]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/namespace.c
UBUNTU: Ubuntu-snapdragon-4.4.0-1061.66
[mirror_ubuntu-artful-kernel.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
29
30 /* Maximum number of mounts in a mount namespace */
31 unsigned int sysctl_mount_max __read_mostly = 100000;
32
33 static unsigned int m_hash_mask __read_mostly;
34 static unsigned int m_hash_shift __read_mostly;
35 static unsigned int mp_hash_mask __read_mostly;
36 static unsigned int mp_hash_shift __read_mostly;
37
38 static __initdata unsigned long mhash_entries;
39 static int __init set_mhash_entries(char *str)
40 {
41 if (!str)
42 return 0;
43 mhash_entries = simple_strtoul(str, &str, 0);
44 return 1;
45 }
46 __setup("mhash_entries=", set_mhash_entries);
47
48 static __initdata unsigned long mphash_entries;
49 static int __init set_mphash_entries(char *str)
50 {
51 if (!str)
52 return 0;
53 mphash_entries = simple_strtoul(str, &str, 0);
54 return 1;
55 }
56 __setup("mphash_entries=", set_mphash_entries);
57
58 static u64 event;
59 static DEFINE_IDA(mnt_id_ida);
60 static DEFINE_IDA(mnt_group_ida);
61 static DEFINE_SPINLOCK(mnt_id_lock);
62 static int mnt_id_start = 0;
63 static int mnt_group_start = 1;
64
65 static struct hlist_head *mount_hashtable __read_mostly;
66 static struct hlist_head *mountpoint_hashtable __read_mostly;
67 static struct kmem_cache *mnt_cache __read_mostly;
68 static DECLARE_RWSEM(namespace_sem);
69
70 /* /sys/fs */
71 struct kobject *fs_kobj;
72 EXPORT_SYMBOL_GPL(fs_kobj);
73
74 /*
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
77 * up the tree.
78 *
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
81 */
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
83
84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
85 {
86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
88 tmp = tmp + (tmp >> m_hash_shift);
89 return &mount_hashtable[tmp & m_hash_mask];
90 }
91
92 static inline struct hlist_head *mp_hash(struct dentry *dentry)
93 {
94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 tmp = tmp + (tmp >> mp_hash_shift);
96 return &mountpoint_hashtable[tmp & mp_hash_mask];
97 }
98
99 /*
100 * allocation is serialized by namespace_sem, but we need the spinlock to
101 * serialize with freeing.
102 */
103 static int mnt_alloc_id(struct mount *mnt)
104 {
105 int res;
106
107 retry:
108 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
109 spin_lock(&mnt_id_lock);
110 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
111 if (!res)
112 mnt_id_start = mnt->mnt_id + 1;
113 spin_unlock(&mnt_id_lock);
114 if (res == -EAGAIN)
115 goto retry;
116
117 return res;
118 }
119
120 static void mnt_free_id(struct mount *mnt)
121 {
122 int id = mnt->mnt_id;
123 spin_lock(&mnt_id_lock);
124 ida_remove(&mnt_id_ida, id);
125 if (mnt_id_start > id)
126 mnt_id_start = id;
127 spin_unlock(&mnt_id_lock);
128 }
129
130 /*
131 * Allocate a new peer group ID
132 *
133 * mnt_group_ida is protected by namespace_sem
134 */
135 static int mnt_alloc_group_id(struct mount *mnt)
136 {
137 int res;
138
139 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
140 return -ENOMEM;
141
142 res = ida_get_new_above(&mnt_group_ida,
143 mnt_group_start,
144 &mnt->mnt_group_id);
145 if (!res)
146 mnt_group_start = mnt->mnt_group_id + 1;
147
148 return res;
149 }
150
151 /*
152 * Release a peer group ID
153 */
154 void mnt_release_group_id(struct mount *mnt)
155 {
156 int id = mnt->mnt_group_id;
157 ida_remove(&mnt_group_ida, id);
158 if (mnt_group_start > id)
159 mnt_group_start = id;
160 mnt->mnt_group_id = 0;
161 }
162
163 /*
164 * vfsmount lock must be held for read
165 */
166 static inline void mnt_add_count(struct mount *mnt, int n)
167 {
168 #ifdef CONFIG_SMP
169 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
170 #else
171 preempt_disable();
172 mnt->mnt_count += n;
173 preempt_enable();
174 #endif
175 }
176
177 /*
178 * vfsmount lock must be held for write
179 */
180 unsigned int mnt_get_count(struct mount *mnt)
181 {
182 #ifdef CONFIG_SMP
183 unsigned int count = 0;
184 int cpu;
185
186 for_each_possible_cpu(cpu) {
187 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
188 }
189
190 return count;
191 #else
192 return mnt->mnt_count;
193 #endif
194 }
195
196 static void drop_mountpoint(struct fs_pin *p)
197 {
198 struct mount *m = container_of(p, struct mount, mnt_umount);
199 dput(m->mnt_ex_mountpoint);
200 pin_remove(p);
201 mntput(&m->mnt);
202 }
203
204 static struct mount *alloc_vfsmnt(const char *name)
205 {
206 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
207 if (mnt) {
208 int err;
209
210 err = mnt_alloc_id(mnt);
211 if (err)
212 goto out_free_cache;
213
214 if (name) {
215 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
216 if (!mnt->mnt_devname)
217 goto out_free_id;
218 }
219
220 #ifdef CONFIG_SMP
221 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
222 if (!mnt->mnt_pcp)
223 goto out_free_devname;
224
225 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
226 #else
227 mnt->mnt_count = 1;
228 mnt->mnt_writers = 0;
229 #endif
230
231 INIT_HLIST_NODE(&mnt->mnt_hash);
232 INIT_LIST_HEAD(&mnt->mnt_child);
233 INIT_LIST_HEAD(&mnt->mnt_mounts);
234 INIT_LIST_HEAD(&mnt->mnt_list);
235 INIT_LIST_HEAD(&mnt->mnt_expire);
236 INIT_LIST_HEAD(&mnt->mnt_share);
237 INIT_LIST_HEAD(&mnt->mnt_slave_list);
238 INIT_LIST_HEAD(&mnt->mnt_slave);
239 INIT_HLIST_NODE(&mnt->mnt_mp_list);
240 INIT_LIST_HEAD(&mnt->mnt_umounting);
241 #ifdef CONFIG_FSNOTIFY
242 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
243 #endif
244 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
245 }
246 return mnt;
247
248 #ifdef CONFIG_SMP
249 out_free_devname:
250 kfree_const(mnt->mnt_devname);
251 #endif
252 out_free_id:
253 mnt_free_id(mnt);
254 out_free_cache:
255 kmem_cache_free(mnt_cache, mnt);
256 return NULL;
257 }
258
259 /*
260 * Most r/o checks on a fs are for operations that take
261 * discrete amounts of time, like a write() or unlink().
262 * We must keep track of when those operations start
263 * (for permission checks) and when they end, so that
264 * we can determine when writes are able to occur to
265 * a filesystem.
266 */
267 /*
268 * __mnt_is_readonly: check whether a mount is read-only
269 * @mnt: the mount to check for its write status
270 *
271 * This shouldn't be used directly ouside of the VFS.
272 * It does not guarantee that the filesystem will stay
273 * r/w, just that it is right *now*. This can not and
274 * should not be used in place of IS_RDONLY(inode).
275 * mnt_want/drop_write() will _keep_ the filesystem
276 * r/w.
277 */
278 int __mnt_is_readonly(struct vfsmount *mnt)
279 {
280 if (mnt->mnt_flags & MNT_READONLY)
281 return 1;
282 if (mnt->mnt_sb->s_flags & MS_RDONLY)
283 return 1;
284 return 0;
285 }
286 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
287
288 static inline void mnt_inc_writers(struct mount *mnt)
289 {
290 #ifdef CONFIG_SMP
291 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
292 #else
293 mnt->mnt_writers++;
294 #endif
295 }
296
297 static inline void mnt_dec_writers(struct mount *mnt)
298 {
299 #ifdef CONFIG_SMP
300 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
301 #else
302 mnt->mnt_writers--;
303 #endif
304 }
305
306 static unsigned int mnt_get_writers(struct mount *mnt)
307 {
308 #ifdef CONFIG_SMP
309 unsigned int count = 0;
310 int cpu;
311
312 for_each_possible_cpu(cpu) {
313 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
314 }
315
316 return count;
317 #else
318 return mnt->mnt_writers;
319 #endif
320 }
321
322 static int mnt_is_readonly(struct vfsmount *mnt)
323 {
324 if (mnt->mnt_sb->s_readonly_remount)
325 return 1;
326 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
327 smp_rmb();
328 return __mnt_is_readonly(mnt);
329 }
330
331 /*
332 * Most r/o & frozen checks on a fs are for operations that take discrete
333 * amounts of time, like a write() or unlink(). We must keep track of when
334 * those operations start (for permission checks) and when they end, so that we
335 * can determine when writes are able to occur to a filesystem.
336 */
337 /**
338 * __mnt_want_write - get write access to a mount without freeze protection
339 * @m: the mount on which to take a write
340 *
341 * This tells the low-level filesystem that a write is about to be performed to
342 * it, and makes sure that writes are allowed (mnt it read-write) before
343 * returning success. This operation does not protect against filesystem being
344 * frozen. When the write operation is finished, __mnt_drop_write() must be
345 * called. This is effectively a refcount.
346 */
347 int __mnt_want_write(struct vfsmount *m)
348 {
349 struct mount *mnt = real_mount(m);
350 int ret = 0;
351
352 preempt_disable();
353 mnt_inc_writers(mnt);
354 /*
355 * The store to mnt_inc_writers must be visible before we pass
356 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
357 * incremented count after it has set MNT_WRITE_HOLD.
358 */
359 smp_mb();
360 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
361 cpu_relax();
362 /*
363 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
364 * be set to match its requirements. So we must not load that until
365 * MNT_WRITE_HOLD is cleared.
366 */
367 smp_rmb();
368 if (mnt_is_readonly(m)) {
369 mnt_dec_writers(mnt);
370 ret = -EROFS;
371 }
372 preempt_enable();
373
374 return ret;
375 }
376
377 /**
378 * mnt_want_write - get write access to a mount
379 * @m: the mount on which to take a write
380 *
381 * This tells the low-level filesystem that a write is about to be performed to
382 * it, and makes sure that writes are allowed (mount is read-write, filesystem
383 * is not frozen) before returning success. When the write operation is
384 * finished, mnt_drop_write() must be called. This is effectively a refcount.
385 */
386 int mnt_want_write(struct vfsmount *m)
387 {
388 int ret;
389
390 sb_start_write(m->mnt_sb);
391 ret = __mnt_want_write(m);
392 if (ret)
393 sb_end_write(m->mnt_sb);
394 return ret;
395 }
396 EXPORT_SYMBOL_GPL(mnt_want_write);
397
398 /**
399 * mnt_clone_write - get write access to a mount
400 * @mnt: the mount on which to take a write
401 *
402 * This is effectively like mnt_want_write, except
403 * it must only be used to take an extra write reference
404 * on a mountpoint that we already know has a write reference
405 * on it. This allows some optimisation.
406 *
407 * After finished, mnt_drop_write must be called as usual to
408 * drop the reference.
409 */
410 int mnt_clone_write(struct vfsmount *mnt)
411 {
412 /* superblock may be r/o */
413 if (__mnt_is_readonly(mnt))
414 return -EROFS;
415 preempt_disable();
416 mnt_inc_writers(real_mount(mnt));
417 preempt_enable();
418 return 0;
419 }
420 EXPORT_SYMBOL_GPL(mnt_clone_write);
421
422 /**
423 * __mnt_want_write_file - get write access to a file's mount
424 * @file: the file who's mount on which to take a write
425 *
426 * This is like __mnt_want_write, but it takes a file and can
427 * do some optimisations if the file is open for write already
428 */
429 int __mnt_want_write_file(struct file *file)
430 {
431 if (!(file->f_mode & FMODE_WRITER))
432 return __mnt_want_write(file->f_path.mnt);
433 else
434 return mnt_clone_write(file->f_path.mnt);
435 }
436
437 /**
438 * mnt_want_write_file - get write access to a file's mount
439 * @file: the file who's mount on which to take a write
440 *
441 * This is like mnt_want_write, but it takes a file and can
442 * do some optimisations if the file is open for write already
443 */
444 int mnt_want_write_file(struct file *file)
445 {
446 int ret;
447
448 sb_start_write(file->f_path.mnt->mnt_sb);
449 ret = __mnt_want_write_file(file);
450 if (ret)
451 sb_end_write(file->f_path.mnt->mnt_sb);
452 return ret;
453 }
454 EXPORT_SYMBOL_GPL(mnt_want_write_file);
455
456 /**
457 * __mnt_drop_write - give up write access to a mount
458 * @mnt: the mount on which to give up write access
459 *
460 * Tells the low-level filesystem that we are done
461 * performing writes to it. Must be matched with
462 * __mnt_want_write() call above.
463 */
464 void __mnt_drop_write(struct vfsmount *mnt)
465 {
466 preempt_disable();
467 mnt_dec_writers(real_mount(mnt));
468 preempt_enable();
469 }
470 EXPORT_SYMBOL_GPL(__mnt_drop_write);
471
472 /**
473 * mnt_drop_write - give up write access to a mount
474 * @mnt: the mount on which to give up write access
475 *
476 * Tells the low-level filesystem that we are done performing writes to it and
477 * also allows filesystem to be frozen again. Must be matched with
478 * mnt_want_write() call above.
479 */
480 void mnt_drop_write(struct vfsmount *mnt)
481 {
482 __mnt_drop_write(mnt);
483 sb_end_write(mnt->mnt_sb);
484 }
485 EXPORT_SYMBOL_GPL(mnt_drop_write);
486
487 void __mnt_drop_write_file(struct file *file)
488 {
489 __mnt_drop_write(file->f_path.mnt);
490 }
491
492 void mnt_drop_write_file(struct file *file)
493 {
494 mnt_drop_write(file->f_path.mnt);
495 }
496 EXPORT_SYMBOL(mnt_drop_write_file);
497
498 static int mnt_make_readonly(struct mount *mnt)
499 {
500 int ret = 0;
501
502 lock_mount_hash();
503 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
504 /*
505 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
506 * should be visible before we do.
507 */
508 smp_mb();
509
510 /*
511 * With writers on hold, if this value is zero, then there are
512 * definitely no active writers (although held writers may subsequently
513 * increment the count, they'll have to wait, and decrement it after
514 * seeing MNT_READONLY).
515 *
516 * It is OK to have counter incremented on one CPU and decremented on
517 * another: the sum will add up correctly. The danger would be when we
518 * sum up each counter, if we read a counter before it is incremented,
519 * but then read another CPU's count which it has been subsequently
520 * decremented from -- we would see more decrements than we should.
521 * MNT_WRITE_HOLD protects against this scenario, because
522 * mnt_want_write first increments count, then smp_mb, then spins on
523 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
524 * we're counting up here.
525 */
526 if (mnt_get_writers(mnt) > 0)
527 ret = -EBUSY;
528 else
529 mnt->mnt.mnt_flags |= MNT_READONLY;
530 /*
531 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
532 * that become unheld will see MNT_READONLY.
533 */
534 smp_wmb();
535 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
536 unlock_mount_hash();
537 return ret;
538 }
539
540 static void __mnt_unmake_readonly(struct mount *mnt)
541 {
542 lock_mount_hash();
543 mnt->mnt.mnt_flags &= ~MNT_READONLY;
544 unlock_mount_hash();
545 }
546
547 int sb_prepare_remount_readonly(struct super_block *sb)
548 {
549 struct mount *mnt;
550 int err = 0;
551
552 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
553 if (atomic_long_read(&sb->s_remove_count))
554 return -EBUSY;
555
556 lock_mount_hash();
557 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
558 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
559 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
560 smp_mb();
561 if (mnt_get_writers(mnt) > 0) {
562 err = -EBUSY;
563 break;
564 }
565 }
566 }
567 if (!err && atomic_long_read(&sb->s_remove_count))
568 err = -EBUSY;
569
570 if (!err) {
571 sb->s_readonly_remount = 1;
572 smp_wmb();
573 }
574 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
575 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
576 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
577 }
578 unlock_mount_hash();
579
580 return err;
581 }
582
583 static void free_vfsmnt(struct mount *mnt)
584 {
585 kfree_const(mnt->mnt_devname);
586 #ifdef CONFIG_SMP
587 free_percpu(mnt->mnt_pcp);
588 #endif
589 kmem_cache_free(mnt_cache, mnt);
590 }
591
592 static void delayed_free_vfsmnt(struct rcu_head *head)
593 {
594 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
595 }
596
597 /* call under rcu_read_lock */
598 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
599 {
600 struct mount *mnt;
601 if (read_seqretry(&mount_lock, seq))
602 return 1;
603 if (bastard == NULL)
604 return 0;
605 mnt = real_mount(bastard);
606 mnt_add_count(mnt, 1);
607 if (likely(!read_seqretry(&mount_lock, seq)))
608 return 0;
609 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
610 mnt_add_count(mnt, -1);
611 return 1;
612 }
613 return -1;
614 }
615
616 /* call under rcu_read_lock */
617 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
618 {
619 int res = __legitimize_mnt(bastard, seq);
620 if (likely(!res))
621 return true;
622 if (unlikely(res < 0)) {
623 rcu_read_unlock();
624 mntput(bastard);
625 rcu_read_lock();
626 }
627 return false;
628 }
629
630 /*
631 * find the first mount at @dentry on vfsmount @mnt.
632 * call under rcu_read_lock()
633 */
634 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
635 {
636 struct hlist_head *head = m_hash(mnt, dentry);
637 struct mount *p;
638
639 hlist_for_each_entry_rcu(p, head, mnt_hash)
640 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
641 return p;
642 return NULL;
643 }
644
645 /*
646 * lookup_mnt - Return the first child mount mounted at path
647 *
648 * "First" means first mounted chronologically. If you create the
649 * following mounts:
650 *
651 * mount /dev/sda1 /mnt
652 * mount /dev/sda2 /mnt
653 * mount /dev/sda3 /mnt
654 *
655 * Then lookup_mnt() on the base /mnt dentry in the root mount will
656 * return successively the root dentry and vfsmount of /dev/sda1, then
657 * /dev/sda2, then /dev/sda3, then NULL.
658 *
659 * lookup_mnt takes a reference to the found vfsmount.
660 */
661 struct vfsmount *lookup_mnt(struct path *path)
662 {
663 struct mount *child_mnt;
664 struct vfsmount *m;
665 unsigned seq;
666
667 rcu_read_lock();
668 do {
669 seq = read_seqbegin(&mount_lock);
670 child_mnt = __lookup_mnt(path->mnt, path->dentry);
671 m = child_mnt ? &child_mnt->mnt : NULL;
672 } while (!legitimize_mnt(m, seq));
673 rcu_read_unlock();
674 return m;
675 }
676
677 /*
678 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
679 * current mount namespace.
680 *
681 * The common case is dentries are not mountpoints at all and that
682 * test is handled inline. For the slow case when we are actually
683 * dealing with a mountpoint of some kind, walk through all of the
684 * mounts in the current mount namespace and test to see if the dentry
685 * is a mountpoint.
686 *
687 * The mount_hashtable is not usable in the context because we
688 * need to identify all mounts that may be in the current mount
689 * namespace not just a mount that happens to have some specified
690 * parent mount.
691 */
692 bool __is_local_mountpoint(struct dentry *dentry)
693 {
694 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
695 struct mount *mnt;
696 bool is_covered = false;
697
698 if (!d_mountpoint(dentry))
699 goto out;
700
701 down_read(&namespace_sem);
702 list_for_each_entry(mnt, &ns->list, mnt_list) {
703 is_covered = (mnt->mnt_mountpoint == dentry);
704 if (is_covered)
705 break;
706 }
707 up_read(&namespace_sem);
708 out:
709 return is_covered;
710 }
711
712 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
713 {
714 struct hlist_head *chain = mp_hash(dentry);
715 struct mountpoint *mp;
716
717 hlist_for_each_entry(mp, chain, m_hash) {
718 if (mp->m_dentry == dentry) {
719 /* might be worth a WARN_ON() */
720 if (d_unlinked(dentry))
721 return ERR_PTR(-ENOENT);
722 mp->m_count++;
723 return mp;
724 }
725 }
726 return NULL;
727 }
728
729 static struct mountpoint *get_mountpoint(struct dentry *dentry)
730 {
731 struct mountpoint *mp, *new = NULL;
732 int ret;
733
734 if (d_mountpoint(dentry)) {
735 mountpoint:
736 read_seqlock_excl(&mount_lock);
737 mp = lookup_mountpoint(dentry);
738 read_sequnlock_excl(&mount_lock);
739 if (mp)
740 goto done;
741 }
742
743 if (!new)
744 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
745 if (!new)
746 return ERR_PTR(-ENOMEM);
747
748
749 /* Exactly one processes may set d_mounted */
750 ret = d_set_mounted(dentry);
751
752 /* Someone else set d_mounted? */
753 if (ret == -EBUSY)
754 goto mountpoint;
755
756 /* The dentry is not available as a mountpoint? */
757 mp = ERR_PTR(ret);
758 if (ret)
759 goto done;
760
761 /* Add the new mountpoint to the hash table */
762 read_seqlock_excl(&mount_lock);
763 new->m_dentry = dentry;
764 new->m_count = 1;
765 hlist_add_head(&new->m_hash, mp_hash(dentry));
766 INIT_HLIST_HEAD(&new->m_list);
767 read_sequnlock_excl(&mount_lock);
768
769 mp = new;
770 new = NULL;
771 done:
772 kfree(new);
773 return mp;
774 }
775
776 static void put_mountpoint(struct mountpoint *mp)
777 {
778 if (!--mp->m_count) {
779 struct dentry *dentry = mp->m_dentry;
780 BUG_ON(!hlist_empty(&mp->m_list));
781 spin_lock(&dentry->d_lock);
782 dentry->d_flags &= ~DCACHE_MOUNTED;
783 spin_unlock(&dentry->d_lock);
784 hlist_del(&mp->m_hash);
785 kfree(mp);
786 }
787 }
788
789 static inline int check_mnt(struct mount *mnt)
790 {
791 return mnt->mnt_ns == current->nsproxy->mnt_ns;
792 }
793
794 /*
795 * vfsmount lock must be held for write
796 */
797 static void touch_mnt_namespace(struct mnt_namespace *ns)
798 {
799 if (ns) {
800 ns->event = ++event;
801 wake_up_interruptible(&ns->poll);
802 }
803 }
804
805 /*
806 * vfsmount lock must be held for write
807 */
808 static void __touch_mnt_namespace(struct mnt_namespace *ns)
809 {
810 if (ns && ns->event != event) {
811 ns->event = event;
812 wake_up_interruptible(&ns->poll);
813 }
814 }
815
816 /*
817 * vfsmount lock must be held for write
818 */
819 static void unhash_mnt(struct mount *mnt)
820 {
821 mnt->mnt_parent = mnt;
822 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
823 list_del_init(&mnt->mnt_child);
824 hlist_del_init_rcu(&mnt->mnt_hash);
825 hlist_del_init(&mnt->mnt_mp_list);
826 put_mountpoint(mnt->mnt_mp);
827 mnt->mnt_mp = NULL;
828 }
829
830 /*
831 * vfsmount lock must be held for write
832 */
833 static void detach_mnt(struct mount *mnt, struct path *old_path)
834 {
835 old_path->dentry = mnt->mnt_mountpoint;
836 old_path->mnt = &mnt->mnt_parent->mnt;
837 unhash_mnt(mnt);
838 }
839
840 /*
841 * vfsmount lock must be held for write
842 */
843 static void umount_mnt(struct mount *mnt)
844 {
845 /* old mountpoint will be dropped when we can do that */
846 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
847 unhash_mnt(mnt);
848 }
849
850 /*
851 * vfsmount lock must be held for write
852 */
853 void mnt_set_mountpoint(struct mount *mnt,
854 struct mountpoint *mp,
855 struct mount *child_mnt)
856 {
857 mp->m_count++;
858 mnt_add_count(mnt, 1); /* essentially, that's mntget */
859 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
860 child_mnt->mnt_parent = mnt;
861 child_mnt->mnt_mp = mp;
862 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
863 }
864
865 static void __attach_mnt(struct mount *mnt, struct mount *parent)
866 {
867 hlist_add_head_rcu(&mnt->mnt_hash,
868 m_hash(&parent->mnt, mnt->mnt_mountpoint));
869 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
870 }
871
872 /*
873 * vfsmount lock must be held for write
874 */
875 static void attach_mnt(struct mount *mnt,
876 struct mount *parent,
877 struct mountpoint *mp)
878 {
879 mnt_set_mountpoint(parent, mp, mnt);
880 __attach_mnt(mnt, parent);
881 }
882
883 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
884 {
885 struct mountpoint *old_mp = mnt->mnt_mp;
886 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
887 struct mount *old_parent = mnt->mnt_parent;
888
889 list_del_init(&mnt->mnt_child);
890 hlist_del_init(&mnt->mnt_mp_list);
891 hlist_del_init_rcu(&mnt->mnt_hash);
892
893 attach_mnt(mnt, parent, mp);
894
895 put_mountpoint(old_mp);
896
897 /*
898 * Safely avoid even the suggestion this code might sleep or
899 * lock the mount hash by taking advantage of the knowledge that
900 * mnt_change_mountpoint will not release the final reference
901 * to a mountpoint.
902 *
903 * During mounting, the mount passed in as the parent mount will
904 * continue to use the old mountpoint and during unmounting, the
905 * old mountpoint will continue to exist until namespace_unlock,
906 * which happens well after mnt_change_mountpoint.
907 */
908 spin_lock(&old_mountpoint->d_lock);
909 old_mountpoint->d_lockref.count--;
910 spin_unlock(&old_mountpoint->d_lock);
911
912 mnt_add_count(old_parent, -1);
913 }
914
915 /*
916 * vfsmount lock must be held for write
917 */
918 static void commit_tree(struct mount *mnt)
919 {
920 struct mount *parent = mnt->mnt_parent;
921 struct mount *m;
922 LIST_HEAD(head);
923 struct mnt_namespace *n = parent->mnt_ns;
924
925 BUG_ON(parent == mnt);
926
927 list_add_tail(&head, &mnt->mnt_list);
928 list_for_each_entry(m, &head, mnt_list)
929 m->mnt_ns = n;
930
931 list_splice(&head, n->list.prev);
932
933 n->mounts += n->pending_mounts;
934 n->pending_mounts = 0;
935
936 __attach_mnt(mnt, parent);
937 touch_mnt_namespace(n);
938 }
939
940 static struct mount *next_mnt(struct mount *p, struct mount *root)
941 {
942 struct list_head *next = p->mnt_mounts.next;
943 if (next == &p->mnt_mounts) {
944 while (1) {
945 if (p == root)
946 return NULL;
947 next = p->mnt_child.next;
948 if (next != &p->mnt_parent->mnt_mounts)
949 break;
950 p = p->mnt_parent;
951 }
952 }
953 return list_entry(next, struct mount, mnt_child);
954 }
955
956 static struct mount *skip_mnt_tree(struct mount *p)
957 {
958 struct list_head *prev = p->mnt_mounts.prev;
959 while (prev != &p->mnt_mounts) {
960 p = list_entry(prev, struct mount, mnt_child);
961 prev = p->mnt_mounts.prev;
962 }
963 return p;
964 }
965
966 struct vfsmount *
967 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
968 {
969 struct mount *mnt;
970 struct dentry *root;
971
972 if (!type)
973 return ERR_PTR(-ENODEV);
974
975 mnt = alloc_vfsmnt(name);
976 if (!mnt)
977 return ERR_PTR(-ENOMEM);
978
979 if (flags & MS_KERNMOUNT)
980 mnt->mnt.mnt_flags = MNT_INTERNAL;
981
982 root = mount_fs(type, flags, name, data);
983 if (IS_ERR(root)) {
984 mnt_free_id(mnt);
985 free_vfsmnt(mnt);
986 return ERR_CAST(root);
987 }
988
989 mnt->mnt.mnt_root = root;
990 mnt->mnt.mnt_sb = root->d_sb;
991 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
992 mnt->mnt_parent = mnt;
993 lock_mount_hash();
994 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
995 unlock_mount_hash();
996 return &mnt->mnt;
997 }
998 EXPORT_SYMBOL_GPL(vfs_kern_mount);
999
1000 struct vfsmount *
1001 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1002 const char *name, void *data)
1003 {
1004 /* Until it is worked out how to pass the user namespace
1005 * through from the parent mount to the submount don't support
1006 * unprivileged mounts with submounts.
1007 */
1008 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1009 return ERR_PTR(-EPERM);
1010
1011 return vfs_kern_mount(type, MS_SUBMOUNT, name, data);
1012 }
1013 EXPORT_SYMBOL_GPL(vfs_submount);
1014
1015 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1016 int flag)
1017 {
1018 struct super_block *sb = old->mnt.mnt_sb;
1019 struct mount *mnt;
1020 int err;
1021
1022 mnt = alloc_vfsmnt(old->mnt_devname);
1023 if (!mnt)
1024 return ERR_PTR(-ENOMEM);
1025
1026 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1027 mnt->mnt_group_id = 0; /* not a peer of original */
1028 else
1029 mnt->mnt_group_id = old->mnt_group_id;
1030
1031 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1032 err = mnt_alloc_group_id(mnt);
1033 if (err)
1034 goto out_free;
1035 }
1036
1037 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
1038 /* Don't allow unprivileged users to change mount flags */
1039 if (flag & CL_UNPRIVILEGED) {
1040 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1041
1042 if (mnt->mnt.mnt_flags & MNT_READONLY)
1043 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1044
1045 if (mnt->mnt.mnt_flags & MNT_NODEV)
1046 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1047
1048 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1049 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1050
1051 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1052 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1053 }
1054
1055 /* Don't allow unprivileged users to reveal what is under a mount */
1056 if ((flag & CL_UNPRIVILEGED) &&
1057 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1058 mnt->mnt.mnt_flags |= MNT_LOCKED;
1059
1060 atomic_inc(&sb->s_active);
1061 mnt->mnt.mnt_sb = sb;
1062 mnt->mnt.mnt_root = dget(root);
1063 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1064 mnt->mnt_parent = mnt;
1065 lock_mount_hash();
1066 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1067 unlock_mount_hash();
1068
1069 if ((flag & CL_SLAVE) ||
1070 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1071 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1072 mnt->mnt_master = old;
1073 CLEAR_MNT_SHARED(mnt);
1074 } else if (!(flag & CL_PRIVATE)) {
1075 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1076 list_add(&mnt->mnt_share, &old->mnt_share);
1077 if (IS_MNT_SLAVE(old))
1078 list_add(&mnt->mnt_slave, &old->mnt_slave);
1079 mnt->mnt_master = old->mnt_master;
1080 }
1081 if (flag & CL_MAKE_SHARED)
1082 set_mnt_shared(mnt);
1083
1084 /* stick the duplicate mount on the same expiry list
1085 * as the original if that was on one */
1086 if (flag & CL_EXPIRE) {
1087 if (!list_empty(&old->mnt_expire))
1088 list_add(&mnt->mnt_expire, &old->mnt_expire);
1089 }
1090
1091 return mnt;
1092
1093 out_free:
1094 mnt_free_id(mnt);
1095 free_vfsmnt(mnt);
1096 return ERR_PTR(err);
1097 }
1098
1099 static void cleanup_mnt(struct mount *mnt)
1100 {
1101 /*
1102 * This probably indicates that somebody messed
1103 * up a mnt_want/drop_write() pair. If this
1104 * happens, the filesystem was probably unable
1105 * to make r/w->r/o transitions.
1106 */
1107 /*
1108 * The locking used to deal with mnt_count decrement provides barriers,
1109 * so mnt_get_writers() below is safe.
1110 */
1111 WARN_ON(mnt_get_writers(mnt));
1112 if (unlikely(mnt->mnt_pins.first))
1113 mnt_pin_kill(mnt);
1114 fsnotify_vfsmount_delete(&mnt->mnt);
1115 dput(mnt->mnt.mnt_root);
1116 deactivate_super(mnt->mnt.mnt_sb);
1117 mnt_free_id(mnt);
1118 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1119 }
1120
1121 static void __cleanup_mnt(struct rcu_head *head)
1122 {
1123 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1124 }
1125
1126 static LLIST_HEAD(delayed_mntput_list);
1127 static void delayed_mntput(struct work_struct *unused)
1128 {
1129 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1130 struct llist_node *next;
1131
1132 for (; node; node = next) {
1133 next = llist_next(node);
1134 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1135 }
1136 }
1137 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1138
1139 static void mntput_no_expire(struct mount *mnt)
1140 {
1141 rcu_read_lock();
1142 mnt_add_count(mnt, -1);
1143 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1144 rcu_read_unlock();
1145 return;
1146 }
1147 lock_mount_hash();
1148 if (mnt_get_count(mnt)) {
1149 rcu_read_unlock();
1150 unlock_mount_hash();
1151 return;
1152 }
1153 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1154 rcu_read_unlock();
1155 unlock_mount_hash();
1156 return;
1157 }
1158 mnt->mnt.mnt_flags |= MNT_DOOMED;
1159 rcu_read_unlock();
1160
1161 list_del(&mnt->mnt_instance);
1162
1163 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1164 struct mount *p, *tmp;
1165 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1166 umount_mnt(p);
1167 }
1168 }
1169 unlock_mount_hash();
1170
1171 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1172 struct task_struct *task = current;
1173 if (likely(!(task->flags & PF_KTHREAD))) {
1174 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1175 if (!task_work_add(task, &mnt->mnt_rcu, true))
1176 return;
1177 }
1178 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1179 schedule_delayed_work(&delayed_mntput_work, 1);
1180 return;
1181 }
1182 cleanup_mnt(mnt);
1183 }
1184
1185 void mntput(struct vfsmount *mnt)
1186 {
1187 if (mnt) {
1188 struct mount *m = real_mount(mnt);
1189 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1190 if (unlikely(m->mnt_expiry_mark))
1191 m->mnt_expiry_mark = 0;
1192 mntput_no_expire(m);
1193 }
1194 }
1195 EXPORT_SYMBOL(mntput);
1196
1197 struct vfsmount *mntget(struct vfsmount *mnt)
1198 {
1199 if (mnt)
1200 mnt_add_count(real_mount(mnt), 1);
1201 return mnt;
1202 }
1203 EXPORT_SYMBOL(mntget);
1204
1205 struct vfsmount *mnt_clone_internal(struct path *path)
1206 {
1207 struct mount *p;
1208 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1209 if (IS_ERR(p))
1210 return ERR_CAST(p);
1211 p->mnt.mnt_flags |= MNT_INTERNAL;
1212 return &p->mnt;
1213 }
1214
1215 static inline void mangle(struct seq_file *m, const char *s)
1216 {
1217 seq_escape(m, s, " \t\n\\");
1218 }
1219
1220 /*
1221 * Simple .show_options callback for filesystems which don't want to
1222 * implement more complex mount option showing.
1223 *
1224 * See also save_mount_options().
1225 */
1226 int generic_show_options(struct seq_file *m, struct dentry *root)
1227 {
1228 const char *options;
1229
1230 rcu_read_lock();
1231 options = rcu_dereference(root->d_sb->s_options);
1232
1233 if (options != NULL && options[0]) {
1234 seq_putc(m, ',');
1235 mangle(m, options);
1236 }
1237 rcu_read_unlock();
1238
1239 return 0;
1240 }
1241 EXPORT_SYMBOL(generic_show_options);
1242
1243 /*
1244 * If filesystem uses generic_show_options(), this function should be
1245 * called from the fill_super() callback.
1246 *
1247 * The .remount_fs callback usually needs to be handled in a special
1248 * way, to make sure, that previous options are not overwritten if the
1249 * remount fails.
1250 *
1251 * Also note, that if the filesystem's .remount_fs function doesn't
1252 * reset all options to their default value, but changes only newly
1253 * given options, then the displayed options will not reflect reality
1254 * any more.
1255 */
1256 void save_mount_options(struct super_block *sb, char *options)
1257 {
1258 BUG_ON(sb->s_options);
1259 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1260 }
1261 EXPORT_SYMBOL(save_mount_options);
1262
1263 void replace_mount_options(struct super_block *sb, char *options)
1264 {
1265 char *old = sb->s_options;
1266 rcu_assign_pointer(sb->s_options, options);
1267 if (old) {
1268 synchronize_rcu();
1269 kfree(old);
1270 }
1271 }
1272 EXPORT_SYMBOL(replace_mount_options);
1273
1274 #ifdef CONFIG_PROC_FS
1275 /* iterator; we want it to have access to namespace_sem, thus here... */
1276 static void *m_start(struct seq_file *m, loff_t *pos)
1277 {
1278 struct proc_mounts *p = m->private;
1279
1280 down_read(&namespace_sem);
1281 if (p->cached_event == p->ns->event) {
1282 void *v = p->cached_mount;
1283 if (*pos == p->cached_index)
1284 return v;
1285 if (*pos == p->cached_index + 1) {
1286 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1287 return p->cached_mount = v;
1288 }
1289 }
1290
1291 p->cached_event = p->ns->event;
1292 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1293 p->cached_index = *pos;
1294 return p->cached_mount;
1295 }
1296
1297 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1298 {
1299 struct proc_mounts *p = m->private;
1300
1301 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1302 p->cached_index = *pos;
1303 return p->cached_mount;
1304 }
1305
1306 static void m_stop(struct seq_file *m, void *v)
1307 {
1308 up_read(&namespace_sem);
1309 }
1310
1311 static int m_show(struct seq_file *m, void *v)
1312 {
1313 struct proc_mounts *p = m->private;
1314 struct mount *r = list_entry(v, struct mount, mnt_list);
1315 return p->show(m, &r->mnt);
1316 }
1317
1318 const struct seq_operations mounts_op = {
1319 .start = m_start,
1320 .next = m_next,
1321 .stop = m_stop,
1322 .show = m_show,
1323 };
1324 #endif /* CONFIG_PROC_FS */
1325
1326 /**
1327 * may_umount_tree - check if a mount tree is busy
1328 * @mnt: root of mount tree
1329 *
1330 * This is called to check if a tree of mounts has any
1331 * open files, pwds, chroots or sub mounts that are
1332 * busy.
1333 */
1334 int may_umount_tree(struct vfsmount *m)
1335 {
1336 struct mount *mnt = real_mount(m);
1337 int actual_refs = 0;
1338 int minimum_refs = 0;
1339 struct mount *p;
1340 BUG_ON(!m);
1341
1342 /* write lock needed for mnt_get_count */
1343 lock_mount_hash();
1344 for (p = mnt; p; p = next_mnt(p, mnt)) {
1345 actual_refs += mnt_get_count(p);
1346 minimum_refs += 2;
1347 }
1348 unlock_mount_hash();
1349
1350 if (actual_refs > minimum_refs)
1351 return 0;
1352
1353 return 1;
1354 }
1355
1356 EXPORT_SYMBOL(may_umount_tree);
1357
1358 /**
1359 * may_umount - check if a mount point is busy
1360 * @mnt: root of mount
1361 *
1362 * This is called to check if a mount point has any
1363 * open files, pwds, chroots or sub mounts. If the
1364 * mount has sub mounts this will return busy
1365 * regardless of whether the sub mounts are busy.
1366 *
1367 * Doesn't take quota and stuff into account. IOW, in some cases it will
1368 * give false negatives. The main reason why it's here is that we need
1369 * a non-destructive way to look for easily umountable filesystems.
1370 */
1371 int may_umount(struct vfsmount *mnt)
1372 {
1373 int ret = 1;
1374 down_read(&namespace_sem);
1375 lock_mount_hash();
1376 if (propagate_mount_busy(real_mount(mnt), 2))
1377 ret = 0;
1378 unlock_mount_hash();
1379 up_read(&namespace_sem);
1380 return ret;
1381 }
1382
1383 EXPORT_SYMBOL(may_umount);
1384
1385 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1386
1387 static void namespace_unlock(void)
1388 {
1389 struct hlist_head head;
1390
1391 hlist_move_list(&unmounted, &head);
1392
1393 up_write(&namespace_sem);
1394
1395 if (likely(hlist_empty(&head)))
1396 return;
1397
1398 synchronize_rcu();
1399
1400 group_pin_kill(&head);
1401 }
1402
1403 static inline void namespace_lock(void)
1404 {
1405 down_write(&namespace_sem);
1406 }
1407
1408 enum umount_tree_flags {
1409 UMOUNT_SYNC = 1,
1410 UMOUNT_PROPAGATE = 2,
1411 UMOUNT_CONNECTED = 4,
1412 };
1413
1414 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1415 {
1416 /* Leaving mounts connected is only valid for lazy umounts */
1417 if (how & UMOUNT_SYNC)
1418 return true;
1419
1420 /* A mount without a parent has nothing to be connected to */
1421 if (!mnt_has_parent(mnt))
1422 return true;
1423
1424 /* Because the reference counting rules change when mounts are
1425 * unmounted and connected, umounted mounts may not be
1426 * connected to mounted mounts.
1427 */
1428 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1429 return true;
1430
1431 /* Has it been requested that the mount remain connected? */
1432 if (how & UMOUNT_CONNECTED)
1433 return false;
1434
1435 /* Is the mount locked such that it needs to remain connected? */
1436 if (IS_MNT_LOCKED(mnt))
1437 return false;
1438
1439 /* By default disconnect the mount */
1440 return true;
1441 }
1442
1443 /*
1444 * mount_lock must be held
1445 * namespace_sem must be held for write
1446 */
1447 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1448 {
1449 LIST_HEAD(tmp_list);
1450 struct mount *p;
1451
1452 if (how & UMOUNT_PROPAGATE)
1453 propagate_mount_unlock(mnt);
1454
1455 /* Gather the mounts to umount */
1456 for (p = mnt; p; p = next_mnt(p, mnt)) {
1457 p->mnt.mnt_flags |= MNT_UMOUNT;
1458 list_move(&p->mnt_list, &tmp_list);
1459 }
1460
1461 /* Hide the mounts from mnt_mounts */
1462 list_for_each_entry(p, &tmp_list, mnt_list) {
1463 list_del_init(&p->mnt_child);
1464 }
1465
1466 /* Add propogated mounts to the tmp_list */
1467 if (how & UMOUNT_PROPAGATE)
1468 propagate_umount(&tmp_list);
1469
1470 while (!list_empty(&tmp_list)) {
1471 struct mnt_namespace *ns;
1472 bool disconnect;
1473 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1474 list_del_init(&p->mnt_expire);
1475 list_del_init(&p->mnt_list);
1476 ns = p->mnt_ns;
1477 if (ns) {
1478 ns->mounts--;
1479 __touch_mnt_namespace(ns);
1480 }
1481 p->mnt_ns = NULL;
1482 if (how & UMOUNT_SYNC)
1483 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1484
1485 disconnect = disconnect_mount(p, how);
1486
1487 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1488 disconnect ? &unmounted : NULL);
1489 if (mnt_has_parent(p)) {
1490 mnt_add_count(p->mnt_parent, -1);
1491 if (!disconnect) {
1492 /* Don't forget about p */
1493 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1494 } else {
1495 umount_mnt(p);
1496 }
1497 }
1498 change_mnt_propagation(p, MS_PRIVATE);
1499 }
1500 }
1501
1502 static void shrink_submounts(struct mount *mnt);
1503
1504 static int do_umount(struct mount *mnt, int flags)
1505 {
1506 struct super_block *sb = mnt->mnt.mnt_sb;
1507 int retval;
1508
1509 retval = security_sb_umount(&mnt->mnt, flags);
1510 if (retval)
1511 return retval;
1512
1513 /*
1514 * Allow userspace to request a mountpoint be expired rather than
1515 * unmounting unconditionally. Unmount only happens if:
1516 * (1) the mark is already set (the mark is cleared by mntput())
1517 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1518 */
1519 if (flags & MNT_EXPIRE) {
1520 if (&mnt->mnt == current->fs->root.mnt ||
1521 flags & (MNT_FORCE | MNT_DETACH))
1522 return -EINVAL;
1523
1524 /*
1525 * probably don't strictly need the lock here if we examined
1526 * all race cases, but it's a slowpath.
1527 */
1528 lock_mount_hash();
1529 if (mnt_get_count(mnt) != 2) {
1530 unlock_mount_hash();
1531 return -EBUSY;
1532 }
1533 unlock_mount_hash();
1534
1535 if (!xchg(&mnt->mnt_expiry_mark, 1))
1536 return -EAGAIN;
1537 }
1538
1539 /*
1540 * If we may have to abort operations to get out of this
1541 * mount, and they will themselves hold resources we must
1542 * allow the fs to do things. In the Unix tradition of
1543 * 'Gee thats tricky lets do it in userspace' the umount_begin
1544 * might fail to complete on the first run through as other tasks
1545 * must return, and the like. Thats for the mount program to worry
1546 * about for the moment.
1547 */
1548
1549 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1550 sb->s_op->umount_begin(sb);
1551 }
1552
1553 /*
1554 * No sense to grab the lock for this test, but test itself looks
1555 * somewhat bogus. Suggestions for better replacement?
1556 * Ho-hum... In principle, we might treat that as umount + switch
1557 * to rootfs. GC would eventually take care of the old vfsmount.
1558 * Actually it makes sense, especially if rootfs would contain a
1559 * /reboot - static binary that would close all descriptors and
1560 * call reboot(9). Then init(8) could umount root and exec /reboot.
1561 */
1562 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1563 /*
1564 * Special case for "unmounting" root ...
1565 * we just try to remount it readonly.
1566 */
1567 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1568 return -EPERM;
1569 down_write(&sb->s_umount);
1570 if (!(sb->s_flags & MS_RDONLY))
1571 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1572 up_write(&sb->s_umount);
1573 return retval;
1574 }
1575
1576 namespace_lock();
1577 lock_mount_hash();
1578 event++;
1579
1580 if (flags & MNT_DETACH) {
1581 if (!list_empty(&mnt->mnt_list))
1582 umount_tree(mnt, UMOUNT_PROPAGATE);
1583 retval = 0;
1584 } else {
1585 shrink_submounts(mnt);
1586 retval = -EBUSY;
1587 if (!propagate_mount_busy(mnt, 2)) {
1588 if (!list_empty(&mnt->mnt_list))
1589 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1590 retval = 0;
1591 }
1592 }
1593 unlock_mount_hash();
1594 namespace_unlock();
1595 return retval;
1596 }
1597
1598 /*
1599 * __detach_mounts - lazily unmount all mounts on the specified dentry
1600 *
1601 * During unlink, rmdir, and d_drop it is possible to loose the path
1602 * to an existing mountpoint, and wind up leaking the mount.
1603 * detach_mounts allows lazily unmounting those mounts instead of
1604 * leaking them.
1605 *
1606 * The caller may hold dentry->d_inode->i_mutex.
1607 */
1608 void __detach_mounts(struct dentry *dentry)
1609 {
1610 struct mountpoint *mp;
1611 struct mount *mnt;
1612
1613 namespace_lock();
1614 lock_mount_hash();
1615 mp = lookup_mountpoint(dentry);
1616 if (IS_ERR_OR_NULL(mp))
1617 goto out_unlock;
1618
1619 event++;
1620 while (!hlist_empty(&mp->m_list)) {
1621 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1622 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1623 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1624 umount_mnt(mnt);
1625 }
1626 else umount_tree(mnt, UMOUNT_CONNECTED);
1627 }
1628 put_mountpoint(mp);
1629 out_unlock:
1630 unlock_mount_hash();
1631 namespace_unlock();
1632 }
1633
1634 /*
1635 * Is the caller allowed to modify his namespace?
1636 */
1637 static inline bool may_mount(void)
1638 {
1639 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1640 }
1641
1642 /*
1643 * Now umount can handle mount points as well as block devices.
1644 * This is important for filesystems which use unnamed block devices.
1645 *
1646 * We now support a flag for forced unmount like the other 'big iron'
1647 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1648 */
1649
1650 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1651 {
1652 struct path path;
1653 struct mount *mnt;
1654 int retval;
1655 int lookup_flags = 0;
1656
1657 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1658 return -EINVAL;
1659
1660 if (!may_mount())
1661 return -EPERM;
1662
1663 if (!(flags & UMOUNT_NOFOLLOW))
1664 lookup_flags |= LOOKUP_FOLLOW;
1665
1666 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1667 if (retval)
1668 goto out;
1669 mnt = real_mount(path.mnt);
1670 retval = -EINVAL;
1671 if (path.dentry != path.mnt->mnt_root)
1672 goto dput_and_out;
1673 if (!check_mnt(mnt))
1674 goto dput_and_out;
1675 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1676 goto dput_and_out;
1677 retval = -EPERM;
1678 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1679 goto dput_and_out;
1680
1681 retval = do_umount(mnt, flags);
1682 dput_and_out:
1683 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1684 dput(path.dentry);
1685 mntput_no_expire(mnt);
1686 out:
1687 return retval;
1688 }
1689
1690 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1691
1692 /*
1693 * The 2.0 compatible umount. No flags.
1694 */
1695 SYSCALL_DEFINE1(oldumount, char __user *, name)
1696 {
1697 return sys_umount(name, 0);
1698 }
1699
1700 #endif
1701
1702 static bool is_mnt_ns_file(struct dentry *dentry)
1703 {
1704 /* Is this a proxy for a mount namespace? */
1705 return dentry->d_op == &ns_dentry_operations &&
1706 dentry->d_fsdata == &mntns_operations;
1707 }
1708
1709 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1710 {
1711 return container_of(ns, struct mnt_namespace, ns);
1712 }
1713
1714 static bool mnt_ns_loop(struct dentry *dentry)
1715 {
1716 /* Could bind mounting the mount namespace inode cause a
1717 * mount namespace loop?
1718 */
1719 struct mnt_namespace *mnt_ns;
1720 if (!is_mnt_ns_file(dentry))
1721 return false;
1722
1723 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1724 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1725 }
1726
1727 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1728 int flag)
1729 {
1730 struct mount *res, *p, *q, *r, *parent;
1731
1732 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1733 return ERR_PTR(-EINVAL);
1734
1735 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1736 return ERR_PTR(-EINVAL);
1737
1738 res = q = clone_mnt(mnt, dentry, flag);
1739 if (IS_ERR(q))
1740 return q;
1741
1742 q->mnt_mountpoint = mnt->mnt_mountpoint;
1743
1744 p = mnt;
1745 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1746 struct mount *s;
1747 if (!is_subdir(r->mnt_mountpoint, dentry))
1748 continue;
1749
1750 for (s = r; s; s = next_mnt(s, r)) {
1751 if (!(flag & CL_COPY_UNBINDABLE) &&
1752 IS_MNT_UNBINDABLE(s)) {
1753 s = skip_mnt_tree(s);
1754 continue;
1755 }
1756 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1757 is_mnt_ns_file(s->mnt.mnt_root)) {
1758 s = skip_mnt_tree(s);
1759 continue;
1760 }
1761 while (p != s->mnt_parent) {
1762 p = p->mnt_parent;
1763 q = q->mnt_parent;
1764 }
1765 p = s;
1766 parent = q;
1767 q = clone_mnt(p, p->mnt.mnt_root, flag);
1768 if (IS_ERR(q))
1769 goto out;
1770 lock_mount_hash();
1771 list_add_tail(&q->mnt_list, &res->mnt_list);
1772 attach_mnt(q, parent, p->mnt_mp);
1773 unlock_mount_hash();
1774 }
1775 }
1776 return res;
1777 out:
1778 if (res) {
1779 lock_mount_hash();
1780 umount_tree(res, UMOUNT_SYNC);
1781 unlock_mount_hash();
1782 }
1783 return q;
1784 }
1785
1786 /* Caller should check returned pointer for errors */
1787
1788 struct vfsmount *collect_mounts(struct path *path)
1789 {
1790 struct mount *tree;
1791 namespace_lock();
1792 if (!check_mnt(real_mount(path->mnt)))
1793 tree = ERR_PTR(-EINVAL);
1794 else
1795 tree = copy_tree(real_mount(path->mnt), path->dentry,
1796 CL_COPY_ALL | CL_PRIVATE);
1797 namespace_unlock();
1798 if (IS_ERR(tree))
1799 return ERR_CAST(tree);
1800 return &tree->mnt;
1801 }
1802
1803 void drop_collected_mounts(struct vfsmount *mnt)
1804 {
1805 namespace_lock();
1806 lock_mount_hash();
1807 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1808 unlock_mount_hash();
1809 namespace_unlock();
1810 }
1811
1812 /**
1813 * clone_private_mount - create a private clone of a path
1814 *
1815 * This creates a new vfsmount, which will be the clone of @path. The new will
1816 * not be attached anywhere in the namespace and will be private (i.e. changes
1817 * to the originating mount won't be propagated into this).
1818 *
1819 * Release with mntput().
1820 */
1821 struct vfsmount *clone_private_mount(struct path *path)
1822 {
1823 struct mount *old_mnt = real_mount(path->mnt);
1824 struct mount *new_mnt;
1825
1826 if (IS_MNT_UNBINDABLE(old_mnt))
1827 return ERR_PTR(-EINVAL);
1828
1829 down_read(&namespace_sem);
1830 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1831 up_read(&namespace_sem);
1832 if (IS_ERR(new_mnt))
1833 return ERR_CAST(new_mnt);
1834
1835 return &new_mnt->mnt;
1836 }
1837 EXPORT_SYMBOL_GPL(clone_private_mount);
1838
1839 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1840 struct vfsmount *root)
1841 {
1842 struct mount *mnt;
1843 int res = f(root, arg);
1844 if (res)
1845 return res;
1846 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1847 res = f(&mnt->mnt, arg);
1848 if (res)
1849 return res;
1850 }
1851 return 0;
1852 }
1853 EXPORT_SYMBOL(iterate_mounts);
1854
1855 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1856 {
1857 struct mount *p;
1858
1859 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1860 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1861 mnt_release_group_id(p);
1862 }
1863 }
1864
1865 static int invent_group_ids(struct mount *mnt, bool recurse)
1866 {
1867 struct mount *p;
1868
1869 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1870 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1871 int err = mnt_alloc_group_id(p);
1872 if (err) {
1873 cleanup_group_ids(mnt, p);
1874 return err;
1875 }
1876 }
1877 }
1878
1879 return 0;
1880 }
1881
1882 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1883 {
1884 unsigned int max = READ_ONCE(sysctl_mount_max);
1885 unsigned int mounts = 0, old, pending, sum;
1886 struct mount *p;
1887
1888 for (p = mnt; p; p = next_mnt(p, mnt))
1889 mounts++;
1890
1891 old = ns->mounts;
1892 pending = ns->pending_mounts;
1893 sum = old + pending;
1894 if ((old > sum) ||
1895 (pending > sum) ||
1896 (max < sum) ||
1897 (mounts > (max - sum)))
1898 return -ENOSPC;
1899
1900 ns->pending_mounts = pending + mounts;
1901 return 0;
1902 }
1903
1904 /*
1905 * @source_mnt : mount tree to be attached
1906 * @nd : place the mount tree @source_mnt is attached
1907 * @parent_nd : if non-null, detach the source_mnt from its parent and
1908 * store the parent mount and mountpoint dentry.
1909 * (done when source_mnt is moved)
1910 *
1911 * NOTE: in the table below explains the semantics when a source mount
1912 * of a given type is attached to a destination mount of a given type.
1913 * ---------------------------------------------------------------------------
1914 * | BIND MOUNT OPERATION |
1915 * |**************************************************************************
1916 * | source-->| shared | private | slave | unbindable |
1917 * | dest | | | | |
1918 * | | | | | | |
1919 * | v | | | | |
1920 * |**************************************************************************
1921 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1922 * | | | | | |
1923 * |non-shared| shared (+) | private | slave (*) | invalid |
1924 * ***************************************************************************
1925 * A bind operation clones the source mount and mounts the clone on the
1926 * destination mount.
1927 *
1928 * (++) the cloned mount is propagated to all the mounts in the propagation
1929 * tree of the destination mount and the cloned mount is added to
1930 * the peer group of the source mount.
1931 * (+) the cloned mount is created under the destination mount and is marked
1932 * as shared. The cloned mount is added to the peer group of the source
1933 * mount.
1934 * (+++) the mount is propagated to all the mounts in the propagation tree
1935 * of the destination mount and the cloned mount is made slave
1936 * of the same master as that of the source mount. The cloned mount
1937 * is marked as 'shared and slave'.
1938 * (*) the cloned mount is made a slave of the same master as that of the
1939 * source mount.
1940 *
1941 * ---------------------------------------------------------------------------
1942 * | MOVE MOUNT OPERATION |
1943 * |**************************************************************************
1944 * | source-->| shared | private | slave | unbindable |
1945 * | dest | | | | |
1946 * | | | | | | |
1947 * | v | | | | |
1948 * |**************************************************************************
1949 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1950 * | | | | | |
1951 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1952 * ***************************************************************************
1953 *
1954 * (+) the mount is moved to the destination. And is then propagated to
1955 * all the mounts in the propagation tree of the destination mount.
1956 * (+*) the mount is moved to the destination.
1957 * (+++) the mount is moved to the destination and is then propagated to
1958 * all the mounts belonging to the destination mount's propagation tree.
1959 * the mount is marked as 'shared and slave'.
1960 * (*) the mount continues to be a slave at the new location.
1961 *
1962 * if the source mount is a tree, the operations explained above is
1963 * applied to each mount in the tree.
1964 * Must be called without spinlocks held, since this function can sleep
1965 * in allocations.
1966 */
1967 static int attach_recursive_mnt(struct mount *source_mnt,
1968 struct mount *dest_mnt,
1969 struct mountpoint *dest_mp,
1970 struct path *parent_path)
1971 {
1972 HLIST_HEAD(tree_list);
1973 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1974 struct mountpoint *smp;
1975 struct mount *child, *p;
1976 struct hlist_node *n;
1977 int err;
1978
1979 /* Is there space to add these mounts to the mount namespace? */
1980 if (!parent_path) {
1981 err = count_mounts(ns, source_mnt);
1982 if (err)
1983 goto out;
1984 }
1985
1986 /* Preallocate a mountpoint in case the new mounts need
1987 * to be tucked under other mounts.
1988 */
1989 smp = get_mountpoint(source_mnt->mnt.mnt_root);
1990 if (IS_ERR(smp))
1991 return PTR_ERR(smp);
1992
1993 if (IS_MNT_SHARED(dest_mnt)) {
1994 err = invent_group_ids(source_mnt, true);
1995 if (err)
1996 goto out;
1997 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1998 lock_mount_hash();
1999 if (err)
2000 goto out_cleanup_ids;
2001 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2002 set_mnt_shared(p);
2003 } else {
2004 lock_mount_hash();
2005 }
2006 if (parent_path) {
2007 detach_mnt(source_mnt, parent_path);
2008 attach_mnt(source_mnt, dest_mnt, dest_mp);
2009 touch_mnt_namespace(source_mnt->mnt_ns);
2010 } else {
2011 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2012 commit_tree(source_mnt);
2013 }
2014
2015 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2016 struct mount *q;
2017 hlist_del_init(&child->mnt_hash);
2018 q = __lookup_mnt(&child->mnt_parent->mnt,
2019 child->mnt_mountpoint);
2020 if (q)
2021 mnt_change_mountpoint(child, smp, q);
2022 commit_tree(child);
2023 }
2024 put_mountpoint(smp);
2025 unlock_mount_hash();
2026
2027 return 0;
2028
2029 out_cleanup_ids:
2030 while (!hlist_empty(&tree_list)) {
2031 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2032 child->mnt_parent->mnt_ns->pending_mounts = 0;
2033 umount_tree(child, UMOUNT_SYNC);
2034 }
2035 unlock_mount_hash();
2036 cleanup_group_ids(source_mnt, NULL);
2037 out:
2038 ns->pending_mounts = 0;
2039 read_seqlock_excl(&mount_lock);
2040 put_mountpoint(smp);
2041 read_sequnlock_excl(&mount_lock);
2042
2043 return err;
2044 }
2045
2046 static struct mountpoint *lock_mount(struct path *path)
2047 {
2048 struct vfsmount *mnt;
2049 struct dentry *dentry = path->dentry;
2050 retry:
2051 mutex_lock(&dentry->d_inode->i_mutex);
2052 if (unlikely(cant_mount(dentry))) {
2053 mutex_unlock(&dentry->d_inode->i_mutex);
2054 return ERR_PTR(-ENOENT);
2055 }
2056 namespace_lock();
2057 mnt = lookup_mnt(path);
2058 if (likely(!mnt)) {
2059 struct mountpoint *mp = get_mountpoint(dentry);
2060 if (IS_ERR(mp)) {
2061 namespace_unlock();
2062 mutex_unlock(&dentry->d_inode->i_mutex);
2063 return mp;
2064 }
2065 return mp;
2066 }
2067 namespace_unlock();
2068 mutex_unlock(&path->dentry->d_inode->i_mutex);
2069 path_put(path);
2070 path->mnt = mnt;
2071 dentry = path->dentry = dget(mnt->mnt_root);
2072 goto retry;
2073 }
2074
2075 static void unlock_mount(struct mountpoint *where)
2076 {
2077 struct dentry *dentry = where->m_dentry;
2078
2079 read_seqlock_excl(&mount_lock);
2080 put_mountpoint(where);
2081 read_sequnlock_excl(&mount_lock);
2082
2083 namespace_unlock();
2084 mutex_unlock(&dentry->d_inode->i_mutex);
2085 }
2086
2087 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2088 {
2089 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2090 return -EINVAL;
2091
2092 if (d_is_dir(mp->m_dentry) !=
2093 d_is_dir(mnt->mnt.mnt_root))
2094 return -ENOTDIR;
2095
2096 return attach_recursive_mnt(mnt, p, mp, NULL);
2097 }
2098
2099 /*
2100 * Sanity check the flags to change_mnt_propagation.
2101 */
2102
2103 static int flags_to_propagation_type(int flags)
2104 {
2105 int type = flags & ~(MS_REC | MS_SILENT);
2106
2107 /* Fail if any non-propagation flags are set */
2108 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2109 return 0;
2110 /* Only one propagation flag should be set */
2111 if (!is_power_of_2(type))
2112 return 0;
2113 return type;
2114 }
2115
2116 /*
2117 * recursively change the type of the mountpoint.
2118 */
2119 static int do_change_type(struct path *path, int flag)
2120 {
2121 struct mount *m;
2122 struct mount *mnt = real_mount(path->mnt);
2123 int recurse = flag & MS_REC;
2124 int type;
2125 int err = 0;
2126
2127 if (path->dentry != path->mnt->mnt_root)
2128 return -EINVAL;
2129
2130 type = flags_to_propagation_type(flag);
2131 if (!type)
2132 return -EINVAL;
2133
2134 namespace_lock();
2135 if (type == MS_SHARED) {
2136 err = invent_group_ids(mnt, recurse);
2137 if (err)
2138 goto out_unlock;
2139 }
2140
2141 lock_mount_hash();
2142 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2143 change_mnt_propagation(m, type);
2144 unlock_mount_hash();
2145
2146 out_unlock:
2147 namespace_unlock();
2148 return err;
2149 }
2150
2151 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2152 {
2153 struct mount *child;
2154 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2155 if (!is_subdir(child->mnt_mountpoint, dentry))
2156 continue;
2157
2158 if (child->mnt.mnt_flags & MNT_LOCKED)
2159 return true;
2160 }
2161 return false;
2162 }
2163
2164 /*
2165 * do loopback mount.
2166 */
2167 static int do_loopback(struct path *path, const char *old_name,
2168 int recurse)
2169 {
2170 struct path old_path;
2171 struct mount *mnt = NULL, *old, *parent;
2172 struct mountpoint *mp;
2173 int err;
2174 if (!old_name || !*old_name)
2175 return -EINVAL;
2176 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2177 if (err)
2178 return err;
2179
2180 err = -EINVAL;
2181 if (mnt_ns_loop(old_path.dentry))
2182 goto out;
2183
2184 mp = lock_mount(path);
2185 err = PTR_ERR(mp);
2186 if (IS_ERR(mp))
2187 goto out;
2188
2189 old = real_mount(old_path.mnt);
2190 parent = real_mount(path->mnt);
2191
2192 err = -EINVAL;
2193 if (IS_MNT_UNBINDABLE(old))
2194 goto out2;
2195
2196 if (!check_mnt(parent))
2197 goto out2;
2198
2199 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2200 goto out2;
2201
2202 if (!recurse && has_locked_children(old, old_path.dentry))
2203 goto out2;
2204
2205 if (recurse)
2206 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2207 else
2208 mnt = clone_mnt(old, old_path.dentry, 0);
2209
2210 if (IS_ERR(mnt)) {
2211 err = PTR_ERR(mnt);
2212 goto out2;
2213 }
2214
2215 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2216
2217 err = graft_tree(mnt, parent, mp);
2218 if (err) {
2219 lock_mount_hash();
2220 umount_tree(mnt, UMOUNT_SYNC);
2221 unlock_mount_hash();
2222 }
2223 out2:
2224 unlock_mount(mp);
2225 out:
2226 path_put(&old_path);
2227 return err;
2228 }
2229
2230 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2231 {
2232 int error = 0;
2233 int readonly_request = 0;
2234
2235 if (ms_flags & MS_RDONLY)
2236 readonly_request = 1;
2237 if (readonly_request == __mnt_is_readonly(mnt))
2238 return 0;
2239
2240 if (readonly_request)
2241 error = mnt_make_readonly(real_mount(mnt));
2242 else
2243 __mnt_unmake_readonly(real_mount(mnt));
2244 return error;
2245 }
2246
2247 /*
2248 * change filesystem flags. dir should be a physical root of filesystem.
2249 * If you've mounted a non-root directory somewhere and want to do remount
2250 * on it - tough luck.
2251 */
2252 static int do_remount(struct path *path, int flags, int mnt_flags,
2253 void *data)
2254 {
2255 int err;
2256 struct super_block *sb = path->mnt->mnt_sb;
2257 struct mount *mnt = real_mount(path->mnt);
2258
2259 if (!check_mnt(mnt))
2260 return -EINVAL;
2261
2262 if (path->dentry != path->mnt->mnt_root)
2263 return -EINVAL;
2264
2265 /* Don't allow changing of locked mnt flags.
2266 *
2267 * No locks need to be held here while testing the various
2268 * MNT_LOCK flags because those flags can never be cleared
2269 * once they are set.
2270 */
2271 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2272 !(mnt_flags & MNT_READONLY)) {
2273 return -EPERM;
2274 }
2275 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2276 !(mnt_flags & MNT_NODEV)) {
2277 /* Was the nodev implicitly added in mount? */
2278 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2279 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2280 mnt_flags |= MNT_NODEV;
2281 } else {
2282 return -EPERM;
2283 }
2284 }
2285 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2286 !(mnt_flags & MNT_NOSUID)) {
2287 return -EPERM;
2288 }
2289 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2290 !(mnt_flags & MNT_NOEXEC)) {
2291 return -EPERM;
2292 }
2293 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2294 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2295 return -EPERM;
2296 }
2297
2298 err = security_sb_remount(sb, data);
2299 if (err)
2300 return err;
2301
2302 down_write(&sb->s_umount);
2303 if (flags & MS_BIND)
2304 err = change_mount_flags(path->mnt, flags);
2305 else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2306 err = -EPERM;
2307 else
2308 err = do_remount_sb(sb, flags, data, 0);
2309 if (!err) {
2310 lock_mount_hash();
2311 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2312 mnt->mnt.mnt_flags = mnt_flags;
2313 touch_mnt_namespace(mnt->mnt_ns);
2314 unlock_mount_hash();
2315 }
2316 up_write(&sb->s_umount);
2317 return err;
2318 }
2319
2320 static inline int tree_contains_unbindable(struct mount *mnt)
2321 {
2322 struct mount *p;
2323 for (p = mnt; p; p = next_mnt(p, mnt)) {
2324 if (IS_MNT_UNBINDABLE(p))
2325 return 1;
2326 }
2327 return 0;
2328 }
2329
2330 static int do_move_mount(struct path *path, const char *old_name)
2331 {
2332 struct path old_path, parent_path;
2333 struct mount *p;
2334 struct mount *old;
2335 struct mountpoint *mp;
2336 int err;
2337 if (!old_name || !*old_name)
2338 return -EINVAL;
2339 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2340 if (err)
2341 return err;
2342
2343 mp = lock_mount(path);
2344 err = PTR_ERR(mp);
2345 if (IS_ERR(mp))
2346 goto out;
2347
2348 old = real_mount(old_path.mnt);
2349 p = real_mount(path->mnt);
2350
2351 err = -EINVAL;
2352 if (!check_mnt(p) || !check_mnt(old))
2353 goto out1;
2354
2355 if (old->mnt.mnt_flags & MNT_LOCKED)
2356 goto out1;
2357
2358 err = -EINVAL;
2359 if (old_path.dentry != old_path.mnt->mnt_root)
2360 goto out1;
2361
2362 if (!mnt_has_parent(old))
2363 goto out1;
2364
2365 if (d_is_dir(path->dentry) !=
2366 d_is_dir(old_path.dentry))
2367 goto out1;
2368 /*
2369 * Don't move a mount residing in a shared parent.
2370 */
2371 if (IS_MNT_SHARED(old->mnt_parent))
2372 goto out1;
2373 /*
2374 * Don't move a mount tree containing unbindable mounts to a destination
2375 * mount which is shared.
2376 */
2377 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2378 goto out1;
2379 err = -ELOOP;
2380 for (; mnt_has_parent(p); p = p->mnt_parent)
2381 if (p == old)
2382 goto out1;
2383
2384 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2385 if (err)
2386 goto out1;
2387
2388 /* if the mount is moved, it should no longer be expire
2389 * automatically */
2390 list_del_init(&old->mnt_expire);
2391 out1:
2392 unlock_mount(mp);
2393 out:
2394 if (!err)
2395 path_put(&parent_path);
2396 path_put(&old_path);
2397 return err;
2398 }
2399
2400 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2401 {
2402 int err;
2403 const char *subtype = strchr(fstype, '.');
2404 if (subtype) {
2405 subtype++;
2406 err = -EINVAL;
2407 if (!subtype[0])
2408 goto err;
2409 } else
2410 subtype = "";
2411
2412 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2413 err = -ENOMEM;
2414 if (!mnt->mnt_sb->s_subtype)
2415 goto err;
2416 return mnt;
2417
2418 err:
2419 mntput(mnt);
2420 return ERR_PTR(err);
2421 }
2422
2423 /*
2424 * add a mount into a namespace's mount tree
2425 */
2426 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2427 {
2428 struct mountpoint *mp;
2429 struct mount *parent;
2430 int err;
2431
2432 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2433
2434 mp = lock_mount(path);
2435 if (IS_ERR(mp))
2436 return PTR_ERR(mp);
2437
2438 parent = real_mount(path->mnt);
2439 err = -EINVAL;
2440 if (unlikely(!check_mnt(parent))) {
2441 /* that's acceptable only for automounts done in private ns */
2442 if (!(mnt_flags & MNT_SHRINKABLE))
2443 goto unlock;
2444 /* ... and for those we'd better have mountpoint still alive */
2445 if (!parent->mnt_ns)
2446 goto unlock;
2447 }
2448
2449 /* Refuse the same filesystem on the same mount point */
2450 err = -EBUSY;
2451 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2452 path->mnt->mnt_root == path->dentry)
2453 goto unlock;
2454
2455 err = -EINVAL;
2456 if (d_is_symlink(newmnt->mnt.mnt_root))
2457 goto unlock;
2458
2459 newmnt->mnt.mnt_flags = mnt_flags;
2460 err = graft_tree(newmnt, parent, mp);
2461
2462 unlock:
2463 unlock_mount(mp);
2464 return err;
2465 }
2466
2467 static bool fs_fully_visible(struct file_system_type *fs_type, int *new_mnt_flags);
2468
2469 /*
2470 * create a new mount for userspace and request it to be added into the
2471 * namespace's tree
2472 */
2473 static int do_new_mount(struct path *path, const char *fstype, int flags,
2474 int mnt_flags, const char *name, void *data)
2475 {
2476 struct file_system_type *type;
2477 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2478 struct vfsmount *mnt;
2479 int err;
2480
2481 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN))
2482 return -EPERM;
2483
2484 if (!fstype)
2485 return -EINVAL;
2486
2487 type = get_fs_type(fstype);
2488 if (!type)
2489 return -ENODEV;
2490
2491 if (user_ns != &init_user_ns) {
2492 /* Only in special cases allow devices from mounts
2493 * created outside the initial user namespace.
2494 */
2495 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2496 flags |= MS_NODEV;
2497 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2498 }
2499 if (type->fs_flags & FS_USERNS_VISIBLE) {
2500 if (!fs_fully_visible(type, &mnt_flags)) {
2501 put_filesystem(type);
2502 return -EPERM;
2503 }
2504 }
2505 }
2506
2507 mnt = vfs_kern_mount(type, flags, name, data);
2508 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2509 !mnt->mnt_sb->s_subtype)
2510 mnt = fs_set_subtype(mnt, fstype);
2511
2512 put_filesystem(type);
2513 if (IS_ERR(mnt))
2514 return PTR_ERR(mnt);
2515
2516 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2517 if (err)
2518 mntput(mnt);
2519 return err;
2520 }
2521
2522 int finish_automount(struct vfsmount *m, struct path *path)
2523 {
2524 struct mount *mnt = real_mount(m);
2525 int err;
2526 /* The new mount record should have at least 2 refs to prevent it being
2527 * expired before we get a chance to add it
2528 */
2529 BUG_ON(mnt_get_count(mnt) < 2);
2530
2531 if (m->mnt_sb == path->mnt->mnt_sb &&
2532 m->mnt_root == path->dentry) {
2533 err = -ELOOP;
2534 goto fail;
2535 }
2536
2537 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2538 if (!err)
2539 return 0;
2540 fail:
2541 /* remove m from any expiration list it may be on */
2542 if (!list_empty(&mnt->mnt_expire)) {
2543 namespace_lock();
2544 list_del_init(&mnt->mnt_expire);
2545 namespace_unlock();
2546 }
2547 mntput(m);
2548 mntput(m);
2549 return err;
2550 }
2551
2552 /**
2553 * mnt_set_expiry - Put a mount on an expiration list
2554 * @mnt: The mount to list.
2555 * @expiry_list: The list to add the mount to.
2556 */
2557 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2558 {
2559 namespace_lock();
2560
2561 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2562
2563 namespace_unlock();
2564 }
2565 EXPORT_SYMBOL(mnt_set_expiry);
2566
2567 /*
2568 * process a list of expirable mountpoints with the intent of discarding any
2569 * mountpoints that aren't in use and haven't been touched since last we came
2570 * here
2571 */
2572 void mark_mounts_for_expiry(struct list_head *mounts)
2573 {
2574 struct mount *mnt, *next;
2575 LIST_HEAD(graveyard);
2576
2577 if (list_empty(mounts))
2578 return;
2579
2580 namespace_lock();
2581 lock_mount_hash();
2582
2583 /* extract from the expiration list every vfsmount that matches the
2584 * following criteria:
2585 * - only referenced by its parent vfsmount
2586 * - still marked for expiry (marked on the last call here; marks are
2587 * cleared by mntput())
2588 */
2589 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2590 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2591 propagate_mount_busy(mnt, 1))
2592 continue;
2593 list_move(&mnt->mnt_expire, &graveyard);
2594 }
2595 while (!list_empty(&graveyard)) {
2596 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2597 touch_mnt_namespace(mnt->mnt_ns);
2598 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2599 }
2600 unlock_mount_hash();
2601 namespace_unlock();
2602 }
2603
2604 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2605
2606 /*
2607 * Ripoff of 'select_parent()'
2608 *
2609 * search the list of submounts for a given mountpoint, and move any
2610 * shrinkable submounts to the 'graveyard' list.
2611 */
2612 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2613 {
2614 struct mount *this_parent = parent;
2615 struct list_head *next;
2616 int found = 0;
2617
2618 repeat:
2619 next = this_parent->mnt_mounts.next;
2620 resume:
2621 while (next != &this_parent->mnt_mounts) {
2622 struct list_head *tmp = next;
2623 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2624
2625 next = tmp->next;
2626 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2627 continue;
2628 /*
2629 * Descend a level if the d_mounts list is non-empty.
2630 */
2631 if (!list_empty(&mnt->mnt_mounts)) {
2632 this_parent = mnt;
2633 goto repeat;
2634 }
2635
2636 if (!propagate_mount_busy(mnt, 1)) {
2637 list_move_tail(&mnt->mnt_expire, graveyard);
2638 found++;
2639 }
2640 }
2641 /*
2642 * All done at this level ... ascend and resume the search
2643 */
2644 if (this_parent != parent) {
2645 next = this_parent->mnt_child.next;
2646 this_parent = this_parent->mnt_parent;
2647 goto resume;
2648 }
2649 return found;
2650 }
2651
2652 /*
2653 * process a list of expirable mountpoints with the intent of discarding any
2654 * submounts of a specific parent mountpoint
2655 *
2656 * mount_lock must be held for write
2657 */
2658 static void shrink_submounts(struct mount *mnt)
2659 {
2660 LIST_HEAD(graveyard);
2661 struct mount *m;
2662
2663 /* extract submounts of 'mountpoint' from the expiration list */
2664 while (select_submounts(mnt, &graveyard)) {
2665 while (!list_empty(&graveyard)) {
2666 m = list_first_entry(&graveyard, struct mount,
2667 mnt_expire);
2668 touch_mnt_namespace(m->mnt_ns);
2669 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2670 }
2671 }
2672 }
2673
2674 /*
2675 * Some copy_from_user() implementations do not return the exact number of
2676 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2677 * Note that this function differs from copy_from_user() in that it will oops
2678 * on bad values of `to', rather than returning a short copy.
2679 */
2680 static long exact_copy_from_user(void *to, const void __user * from,
2681 unsigned long n)
2682 {
2683 char *t = to;
2684 const char __user *f = from;
2685 char c;
2686
2687 if (!access_ok(VERIFY_READ, from, n))
2688 return n;
2689
2690 while (n) {
2691 if (__get_user(c, f)) {
2692 memset(t, 0, n);
2693 break;
2694 }
2695 *t++ = c;
2696 f++;
2697 n--;
2698 }
2699 return n;
2700 }
2701
2702 int copy_mount_options(const void __user * data, unsigned long *where)
2703 {
2704 int i;
2705 unsigned long page;
2706 unsigned long size;
2707
2708 *where = 0;
2709 if (!data)
2710 return 0;
2711
2712 if (!(page = __get_free_page(GFP_KERNEL)))
2713 return -ENOMEM;
2714
2715 /* We only care that *some* data at the address the user
2716 * gave us is valid. Just in case, we'll zero
2717 * the remainder of the page.
2718 */
2719 /* copy_from_user cannot cross TASK_SIZE ! */
2720 size = TASK_SIZE - (unsigned long)data;
2721 if (size > PAGE_SIZE)
2722 size = PAGE_SIZE;
2723
2724 i = size - exact_copy_from_user((void *)page, data, size);
2725 if (!i) {
2726 free_page(page);
2727 return -EFAULT;
2728 }
2729 if (i != PAGE_SIZE)
2730 memset((char *)page + i, 0, PAGE_SIZE - i);
2731 *where = page;
2732 return 0;
2733 }
2734
2735 char *copy_mount_string(const void __user *data)
2736 {
2737 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2738 }
2739
2740 /*
2741 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2742 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2743 *
2744 * data is a (void *) that can point to any structure up to
2745 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2746 * information (or be NULL).
2747 *
2748 * Pre-0.97 versions of mount() didn't have a flags word.
2749 * When the flags word was introduced its top half was required
2750 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2751 * Therefore, if this magic number is present, it carries no information
2752 * and must be discarded.
2753 */
2754 long do_mount(const char *dev_name, const char __user *dir_name,
2755 const char *type_page, unsigned long flags, void *data_page)
2756 {
2757 struct path path;
2758 int retval = 0;
2759 int mnt_flags = 0;
2760
2761 /* Discard magic */
2762 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2763 flags &= ~MS_MGC_MSK;
2764
2765 /* Basic sanity checks */
2766 if (data_page)
2767 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2768
2769 /* ... and get the mountpoint */
2770 retval = user_path(dir_name, &path);
2771 if (retval)
2772 return retval;
2773
2774 retval = security_sb_mount(dev_name, &path,
2775 type_page, flags, data_page);
2776 if (!retval && !may_mount())
2777 retval = -EPERM;
2778 if (retval)
2779 goto dput_out;
2780
2781 /* Default to relatime unless overriden */
2782 if (!(flags & MS_NOATIME))
2783 mnt_flags |= MNT_RELATIME;
2784
2785 /* Separate the per-mountpoint flags */
2786 if (flags & MS_NOSUID)
2787 mnt_flags |= MNT_NOSUID;
2788 if (flags & MS_NODEV)
2789 mnt_flags |= MNT_NODEV;
2790 if (flags & MS_NOEXEC)
2791 mnt_flags |= MNT_NOEXEC;
2792 if (flags & MS_NOATIME)
2793 mnt_flags |= MNT_NOATIME;
2794 if (flags & MS_NODIRATIME)
2795 mnt_flags |= MNT_NODIRATIME;
2796 if (flags & MS_STRICTATIME)
2797 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2798 if (flags & MS_RDONLY)
2799 mnt_flags |= MNT_READONLY;
2800
2801 /* The default atime for remount is preservation */
2802 if ((flags & MS_REMOUNT) &&
2803 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2804 MS_STRICTATIME)) == 0)) {
2805 mnt_flags &= ~MNT_ATIME_MASK;
2806 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2807 }
2808
2809 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2810 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2811 MS_STRICTATIME | MS_SUBMOUNT);
2812
2813 if (flags & MS_REMOUNT)
2814 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2815 data_page);
2816 else if (flags & MS_BIND)
2817 retval = do_loopback(&path, dev_name, flags & MS_REC);
2818 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2819 retval = do_change_type(&path, flags);
2820 else if (flags & MS_MOVE)
2821 retval = do_move_mount(&path, dev_name);
2822 else
2823 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2824 dev_name, data_page);
2825 dput_out:
2826 path_put(&path);
2827 return retval;
2828 }
2829
2830 static void free_mnt_ns(struct mnt_namespace *ns)
2831 {
2832 ns_free_inum(&ns->ns);
2833 put_user_ns(ns->user_ns);
2834 kfree(ns);
2835 }
2836
2837 /*
2838 * Assign a sequence number so we can detect when we attempt to bind
2839 * mount a reference to an older mount namespace into the current
2840 * mount namespace, preventing reference counting loops. A 64bit
2841 * number incrementing at 10Ghz will take 12,427 years to wrap which
2842 * is effectively never, so we can ignore the possibility.
2843 */
2844 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2845
2846 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2847 {
2848 struct mnt_namespace *new_ns;
2849 int ret;
2850
2851 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2852 if (!new_ns)
2853 return ERR_PTR(-ENOMEM);
2854 ret = ns_alloc_inum(&new_ns->ns);
2855 if (ret) {
2856 kfree(new_ns);
2857 return ERR_PTR(ret);
2858 }
2859 new_ns->ns.ops = &mntns_operations;
2860 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2861 atomic_set(&new_ns->count, 1);
2862 new_ns->root = NULL;
2863 INIT_LIST_HEAD(&new_ns->list);
2864 init_waitqueue_head(&new_ns->poll);
2865 new_ns->event = 0;
2866 new_ns->user_ns = get_user_ns(user_ns);
2867 new_ns->mounts = 0;
2868 new_ns->pending_mounts = 0;
2869 return new_ns;
2870 }
2871
2872 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2873 struct user_namespace *user_ns, struct fs_struct *new_fs)
2874 {
2875 struct mnt_namespace *new_ns;
2876 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2877 struct mount *p, *q;
2878 struct mount *old;
2879 struct mount *new;
2880 int copy_flags;
2881
2882 BUG_ON(!ns);
2883
2884 if (likely(!(flags & CLONE_NEWNS))) {
2885 get_mnt_ns(ns);
2886 return ns;
2887 }
2888
2889 old = ns->root;
2890
2891 new_ns = alloc_mnt_ns(user_ns);
2892 if (IS_ERR(new_ns))
2893 return new_ns;
2894
2895 namespace_lock();
2896 /* First pass: copy the tree topology */
2897 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2898 if (user_ns != ns->user_ns)
2899 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2900 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2901 if (IS_ERR(new)) {
2902 namespace_unlock();
2903 free_mnt_ns(new_ns);
2904 return ERR_CAST(new);
2905 }
2906 new_ns->root = new;
2907 list_add_tail(&new_ns->list, &new->mnt_list);
2908
2909 /*
2910 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2911 * as belonging to new namespace. We have already acquired a private
2912 * fs_struct, so tsk->fs->lock is not needed.
2913 */
2914 p = old;
2915 q = new;
2916 while (p) {
2917 q->mnt_ns = new_ns;
2918 new_ns->mounts++;
2919 if (new_fs) {
2920 if (&p->mnt == new_fs->root.mnt) {
2921 new_fs->root.mnt = mntget(&q->mnt);
2922 rootmnt = &p->mnt;
2923 }
2924 if (&p->mnt == new_fs->pwd.mnt) {
2925 new_fs->pwd.mnt = mntget(&q->mnt);
2926 pwdmnt = &p->mnt;
2927 }
2928 }
2929 p = next_mnt(p, old);
2930 q = next_mnt(q, new);
2931 if (!q)
2932 break;
2933 while (p->mnt.mnt_root != q->mnt.mnt_root)
2934 p = next_mnt(p, old);
2935 }
2936 namespace_unlock();
2937
2938 if (rootmnt)
2939 mntput(rootmnt);
2940 if (pwdmnt)
2941 mntput(pwdmnt);
2942
2943 return new_ns;
2944 }
2945
2946 /**
2947 * create_mnt_ns - creates a private namespace and adds a root filesystem
2948 * @mnt: pointer to the new root filesystem mountpoint
2949 */
2950 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2951 {
2952 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2953 if (!IS_ERR(new_ns)) {
2954 struct mount *mnt = real_mount(m);
2955 mnt->mnt_ns = new_ns;
2956 new_ns->root = mnt;
2957 new_ns->mounts++;
2958 list_add(&mnt->mnt_list, &new_ns->list);
2959 } else {
2960 mntput(m);
2961 }
2962 return new_ns;
2963 }
2964
2965 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2966 {
2967 struct mnt_namespace *ns;
2968 struct super_block *s;
2969 struct path path;
2970 int err;
2971
2972 ns = create_mnt_ns(mnt);
2973 if (IS_ERR(ns))
2974 return ERR_CAST(ns);
2975
2976 err = vfs_path_lookup(mnt->mnt_root, mnt,
2977 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2978
2979 put_mnt_ns(ns);
2980
2981 if (err)
2982 return ERR_PTR(err);
2983
2984 /* trade a vfsmount reference for active sb one */
2985 s = path.mnt->mnt_sb;
2986 atomic_inc(&s->s_active);
2987 mntput(path.mnt);
2988 /* lock the sucker */
2989 down_write(&s->s_umount);
2990 /* ... and return the root of (sub)tree on it */
2991 return path.dentry;
2992 }
2993 EXPORT_SYMBOL(mount_subtree);
2994
2995 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2996 char __user *, type, unsigned long, flags, void __user *, data)
2997 {
2998 int ret;
2999 char *kernel_type;
3000 char *kernel_dev;
3001 unsigned long data_page;
3002
3003 kernel_type = copy_mount_string(type);
3004 ret = PTR_ERR(kernel_type);
3005 if (IS_ERR(kernel_type))
3006 goto out_type;
3007
3008 kernel_dev = copy_mount_string(dev_name);
3009 ret = PTR_ERR(kernel_dev);
3010 if (IS_ERR(kernel_dev))
3011 goto out_dev;
3012
3013 ret = copy_mount_options(data, &data_page);
3014 if (ret < 0)
3015 goto out_data;
3016
3017 ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
3018 (void *) data_page);
3019
3020 free_page(data_page);
3021 out_data:
3022 kfree(kernel_dev);
3023 out_dev:
3024 kfree(kernel_type);
3025 out_type:
3026 return ret;
3027 }
3028
3029 /*
3030 * Return true if path is reachable from root
3031 *
3032 * namespace_sem or mount_lock is held
3033 */
3034 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3035 const struct path *root)
3036 {
3037 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3038 dentry = mnt->mnt_mountpoint;
3039 mnt = mnt->mnt_parent;
3040 }
3041 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3042 }
3043
3044 int path_is_under(struct path *path1, struct path *path2)
3045 {
3046 int res;
3047 read_seqlock_excl(&mount_lock);
3048 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3049 read_sequnlock_excl(&mount_lock);
3050 return res;
3051 }
3052 EXPORT_SYMBOL(path_is_under);
3053
3054 /*
3055 * pivot_root Semantics:
3056 * Moves the root file system of the current process to the directory put_old,
3057 * makes new_root as the new root file system of the current process, and sets
3058 * root/cwd of all processes which had them on the current root to new_root.
3059 *
3060 * Restrictions:
3061 * The new_root and put_old must be directories, and must not be on the
3062 * same file system as the current process root. The put_old must be
3063 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3064 * pointed to by put_old must yield the same directory as new_root. No other
3065 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3066 *
3067 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3068 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3069 * in this situation.
3070 *
3071 * Notes:
3072 * - we don't move root/cwd if they are not at the root (reason: if something
3073 * cared enough to change them, it's probably wrong to force them elsewhere)
3074 * - it's okay to pick a root that isn't the root of a file system, e.g.
3075 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3076 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3077 * first.
3078 */
3079 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3080 const char __user *, put_old)
3081 {
3082 struct path new, old, parent_path, root_parent, root;
3083 struct mount *new_mnt, *root_mnt, *old_mnt;
3084 struct mountpoint *old_mp, *root_mp;
3085 int error;
3086
3087 if (!may_mount())
3088 return -EPERM;
3089
3090 error = user_path_dir(new_root, &new);
3091 if (error)
3092 goto out0;
3093
3094 error = user_path_dir(put_old, &old);
3095 if (error)
3096 goto out1;
3097
3098 error = security_sb_pivotroot(&old, &new);
3099 if (error)
3100 goto out2;
3101
3102 get_fs_root(current->fs, &root);
3103 old_mp = lock_mount(&old);
3104 error = PTR_ERR(old_mp);
3105 if (IS_ERR(old_mp))
3106 goto out3;
3107
3108 error = -EINVAL;
3109 new_mnt = real_mount(new.mnt);
3110 root_mnt = real_mount(root.mnt);
3111 old_mnt = real_mount(old.mnt);
3112 if (IS_MNT_SHARED(old_mnt) ||
3113 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3114 IS_MNT_SHARED(root_mnt->mnt_parent))
3115 goto out4;
3116 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3117 goto out4;
3118 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3119 goto out4;
3120 error = -ENOENT;
3121 if (d_unlinked(new.dentry))
3122 goto out4;
3123 error = -EBUSY;
3124 if (new_mnt == root_mnt || old_mnt == root_mnt)
3125 goto out4; /* loop, on the same file system */
3126 error = -EINVAL;
3127 if (root.mnt->mnt_root != root.dentry)
3128 goto out4; /* not a mountpoint */
3129 if (!mnt_has_parent(root_mnt))
3130 goto out4; /* not attached */
3131 root_mp = root_mnt->mnt_mp;
3132 if (new.mnt->mnt_root != new.dentry)
3133 goto out4; /* not a mountpoint */
3134 if (!mnt_has_parent(new_mnt))
3135 goto out4; /* not attached */
3136 /* make sure we can reach put_old from new_root */
3137 if (!is_path_reachable(old_mnt, old.dentry, &new))
3138 goto out4;
3139 /* make certain new is below the root */
3140 if (!is_path_reachable(new_mnt, new.dentry, &root))
3141 goto out4;
3142 root_mp->m_count++; /* pin it so it won't go away */
3143 lock_mount_hash();
3144 detach_mnt(new_mnt, &parent_path);
3145 detach_mnt(root_mnt, &root_parent);
3146 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3147 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3148 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3149 }
3150 /* mount old root on put_old */
3151 attach_mnt(root_mnt, old_mnt, old_mp);
3152 /* mount new_root on / */
3153 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3154 touch_mnt_namespace(current->nsproxy->mnt_ns);
3155 /* A moved mount should not expire automatically */
3156 list_del_init(&new_mnt->mnt_expire);
3157 put_mountpoint(root_mp);
3158 unlock_mount_hash();
3159 chroot_fs_refs(&root, &new);
3160 error = 0;
3161 out4:
3162 unlock_mount(old_mp);
3163 if (!error) {
3164 path_put(&root_parent);
3165 path_put(&parent_path);
3166 }
3167 out3:
3168 path_put(&root);
3169 out2:
3170 path_put(&old);
3171 out1:
3172 path_put(&new);
3173 out0:
3174 return error;
3175 }
3176
3177 static void __init init_mount_tree(void)
3178 {
3179 struct vfsmount *mnt;
3180 struct mnt_namespace *ns;
3181 struct path root;
3182 struct file_system_type *type;
3183
3184 type = get_fs_type("rootfs");
3185 if (!type)
3186 panic("Can't find rootfs type");
3187 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3188 put_filesystem(type);
3189 if (IS_ERR(mnt))
3190 panic("Can't create rootfs");
3191
3192 ns = create_mnt_ns(mnt);
3193 if (IS_ERR(ns))
3194 panic("Can't allocate initial namespace");
3195
3196 init_task.nsproxy->mnt_ns = ns;
3197 get_mnt_ns(ns);
3198
3199 root.mnt = mnt;
3200 root.dentry = mnt->mnt_root;
3201 mnt->mnt_flags |= MNT_LOCKED;
3202
3203 set_fs_pwd(current->fs, &root);
3204 set_fs_root(current->fs, &root);
3205 }
3206
3207 void __init mnt_init(void)
3208 {
3209 unsigned u;
3210 int err;
3211
3212 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3213 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3214
3215 mount_hashtable = alloc_large_system_hash("Mount-cache",
3216 sizeof(struct hlist_head),
3217 mhash_entries, 19,
3218 0,
3219 &m_hash_shift, &m_hash_mask, 0, 0);
3220 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3221 sizeof(struct hlist_head),
3222 mphash_entries, 19,
3223 0,
3224 &mp_hash_shift, &mp_hash_mask, 0, 0);
3225
3226 if (!mount_hashtable || !mountpoint_hashtable)
3227 panic("Failed to allocate mount hash table\n");
3228
3229 for (u = 0; u <= m_hash_mask; u++)
3230 INIT_HLIST_HEAD(&mount_hashtable[u]);
3231 for (u = 0; u <= mp_hash_mask; u++)
3232 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3233
3234 kernfs_init();
3235
3236 err = sysfs_init();
3237 if (err)
3238 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3239 __func__, err);
3240 fs_kobj = kobject_create_and_add("fs", NULL);
3241 if (!fs_kobj)
3242 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3243 init_rootfs();
3244 init_mount_tree();
3245 }
3246
3247 void put_mnt_ns(struct mnt_namespace *ns)
3248 {
3249 if (!atomic_dec_and_test(&ns->count))
3250 return;
3251 drop_collected_mounts(&ns->root->mnt);
3252 free_mnt_ns(ns);
3253 }
3254
3255 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3256 {
3257 struct vfsmount *mnt;
3258 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3259 if (!IS_ERR(mnt)) {
3260 /*
3261 * it is a longterm mount, don't release mnt until
3262 * we unmount before file sys is unregistered
3263 */
3264 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3265 }
3266 return mnt;
3267 }
3268 EXPORT_SYMBOL_GPL(kern_mount_data);
3269
3270 void kern_unmount(struct vfsmount *mnt)
3271 {
3272 /* release long term mount so mount point can be released */
3273 if (!IS_ERR_OR_NULL(mnt)) {
3274 real_mount(mnt)->mnt_ns = NULL;
3275 synchronize_rcu(); /* yecchhh... */
3276 mntput(mnt);
3277 }
3278 }
3279 EXPORT_SYMBOL(kern_unmount);
3280
3281 bool our_mnt(struct vfsmount *mnt)
3282 {
3283 return check_mnt(real_mount(mnt));
3284 }
3285
3286 bool current_chrooted(void)
3287 {
3288 /* Does the current process have a non-standard root */
3289 struct path ns_root;
3290 struct path fs_root;
3291 bool chrooted;
3292
3293 /* Find the namespace root */
3294 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3295 ns_root.dentry = ns_root.mnt->mnt_root;
3296 path_get(&ns_root);
3297 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3298 ;
3299
3300 get_fs_root(current->fs, &fs_root);
3301
3302 chrooted = !path_equal(&fs_root, &ns_root);
3303
3304 path_put(&fs_root);
3305 path_put(&ns_root);
3306
3307 return chrooted;
3308 }
3309
3310 static bool fs_fully_visible(struct file_system_type *type, int *new_mnt_flags)
3311 {
3312 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3313 int new_flags = *new_mnt_flags;
3314 struct mount *mnt;
3315 bool visible = false;
3316
3317 if (unlikely(!ns))
3318 return false;
3319
3320 down_read(&namespace_sem);
3321 list_for_each_entry(mnt, &ns->list, mnt_list) {
3322 struct mount *child;
3323 int mnt_flags;
3324
3325 if (mnt->mnt.mnt_sb->s_type != type)
3326 continue;
3327
3328 /* This mount is not fully visible if it's root directory
3329 * is not the root directory of the filesystem.
3330 */
3331 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3332 continue;
3333
3334 /* Read the mount flags and filter out flags that
3335 * may safely be ignored.
3336 */
3337 mnt_flags = mnt->mnt.mnt_flags;
3338 if (mnt->mnt.mnt_sb->s_iflags & SB_I_NOEXEC)
3339 mnt_flags &= ~(MNT_LOCK_NOSUID | MNT_LOCK_NOEXEC);
3340
3341 /* Don't miss readonly hidden in the superblock flags */
3342 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3343 mnt_flags |= MNT_LOCK_READONLY;
3344
3345 /* Verify the mount flags are equal to or more permissive
3346 * than the proposed new mount.
3347 */
3348 if ((mnt_flags & MNT_LOCK_READONLY) &&
3349 !(new_flags & MNT_READONLY))
3350 continue;
3351 if ((mnt_flags & MNT_LOCK_NODEV) &&
3352 !(new_flags & MNT_NODEV))
3353 continue;
3354 if ((mnt_flags & MNT_LOCK_NOSUID) &&
3355 !(new_flags & MNT_NOSUID))
3356 continue;
3357 if ((mnt_flags & MNT_LOCK_NOEXEC) &&
3358 !(new_flags & MNT_NOEXEC))
3359 continue;
3360 if ((mnt_flags & MNT_LOCK_ATIME) &&
3361 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3362 continue;
3363
3364 /* This mount is not fully visible if there are any
3365 * locked child mounts that cover anything except for
3366 * empty directories.
3367 */
3368 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3369 struct inode *inode = child->mnt_mountpoint->d_inode;
3370 /* Only worry about locked mounts */
3371 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3372 continue;
3373 /* Is the directory permanetly empty? */
3374 if (!is_empty_dir_inode(inode))
3375 goto next;
3376 }
3377 /* Preserve the locked attributes */
3378 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3379 MNT_LOCK_NODEV | \
3380 MNT_LOCK_NOSUID | \
3381 MNT_LOCK_NOEXEC | \
3382 MNT_LOCK_ATIME);
3383 visible = true;
3384 goto found;
3385 next: ;
3386 }
3387 found:
3388 up_read(&namespace_sem);
3389 return visible;
3390 }
3391
3392 bool mnt_may_suid(struct vfsmount *mnt)
3393 {
3394 /*
3395 * Foreign mounts (accessed via fchdir or through /proc
3396 * symlinks) are always treated as if they are nosuid. This
3397 * prevents namespaces from trusting potentially unsafe
3398 * suid/sgid bits, file caps, or security labels that originate
3399 * in other namespaces.
3400 */
3401 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3402 current_in_userns(mnt->mnt_sb->s_user_ns);
3403 }
3404
3405 static struct ns_common *mntns_get(struct task_struct *task)
3406 {
3407 struct ns_common *ns = NULL;
3408 struct nsproxy *nsproxy;
3409
3410 task_lock(task);
3411 nsproxy = task->nsproxy;
3412 if (nsproxy) {
3413 ns = &nsproxy->mnt_ns->ns;
3414 get_mnt_ns(to_mnt_ns(ns));
3415 }
3416 task_unlock(task);
3417
3418 return ns;
3419 }
3420
3421 static void mntns_put(struct ns_common *ns)
3422 {
3423 put_mnt_ns(to_mnt_ns(ns));
3424 }
3425
3426 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3427 {
3428 struct fs_struct *fs = current->fs;
3429 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3430 struct path root;
3431
3432 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3433 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3434 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3435 return -EPERM;
3436
3437 if (fs->users != 1)
3438 return -EINVAL;
3439
3440 get_mnt_ns(mnt_ns);
3441 put_mnt_ns(nsproxy->mnt_ns);
3442 nsproxy->mnt_ns = mnt_ns;
3443
3444 /* Find the root */
3445 root.mnt = &mnt_ns->root->mnt;
3446 root.dentry = mnt_ns->root->mnt.mnt_root;
3447 path_get(&root);
3448 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3449 ;
3450
3451 /* Update the pwd and root */
3452 set_fs_pwd(fs, &root);
3453 set_fs_root(fs, &root);
3454
3455 path_put(&root);
3456 return 0;
3457 }
3458
3459 const struct proc_ns_operations mntns_operations = {
3460 .name = "mnt",
3461 .type = CLONE_NEWNS,
3462 .get = mntns_get,
3463 .put = mntns_put,
3464 .install = mntns_install,
3465 };