't strictly need the lock here if we examined
1609 * all race cases, but it's a slowpath.
1610 */
1611 lock_mount_hash();
1612 if (mnt_get_count(mnt) != 2) {
1613 unlock_mount_hash();
1614 return -EBUSY;
1615 }
1616 unlock_mount_hash();
1617
1618 if (!xchg(&mnt->mnt_expiry_mark, 1))
1619 return -EAGAIN;
1620 }
1621
1622 /*
1623 * If we may have to abort operations to get out of this
1624 * mount, and they will themselves hold resources we must
1625 * allow the fs to do things. In the Unix tradition of
1626 * 'Gee thats tricky lets do it in userspace' the umount_begin
1627 * might fail to complete on the first run through as other tasks
1628 * must return, and the like. Thats for the mount program to worry
1629 * about for the moment.
1630 */
1631
1632 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1633 sb->s_op->umount_begin(sb);
1634 }
1635
1636 /*
1637 * No sense to grab the lock for this test, but test itself looks
1638 * somewhat bogus. Suggestions for better replacement?
1639 * Ho-hum... In principle, we might treat that as umount + switch
1640 * to rootfs. GC would eventually take care of the old vfsmount.
1641 * Actually it makes sense, especially if rootfs would contain a
1642 * /reboot - static binary that would close all descriptors and
1643 * call reboot(9). Then init(8) could umount root and exec /reboot.
1644 */
1645 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1646 /*
1647 * Special case for "unmounting" root ...
1648 * we just try to remount it readonly.
1649 */
1650 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1651 return -EPERM;
1652 return do_umount_root(sb);
1653 }
1654
1655 namespace_lock();
1656 lock_mount_hash();
1657
1658 /* Recheck MNT_LOCKED with the locks held */
1659 retval = -EINVAL;
1660 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1661 goto out;
1662
1663 event++;
1664 if (flags & MNT_DETACH) {
1665 if (!list_empty(&mnt->mnt_list))
1666 umount_tree(mnt, UMOUNT_PROPAGATE);
1667 retval = 0;
1668 } else {
1669 shrink_submounts(mnt);
1670 retval = -EBUSY;
1671 if (!propagate_mount_busy(mnt, 2)) {
1672 if (!list_empty(&mnt->mnt_list))
1673 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1674 retval = 0;
1675 }
1676 }
1677 out:
1678 unlock_mount_hash();
1679 namespace_unlock();
1680 return retval;
1681 }
1682
1683 /*
1684 * __detach_mounts - lazily unmount all mounts on the specified dentry
1685 *
1686 * During unlink, rmdir, and d_drop it is possible to loose the path
1687 * to an existing mountpoint, and wind up leaking the mount.
1688 * detach_mounts allows lazily unmounting those mounts instead of
1689 * leaking them.
1690 *
1691 * The caller may hold dentry->d_inode->i_mutex.
1692 */
1693 void __detach_mounts(struct dentry *dentry)
1694 {
1695 struct mountpoint *mp;
1696 struct mount *mnt;
1697
1698 namespace_lock();
1699 lock_mount_hash();
1700 mp = lookup_mountpoint(dentry);
1701 if (!mp)
1702 goto out_unlock;
1703
1704 event++;
1705 while (!hlist_empty(&mp->m_list)) {
1706 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1707 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1708 umount_mnt(mnt);
1709 hlist_add_head(&mnt->mnt_umount, &unmounted);
1710 }
1711 else umount_tree(mnt, UMOUNT_CONNECTED);
1712 }
1713 put_mountpoint(mp);
1714 out_unlock:
1715 unlock_mount_hash();
1716 namespace_unlock();
1717 }
1718
1719 /*
1720 * Is the caller allowed to modify his namespace?
1721 */
1722 static inline bool may_mount(void)
1723 {
1724 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1725 }
1726
1727 static void warn_mandlock(void)
1728 {
1729 pr_warn_once("=======================================================\n"
1730 "WARNING: The mand mount option has been deprecated and\n"
1731 " and is ignored by this kernel. Remove the mand\n"
1732 " option from the mount to silence this warning.\n"
1733 "=======================================================\n");
1734 }
1735
1736 static int can_umount(const struct path *path, int flags)
1737 {
1738 struct mount *mnt = real_mount(path->mnt);
1739
1740 if (!may_mount())
1741 return -EPERM;
1742 if (path->dentry != path->mnt->mnt_root)
1743 return -EINVAL;
1744 if (!check_mnt(mnt))
1745 return -EINVAL;
1746 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1747 return -EINVAL;
1748 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1749 return -EPERM;
1750 return 0;
1751 }
1752
1753 // caller is responsible for flags being sane
1754 int path_umount(struct path *path, int flags)
1755 {
1756 struct mount *mnt = real_mount(path->mnt);
1757 int ret;
1758
1759 ret = can_umount(path, flags);
1760 if (!ret)
1761 ret = do_umount(mnt, flags);
1762
1763 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1764 dput(path->dentry);
1765 mntput_no_expire(mnt);
1766 return ret;
1767 }
1768
1769 static int ksys_umount(char __user *name, int flags)
1770 {
1771 int lookup_flags = LOOKUP_MOUNTPOINT;
1772 struct path path;
1773 int ret;
1774
1775 // basic validity checks done first
1776 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1777 return -EINVAL;
1778
1779 if (!(flags & UMOUNT_NOFOLLOW))
1780 lookup_flags |= LOOKUP_FOLLOW;
1781 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1782 if (ret)
1783 return ret;
1784 return path_umount(&path, flags);
1785 }
1786
1787 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1788 {
1789 return ksys_umount(name, flags);
1790 }
1791
1792 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1793
1794 /*
1795 * The 2.0 compatible umount. No flags.
1796 */
1797 SYSCALL_DEFINE1(oldumount, char __user *, name)
1798 {
1799 return ksys_umount(name, 0);
1800 }
1801
1802 #endif
1803
1804 static bool is_mnt_ns_file(struct dentry *dentry)
1805 {
1806 /* Is this a proxy for a mount namespace? */
1807 return dentry->d_op == &ns_dentry_operations &&
1808 dentry->d_fsdata == &mntns_operations;
1809 }
1810
1811 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1812 {
1813 return container_of(ns, struct mnt_namespace, ns);
1814 }
1815
1816 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1817 {
1818 return &mnt->ns;
1819 }
1820
1821 static bool mnt_ns_loop(struct dentry *dentry)
1822 {
1823 /* Could bind mounting the mount namespace inode cause a
1824 * mount namespace loop?
1825 */
1826 struct mnt_namespace *mnt_ns;
1827 if (!is_mnt_ns_file(dentry))
1828 return false;
1829
1830 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1831 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1832 }
1833
1834 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1835 int flag)
1836 {
1837 struct mount *res, *p, *q, *r, *parent;
1838
1839 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1840 return ERR_PTR(-EINVAL);
1841
1842 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1843 return ERR_PTR(-EINVAL);
1844
1845 res = q = clone_mnt(mnt, dentry, flag);
1846 if (IS_ERR(q))
1847 return q;
1848
1849 q->mnt_mountpoint = mnt->mnt_mountpoint;
1850
1851 p = mnt;
1852 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1853 struct mount *s;
1854 if (!is_subdir(r->mnt_mountpoint, dentry))
1855 continue;
1856
1857 for (s = r; s; s = next_mnt(s, r)) {
1858 if (!(flag & CL_COPY_UNBINDABLE) &&
1859 IS_MNT_UNBINDABLE(s)) {
1860 if (s->mnt.mnt_flags & MNT_LOCKED) {
1861 /* Both unbindable and locked. */
1862 q = ERR_PTR(-EPERM);
1863 goto out;
1864 } else {
1865 s = skip_mnt_tree(s);
1866 continue;
1867 }
1868 }
1869 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1870 is_mnt_ns_file(s->mnt.mnt_root)) {
1871 s = skip_mnt_tree(s);
1872 continue;
1873 }
1874 while (p != s->mnt_parent) {
1875 p = p->mnt_parent;
1876 q = q->mnt_parent;
1877 }
1878 p = s;
1879 parent = q;
1880 q = clone_mnt(p, p->mnt.mnt_root, flag);
1881 if (IS_ERR(q))
1882 goto out;
1883 lock_mount_hash();
1884 list_add_tail(&q->mnt_list, &res->mnt_list);
1885 attach_mnt(q, parent, p->mnt_mp);
1886 unlock_mount_hash();
1887 }
1888 }
1889 return res;
1890 out:
1891 if (res) {
1892 lock_mount_hash();
1893 umount_tree(res, UMOUNT_SYNC);
1894 unlock_mount_hash();
1895 }
1896 return q;
1897 }
1898
1899 /* Caller should check returned pointer for errors */
1900
1901 struct vfsmount *collect_mounts(const struct path *path)
1902 {
1903 struct mount *tree;
1904 namespace_lock();
1905 if (!check_mnt(real_mount(path->mnt)))
1906 tree = ERR_PTR(-EINVAL);
1907 else
1908 tree = copy_tree(real_mount(path->mnt), path->dentry,
1909 CL_COPY_ALL | CL_PRIVATE);
1910 namespace_unlock();
1911 if (IS_ERR(tree))
1912 return ERR_CAST(tree);
1913 return &tree->mnt;
1914 }
1915
1916 static void free_mnt_ns(struct mnt_namespace *);
1917 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1918
1919 void dissolve_on_fput(struct vfsmount *mnt)
1920 {
1921 struct mnt_namespace *ns;
1922 namespace_lock();
1923 lock_mount_hash();
1924 ns = real_mount(mnt)->mnt_ns;
1925 if (ns) {
1926 if (is_anon_ns(ns))
1927 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1928 else
1929 ns = NULL;
1930 }
1931 unlock_mount_hash();
1932 namespace_unlock();
1933 if (ns)
1934 free_mnt_ns(ns);
1935 }
1936
1937 void drop_collected_mounts(struct vfsmount *mnt)
1938 {
1939 namespace_lock();
1940 lock_mount_hash();
1941 umount_tree(real_mount(mnt), 0);
1942 unlock_mount_hash();
1943 namespace_unlock();
1944 }
1945
1946 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1947 {
1948 struct mount *child;
1949
1950 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1951 if (!is_subdir(child->mnt_mountpoint, dentry))
1952 continue;
1953
1954 if (child->mnt.mnt_flags & MNT_LOCKED)
1955 return true;
1956 }
1957 return false;
1958 }
1959
1960 /**
1961 * clone_private_mount - create a private clone of a path
1962 * @path: path to clone
1963 *
1964 * This creates a new vfsmount, which will be the clone of @path. The new mount
1965 * will not be attached anywhere in the namespace and will be private (i.e.
1966 * changes to the originating mount won't be propagated into this).
1967 *
1968 * Release with mntput().
1969 */
1970 struct vfsmount *clone_private_mount(const struct path *path)
1971 {
1972 struct mount *old_mnt = real_mount(path->mnt);
1973 struct mount *new_mnt;
1974
1975 down_read(&namespace_sem);
1976 if (IS_MNT_UNBINDABLE(old_mnt))
1977 goto invalid;
1978
1979 if (!check_mnt(old_mnt))
1980 goto invalid;
1981
1982 if (has_locked_children(old_mnt, path->dentry))
1983 goto invalid;
1984
1985 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1986 up_read(&namespace_sem);
1987
1988 if (IS_ERR(new_mnt))
1989 return ERR_CAST(new_mnt);
1990
1991 /* Longterm mount to be removed by kern_unmount*() */
1992 new_mnt->mnt_ns = MNT_NS_INTERNAL;
1993
1994 return &new_mnt->mnt;
1995
1996 invalid:
1997 up_read(&namespace_sem);
1998 return ERR_PTR(-EINVAL);
1999 }
2000 EXPORT_SYMBOL_GPL(clone_private_mount);
2001
2002 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2003 struct vfsmount *root)
2004 {
2005 struct mount *mnt;
2006 int res = f(root, arg);
2007 if (res)
2008 return res;
2009 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2010 res = f(&mnt->mnt, arg);
2011 if (res)
2012 return res;
2013 }
2014 return 0;
2015 }
2016 EXPORT_SYMBOL_GPL(iterate_mounts);
2017
2018 static void lock_mnt_tree(struct mount *mnt)
2019 {
2020 struct mount *p;
2021
2022 for (p = mnt; p; p = next_mnt(p, mnt)) {
2023 int flags = p->mnt.mnt_flags;
2024 /* Don't allow unprivileged users to change mount flags */
2025 flags |= MNT_LOCK_ATIME;
2026
2027 if (flags & MNT_READONLY)
2028 flags |= MNT_LOCK_READONLY;
2029
2030 if (flags & MNT_NODEV)
2031 flags |= MNT_LOCK_NODEV;
2032
2033 if (flags & MNT_NOSUID)
2034 flags |= MNT_LOCK_NOSUID;
2035
2036 if (flags & MNT_NOEXEC)
2037 flags |= MNT_LOCK_NOEXEC;
2038 /* Don't allow unprivileged users to reveal what is under a mount */
2039 if (list_empty(&p->mnt_expire))
2040 flags |= MNT_LOCKED;
2041 p->mnt.mnt_flags = flags;
2042 }
2043 }
2044
2045 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2046 {
2047 struct mount *p;
2048
2049 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2050 if (p->mnt_group_id && !IS_MNT_SHARED(p))
2051 mnt_release_group_id(p);
2052 }
2053 }
2054
2055 static int invent_group_ids(struct mount *mnt, bool recurse)
2056 {
2057 struct mount *p;
2058
2059 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2060 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2061 int err = mnt_alloc_group_id(p);
2062 if (err) {
2063 cleanup_group_ids(mnt, p);
2064 return err;
2065 }
2066 }
2067 }
2068
2069 return 0;
2070 }
2071
2072 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2073 {
2074 unsigned int max = READ_ONCE(sysctl_mount_max);
2075 unsigned int mounts = 0, old, pending, sum;
2076 struct mount *p;
2077
2078 for (p = mnt; p; p = next_mnt(p, mnt))
2079 mounts++;
2080
2081 old = ns->mounts;
2082 pending = ns->pending_mounts;
2083 sum = old + pending;
2084 if ((old > sum) ||
2085 (pending > sum) ||
2086 (max < sum) ||
2087 (mounts > (max - sum)))
2088 return -ENOSPC;
2089
2090 ns->pending_mounts = pending + mounts;
2091 return 0;
2092 }
2093
2094 /*
2095 * @source_mnt : mount tree to be attached
2096 * @nd : place the mount tree @source_mnt is attached
2097 * @parent_nd : if non-null, detach the source_mnt from its parent and
2098 * store the parent mount and mountpoint dentry.
2099 * (done when source_mnt is moved)
2100 *
2101 * NOTE: in the table below explains the semantics when a source mount
2102 * of a given type is attached to a destination mount of a given type.
2103 * ---------------------------------------------------------------------------
2104 * | BIND MOUNT OPERATION |
2105 * |**************************************************************************
2106 * | source-->| shared | private | slave | unbindable |
2107 * | dest | | | | |
2108 * | | | | | | |
2109 * | v | | | | |
2110 * |**************************************************************************
2111 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2112 * | | | | | |
2113 * |non-shared| shared (+) | private | slave (*) | invalid |
2114 * ***************************************************************************
2115 * A bind operation clones the source mount and mounts the clone on the
2116 * destination mount.
2117 *
2118 * (++) the cloned mount is propagated to all the mounts in the propagation
2119 * tree of the destination mount and the cloned mount is added to
2120 * the peer group of the source mount.
2121 * (+) the cloned mount is created under the destination mount and is marked
2122 * as shared. The cloned mount is added to the peer group of the source
2123 * mount.
2124 * (+++) the mount is propagated to all the mounts in the propagation tree
2125 * of the destination mount and the cloned mount is made slave
2126 * of the same master as that of the source mount. The cloned mount
2127 * is marked as 'shared and slave'.
2128 * (*) the cloned mount is made a slave of the same master as that of the
2129 * source mount.
2130 *
2131 * ---------------------------------------------------------------------------
2132 * | MOVE MOUNT OPERATION |
2133 * |**************************************************************************
2134 * | source-->| shared | private | slave | unbindable |
2135 * | dest | | | | |
2136 * | | | | | | |
2137 * | v | | | | |
2138 * |**************************************************************************
2139 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2140 * | | | | | |
2141 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2142 * ***************************************************************************
2143 *
2144 * (+) the mount is moved to the destination. And is then propagated to
2145 * all the mounts in the propagation tree of the destination mount.
2146 * (+*) the mount is moved to the destination.
2147 * (+++) the mount is moved to the destination and is then propagated to
2148 * all the mounts belonging to the destination mount's propagation tree.
2149 * the mount is marked as 'shared and slave'.
2150 * (*) the mount continues to be a slave at the new location.
2151 *
2152 * if the source mount is a tree, the operations explained above is
2153 * applied to each mount in the tree.
2154 * Must be called without spinlocks held, since this function can sleep
2155 * in allocations.
2156 */
2157 static int attach_recursive_mnt(struct mount *source_mnt,
2158 struct mount *dest_mnt,
2159 struct mountpoint *dest_mp,
2160 bool moving)
2161 {
2162 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2163 HLIST_HEAD(tree_list);
2164 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2165 struct mountpoint *smp;
2166 struct mount *child, *p;
2167 struct hlist_node *n;
2168 int err;
2169
2170 /* Preallocate a mountpoint in case the new mounts need
2171 * to be tucked under other mounts.
2172 */
2173 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2174 if (IS_ERR(smp))
2175 return PTR_ERR(smp);
2176
2177 /* Is there space to add these mounts to the mount namespace? */
2178 if (!moving) {
2179 err = count_mounts(ns, source_mnt);
2180 if (err)
2181 goto out;
2182 }
2183
2184 if (IS_MNT_SHARED(dest_mnt)) {
2185 err = invent_group_ids(source_mnt, true);
2186 if (err)
2187 goto out;
2188 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2189 lock_mount_hash();
2190 if (err)
2191 goto out_cleanup_ids;
2192 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2193 set_mnt_shared(p);
2194 } else {
2195 lock_mount_hash();
2196 }
2197 if (moving) {
2198 unhash_mnt(source_mnt);
2199 attach_mnt(source_mnt, dest_mnt, dest_mp);
2200 touch_mnt_namespace(source_mnt->mnt_ns);
2201 } else {
2202 if (source_mnt->mnt_ns) {
2203 /* move from anon - the caller will destroy */
2204 list_del_init(&source_mnt->mnt_ns->list);
2205 }
2206 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2207 commit_tree(source_mnt);
2208 }
2209
2210 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2211 struct mount *q;
2212 hlist_del_init(&child->mnt_hash);
2213 q = __lookup_mnt(&child->mnt_parent->mnt,
2214 child->mnt_mountpoint);
2215 if (q)
2216 mnt_change_mountpoint(child, smp, q);
2217 /* Notice when we are propagating across user namespaces */
2218 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2219 lock_mnt_tree(child);
2220 child->mnt.mnt_flags &= ~MNT_LOCKED;
2221 commit_tree(child);
2222 }
2223 put_mountpoint(smp);
2224 unlock_mount_hash();
2225
2226 return 0;
2227
2228 out_cleanup_ids:
2229 while (!hlist_empty(&tree_list)) {
2230 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2231 child->mnt_parent->mnt_ns->pending_mounts = 0;
2232 umount_tree(child, UMOUNT_SYNC);
2233 }
2234 unlock_mount_hash();
2235 cleanup_group_ids(source_mnt, NULL);
2236 out:
2237 ns->pending_mounts = 0;
2238
2239 read_seqlock_excl(&mount_lock);
2240 put_mountpoint(smp);
2241 read_sequnlock_excl(&mount_lock);
2242
2243 return err;
2244 }
2245
2246 static struct mountpoint *lock_mount(struct path *path)
2247 {
2248 struct vfsmount *mnt;
2249 struct dentry *dentry = path->dentry;
2250 retry:
2251 inode_lock(dentry->d_inode);
2252 if (unlikely(cant_mount(dentry))) {
2253 inode_unlock(dentry->d_inode);
2254 return ERR_PTR(-ENOENT);
2255 }
2256 namespace_lock();
2257 mnt = lookup_mnt(path);
2258 if (likely(!mnt)) {
2259 struct mountpoint *mp = get_mountpoint(dentry);
2260 if (IS_ERR(mp)) {
2261 namespace_unlock();
2262 inode_unlock(dentry->d_inode);
2263 return mp;
2264 }
2265 return mp;
2266 }
2267 namespace_unlock();
2268 inode_unlock(path->dentry->d_inode);
2269 path_put(path);
2270 path->mnt = mnt;
2271 dentry = path->dentry = dget(mnt->mnt_root);
2272 goto retry;
2273 }
2274
2275 static void unlock_mount(struct mountpoint *where)
2276 {
2277 struct dentry *dentry = where->m_dentry;
2278
2279 read_seqlock_excl(&mount_lock);
2280 put_mountpoint(where);
2281 read_sequnlock_excl(&mount_lock);
2282
2283 namespace_unlock();
2284 inode_unlock(dentry->d_inode);
2285 }
2286
2287 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2288 {
2289 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2290 return -EINVAL;
2291
2292 if (d_is_dir(mp->m_dentry) !=
2293 d_is_dir(mnt->mnt.mnt_root))
2294 return -ENOTDIR;
2295
2296 return attach_recursive_mnt(mnt, p, mp, false);
2297 }
2298
2299 /*
2300 * Sanity check the flags to change_mnt_propagation.
2301 */
2302
2303 static int flags_to_propagation_type(int ms_flags)
2304 {
2305 int type = ms_flags & ~(MS_REC | MS_SILENT);
2306
2307 /* Fail if any non-propagation flags are set */
2308 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2309 return 0;
2310 /* Only one propagation flag should be set */
2311 if (!is_power_of_2(type))
2312 return 0;
2313 return type;
2314 }
2315
2316 /*
2317 * recursively change the type of the mountpoint.
2318 */
2319 static int do_change_type(struct path *path, int ms_flags)
2320 {
2321 struct mount *m;
2322 struct mount *mnt = real_mount(path->mnt);
2323 int recurse = ms_flags & MS_REC;
2324 int type;
2325 int err = 0;
2326
2327 if (path->dentry != path->mnt->mnt_root)
2328 return -EINVAL;
2329
2330 type = flags_to_propagation_type(ms_flags);
2331 if (!type)
2332 return -EINVAL;
2333
2334 namespace_lock();
2335 if (type == MS_SHARED) {
2336 err = invent_group_ids(mnt, recurse);
2337 if (err)
2338 goto out_unlock;
2339 }
2340
2341 lock_mount_hash();
2342 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2343 change_mnt_propagation(m, type);
2344 unlock_mount_hash();
2345
2346 out_unlock:
2347 namespace_unlock();
2348 return err;
2349 }
2350
2351 static struct mount *__do_loopback(struct path *old_path, int recurse)
2352 {
2353 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2354
2355 if (IS_MNT_UNBINDABLE(old))
2356 return mnt;
2357
2358 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2359 return mnt;
2360
2361 if (!recurse && has_locked_children(old, old_path->dentry))
2362 return mnt;
2363
2364 if (recurse)
2365 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2366 else
2367 mnt = clone_mnt(old, old_path->dentry, 0);
2368
2369 if (!IS_ERR(mnt))
2370 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2371
2372 return mnt;
2373 }
2374
2375 /*
2376 * do loopback mount.
2377 */
2378 static int do_loopback(struct path *path, const char *old_name,
2379 int recurse)
2380 {
2381 struct path old_path;
2382 struct mount *mnt = NULL, *parent;
2383 struct mountpoint *mp;
2384 int err;
2385 if (!old_name || !*old_name)
2386 return -EINVAL;
2387 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2388 if (err)
2389 return err;
2390
2391 err = -EINVAL;
2392 if (mnt_ns_loop(old_path.dentry))
2393 goto out;
2394
2395 mp = lock_mount(path);
2396 if (IS_ERR(mp)) {
2397 err = PTR_ERR(mp);
2398 goto out;
2399 }
2400
2401 parent = real_mount(path->mnt);
2402 if (!check_mnt(parent))
2403 goto out2;
2404
2405 mnt = __do_loopback(&old_path, recurse);
2406 if (IS_ERR(mnt)) {
2407 err = PTR_ERR(mnt);
2408 goto out2;
2409 }
2410
2411 err = graft_tree(mnt, parent, mp);
2412 if (err) {
2413 lock_mount_hash();
2414 umount_tree(mnt, UMOUNT_SYNC);
2415 unlock_mount_hash();
2416 }
2417 out2:
2418 unlock_mount(mp);
2419 out:
2420 path_put(&old_path);
2421 return err;
2422 }
2423
2424 static struct file *open_detached_copy(struct path *path, bool recursive)
2425 {
2426 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2427 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2428 struct mount *mnt, *p;
2429 struct file *file;
2430
2431 if (IS_ERR(ns))
2432 return ERR_CAST(ns);
2433
2434 namespace_lock();
2435 mnt = __do_loopback(path, recursive);
2436 if (IS_ERR(mnt)) {
2437 namespace_unlock();
2438 free_mnt_ns(ns);
2439 return ERR_CAST(mnt);
2440 }
2441
2442 lock_mount_hash();
2443 for (p = mnt; p; p = next_mnt(p, mnt)) {
2444 p->mnt_ns = ns;
2445 ns->mounts++;
2446 }
2447 ns->root = mnt;
2448 list_add_tail(&ns->list, &mnt->mnt_list);
2449 mntget(&mnt->mnt);
2450 unlock_mount_hash();
2451 namespace_unlock();
2452
2453 mntput(path->mnt);
2454 path->mnt = &mnt->mnt;
2455 file = dentry_open(path, O_PATH, current_cred());
2456 if (IS_ERR(file))
2457 dissolve_on_fput(path->mnt);
2458 else
2459 file->f_mode |= FMODE_NEED_UNMOUNT;
2460 return file;
2461 }
2462
2463 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2464 {
2465 struct file *file;
2466 struct path path;
2467 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2468 bool detached = flags & OPEN_TREE_CLONE;
2469 int error;
2470 int fd;
2471
2472 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2473
2474 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2475 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2476 OPEN_TREE_CLOEXEC))
2477 return -EINVAL;
2478
2479 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2480 return -EINVAL;
2481
2482 if (flags & AT_NO_AUTOMOUNT)
2483 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2484 if (flags & AT_SYMLINK_NOFOLLOW)
2485 lookup_flags &= ~LOOKUP_FOLLOW;
2486 if (flags & AT_EMPTY_PATH)
2487 lookup_flags |= LOOKUP_EMPTY;
2488
2489 if (detached && !may_mount())
2490 return -EPERM;
2491
2492 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2493 if (fd < 0)
2494 return fd;
2495
2496 error = user_path_at(dfd, filename, lookup_flags, &path);
2497 if (unlikely(error)) {
2498 file = ERR_PTR(error);
2499 } else {
2500 if (detached)
2501 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2502 else
2503 file = dentry_open(&path, O_PATH, current_cred());
2504 path_put(&path);
2505 }
2506 if (IS_ERR(file)) {
2507 put_unused_fd(fd);
2508 return PTR_ERR(file);
2509 }
2510 fd_install(fd, file);
2511 return fd;
2512 }
2513
2514 /*
2515 * Don't allow locked mount flags to be cleared.
2516 *
2517 * No locks need to be held here while testing the various MNT_LOCK
2518 * flags because those flags can never be cleared once they are set.
2519 */
2520 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2521 {
2522 unsigned int fl = mnt->mnt.mnt_flags;
2523
2524 if ((fl & MNT_LOCK_READONLY) &&
2525 !(mnt_flags & MNT_READONLY))
2526 return false;
2527
2528 if ((fl & MNT_LOCK_NODEV) &&
2529 !(mnt_flags & MNT_NODEV))
2530 return false;
2531
2532 if ((fl & MNT_LOCK_NOSUID) &&
2533 !(mnt_flags & MNT_NOSUID))
2534 return false;
2535
2536 if ((fl & MNT_LOCK_NOEXEC) &&
2537 !(mnt_flags & MNT_NOEXEC))
2538 return false;
2539
2540 if ((fl & MNT_LOCK_ATIME) &&
2541 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2542 return false;
2543
2544 return true;
2545 }
2546
2547 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2548 {
2549 bool readonly_request = (mnt_flags & MNT_READONLY);
2550
2551 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2552 return 0;
2553
2554 if (readonly_request)
2555 return mnt_make_readonly(mnt);
2556
2557 mnt->mnt.mnt_flags &= ~MNT_READONLY;
2558 return 0;
2559 }
2560
2561 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2562 {
2563 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2564 mnt->mnt.mnt_flags = mnt_flags;
2565 touch_mnt_namespace(mnt->mnt_ns);
2566 }
2567
2568 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2569 {
2570 struct super_block *sb = mnt->mnt_sb;
2571
2572 if (!__mnt_is_readonly(mnt) &&
2573 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2574 char *buf = (char *)__get_free_page(GFP_KERNEL);
2575 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2576 struct tm tm;
2577
2578 time64_to_tm(sb->s_time_max, 0, &tm);
2579
2580 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2581 sb->s_type->name,
2582 is_mounted(mnt) ? "remounted" : "mounted",
2583 mntpath,
2584 tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2585
2586 free_page((unsigned long)buf);
2587 }
2588 }
2589
2590 /*
2591 * Handle reconfiguration of the mountpoint only without alteration of the
2592 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2593 * to mount(2).
2594 */
2595 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2596 {
2597 struct super_block *sb = path->mnt->mnt_sb;
2598 struct mount *mnt = real_mount(path->mnt);
2599 int ret;
2600
2601 if (!check_mnt(mnt))
2602 return -EINVAL;
2603
2604 if (path->dentry != mnt->mnt.mnt_root)
2605 return -EINVAL;
2606
2607 if (!can_change_locked_flags(mnt, mnt_flags))
2608 return -EPERM;
2609
2610 /*
2611 * We're only checking whether the superblock is read-only not
2612 * changing it, so only take down_read(&sb->s_umount).
2613 */
2614 down_read(&sb->s_umount);
2615 lock_mount_hash();
2616 ret = change_mount_ro_state(mnt, mnt_flags);
2617 if (ret == 0)
2618 set_mount_attributes(mnt, mnt_flags);
2619 unlock_mount_hash();
2620 up_read(&sb->s_umount);
2621
2622 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2623
2624 return ret;
2625 }
2626
2627 /*
2628 * change filesystem flags. dir should be a physical root of filesystem.
2629 * If you've mounted a non-root directory somewhere and want to do remount
2630 * on it - tough luck.
2631 */
2632 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2633 int mnt_flags, void *data)
2634 {
2635 int err;
2636 struct super_block *sb = path->mnt->mnt_sb;
2637 struct mount *mnt = real_mount(path->mnt);
2638 struct fs_context *fc;
2639
2640 if (!check_mnt(mnt))
2641 return -EINVAL;
2642
2643 if (path->dentry != path->mnt->mnt_root)
2644 return -EINVAL;
2645
2646 if (!can_change_locked_flags(mnt, mnt_flags))
2647 return -EPERM;
2648
2649 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2650 if (IS_ERR(fc))
2651 return PTR_ERR(fc);
2652
2653 fc->oldapi = true;
2654 err = parse_monolithic_mount_data(fc, data);
2655 if (!err) {
2656 down_write(&sb->s_umount);
2657 err = -EPERM;
2658 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2659 err = reconfigure_super(fc);
2660 if (!err) {
2661 lock_mount_hash();
2662 set_mount_attributes(mnt, mnt_flags);
2663 unlock_mount_hash();
2664 }
2665 }
2666 up_write(&sb->s_umount);
2667 }
2668
2669 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2670
2671 put_fs_context(fc);
2672 return err;
2673 }
2674
2675 static inline int tree_contains_unbindable(struct mount *mnt)
2676 {
2677 struct mount *p;
2678 for (p = mnt; p; p = next_mnt(p, mnt)) {
2679 if (IS_MNT_UNBINDABLE(p))
2680 return 1;
2681 }
2682 return 0;
2683 }
2684
2685 /*
2686 * Check that there aren't references to earlier/same mount namespaces in the
2687 * specified subtree. Such references can act as pins for mount namespaces
2688 * that aren't checked by the mount-cycle checking code, thereby allowing
2689 * cycles to be made.
2690 */
2691 static bool check_for_nsfs_mounts(struct mount *subtree)
2692 {
2693 struct mount *p;
2694 bool ret = false;
2695
2696 lock_mount_hash();
2697 for (p = subtree; p; p = next_mnt(p, subtree))
2698 if (mnt_ns_loop(p->mnt.mnt_root))
2699 goto out;
2700
2701 ret = true;
2702 out:
2703 unlock_mount_hash();
2704 return ret;
2705 }
2706
2707 static int do_set_group(struct path *from_path, struct path *to_path)
2708 {
2709 struct mount *from, *to;
2710 int err;
2711
2712 from = real_mount(from_path->mnt);
2713 to = real_mount(to_path->mnt);
2714
2715 namespace_lock();
2716
2717 err = -EINVAL;
2718 /* To and From must be mounted */
2719 if (!is_mounted(&from->mnt))
2720 goto out;
2721 if (!is_mounted(&to->mnt))
2722 goto out;
2723
2724 err = -EPERM;
2725 /* We should be allowed to modify mount namespaces of both mounts */
2726 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2727 goto out;
2728 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2729 goto out;
2730
2731 err = -EINVAL;
2732 /* To and From paths should be mount roots */
2733 if (from_path->dentry != from_path->mnt->mnt_root)
2734 goto out;
2735 if (to_path->dentry != to_path->mnt->mnt_root)
2736 goto out;
2737
2738 /* Setting sharing groups is only allowed across same superblock */
2739 if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2740 goto out;
2741
2742 /* From mount root should be wider than To mount root */
2743 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2744 goto out;
2745
2746 /* From mount should not have locked children in place of To's root */
2747 if (has_locked_children(from, to->mnt.mnt_root))
2748 goto out;
2749
2750 /* Setting sharing groups is only allowed on private mounts */
2751 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2752 goto out;
2753
2754 /* From should not be private */
2755 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2756 goto out;
2757
2758 if (IS_MNT_SLAVE(from)) {
2759 struct mount *m = from->mnt_master;
2760
2761 list_add(&to->mnt_slave, &m->mnt_slave_list);
2762 to->mnt_master = m;
2763 }
2764
2765 if (IS_MNT_SHARED(from)) {
2766 to->mnt_group_id = from->mnt_group_id;
2767 list_add(&to->mnt_share, &from->mnt_share);
2768 lock_mount_hash();
2769 set_mnt_shared(to);
2770 unlock_mount_hash();
2771 }
2772
2773 err = 0;
2774 out:
2775 namespace_unlock();
2776 return err;
2777 }
2778
2779 static int do_move_mount(struct path *old_path, struct path *new_path)
2780 {
2781 struct mnt_namespace *ns;
2782 struct mount *p;
2783 struct mount *old;
2784 struct mount *parent;
2785 struct mountpoint *mp, *old_mp;
2786 int err;
2787 bool attached;
2788
2789 mp = lock_mount(new_path);
2790 if (IS_ERR(mp))
2791 return PTR_ERR(mp);
2792
2793 old = real_mount(old_path->mnt);
2794 p = real_mount(new_path->mnt);
2795 parent = old->mnt_parent;
2796 attached = mnt_has_parent(old);
2797 old_mp = old->mnt_mp;
2798 ns = old->mnt_ns;
2799
2800 err = -EINVAL;
2801 /* The mountpoint must be in our namespace. */
2802 if (!check_mnt(p))
2803 goto out;
2804
2805 /* The thing moved must be mounted... */
2806 if (!is_mounted(&old->mnt))
2807 goto out;
2808
2809 /* ... and either ours or the root of anon namespace */
2810 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2811 goto out;
2812
2813 if (old->mnt.mnt_flags & MNT_LOCKED)
2814 goto out;
2815
2816 if (old_path->dentry != old_path->mnt->mnt_root)
2817 goto out;
2818
2819 if (d_is_dir(new_path->dentry) !=
2820 d_is_dir(old_path->dentry))
2821 goto out;
2822 /*
2823 * Don't move a mount residing in a shared parent.
2824 */
2825 if (attached && IS_MNT_SHARED(parent))
2826 goto out;
2827 /*
2828 * Don't move a mount tree containing unbindable mounts to a destination
2829 * mount which is shared.
2830 */
2831 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2832 goto out;
2833 err = -ELOOP;
2834 if (!check_for_nsfs_mounts(old))
2835 goto out;
2836 for (; mnt_has_parent(p); p = p->mnt_parent)
2837 if (p == old)
2838 goto out;
2839
2840 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2841 attached);
2842 if (err)
2843 goto out;
2844
2845 /* if the mount is moved, it should no longer be expire
2846 * automatically */
2847 list_del_init(&old->mnt_expire);
2848 if (attached)
2849 put_mountpoint(old_mp);
2850 out:
2851 unlock_mount(mp);
2852 if (!err) {
2853 if (attached)
2854 mntput_no_expire(parent);
2855 else
2856 free_mnt_ns(ns);
2857 }
2858 return err;
2859 }
2860
2861 static int do_move_mount_old(struct path *path, const char *old_name)
2862 {
2863 struct path old_path;
2864 int err;
2865
2866 if (!old_name || !*old_name)
2867 return -EINVAL;
2868
2869 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2870 if (err)
2871 return err;
2872
2873 err = do_move_mount(&old_path, path);
2874 path_put(&old_path);
2875 return err;
2876 }
2877
2878 /*
2879 * add a mount into a namespace's mount tree
2880 */
2881 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2882 struct path *path, int mnt_flags)
2883 {
2884 struct mount *parent = real_mount(path->mnt);
2885
2886 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2887
2888 if (unlikely(!check_mnt(parent))) {
2889 /* that's acceptable only for automounts done in private ns */
2890 if (!(mnt_flags & MNT_SHRINKABLE))
2891 return -EINVAL;
2892 /* ... and for those we'd better have mountpoint still alive */
2893 if (!parent->mnt_ns)
2894 return -EINVAL;
2895 }
2896
2897 /* Refuse the same filesystem on the same mount point */
2898 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2899 path->mnt->mnt_root == path->dentry)
2900 return -EBUSY;
2901
2902 if (d_is_symlink(newmnt->mnt.mnt_root))
2903 return -EINVAL;
2904
2905 newmnt->mnt.mnt_flags = mnt_flags;
2906 return graft_tree(newmnt, parent, mp);
2907 }
2908
2909 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2910
2911 /*
2912 * Create a new mount using a superblock configuration and request it
2913 * be added to the namespace tree.
2914 */
2915 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2916 unsigned int mnt_flags)
2917 {
2918 struct vfsmount *mnt;
2919 struct mountpoint *mp;
2920 struct super_block *sb = fc->root->d_sb;
2921 int error;
2922
2923 error = security_sb_kern_mount(sb);
2924 if (!error && mount_too_revealing(sb, &mnt_flags))
2925 error = -EPERM;
2926
2927 if (unlikely(error)) {
2928 fc_drop_locked(fc);
2929 return error;
2930 }
2931
2932 up_write(&sb->s_umount);
2933
2934 mnt = vfs_create_mount(fc);
2935 if (IS_ERR(mnt))
2936 return PTR_ERR(mnt);
2937
2938 mnt_warn_timestamp_expiry(mountpoint, mnt);
2939
2940 mp = lock_mount(mountpoint);
2941 if (IS_ERR(mp)) {
2942 mntput(mnt);
2943 return PTR_ERR(mp);
2944 }
2945 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2946 unlock_mount(mp);
2947 if (error < 0)
2948 mntput(mnt);
2949 return error;
2950 }
2951
2952 /*
2953 * create a new mount for userspace and request it to be added into the
2954 * namespace's tree
2955 */
2956 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2957 int mnt_flags, const char *name, void *data)
2958 {
2959 struct file_system_type *type;
2960 struct fs_context *fc;
2961 const char *subtype = NULL;
2962 int err = 0;
2963
2964 if (!fstype)
2965 return -EINVAL;
2966
2967 type = get_fs_type(fstype);
2968 if (!type)
2969 return -ENODEV;
2970
2971 if (type->fs_flags & FS_HAS_SUBTYPE) {
2972 subtype = strchr(fstype, '.');
2973 if (subtype) {
2974 subtype++;
2975 if (!*subtype) {
2976 put_filesystem(type);
2977 return -EINVAL;
2978 }
2979 }
2980 }
2981
2982 fc = fs_context_for_mount(type, sb_flags);
2983 put_filesystem(type);
2984 if (IS_ERR(fc))
2985 return PTR_ERR(fc);
2986
2987 if (subtype)
2988 err = vfs_parse_fs_string(fc, "subtype",
2989 subtype, strlen(subtype));
2990 if (!err && name)
2991 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2992 if (!err)
2993 err = parse_monolithic_mount_data(fc, data);
2994 if (!err && !mount_capable(fc))
2995 err = -EPERM;
2996 if (!err)
2997 err = vfs_get_tree(fc);
2998 if (!err)
2999 err = do_new_mount_fc(fc, path, mnt_flags);
3000
3001 put_fs_context(fc);
3002 return err;
3003 }
3004
3005 int finish_automount(struct vfsmount *m, struct path *path)
3006 {
3007 struct dentry *dentry = path->dentry;
3008 struct mountpoint *mp;
3009 struct mount *mnt;
3010 int err;
3011
3012 if (!m)
3013 return 0;
3014 if (IS_ERR(m))
3015 return PTR_ERR(m);
3016
3017 mnt = real_mount(m);
3018 /* The new mount record should have at least 2 refs to prevent it being
3019 * expired before we get a chance to add it
3020 */
3021 BUG_ON(mnt_get_count(mnt) < 2);
3022
3023 if (m->mnt_sb == path->mnt->mnt_sb &&
3024 m->mnt_root == dentry) {
3025 err = -ELOOP;
3026 goto discard;
3027 }
3028
3029 /*
3030 * we don't want to use lock_mount() - in this case finding something
3031 * that overmounts our mountpoint to be means "quitely drop what we've
3032 * got", not "try to mount it on top".
3033 */
3034 inode_lock(dentry->d_inode);
3035 namespace_lock();
3036 if (unlikely(cant_mount(dentry))) {
3037 err = -ENOENT;
3038 goto discard_locked;
3039 }
3040 rcu_read_lock();
3041 if (unlikely(__lookup_mnt(path->mnt, dentry))) {
3042 rcu_read_unlock();
3043 err = 0;
3044 goto discard_locked;
3045 }
3046 rcu_read_unlock();
3047 mp = get_mountpoint(dentry);
3048 if (IS_ERR(mp)) {
3049 err = PTR_ERR(mp);
3050 goto discard_locked;
3051 }
3052
3053 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3054 unlock_mount(mp);
3055 if (unlikely(err))
3056 goto discard;
3057 mntput(m);
3058 return 0;
3059
3060 discard_locked:
3061 namespace_unlock();
3062 inode_unlock(dentry->d_inode);
3063 discard:
3064 /* remove m from any expiration list it may be on */
3065 if (!list_empty(&mnt->mnt_expire)) {
3066 namespace_lock();
3067 list_del_init(&mnt->mnt_expire);
3068 namespace_unlock();
3069 }
3070 mntput(m);
3071 mntput(m);
3072 return err;
3073 }
3074
3075 /**
3076 * mnt_set_expiry - Put a mount on an expiration list
3077 * @mnt: The mount to list.
3078 * @expiry_list: The list to add the mount to.
3079 */
3080 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3081 {
3082 namespace_lock();
3083
3084 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3085
3086 namespace_unlock();
3087 }
3088 EXPORT_SYMBOL(mnt_set_expiry);
3089
3090 /*
3091 * process a list of expirable mountpoints with the intent of discarding any
3092 * mountpoints that aren't in use and haven't been touched since last we came
3093 * here
3094 */
3095 void mark_mounts_for_expiry(struct list_head *mounts)
3096 {
3097 struct mount *mnt, *next;
3098 LIST_HEAD(graveyard);
3099
3100 if (list_empty(mounts))
3101 return;
3102
3103 namespace_lock();
3104 lock_mount_hash();
3105
3106 /* extract from the expiration list every vfsmount that matches the
3107 * following criteria:
3108 * - only referenced by its parent vfsmount
3109 * - still marked for expiry (marked on the last call here; marks are
3110 * cleared by mntput())
3111 */
3112 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3113 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3114 propagate_mount_busy(mnt, 1))
3115 continue;
3116 list_move(&mnt->mnt_expire, &graveyard);
3117 }
3118 while (!list_empty(&graveyard)) {
3119 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3120 touch_mnt_namespace(mnt->mnt_ns);
3121 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3122 }
3123 unlock_mount_hash();
3124 namespace_unlock();
3125 }
3126
3127 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3128
3129 /*
3130 * Ripoff of 'select_parent()'
3131 *
3132 * search the list of submounts for a given mountpoint, and move any
3133 * shrinkable submounts to the 'graveyard' list.
3134 */
3135 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3136 {
3137 struct mount *this_parent = parent;
3138 struct list_head *next;
3139 int found = 0;
3140
3141 repeat:
3142 next = this_parent->mnt_mounts.next;
3143 resume:
3144 while (next != &this_parent->mnt_mounts) {
3145 struct list_head *tmp = next;
3146 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3147
3148 next = tmp->next;
3149 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3150 continue;
3151 /*
3152 * Descend a level if the d_mounts list is non-empty.
3153 */
3154 if (!list_empty(&mnt->mnt_mounts)) {
3155 this_parent = mnt;
3156 goto repeat;
3157 }
3158
3159 if (!propagate_mount_busy(mnt, 1)) {
3160 list_move_tail(&mnt->mnt_expire, graveyard);
3161 found++;
3162 }
3163 }
3164 /*
3165 * All done at this level ... ascend and resume the search
3166 */
3167 if (this_parent != parent) {
3168 next = this_parent->mnt_child.next;
3169 this_parent = this_parent->mnt_parent;
3170 goto resume;
3171 }
3172 return found;
3173 }
3174
3175 /*
3176 * process a list of expirable mountpoints with the intent of discarding any
3177 * submounts of a specific parent mountpoint
3178 *
3179 * mount_lock must be held for write
3180 */
3181 static void shrink_submounts(struct mount *mnt)
3182 {
3183 LIST_HEAD(graveyard);
3184 struct mount *m;
3185
3186 /* extract submounts of 'mountpoint' from the expiration list */
3187 while (select_submounts(mnt, &graveyard)) {
3188 while (!list_empty(&graveyard)) {
3189 m = list_first_entry(&graveyard, struct mount,
3190 mnt_expire);
3191 touch_mnt_namespace(m->mnt_ns);
3192 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3193 }
3194 }
3195 }
3196
3197 static void *copy_mount_options(const void __user * data)
3198 {
3199 char *copy;
3200 unsigned left, offset;
3201
3202 if (!data)
3203 return NULL;
3204
3205 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3206 if (!copy)
3207 return ERR_PTR(-ENOMEM);
3208
3209 left = copy_from_user(copy, data, PAGE_SIZE);
3210
3211 /*
3212 * Not all architectures have an exact copy_from_user(). Resort to
3213 * byte at a time.
3214 */
3215 offset = PAGE_SIZE - left;
3216 while (left) {
3217 char c;
3218 if (get_user(c, (const char __user *)data + offset))
3219 break;
3220 copy[offset] = c;
3221 left--;
3222 offset++;
3223 }
3224
3225 if (left == PAGE_SIZE) {
3226 kfree(copy);
3227 return ERR_PTR(-EFAULT);
3228 }
3229
3230 return copy;
3231 }
3232
3233 static char *copy_mount_string(const void __user *data)
3234 {
3235 return data ? strndup_user(data, PATH_MAX) : NULL;
3236 }
3237
3238 /*
3239 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3240 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3241 *
3242 * data is a (void *) that can point to any structure up to
3243 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3244 * information (or be NULL).
3245 *
3246 * Pre-0.97 versions of mount() didn't have a flags word.
3247 * When the flags word was introduced its top half was required
3248 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3249 * Therefore, if this magic number is present, it carries no information
3250 * and must be discarded.
3251 */
3252 int path_mount(const char *dev_name, struct path *path,
3253 const char *type_page, unsigned long flags, void *data_page)
3254 {
3255 unsigned int mnt_flags = 0, sb_flags;
3256 int ret;
3257
3258 /* Discard magic */
3259 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3260 flags &= ~MS_MGC_MSK;
3261
3262 /* Basic sanity checks */
3263 if (data_page)
3264 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3265
3266 if (flags & MS_NOUSER)
3267 return -EINVAL;
3268
3269 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3270 if (ret)
3271 return ret;
3272 if (!may_mount())
3273 return -EPERM;
3274 if (flags & SB_MANDLOCK)
3275 warn_mandlock();
3276
3277 /* Default to relatime unless overriden */
3278 if (!(flags & MS_NOATIME))
3279 mnt_flags |= MNT_RELATIME;
3280
3281 /* Separate the per-mountpoint flags */
3282 if (flags & MS_NOSUID)
3283 mnt_flags |= MNT_NOSUID;
3284 if (flags & MS_NODEV)
3285 mnt_flags |= MNT_NODEV;
3286 if (flags & MS_NOEXEC)
3287 mnt_flags |= MNT_NOEXEC;
3288 if (flags & MS_NOATIME)
3289 mnt_flags |= MNT_NOATIME;
3290 if (flags & MS_NODIRATIME)
3291 mnt_flags |= MNT_NODIRATIME;
3292 if (flags & MS_STRICTATIME)
3293 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3294 if (flags & MS_RDONLY)
3295 mnt_flags |= MNT_READONLY;
3296 if (flags & MS_NOSYMFOLLOW)
3297 mnt_flags |= MNT_NOSYMFOLLOW;
3298
3299 /* The default atime for remount is preservation */
3300 if ((flags & MS_REMOUNT) &&
3301 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3302 MS_STRICTATIME)) == 0)) {
3303 mnt_flags &= ~MNT_ATIME_MASK;
3304 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3305 }
3306
3307 sb_flags = flags & (SB_RDONLY |
3308 SB_SYNCHRONOUS |
3309 SB_MANDLOCK |
3310 SB_DIRSYNC |
3311 SB_SILENT |
3312 SB_POSIXACL |
3313 SB_LAZYTIME |
3314 SB_I_VERSION);
3315
3316 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3317 return do_reconfigure_mnt(path, mnt_flags);
3318 if (flags & MS_REMOUNT)
3319 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3320 if (flags & MS_BIND)
3321 return do_loopback(path, dev_name, flags & MS_REC);
3322 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3323 return do_change_type(path, flags);
3324 if (flags & MS_MOVE)
3325 return do_move_mount_old(path, dev_name);
3326
3327 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3328 data_page);
3329 }
3330
3331 long do_mount(const char *dev_name, const char __user *dir_name,
3332 const char *type_page, unsigned long flags, void *data_page)
3333 {
3334 struct path path;
3335 int ret;
3336
3337 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3338 if (ret)
3339 return ret;
3340 ret = path_mount(dev_name, &path, type_page, flags, data_page);
3341 path_put(&path);
3342 return ret;
3343 }
3344
3345 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3346 {
3347 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3348 }
3349
3350 static void dec_mnt_namespaces(struct ucounts *ucounts)
3351 {
3352 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3353 }
3354
3355 static void free_mnt_ns(struct mnt_namespace *ns)
3356 {
3357 if (!is_anon_ns(ns))
3358 ns_free_inum(&ns->ns);
3359 dec_mnt_namespaces(ns->ucounts);
3360 put_user_ns(ns->user_ns);
3361 kfree(ns);
3362 }
3363
3364 /*
3365 * Assign a sequence number so we can detect when we attempt to bind
3366 * mount a reference to an older mount namespace into the current
3367 * mount namespace, preventing reference counting loops. A 64bit
3368 * number incrementing at 10Ghz will take 12,427 years to wrap which
3369 * is effectively never, so we can ignore the possibility.
3370 */
3371 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3372
3373 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3374 {
3375 struct mnt_namespace *new_ns;
3376 struct ucounts *ucounts;
3377 int ret;
3378
3379 ucounts = inc_mnt_namespaces(user_ns);
3380 if (!ucounts)
3381 return ERR_PTR(-ENOSPC);
3382
3383 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3384 if (!new_ns) {
3385 dec_mnt_namespaces(ucounts);
3386 return ERR_PTR(-ENOMEM);
3387 }
3388 if (!anon) {
3389 ret = ns_alloc_inum(&new_ns->ns);
3390 if (ret) {
3391 kfree(new_ns);
3392 dec_mnt_namespaces(ucounts);
3393 return ERR_PTR(ret);
3394 }
3395 }
3396 new_ns->ns.ops = &mntns_operations;
3397 if (!anon)
3398 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3399 refcount_set(&new_ns->ns.count, 1);
3400 INIT_LIST_HEAD(&new_ns->list);
3401 init_waitqueue_head(&new_ns->poll);
3402 spin_lock_init(&new_ns->ns_lock);
3403 new_ns->user_ns = get_user_ns(user_ns);
3404 new_ns->ucounts = ucounts;
3405 return new_ns;
3406 }
3407
3408 __latent_entropy
3409 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3410 struct user_namespace *user_ns, struct fs_struct *new_fs)
3411 {
3412 struct mnt_namespace *new_ns;
3413 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3414 struct mount *p, *q;
3415 struct mount *old;
3416 struct mount *new;
3417 int copy_flags;
3418
3419 BUG_ON(!ns);
3420
3421 if (likely(!(flags & CLONE_NEWNS))) {
3422 get_mnt_ns(ns);
3423 return ns;
3424 }
3425
3426 old = ns->root;
3427
3428 new_ns = alloc_mnt_ns(user_ns, false);
3429 if (IS_ERR(new_ns))
3430 return new_ns;
3431
3432 namespace_lock();
3433 /* First pass: copy the tree topology */
3434 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3435 if (user_ns != ns->user_ns)
3436 copy_flags |= CL_SHARED_TO_SLAVE;
3437 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3438 if (IS_ERR(new)) {
3439 namespace_unlock();
3440 free_mnt_ns(new_ns);
3441 return ERR_CAST(new);
3442 }
3443 if (user_ns != ns->user_ns) {
3444 lock_mount_hash();
3445 lock_mnt_tree(new);
3446 unlock_mount_hash();
3447 }
3448 new_ns->root = new;
3449 list_add_tail(&new_ns->list, &new->mnt_list);
3450
3451 /*
3452 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3453 * as belonging to new namespace. We have already acquired a private
3454 * fs_struct, so tsk->fs->lock is not needed.
3455 */
3456 p = old;
3457 q = new;
3458 while (p) {
3459 q->mnt_ns = new_ns;
3460 new_ns->mounts++;
3461 if (new_fs) {
3462 if (&p->mnt == new_fs->root.mnt) {
3463 new_fs->root.mnt = mntget(&q->mnt);
3464 rootmnt = &p->mnt;
3465 }
3466 if (&p->mnt == new_fs->pwd.mnt) {
3467 new_fs->pwd.mnt = mntget(&q->mnt);
3468 pwdmnt = &p->mnt;
3469 }
3470 }
3471 p = next_mnt(p, old);
3472 q = next_mnt(q, new);
3473 if (!q)
3474 break;
3475 while (p->mnt.mnt_root != q->mnt.mnt_root)
3476 p = next_mnt(p, old);
3477 }
3478 namespace_unlock();
3479
3480 if (rootmnt)
3481 mntput(rootmnt);
3482 if (pwdmnt)
3483 mntput(pwdmnt);
3484
3485 return new_ns;
3486 }
3487
3488 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3489 {
3490 struct mount *mnt = real_mount(m);
3491 struct mnt_namespace *ns;
3492 struct super_block *s;
3493 struct path path;
3494 int err;
3495
3496 ns = alloc_mnt_ns(&init_user_ns, true);
3497 if (IS_ERR(ns)) {
3498 mntput(m);
3499 return ERR_CAST(ns);
3500 }
3501 mnt->mnt_ns = ns;
3502 ns->root = mnt;
3503 ns->mounts++;
3504 list_add(&mnt->mnt_list, &ns->list);
3505
3506 err = vfs_path_lookup(m->mnt_root, m,
3507 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3508
3509 put_mnt_ns(ns);
3510
3511 if (err)
3512 return ERR_PTR(err);
3513
3514 /* trade a vfsmount reference for active sb one */
3515 s = path.mnt->mnt_sb;
3516 atomic_inc(&s->s_active);
3517 mntput(path.mnt);
3518 /* lock the sucker */
3519 down_write(&s->s_umount);
3520 /* ... and return the root of (sub)tree on it */
3521 return path.dentry;
3522 }
3523 EXPORT_SYMBOL(mount_subtree);
3524
3525 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3526 char __user *, type, unsigned long, flags, void __user *, data)
3527 {
3528 int ret;
3529 char *kernel_type;
3530 char *kernel_dev;
3531 void *options;
3532
3533 kernel_type = copy_mount_string(type);
3534 ret = PTR_ERR(kernel_type);
3535 if (IS_ERR(kernel_type))
3536 goto out_type;
3537
3538 kernel_dev = copy_mount_string(dev_name);
3539 ret = PTR_ERR(kernel_dev);
3540 if (IS_ERR(kernel_dev))
3541 goto out_dev;
3542
3543 options = copy_mount_options(data);
3544 ret = PTR_ERR(options);
3545 if (IS_ERR(options))
3546 goto out_data;
3547
3548 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3549
3550 kfree(options);
3551 out_data:
3552 kfree(kernel_dev);
3553 out_dev:
3554 kfree(kernel_type);
3555 out_type:
3556 return ret;
3557 }
3558
3559 #define FSMOUNT_VALID_FLAGS \
3560 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
3561 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \
3562 MOUNT_ATTR_NOSYMFOLLOW)
3563
3564 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3565
3566 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3567 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3568
3569 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3570 {
3571 unsigned int mnt_flags = 0;
3572
3573 if (attr_flags & MOUNT_ATTR_RDONLY)
3574 mnt_flags |= MNT_READONLY;
3575 if (attr_flags & MOUNT_ATTR_NOSUID)
3576 mnt_flags |= MNT_NOSUID;
3577 if (attr_flags & MOUNT_ATTR_NODEV)
3578 mnt_flags |= MNT_NODEV;
3579 if (attr_flags & MOUNT_ATTR_NOEXEC)
3580 mnt_flags |= MNT_NOEXEC;
3581 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3582 mnt_flags |= MNT_NODIRATIME;
3583 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3584 mnt_flags |= MNT_NOSYMFOLLOW;
3585
3586 return mnt_flags;
3587 }
3588
3589 /*
3590 * Create a kernel mount representation for a new, prepared superblock
3591 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3592 */
3593 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3594 unsigned int, attr_flags)
3595 {
3596 struct mnt_namespace *ns;
3597 struct fs_context *fc;
3598 struct file *file;
3599 struct path newmount;
3600 struct mount *mnt;
3601 struct fd f;
3602 unsigned int mnt_flags = 0;
3603 long ret;
3604
3605 if (!may_mount())
3606 return -EPERM;
3607
3608 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3609 return -EINVAL;
3610
3611 if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3612 return -EINVAL;
3613
3614 mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3615
3616 switch (attr_flags & MOUNT_ATTR__ATIME) {
3617 case MOUNT_ATTR_STRICTATIME:
3618 break;
3619 case MOUNT_ATTR_NOATIME:
3620 mnt_flags |= MNT_NOATIME;
3621 break;
3622 case MOUNT_ATTR_RELATIME:
3623 mnt_flags |= MNT_RELATIME;
3624 break;
3625 default:
3626 return -EINVAL;
3627 }
3628
3629 f = fdget(fs_fd);
3630 if (!f.file)
3631 return -EBADF;
3632
3633 ret = -EINVAL;
3634 if (f.file->f_op != &fscontext_fops)
3635 goto err_fsfd;
3636
3637 fc = f.file->private_data;
3638
3639 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3640 if (ret < 0)
3641 goto err_fsfd;
3642
3643 /* There must be a valid superblock or we can't mount it */
3644 ret = -EINVAL;
3645 if (!fc->root)
3646 goto err_unlock;
3647
3648 ret = -EPERM;
3649 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3650 pr_warn("VFS: Mount too revealing\n");
3651 goto err_unlock;
3652 }
3653
3654 ret = -EBUSY;
3655 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3656 goto err_unlock;
3657
3658 if (fc->sb_flags & SB_MANDLOCK)
3659 warn_mandlock();
3660
3661 newmount.mnt = vfs_create_mount(fc);
3662 if (IS_ERR(newmount.mnt)) {
3663 ret = PTR_ERR(newmount.mnt);
3664 goto err_unlock;
3665 }
3666 newmount.dentry = dget(fc->root);
3667 newmount.mnt->mnt_flags = mnt_flags;
3668
3669 /* We've done the mount bit - now move the file context into more or
3670 * less the same state as if we'd done an fspick(). We don't want to
3671 * do any memory allocation or anything like that at this point as we
3672 * don't want to have to handle any errors incurred.
3673 */
3674 vfs_clean_context(fc);
3675
3676 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3677 if (IS_ERR(ns)) {
3678 ret = PTR_ERR(ns);
3679 goto err_path;
3680 }
3681 mnt = real_mount(newmount.mnt);
3682 mnt->mnt_ns = ns;
3683 ns->root = mnt;
3684 ns->mounts = 1;
3685 list_add(&mnt->mnt_list, &ns->list);
3686 mntget(newmount.mnt);
3687
3688 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3689 * it, not just simply put it.
3690 */
3691 file = dentry_open(&newmount, O_PATH, fc->cred);
3692 if (IS_ERR(file)) {
3693 dissolve_on_fput(newmount.mnt);
3694 ret = PTR_ERR(file);
3695 goto err_path;
3696 }
3697 file->f_mode |= FMODE_NEED_UNMOUNT;
3698
3699 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3700 if (ret >= 0)
3701 fd_install(ret, file);
3702 else
3703 fput(file);
3704
3705 err_path:
3706 path_put(&newmount);
3707 err_unlock:
3708 mutex_unlock(&fc->uapi_mutex);
3709 err_fsfd:
3710 fdput(f);
3711 return ret;
3712 }
3713
3714 /*
3715 * Move a mount from one place to another. In combination with
3716 * fsopen()/fsmount() this is used to install a new mount and in combination
3717 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3718 * a mount subtree.
3719 *
3720 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3721 */
3722 SYSCALL_DEFINE5(move_mount,
3723 int, from_dfd, const char __user *, from_pathname,
3724 int, to_dfd, const char __user *, to_pathname,
3725 unsigned int, flags)
3726 {
3727 struct path from_path, to_path;
3728 unsigned int lflags;
3729 int ret = 0;
3730
3731 if (!may_mount())
3732 return -EPERM;
3733
3734 if (flags & ~MOVE_MOUNT__MASK)
3735 return -EINVAL;
3736
3737 /* If someone gives a pathname, they aren't permitted to move
3738 * from an fd that requires unmount as we can't get at the flag
3739 * to clear it afterwards.
3740 */
3741 lflags = 0;
3742 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3743 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3744 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3745
3746 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3747 if (ret < 0)
3748 return ret;
3749
3750 lflags = 0;
3751 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3752 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3753 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3754
3755 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3756 if (ret < 0)
3757 goto out_from;
3758
3759 ret = security_move_mount(&from_path, &to_path);
3760 if (ret < 0)
3761 goto out_to;
3762
3763 if (flags & MOVE_MOUNT_SET_GROUP)
3764 ret = do_set_group(&from_path, &to_path);
3765 else
3766 ret = do_move_mount(&from_path, &to_path);
3767
3768 out_to:
3769 path_put(&to_path);
3770 out_from:
3771 path_put(&from_path);
3772 return ret;
3773 }
3774
3775 /*
3776 * Return true if path is reachable from root
3777 *
3778 * namespace_sem or mount_lock is held
3779 */
3780 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3781 const struct path *root)
3782 {
3783 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3784 dentry = mnt->mnt_mountpoint;
3785 mnt = mnt->mnt_parent;
3786 }
3787 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3788 }
3789
3790 bool path_is_under(const struct path *path1, const struct path *path2)
3791 {
3792 bool res;
3793 read_seqlock_excl(&mount_lock);
3794 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3795 read_sequnlock_excl(&mount_lock);
3796 return res;
3797 }
3798 EXPORT_SYMBOL(path_is_under);
3799
3800 /*
3801 * pivot_root Semantics:
3802 * Moves the root file system of the current process to the directory put_old,
3803 * makes new_root as the new root file system of the current process, and sets
3804 * root/cwd of all processes which had them on the current root to new_root.
3805 *
3806 * Restrictions:
3807 * The new_root and put_old must be directories, and must not be on the
3808 * same file system as the current process root. The put_old must be
3809 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3810 * pointed to by put_old must yield the same directory as new_root. No other
3811 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3812 *
3813 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3814 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3815 * in this situation.
3816 *
3817 * Notes:
3818 * - we don't move root/cwd if they are not at the root (reason: if something
3819 * cared enough to change them, it's probably wrong to force them elsewhere)
3820 * - it's okay to pick a root that isn't the root of a file system, e.g.
3821 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3822 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3823 * first.
3824 */
3825 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3826 const char __user *, put_old)
3827 {
3828 struct path new, old, root;
3829 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3830 struct mountpoint *old_mp, *root_mp;
3831 int error;
3832
3833 if (!may_mount())
3834 return -EPERM;
3835
3836 error = user_path_at(AT_FDCWD, new_root,
3837 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3838 if (error)
3839 goto out0;
3840
3841 error = user_path_at(AT_FDCWD, put_old,
3842 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3843 if (error)
3844 goto out1;
3845
3846 error = security_sb_pivotroot(&old, &new);
3847 if (error)
3848 goto out2;
3849
3850 get_fs_root(current->fs, &root);
3851 old_mp = lock_mount(&old);
3852 error = PTR_ERR(old_mp);
3853 if (IS_ERR(old_mp))
3854 goto out3;
3855
3856 error = -EINVAL;
3857 new_mnt = real_mount(new.mnt);
3858 root_mnt = real_mount(root.mnt);
3859 old_mnt = real_mount(old.mnt);
3860 ex_parent = new_mnt->mnt_parent;
3861 root_parent = root_mnt->mnt_parent;
3862 if (IS_MNT_SHARED(old_mnt) ||
3863 IS_MNT_SHARED(ex_parent) ||
3864 IS_MNT_SHARED(root_parent))
3865 goto out4;
3866 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3867 goto out4;
3868 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3869 goto out4;
3870 error = -ENOENT;
3871 if (d_unlinked(new.dentry))
3872 goto out4;
3873 error = -EBUSY;
3874 if (new_mnt == root_mnt || old_mnt == root_mnt)
3875 goto out4; /* loop, on the same file system */
3876 error = -EINVAL;
3877 if (root.mnt->mnt_root != root.dentry)
3878 goto out4; /* not a mountpoint */
3879 if (!mnt_has_parent(root_mnt))
3880 goto out4; /* not attached */
3881 if (new.mnt->mnt_root != new.dentry)
3882 goto out4; /* not a mountpoint */
3883 if (!mnt_has_parent(new_mnt))
3884 goto out4; /* not attached */
3885 /* make sure we can reach put_old from new_root */
3886 if (!is_path_reachable(old_mnt, old.dentry, &new))
3887 goto out4;
3888 /* make certain new is below the root */
3889 if (!is_path_reachable(new_mnt, new.dentry, &root))
3890 goto out4;
3891 lock_mount_hash();
3892 umount_mnt(new_mnt);
3893 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
3894 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3895 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3896 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3897 }
3898 /* mount old root on put_old */
3899 attach_mnt(root_mnt, old_mnt, old_mp);
3900 /* mount new_root on / */
3901 attach_mnt(new_mnt, root_parent, root_mp);
3902 mnt_add_count(root_parent, -1);
3903 touch_mnt_namespace(current->nsproxy->mnt_ns);
3904 /* A moved mount should not expire automatically */
3905 list_del_init(&new_mnt->mnt_expire);
3906 put_mountpoint(root_mp);
3907 unlock_mount_hash();
3908 chroot_fs_refs(&root, &new);
3909 error = 0;
3910 out4:
3911 unlock_mount(old_mp);
3912 if (!error)
3913 mntput_no_expire(ex_parent);
3914 out3:
3915 path_put(&root);
3916 out2:
3917 path_put(&old);
3918 out1:
3919 path_put(&new);
3920 out0:
3921 return error;
3922 }
3923
3924 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3925 {
3926 unsigned int flags = mnt->mnt.mnt_flags;
3927
3928 /* flags to clear */
3929 flags &= ~kattr->attr_clr;
3930 /* flags to raise */
3931 flags |= kattr->attr_set;
3932
3933 return flags;
3934 }
3935
3936 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3937 {
3938 struct vfsmount *m = &mnt->mnt;
3939
3940 if (!kattr->mnt_userns)
3941 return 0;
3942
3943 /*
3944 * Once a mount has been idmapped we don't allow it to change its
3945 * mapping. It makes things simpler and callers can just create
3946 * another bind-mount they can idmap if they want to.
3947 */
3948 if (mnt_user_ns(m) != &init_user_ns)
3949 return -EPERM;
3950
3951 /* The underlying filesystem doesn't support idmapped mounts yet. */
3952 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
3953 return -EINVAL;
3954
3955 /* Don't yet support filesystem mountable in user namespaces. */
3956 if (m->mnt_sb->s_user_ns != &init_user_ns)
3957 return -EINVAL;
3958
3959 /* We're not controlling the superblock. */
3960 if (!capable(CAP_SYS_ADMIN))
3961 return -EPERM;
3962
3963 /* Mount has already been visible in the filesystem hierarchy. */
3964 if (!is_anon_ns(mnt->mnt_ns))
3965 return -EINVAL;
3966
3967 return 0;
3968 }
3969
3970 static struct mount *mount_setattr_prepare(struct mount_kattr *kattr,
3971 struct mount *mnt, int *err)
3972 {
3973 struct mount *m = mnt, *last = NULL;
3974
3975 if (!is_mounted(&m->mnt)) {
3976 *err = -EINVAL;
3977 goto out;
3978 }
3979
3980 if (!(mnt_has_parent(m) ? check_mnt(m) : is_anon_ns(m->mnt_ns))) {
3981 *err = -EINVAL;
3982 goto out;
3983 }
3984
3985 do {
3986 unsigned int flags;
3987
3988 flags = recalc_flags(kattr, m);
3989 if (!can_change_locked_flags(m, flags)) {
3990 *err = -EPERM;
3991 goto out;
3992 }
3993
3994 *err = can_idmap_mount(kattr, m);
3995 if (*err)
3996 goto out;
3997
3998 last = m;
3999
4000 if ((kattr->attr_set & MNT_READONLY) &&
4001 !(m->mnt.mnt_flags & MNT_READONLY)) {
4002 *err = mnt_hold_writers(m);
4003 if (*err)
4004 goto out;
4005 }
4006 } while (kattr->recurse && (m = next_mnt(m, mnt)));
4007
4008 out:
4009 return last;
4010 }
4011
4012 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4013 {
4014 struct user_namespace *mnt_userns;
4015
4016 if (!kattr->mnt_userns)
4017 return;
4018
4019 mnt_userns = get_user_ns(kattr->mnt_userns);
4020 /* Pairs with smp_load_acquire() in mnt_user_ns(). */
4021 smp_store_release(&mnt->mnt.mnt_userns, mnt_userns);
4022 }
4023
4024 static void mount_setattr_commit(struct mount_kattr *kattr,
4025 struct mount *mnt, struct mount *last,
4026 int err)
4027 {
4028 struct mount *m = mnt;
4029
4030 do {
4031 if (!err) {
4032 unsigned int flags;
4033
4034 do_idmap_mount(kattr, m);
4035 flags = recalc_flags(kattr, m);
4036 WRITE_ONCE(m->mnt.mnt_flags, flags);
4037 }
4038
4039 /*
4040 * We either set MNT_READONLY above so make it visible
4041 * before ~MNT_WRITE_HOLD or we failed to recursively
4042 * apply mount options.
4043 */
4044 if ((kattr->attr_set & MNT_READONLY) &&
4045 (m->mnt.mnt_flags & MNT_WRITE_HOLD))
4046 mnt_unhold_writers(m);
4047
4048 if (!err && kattr->propagation)
4049 change_mnt_propagation(m, kattr->propagation);
4050
4051 /*
4052 * On failure, only cleanup until we found the first mount
4053 * we failed to handle.
4054 */
4055 if (err && m == last)
4056 break;
4057 } while (kattr->recurse && (m = next_mnt(m, mnt)));
4058
4059 if (!err)
4060 touch_mnt_namespace(mnt->mnt_ns);
4061 }
4062
4063 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4064 {
4065 struct mount *mnt = real_mount(path->mnt), *last = NULL;
4066 int err = 0;
4067
4068 if (path->dentry != mnt->mnt.mnt_root)
4069 return -EINVAL;
4070
4071 if (kattr->propagation) {
4072 /*
4073 * Only take namespace_lock() if we're actually changing
4074 * propagation.
4075 */
4076 namespace_lock();
4077 if (kattr->propagation == MS_SHARED) {
4078 err = invent_group_ids(mnt, kattr->recurse);
4079 if (err) {
4080 namespace_unlock();
4081 return err;
4082 }
4083 }
4084 }
4085
4086 lock_mount_hash();
4087
4088 /*
4089 * Get the mount tree in a shape where we can change mount
4090 * properties without failure.
4091 */
4092 last = mount_setattr_prepare(kattr, mnt, &err);
4093 if (last) /* Commit all changes or revert to the old state. */
4094 mount_setattr_commit(kattr, mnt, last, err);
4095
4096 unlock_mount_hash();
4097
4098 if (kattr->propagation) {
4099 namespace_unlock();
4100 if (err)
4101 cleanup_group_ids(mnt, NULL);
4102 }
4103
4104 return err;
4105 }
4106
4107 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4108 struct mount_kattr *kattr, unsigned int flags)
4109 {
4110 int err = 0;
4111 struct ns_common *ns;
4112 struct user_namespace *mnt_userns;
4113 struct file *file;
4114
4115 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4116 return 0;
4117
4118 /*
4119 * We currently do not support clearing an idmapped mount. If this ever
4120 * is a use-case we can revisit this but for now let's keep it simple
4121 * and not allow it.
4122 */
4123 if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4124 return -EINVAL;
4125
4126 if (attr->userns_fd > INT_MAX)
4127 return -EINVAL;
4128
4129 file = fget(attr->userns_fd);
4130 if (!file)
4131 return -EBADF;
4132
4133 if (!proc_ns_file(file)) {
4134 err = -EINVAL;
4135 goto out_fput;
4136 }
4137
4138 ns = get_proc_ns(file_inode(file));
4139 if (ns->ops->type != CLONE_NEWUSER) {
4140 err = -EINVAL;
4141 goto out_fput;
4142 }
4143
4144 /*
4145 * The init_user_ns is used to indicate that a vfsmount is not idmapped.
4146 * This is simpler than just having to treat NULL as unmapped. Users
4147 * wanting to idmap a mount to init_user_ns can just use a namespace
4148 * with an identity mapping.
4149 */
4150 mnt_userns = container_of(ns, struct user_namespace, ns);
4151 if (mnt_userns == &init_user_ns) {
4152 err = -EPERM;
4153 goto out_fput;
4154 }
4155 kattr->mnt_userns = get_user_ns(mnt_userns);
4156
4157 out_fput:
4158 fput(file);
4159 return err;
4160 }
4161
4162 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4163 struct mount_kattr *kattr, unsigned int flags)
4164 {
4165 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4166
4167 if (flags & AT_NO_AUTOMOUNT)
4168 lookup_flags &= ~LOOKUP_AUTOMOUNT;
4169 if (flags & AT_SYMLINK_NOFOLLOW)
4170 lookup_flags &= ~LOOKUP_FOLLOW;
4171 if (flags & AT_EMPTY_PATH)
4172 lookup_flags |= LOOKUP_EMPTY;
4173
4174 *kattr = (struct mount_kattr) {
4175 .lookup_flags = lookup_flags,
4176 .recurse = !!(flags & AT_RECURSIVE),
4177 };
4178
4179 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4180 return -EINVAL;
4181 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4182 return -EINVAL;
4183 kattr->propagation = attr->propagation;
4184
4185 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4186 return -EINVAL;
4187
4188 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4189 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4190
4191 /*
4192 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4193 * users wanting to transition to a different atime setting cannot
4194 * simply specify the atime setting in @attr_set, but must also
4195 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4196 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4197 * @attr_clr and that @attr_set can't have any atime bits set if
4198 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4199 */
4200 if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4201 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4202 return -EINVAL;
4203
4204 /*
4205 * Clear all previous time settings as they are mutually
4206 * exclusive.
4207 */
4208 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4209 switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4210 case MOUNT_ATTR_RELATIME:
4211 kattr->attr_set |= MNT_RELATIME;
4212 break;
4213 case MOUNT_ATTR_NOATIME:
4214 kattr->attr_set |= MNT_NOATIME;
4215 break;
4216 case MOUNT_ATTR_STRICTATIME:
4217 break;
4218 default:
4219 return -EINVAL;
4220 }
4221 } else {
4222 if (attr->attr_set & MOUNT_ATTR__ATIME)
4223 return -EINVAL;
4224 }
4225
4226 return build_mount_idmapped(attr, usize, kattr, flags);
4227 }
4228
4229 static void finish_mount_kattr(struct mount_kattr *kattr)
4230 {
4231 put_user_ns(kattr->mnt_userns);
4232 kattr->mnt_userns = NULL;
4233 }
4234
4235 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4236 unsigned int, flags, struct mount_attr __user *, uattr,
4237 size_t, usize)
4238 {
4239 int err;
4240 struct path target;
4241 struct mount_attr attr;
4242 struct mount_kattr kattr;
4243
4244 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4245
4246 if (flags & ~(AT_EMPTY_PATH |
4247 AT_RECURSIVE |
4248 AT_SYMLINK_NOFOLLOW |
4249 AT_NO_AUTOMOUNT))
4250 return -EINVAL;
4251
4252 if (unlikely(usize > PAGE_SIZE))
4253 return -E2BIG;
4254 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4255 return -EINVAL;
4256
4257 if (!may_mount())
4258 return -EPERM;
4259
4260 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4261 if (err)
4262 return err;
4263
4264 /* Don't bother walking through the mounts if this is a nop. */
4265 if (attr.attr_set == 0 &&
4266 attr.attr_clr == 0 &&
4267 attr.propagation == 0)
4268 return 0;
4269
4270 err = build_mount_kattr(&attr, usize, &kattr, flags);
4271 if (err)
4272 return err;
4273
4274 err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4275 if (!err) {
4276 err = do_mount_setattr(&target, &kattr);
4277 path_put(&target);
4278 }
4279 finish_mount_kattr(&kattr);
4280 return err;
4281 }
4282
4283 static void __init init_mount_tree(void)
4284 {
4285 struct vfsmount *mnt;
4286 struct mount *m;
4287 struct mnt_namespace *ns;
4288 struct path root;
4289
4290 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4291 if (IS_ERR(mnt))
4292 panic("Can't create rootfs");
4293
4294 ns = alloc_mnt_ns(&init_user_ns, false);
4295 if (IS_ERR(ns))
4296 panic("Can't allocate initial namespace");
4297 m = real_mount(mnt);
4298 m->mnt_ns = ns;
4299 ns->root = m;
4300 ns->mounts = 1;
4301 list_add(&m->mnt_list, &ns->list);
4302 init_task.nsproxy->mnt_ns = ns;
4303 get_mnt_ns(ns);
4304
4305 root.mnt = mnt;
4306 root.dentry = mnt->mnt_root;
4307 mnt->mnt_flags |= MNT_LOCKED;
4308
4309 set_fs_pwd(current->fs, &root);
4310 set_fs_root(current->fs, &root);
4311 }
4312
4313 void __init mnt_init(void)
4314 {
4315 int err;
4316
4317 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4318 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
4319
4320 mount_hashtable = alloc_large_system_hash("Mount-cache",
4321 sizeof(struct hlist_head),
4322 mhash_entries, 19,
4323 HASH_ZERO,
4324 &m_hash_shift, &m_hash_mask, 0, 0);
4325 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4326 sizeof(struct hlist_head),
4327 mphash_entries, 19,
4328 HASH_ZERO,
4329 &mp_hash_shift, &mp_hash_mask, 0, 0);
4330
4331 if (!mount_hashtable || !mountpoint_hashtable)
4332 panic("Failed to allocate mount hash table\n");
4333
4334 kernfs_init();
4335
4336 err = sysfs_init();
4337 if (err)
4338 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4339 __func__, err);
4340 fs_kobj = kobject_create_and_add("fs", NULL);
4341 if (!fs_kobj)
4342 printk(KERN_WARNING "%s: kobj create error\n", __func__);
4343 shmem_init();
4344 init_rootfs();
4345 init_mount_tree();
4346 }
4347
4348 void put_mnt_ns(struct mnt_namespace *ns)
4349 {
4350 if (!refcount_dec_and_test(&ns->ns.count))
4351 return;
4352 drop_collected_mounts(&ns->root->mnt);
4353 free_mnt_ns(ns);
4354 }
4355
4356 struct vfsmount *kern_mount(struct file_system_type *type)
4357 {
4358 struct vfsmount *mnt;
4359 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4360 if (!IS_ERR(mnt)) {
4361 /*
4362 * it is a longterm mount, don't release mnt until
4363 * we unmount before file sys is unregistered
4364 */
4365 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4366 }
4367 return mnt;
4368 }
4369 EXPORT_SYMBOL_GPL(kern_mount);
4370
4371 void kern_unmount(struct vfsmount *mnt)
4372 {
4373 /* release long term mount so mount point can be released */
4374 if (!IS_ERR_OR_NULL(mnt)) {
4375 real_mount(mnt)->mnt_ns = NULL;
4376 synchronize_rcu(); /* yecchhh... */
4377 mntput(mnt);
4378 }
4379 }
4380 EXPORT_SYMBOL(kern_unmount);
4381
4382 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4383 {
4384 unsigned int i;
4385
4386 for (i = 0; i < num; i++)
4387 if (mnt[i])
4388 real_mount(mnt[i])->mnt_ns = NULL;
4389 synchronize_rcu_expedited();
4390 for (i = 0; i < num; i++)
4391 mntput(mnt[i]);
4392 }
4393 EXPORT_SYMBOL(kern_unmount_array);
4394
4395 bool our_mnt(struct vfsmount *mnt)
4396 {
4397 return check_mnt(real_mount(mnt));
4398 }
4399
4400 bool current_chrooted(void)
4401 {
4402 /* Does the current process have a non-standard root */
4403 struct path ns_root;
4404 struct path fs_root;
4405 bool chrooted;
4406
4407 /* Find the namespace root */
4408 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
4409 ns_root.dentry = ns_root.mnt->mnt_root;
4410 path_get(&ns_root);
4411 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4412 ;
4413
4414 get_fs_root(current->fs, &fs_root);
4415
4416 chrooted = !path_equal(&fs_root, &ns_root);
4417
4418 path_put(&fs_root);
4419 path_put(&ns_root);
4420
4421 return chrooted;
4422 }
4423
4424 static bool mnt_already_visible(struct mnt_namespace *ns,
4425 const struct super_block *sb,
4426 int *new_mnt_flags)
4427 {
4428 int new_flags = *new_mnt_flags;
4429 struct mount *mnt;
4430 bool visible = false;
4431
4432 down_read(&namespace_sem);
4433 lock_ns_list(ns);
4434 list_for_each_entry(mnt, &ns->list, mnt_list) {
4435 struct mount *child;
4436 int mnt_flags;
4437
4438 if (mnt_is_cursor(mnt))
4439 continue;
4440
4441 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4442 continue;
4443
4444 /* This mount is not fully visible if it's root directory
4445 * is not the root directory of the filesystem.
4446 */
4447 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4448 continue;
4449
4450 /* A local view of the mount flags */
4451 mnt_flags = mnt->mnt.mnt_flags;
4452
4453 /* Don't miss readonly hidden in the superblock flags */
4454 if (sb_rdonly(mnt->mnt.mnt_sb))
4455 mnt_flags |= MNT_LOCK_READONLY;
4456
4457 /* Verify the mount flags are equal to or more permissive
4458 * than the proposed new mount.
4459 */
4460 if ((mnt_flags & MNT_LOCK_READONLY) &&
4461 !(new_flags & MNT_READONLY))
4462 continue;
4463 if ((mnt_flags & MNT_LOCK_ATIME) &&
4464 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4465 continue;
4466
4467 /* This mount is not fully visible if there are any
4468 * locked child mounts that cover anything except for
4469 * empty directories.
4470 */
4471 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4472 struct inode *inode = child->mnt_mountpoint->d_inode;
4473 /* Only worry about locked mounts */
4474 if (!(child->mnt.mnt_flags & MNT_LOCKED))
4475 continue;
4476 /* Is the directory permanetly empty? */
4477 if (!is_empty_dir_inode(inode))
4478 goto next;
4479 }
4480 /* Preserve the locked attributes */
4481 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4482 MNT_LOCK_ATIME);
4483 visible = true;
4484 goto found;
4485 next: ;
4486 }
4487 found:
4488 unlock_ns_list(ns);
4489 up_read(&namespace_sem);
4490 return visible;
4491 }
4492
4493 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4494 {
4495 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4496 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4497 unsigned long s_iflags;
4498
4499 if (ns->user_ns == &init_user_ns)
4500 return false;
4501
4502 /* Can this filesystem be too revealing? */
4503 s_iflags = sb->s_iflags;
4504 if (!(s_iflags & SB_I_USERNS_VISIBLE))
4505 return false;
4506
4507 if ((s_iflags & required_iflags) != required_iflags) {
4508 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4509 required_iflags);
4510 return true;
4511 }
4512
4513 return !mnt_already_visible(ns, sb, new_mnt_flags);
4514 }
4515
4516 bool mnt_may_suid(struct vfsmount *mnt)
4517 {
4518 /*
4519 * Foreign mounts (accessed via fchdir or through /proc
4520 * symlinks) are always treated as if they are nosuid. This
4521 * prevents namespaces from trusting potentially unsafe
4522 * suid/sgid bits, file caps, or security labels that originate
4523 * in other namespaces.
4524 */
4525 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4526 current_in_userns(mnt->mnt_sb->s_user_ns);
4527 }
4528
4529 static struct ns_common *mntns_get(struct task_struct *task)
4530 {
4531 struct ns_common *ns = NULL;
4532 struct nsproxy *nsproxy;
4533
4534 task_lock(task);
4535 nsproxy = task->nsproxy;
4536 if (nsproxy) {
4537 ns = &nsproxy->mnt_ns->ns;
4538 get_mnt_ns(to_mnt_ns(ns));
4539 }
4540 task_unlock(task);
4541
4542 return ns;
4543 }
4544
4545 static void mntns_put(struct ns_common *ns)
4546 {
4547 put_mnt_ns(to_mnt_ns(ns));
4548 }
4549
4550 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4551 {
4552 struct nsproxy *nsproxy = nsset->nsproxy;
4553 struct fs_struct *fs = nsset->fs;
4554 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4555 struct user_namespace *user_ns = nsset->cred->user_ns;
4556 struct path root;
4557 int err;
4558
4559 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4560 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4561 !ns_capable(user_ns, CAP_SYS_ADMIN))
4562 return -EPERM;
4563
4564 if (is_anon_ns(mnt_ns))
4565 return -EINVAL;
4566
4567 if (fs->users != 1)
4568 return -EINVAL;
4569
4570 get_mnt_ns(mnt_ns);
4571 old_mnt_ns = nsproxy->mnt_ns;
4572 nsproxy->mnt_ns = mnt_ns;
4573
4574 /* Find the root */
4575 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4576 "/", LOOKUP_DOWN, &root);
4577 if (err) {
4578 /* revert to old namespace */
4579 nsproxy->mnt_ns = old_mnt_ns;
4580 put_mnt_ns(mnt_ns);
4581 return err;
4582 }
4583
4584 put_mnt_ns(old_mnt_ns);
4585
4586 /* Update the pwd and root */
4587 set_fs_pwd(fs, &root);
4588 set_fs_root(fs, &root);
4589
4590 path_put(&root);
4591 return 0;
4592 }
4593
4594 static struct user_namespace *mntns_owner(struct ns_common *ns)
4595 {
4596 return to_mnt_ns(ns)->user_ns;
4597 }
4598
4599 const struct proc_ns_operations mntns_operations = {
4600 .name = "mnt",
4601 .type = CLONE_NEWNS,
4602 .get = mntns_get,
4603 .put = mntns_put,
4604 .install = mntns_install,
4605 .owner = mntns_owner,
4606 };