]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/namespace.c
fix EBUSY on umount() from MNT_SHRINKABLE
[mirror_ubuntu-artful-kernel.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include "pnode.h"
27 #include "internal.h"
28
29 static unsigned int m_hash_mask __read_mostly;
30 static unsigned int m_hash_shift __read_mostly;
31 static unsigned int mp_hash_mask __read_mostly;
32 static unsigned int mp_hash_shift __read_mostly;
33
34 static __initdata unsigned long mhash_entries;
35 static int __init set_mhash_entries(char *str)
36 {
37 if (!str)
38 return 0;
39 mhash_entries = simple_strtoul(str, &str, 0);
40 return 1;
41 }
42 __setup("mhash_entries=", set_mhash_entries);
43
44 static __initdata unsigned long mphash_entries;
45 static int __init set_mphash_entries(char *str)
46 {
47 if (!str)
48 return 0;
49 mphash_entries = simple_strtoul(str, &str, 0);
50 return 1;
51 }
52 __setup("mphash_entries=", set_mphash_entries);
53
54 static u64 event;
55 static DEFINE_IDA(mnt_id_ida);
56 static DEFINE_IDA(mnt_group_ida);
57 static DEFINE_SPINLOCK(mnt_id_lock);
58 static int mnt_id_start = 0;
59 static int mnt_group_start = 1;
60
61 static struct hlist_head *mount_hashtable __read_mostly;
62 static struct hlist_head *mountpoint_hashtable __read_mostly;
63 static struct kmem_cache *mnt_cache __read_mostly;
64 static DECLARE_RWSEM(namespace_sem);
65
66 /* /sys/fs */
67 struct kobject *fs_kobj;
68 EXPORT_SYMBOL_GPL(fs_kobj);
69
70 /*
71 * vfsmount lock may be taken for read to prevent changes to the
72 * vfsmount hash, ie. during mountpoint lookups or walking back
73 * up the tree.
74 *
75 * It should be taken for write in all cases where the vfsmount
76 * tree or hash is modified or when a vfsmount structure is modified.
77 */
78 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
79
80 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
81 {
82 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
83 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
84 tmp = tmp + (tmp >> m_hash_shift);
85 return &mount_hashtable[tmp & m_hash_mask];
86 }
87
88 static inline struct hlist_head *mp_hash(struct dentry *dentry)
89 {
90 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
91 tmp = tmp + (tmp >> mp_hash_shift);
92 return &mountpoint_hashtable[tmp & mp_hash_mask];
93 }
94
95 /*
96 * allocation is serialized by namespace_sem, but we need the spinlock to
97 * serialize with freeing.
98 */
99 static int mnt_alloc_id(struct mount *mnt)
100 {
101 int res;
102
103 retry:
104 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
105 spin_lock(&mnt_id_lock);
106 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
107 if (!res)
108 mnt_id_start = mnt->mnt_id + 1;
109 spin_unlock(&mnt_id_lock);
110 if (res == -EAGAIN)
111 goto retry;
112
113 return res;
114 }
115
116 static void mnt_free_id(struct mount *mnt)
117 {
118 int id = mnt->mnt_id;
119 spin_lock(&mnt_id_lock);
120 ida_remove(&mnt_id_ida, id);
121 if (mnt_id_start > id)
122 mnt_id_start = id;
123 spin_unlock(&mnt_id_lock);
124 }
125
126 /*
127 * Allocate a new peer group ID
128 *
129 * mnt_group_ida is protected by namespace_sem
130 */
131 static int mnt_alloc_group_id(struct mount *mnt)
132 {
133 int res;
134
135 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
136 return -ENOMEM;
137
138 res = ida_get_new_above(&mnt_group_ida,
139 mnt_group_start,
140 &mnt->mnt_group_id);
141 if (!res)
142 mnt_group_start = mnt->mnt_group_id + 1;
143
144 return res;
145 }
146
147 /*
148 * Release a peer group ID
149 */
150 void mnt_release_group_id(struct mount *mnt)
151 {
152 int id = mnt->mnt_group_id;
153 ida_remove(&mnt_group_ida, id);
154 if (mnt_group_start > id)
155 mnt_group_start = id;
156 mnt->mnt_group_id = 0;
157 }
158
159 /*
160 * vfsmount lock must be held for read
161 */
162 static inline void mnt_add_count(struct mount *mnt, int n)
163 {
164 #ifdef CONFIG_SMP
165 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
166 #else
167 preempt_disable();
168 mnt->mnt_count += n;
169 preempt_enable();
170 #endif
171 }
172
173 /*
174 * vfsmount lock must be held for write
175 */
176 unsigned int mnt_get_count(struct mount *mnt)
177 {
178 #ifdef CONFIG_SMP
179 unsigned int count = 0;
180 int cpu;
181
182 for_each_possible_cpu(cpu) {
183 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
184 }
185
186 return count;
187 #else
188 return mnt->mnt_count;
189 #endif
190 }
191
192 static struct mount *alloc_vfsmnt(const char *name)
193 {
194 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
195 if (mnt) {
196 int err;
197
198 err = mnt_alloc_id(mnt);
199 if (err)
200 goto out_free_cache;
201
202 if (name) {
203 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
204 if (!mnt->mnt_devname)
205 goto out_free_id;
206 }
207
208 #ifdef CONFIG_SMP
209 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
210 if (!mnt->mnt_pcp)
211 goto out_free_devname;
212
213 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
214 #else
215 mnt->mnt_count = 1;
216 mnt->mnt_writers = 0;
217 #endif
218
219 INIT_HLIST_NODE(&mnt->mnt_hash);
220 INIT_LIST_HEAD(&mnt->mnt_child);
221 INIT_LIST_HEAD(&mnt->mnt_mounts);
222 INIT_LIST_HEAD(&mnt->mnt_list);
223 INIT_LIST_HEAD(&mnt->mnt_expire);
224 INIT_LIST_HEAD(&mnt->mnt_share);
225 INIT_LIST_HEAD(&mnt->mnt_slave_list);
226 INIT_LIST_HEAD(&mnt->mnt_slave);
227 #ifdef CONFIG_FSNOTIFY
228 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
229 #endif
230 }
231 return mnt;
232
233 #ifdef CONFIG_SMP
234 out_free_devname:
235 kfree(mnt->mnt_devname);
236 #endif
237 out_free_id:
238 mnt_free_id(mnt);
239 out_free_cache:
240 kmem_cache_free(mnt_cache, mnt);
241 return NULL;
242 }
243
244 /*
245 * Most r/o checks on a fs are for operations that take
246 * discrete amounts of time, like a write() or unlink().
247 * We must keep track of when those operations start
248 * (for permission checks) and when they end, so that
249 * we can determine when writes are able to occur to
250 * a filesystem.
251 */
252 /*
253 * __mnt_is_readonly: check whether a mount is read-only
254 * @mnt: the mount to check for its write status
255 *
256 * This shouldn't be used directly ouside of the VFS.
257 * It does not guarantee that the filesystem will stay
258 * r/w, just that it is right *now*. This can not and
259 * should not be used in place of IS_RDONLY(inode).
260 * mnt_want/drop_write() will _keep_ the filesystem
261 * r/w.
262 */
263 int __mnt_is_readonly(struct vfsmount *mnt)
264 {
265 if (mnt->mnt_flags & MNT_READONLY)
266 return 1;
267 if (mnt->mnt_sb->s_flags & MS_RDONLY)
268 return 1;
269 return 0;
270 }
271 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
272
273 static inline void mnt_inc_writers(struct mount *mnt)
274 {
275 #ifdef CONFIG_SMP
276 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
277 #else
278 mnt->mnt_writers++;
279 #endif
280 }
281
282 static inline void mnt_dec_writers(struct mount *mnt)
283 {
284 #ifdef CONFIG_SMP
285 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
286 #else
287 mnt->mnt_writers--;
288 #endif
289 }
290
291 static unsigned int mnt_get_writers(struct mount *mnt)
292 {
293 #ifdef CONFIG_SMP
294 unsigned int count = 0;
295 int cpu;
296
297 for_each_possible_cpu(cpu) {
298 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
299 }
300
301 return count;
302 #else
303 return mnt->mnt_writers;
304 #endif
305 }
306
307 static int mnt_is_readonly(struct vfsmount *mnt)
308 {
309 if (mnt->mnt_sb->s_readonly_remount)
310 return 1;
311 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
312 smp_rmb();
313 return __mnt_is_readonly(mnt);
314 }
315
316 /*
317 * Most r/o & frozen checks on a fs are for operations that take discrete
318 * amounts of time, like a write() or unlink(). We must keep track of when
319 * those operations start (for permission checks) and when they end, so that we
320 * can determine when writes are able to occur to a filesystem.
321 */
322 /**
323 * __mnt_want_write - get write access to a mount without freeze protection
324 * @m: the mount on which to take a write
325 *
326 * This tells the low-level filesystem that a write is about to be performed to
327 * it, and makes sure that writes are allowed (mnt it read-write) before
328 * returning success. This operation does not protect against filesystem being
329 * frozen. When the write operation is finished, __mnt_drop_write() must be
330 * called. This is effectively a refcount.
331 */
332 int __mnt_want_write(struct vfsmount *m)
333 {
334 struct mount *mnt = real_mount(m);
335 int ret = 0;
336
337 preempt_disable();
338 mnt_inc_writers(mnt);
339 /*
340 * The store to mnt_inc_writers must be visible before we pass
341 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
342 * incremented count after it has set MNT_WRITE_HOLD.
343 */
344 smp_mb();
345 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
346 cpu_relax();
347 /*
348 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
349 * be set to match its requirements. So we must not load that until
350 * MNT_WRITE_HOLD is cleared.
351 */
352 smp_rmb();
353 if (mnt_is_readonly(m)) {
354 mnt_dec_writers(mnt);
355 ret = -EROFS;
356 }
357 preempt_enable();
358
359 return ret;
360 }
361
362 /**
363 * mnt_want_write - get write access to a mount
364 * @m: the mount on which to take a write
365 *
366 * This tells the low-level filesystem that a write is about to be performed to
367 * it, and makes sure that writes are allowed (mount is read-write, filesystem
368 * is not frozen) before returning success. When the write operation is
369 * finished, mnt_drop_write() must be called. This is effectively a refcount.
370 */
371 int mnt_want_write(struct vfsmount *m)
372 {
373 int ret;
374
375 sb_start_write(m->mnt_sb);
376 ret = __mnt_want_write(m);
377 if (ret)
378 sb_end_write(m->mnt_sb);
379 return ret;
380 }
381 EXPORT_SYMBOL_GPL(mnt_want_write);
382
383 /**
384 * mnt_clone_write - get write access to a mount
385 * @mnt: the mount on which to take a write
386 *
387 * This is effectively like mnt_want_write, except
388 * it must only be used to take an extra write reference
389 * on a mountpoint that we already know has a write reference
390 * on it. This allows some optimisation.
391 *
392 * After finished, mnt_drop_write must be called as usual to
393 * drop the reference.
394 */
395 int mnt_clone_write(struct vfsmount *mnt)
396 {
397 /* superblock may be r/o */
398 if (__mnt_is_readonly(mnt))
399 return -EROFS;
400 preempt_disable();
401 mnt_inc_writers(real_mount(mnt));
402 preempt_enable();
403 return 0;
404 }
405 EXPORT_SYMBOL_GPL(mnt_clone_write);
406
407 /**
408 * __mnt_want_write_file - get write access to a file's mount
409 * @file: the file who's mount on which to take a write
410 *
411 * This is like __mnt_want_write, but it takes a file and can
412 * do some optimisations if the file is open for write already
413 */
414 int __mnt_want_write_file(struct file *file)
415 {
416 if (!(file->f_mode & FMODE_WRITER))
417 return __mnt_want_write(file->f_path.mnt);
418 else
419 return mnt_clone_write(file->f_path.mnt);
420 }
421
422 /**
423 * mnt_want_write_file - get write access to a file's mount
424 * @file: the file who's mount on which to take a write
425 *
426 * This is like mnt_want_write, but it takes a file and can
427 * do some optimisations if the file is open for write already
428 */
429 int mnt_want_write_file(struct file *file)
430 {
431 int ret;
432
433 sb_start_write(file->f_path.mnt->mnt_sb);
434 ret = __mnt_want_write_file(file);
435 if (ret)
436 sb_end_write(file->f_path.mnt->mnt_sb);
437 return ret;
438 }
439 EXPORT_SYMBOL_GPL(mnt_want_write_file);
440
441 /**
442 * __mnt_drop_write - give up write access to a mount
443 * @mnt: the mount on which to give up write access
444 *
445 * Tells the low-level filesystem that we are done
446 * performing writes to it. Must be matched with
447 * __mnt_want_write() call above.
448 */
449 void __mnt_drop_write(struct vfsmount *mnt)
450 {
451 preempt_disable();
452 mnt_dec_writers(real_mount(mnt));
453 preempt_enable();
454 }
455
456 /**
457 * mnt_drop_write - give up write access to a mount
458 * @mnt: the mount on which to give up write access
459 *
460 * Tells the low-level filesystem that we are done performing writes to it and
461 * also allows filesystem to be frozen again. Must be matched with
462 * mnt_want_write() call above.
463 */
464 void mnt_drop_write(struct vfsmount *mnt)
465 {
466 __mnt_drop_write(mnt);
467 sb_end_write(mnt->mnt_sb);
468 }
469 EXPORT_SYMBOL_GPL(mnt_drop_write);
470
471 void __mnt_drop_write_file(struct file *file)
472 {
473 __mnt_drop_write(file->f_path.mnt);
474 }
475
476 void mnt_drop_write_file(struct file *file)
477 {
478 mnt_drop_write(file->f_path.mnt);
479 }
480 EXPORT_SYMBOL(mnt_drop_write_file);
481
482 static int mnt_make_readonly(struct mount *mnt)
483 {
484 int ret = 0;
485
486 lock_mount_hash();
487 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
488 /*
489 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
490 * should be visible before we do.
491 */
492 smp_mb();
493
494 /*
495 * With writers on hold, if this value is zero, then there are
496 * definitely no active writers (although held writers may subsequently
497 * increment the count, they'll have to wait, and decrement it after
498 * seeing MNT_READONLY).
499 *
500 * It is OK to have counter incremented on one CPU and decremented on
501 * another: the sum will add up correctly. The danger would be when we
502 * sum up each counter, if we read a counter before it is incremented,
503 * but then read another CPU's count which it has been subsequently
504 * decremented from -- we would see more decrements than we should.
505 * MNT_WRITE_HOLD protects against this scenario, because
506 * mnt_want_write first increments count, then smp_mb, then spins on
507 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
508 * we're counting up here.
509 */
510 if (mnt_get_writers(mnt) > 0)
511 ret = -EBUSY;
512 else
513 mnt->mnt.mnt_flags |= MNT_READONLY;
514 /*
515 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
516 * that become unheld will see MNT_READONLY.
517 */
518 smp_wmb();
519 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
520 unlock_mount_hash();
521 return ret;
522 }
523
524 static void __mnt_unmake_readonly(struct mount *mnt)
525 {
526 lock_mount_hash();
527 mnt->mnt.mnt_flags &= ~MNT_READONLY;
528 unlock_mount_hash();
529 }
530
531 int sb_prepare_remount_readonly(struct super_block *sb)
532 {
533 struct mount *mnt;
534 int err = 0;
535
536 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
537 if (atomic_long_read(&sb->s_remove_count))
538 return -EBUSY;
539
540 lock_mount_hash();
541 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
542 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
543 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
544 smp_mb();
545 if (mnt_get_writers(mnt) > 0) {
546 err = -EBUSY;
547 break;
548 }
549 }
550 }
551 if (!err && atomic_long_read(&sb->s_remove_count))
552 err = -EBUSY;
553
554 if (!err) {
555 sb->s_readonly_remount = 1;
556 smp_wmb();
557 }
558 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
559 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
560 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
561 }
562 unlock_mount_hash();
563
564 return err;
565 }
566
567 static void free_vfsmnt(struct mount *mnt)
568 {
569 kfree(mnt->mnt_devname);
570 #ifdef CONFIG_SMP
571 free_percpu(mnt->mnt_pcp);
572 #endif
573 kmem_cache_free(mnt_cache, mnt);
574 }
575
576 static void delayed_free_vfsmnt(struct rcu_head *head)
577 {
578 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
579 }
580
581 /* call under rcu_read_lock */
582 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
583 {
584 struct mount *mnt;
585 if (read_seqretry(&mount_lock, seq))
586 return false;
587 if (bastard == NULL)
588 return true;
589 mnt = real_mount(bastard);
590 mnt_add_count(mnt, 1);
591 if (likely(!read_seqretry(&mount_lock, seq)))
592 return true;
593 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
594 mnt_add_count(mnt, -1);
595 return false;
596 }
597 rcu_read_unlock();
598 mntput(bastard);
599 rcu_read_lock();
600 return false;
601 }
602
603 /*
604 * find the first mount at @dentry on vfsmount @mnt.
605 * call under rcu_read_lock()
606 */
607 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
608 {
609 struct hlist_head *head = m_hash(mnt, dentry);
610 struct mount *p;
611
612 hlist_for_each_entry_rcu(p, head, mnt_hash)
613 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
614 return p;
615 return NULL;
616 }
617
618 /*
619 * find the last mount at @dentry on vfsmount @mnt.
620 * mount_lock must be held.
621 */
622 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
623 {
624 struct mount *p, *res;
625 res = p = __lookup_mnt(mnt, dentry);
626 if (!p)
627 goto out;
628 hlist_for_each_entry_continue(p, mnt_hash) {
629 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
630 break;
631 res = p;
632 }
633 out:
634 return res;
635 }
636
637 /*
638 * lookup_mnt - Return the first child mount mounted at path
639 *
640 * "First" means first mounted chronologically. If you create the
641 * following mounts:
642 *
643 * mount /dev/sda1 /mnt
644 * mount /dev/sda2 /mnt
645 * mount /dev/sda3 /mnt
646 *
647 * Then lookup_mnt() on the base /mnt dentry in the root mount will
648 * return successively the root dentry and vfsmount of /dev/sda1, then
649 * /dev/sda2, then /dev/sda3, then NULL.
650 *
651 * lookup_mnt takes a reference to the found vfsmount.
652 */
653 struct vfsmount *lookup_mnt(struct path *path)
654 {
655 struct mount *child_mnt;
656 struct vfsmount *m;
657 unsigned seq;
658
659 rcu_read_lock();
660 do {
661 seq = read_seqbegin(&mount_lock);
662 child_mnt = __lookup_mnt(path->mnt, path->dentry);
663 m = child_mnt ? &child_mnt->mnt : NULL;
664 } while (!legitimize_mnt(m, seq));
665 rcu_read_unlock();
666 return m;
667 }
668
669 static struct mountpoint *new_mountpoint(struct dentry *dentry)
670 {
671 struct hlist_head *chain = mp_hash(dentry);
672 struct mountpoint *mp;
673 int ret;
674
675 hlist_for_each_entry(mp, chain, m_hash) {
676 if (mp->m_dentry == dentry) {
677 /* might be worth a WARN_ON() */
678 if (d_unlinked(dentry))
679 return ERR_PTR(-ENOENT);
680 mp->m_count++;
681 return mp;
682 }
683 }
684
685 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
686 if (!mp)
687 return ERR_PTR(-ENOMEM);
688
689 ret = d_set_mounted(dentry);
690 if (ret) {
691 kfree(mp);
692 return ERR_PTR(ret);
693 }
694
695 mp->m_dentry = dentry;
696 mp->m_count = 1;
697 hlist_add_head(&mp->m_hash, chain);
698 return mp;
699 }
700
701 static void put_mountpoint(struct mountpoint *mp)
702 {
703 if (!--mp->m_count) {
704 struct dentry *dentry = mp->m_dentry;
705 spin_lock(&dentry->d_lock);
706 dentry->d_flags &= ~DCACHE_MOUNTED;
707 spin_unlock(&dentry->d_lock);
708 hlist_del(&mp->m_hash);
709 kfree(mp);
710 }
711 }
712
713 static inline int check_mnt(struct mount *mnt)
714 {
715 return mnt->mnt_ns == current->nsproxy->mnt_ns;
716 }
717
718 /*
719 * vfsmount lock must be held for write
720 */
721 static void touch_mnt_namespace(struct mnt_namespace *ns)
722 {
723 if (ns) {
724 ns->event = ++event;
725 wake_up_interruptible(&ns->poll);
726 }
727 }
728
729 /*
730 * vfsmount lock must be held for write
731 */
732 static void __touch_mnt_namespace(struct mnt_namespace *ns)
733 {
734 if (ns && ns->event != event) {
735 ns->event = event;
736 wake_up_interruptible(&ns->poll);
737 }
738 }
739
740 /*
741 * vfsmount lock must be held for write
742 */
743 static void detach_mnt(struct mount *mnt, struct path *old_path)
744 {
745 old_path->dentry = mnt->mnt_mountpoint;
746 old_path->mnt = &mnt->mnt_parent->mnt;
747 mnt->mnt_parent = mnt;
748 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
749 list_del_init(&mnt->mnt_child);
750 hlist_del_init_rcu(&mnt->mnt_hash);
751 put_mountpoint(mnt->mnt_mp);
752 mnt->mnt_mp = NULL;
753 }
754
755 /*
756 * vfsmount lock must be held for write
757 */
758 void mnt_set_mountpoint(struct mount *mnt,
759 struct mountpoint *mp,
760 struct mount *child_mnt)
761 {
762 mp->m_count++;
763 mnt_add_count(mnt, 1); /* essentially, that's mntget */
764 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
765 child_mnt->mnt_parent = mnt;
766 child_mnt->mnt_mp = mp;
767 }
768
769 /*
770 * vfsmount lock must be held for write
771 */
772 static void attach_mnt(struct mount *mnt,
773 struct mount *parent,
774 struct mountpoint *mp)
775 {
776 mnt_set_mountpoint(parent, mp, mnt);
777 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
778 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
779 }
780
781 static void attach_shadowed(struct mount *mnt,
782 struct mount *parent,
783 struct mount *shadows)
784 {
785 if (shadows) {
786 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
787 list_add(&mnt->mnt_child, &shadows->mnt_child);
788 } else {
789 hlist_add_head_rcu(&mnt->mnt_hash,
790 m_hash(&parent->mnt, mnt->mnt_mountpoint));
791 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
792 }
793 }
794
795 /*
796 * vfsmount lock must be held for write
797 */
798 static void commit_tree(struct mount *mnt, struct mount *shadows)
799 {
800 struct mount *parent = mnt->mnt_parent;
801 struct mount *m;
802 LIST_HEAD(head);
803 struct mnt_namespace *n = parent->mnt_ns;
804
805 BUG_ON(parent == mnt);
806
807 list_add_tail(&head, &mnt->mnt_list);
808 list_for_each_entry(m, &head, mnt_list)
809 m->mnt_ns = n;
810
811 list_splice(&head, n->list.prev);
812
813 attach_shadowed(mnt, parent, shadows);
814 touch_mnt_namespace(n);
815 }
816
817 static struct mount *next_mnt(struct mount *p, struct mount *root)
818 {
819 struct list_head *next = p->mnt_mounts.next;
820 if (next == &p->mnt_mounts) {
821 while (1) {
822 if (p == root)
823 return NULL;
824 next = p->mnt_child.next;
825 if (next != &p->mnt_parent->mnt_mounts)
826 break;
827 p = p->mnt_parent;
828 }
829 }
830 return list_entry(next, struct mount, mnt_child);
831 }
832
833 static struct mount *skip_mnt_tree(struct mount *p)
834 {
835 struct list_head *prev = p->mnt_mounts.prev;
836 while (prev != &p->mnt_mounts) {
837 p = list_entry(prev, struct mount, mnt_child);
838 prev = p->mnt_mounts.prev;
839 }
840 return p;
841 }
842
843 struct vfsmount *
844 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
845 {
846 struct mount *mnt;
847 struct dentry *root;
848
849 if (!type)
850 return ERR_PTR(-ENODEV);
851
852 mnt = alloc_vfsmnt(name);
853 if (!mnt)
854 return ERR_PTR(-ENOMEM);
855
856 if (flags & MS_KERNMOUNT)
857 mnt->mnt.mnt_flags = MNT_INTERNAL;
858
859 root = mount_fs(type, flags, name, data);
860 if (IS_ERR(root)) {
861 mnt_free_id(mnt);
862 free_vfsmnt(mnt);
863 return ERR_CAST(root);
864 }
865
866 mnt->mnt.mnt_root = root;
867 mnt->mnt.mnt_sb = root->d_sb;
868 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
869 mnt->mnt_parent = mnt;
870 lock_mount_hash();
871 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
872 unlock_mount_hash();
873 return &mnt->mnt;
874 }
875 EXPORT_SYMBOL_GPL(vfs_kern_mount);
876
877 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
878 int flag)
879 {
880 struct super_block *sb = old->mnt.mnt_sb;
881 struct mount *mnt;
882 int err;
883
884 mnt = alloc_vfsmnt(old->mnt_devname);
885 if (!mnt)
886 return ERR_PTR(-ENOMEM);
887
888 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
889 mnt->mnt_group_id = 0; /* not a peer of original */
890 else
891 mnt->mnt_group_id = old->mnt_group_id;
892
893 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
894 err = mnt_alloc_group_id(mnt);
895 if (err)
896 goto out_free;
897 }
898
899 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
900 /* Don't allow unprivileged users to change mount flags */
901 if (flag & CL_UNPRIVILEGED) {
902 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
903
904 if (mnt->mnt.mnt_flags & MNT_READONLY)
905 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
906
907 if (mnt->mnt.mnt_flags & MNT_NODEV)
908 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
909
910 if (mnt->mnt.mnt_flags & MNT_NOSUID)
911 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
912
913 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
914 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
915 }
916
917 /* Don't allow unprivileged users to reveal what is under a mount */
918 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
919 mnt->mnt.mnt_flags |= MNT_LOCKED;
920
921 atomic_inc(&sb->s_active);
922 mnt->mnt.mnt_sb = sb;
923 mnt->mnt.mnt_root = dget(root);
924 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
925 mnt->mnt_parent = mnt;
926 lock_mount_hash();
927 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
928 unlock_mount_hash();
929
930 if ((flag & CL_SLAVE) ||
931 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
932 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
933 mnt->mnt_master = old;
934 CLEAR_MNT_SHARED(mnt);
935 } else if (!(flag & CL_PRIVATE)) {
936 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
937 list_add(&mnt->mnt_share, &old->mnt_share);
938 if (IS_MNT_SLAVE(old))
939 list_add(&mnt->mnt_slave, &old->mnt_slave);
940 mnt->mnt_master = old->mnt_master;
941 }
942 if (flag & CL_MAKE_SHARED)
943 set_mnt_shared(mnt);
944
945 /* stick the duplicate mount on the same expiry list
946 * as the original if that was on one */
947 if (flag & CL_EXPIRE) {
948 if (!list_empty(&old->mnt_expire))
949 list_add(&mnt->mnt_expire, &old->mnt_expire);
950 }
951
952 return mnt;
953
954 out_free:
955 mnt_free_id(mnt);
956 free_vfsmnt(mnt);
957 return ERR_PTR(err);
958 }
959
960 static void mntput_no_expire(struct mount *mnt)
961 {
962 rcu_read_lock();
963 mnt_add_count(mnt, -1);
964 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
965 rcu_read_unlock();
966 return;
967 }
968 lock_mount_hash();
969 if (mnt_get_count(mnt)) {
970 rcu_read_unlock();
971 unlock_mount_hash();
972 return;
973 }
974 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
975 rcu_read_unlock();
976 unlock_mount_hash();
977 return;
978 }
979 mnt->mnt.mnt_flags |= MNT_DOOMED;
980 rcu_read_unlock();
981
982 list_del(&mnt->mnt_instance);
983 unlock_mount_hash();
984
985 /*
986 * This probably indicates that somebody messed
987 * up a mnt_want/drop_write() pair. If this
988 * happens, the filesystem was probably unable
989 * to make r/w->r/o transitions.
990 */
991 /*
992 * The locking used to deal with mnt_count decrement provides barriers,
993 * so mnt_get_writers() below is safe.
994 */
995 WARN_ON(mnt_get_writers(mnt));
996 if (unlikely(mnt->mnt_pins.first))
997 mnt_pin_kill(mnt);
998 fsnotify_vfsmount_delete(&mnt->mnt);
999 dput(mnt->mnt.mnt_root);
1000 deactivate_super(mnt->mnt.mnt_sb);
1001 mnt_free_id(mnt);
1002 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1003 }
1004
1005 void mntput(struct vfsmount *mnt)
1006 {
1007 if (mnt) {
1008 struct mount *m = real_mount(mnt);
1009 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1010 if (unlikely(m->mnt_expiry_mark))
1011 m->mnt_expiry_mark = 0;
1012 mntput_no_expire(m);
1013 }
1014 }
1015 EXPORT_SYMBOL(mntput);
1016
1017 struct vfsmount *mntget(struct vfsmount *mnt)
1018 {
1019 if (mnt)
1020 mnt_add_count(real_mount(mnt), 1);
1021 return mnt;
1022 }
1023 EXPORT_SYMBOL(mntget);
1024
1025 struct vfsmount *mnt_clone_internal(struct path *path)
1026 {
1027 struct mount *p;
1028 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1029 if (IS_ERR(p))
1030 return ERR_CAST(p);
1031 p->mnt.mnt_flags |= MNT_INTERNAL;
1032 return &p->mnt;
1033 }
1034
1035 static inline void mangle(struct seq_file *m, const char *s)
1036 {
1037 seq_escape(m, s, " \t\n\\");
1038 }
1039
1040 /*
1041 * Simple .show_options callback for filesystems which don't want to
1042 * implement more complex mount option showing.
1043 *
1044 * See also save_mount_options().
1045 */
1046 int generic_show_options(struct seq_file *m, struct dentry *root)
1047 {
1048 const char *options;
1049
1050 rcu_read_lock();
1051 options = rcu_dereference(root->d_sb->s_options);
1052
1053 if (options != NULL && options[0]) {
1054 seq_putc(m, ',');
1055 mangle(m, options);
1056 }
1057 rcu_read_unlock();
1058
1059 return 0;
1060 }
1061 EXPORT_SYMBOL(generic_show_options);
1062
1063 /*
1064 * If filesystem uses generic_show_options(), this function should be
1065 * called from the fill_super() callback.
1066 *
1067 * The .remount_fs callback usually needs to be handled in a special
1068 * way, to make sure, that previous options are not overwritten if the
1069 * remount fails.
1070 *
1071 * Also note, that if the filesystem's .remount_fs function doesn't
1072 * reset all options to their default value, but changes only newly
1073 * given options, then the displayed options will not reflect reality
1074 * any more.
1075 */
1076 void save_mount_options(struct super_block *sb, char *options)
1077 {
1078 BUG_ON(sb->s_options);
1079 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1080 }
1081 EXPORT_SYMBOL(save_mount_options);
1082
1083 void replace_mount_options(struct super_block *sb, char *options)
1084 {
1085 char *old = sb->s_options;
1086 rcu_assign_pointer(sb->s_options, options);
1087 if (old) {
1088 synchronize_rcu();
1089 kfree(old);
1090 }
1091 }
1092 EXPORT_SYMBOL(replace_mount_options);
1093
1094 #ifdef CONFIG_PROC_FS
1095 /* iterator; we want it to have access to namespace_sem, thus here... */
1096 static void *m_start(struct seq_file *m, loff_t *pos)
1097 {
1098 struct proc_mounts *p = proc_mounts(m);
1099
1100 down_read(&namespace_sem);
1101 if (p->cached_event == p->ns->event) {
1102 void *v = p->cached_mount;
1103 if (*pos == p->cached_index)
1104 return v;
1105 if (*pos == p->cached_index + 1) {
1106 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1107 return p->cached_mount = v;
1108 }
1109 }
1110
1111 p->cached_event = p->ns->event;
1112 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1113 p->cached_index = *pos;
1114 return p->cached_mount;
1115 }
1116
1117 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1118 {
1119 struct proc_mounts *p = proc_mounts(m);
1120
1121 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1122 p->cached_index = *pos;
1123 return p->cached_mount;
1124 }
1125
1126 static void m_stop(struct seq_file *m, void *v)
1127 {
1128 up_read(&namespace_sem);
1129 }
1130
1131 static int m_show(struct seq_file *m, void *v)
1132 {
1133 struct proc_mounts *p = proc_mounts(m);
1134 struct mount *r = list_entry(v, struct mount, mnt_list);
1135 return p->show(m, &r->mnt);
1136 }
1137
1138 const struct seq_operations mounts_op = {
1139 .start = m_start,
1140 .next = m_next,
1141 .stop = m_stop,
1142 .show = m_show,
1143 };
1144 #endif /* CONFIG_PROC_FS */
1145
1146 /**
1147 * may_umount_tree - check if a mount tree is busy
1148 * @mnt: root of mount tree
1149 *
1150 * This is called to check if a tree of mounts has any
1151 * open files, pwds, chroots or sub mounts that are
1152 * busy.
1153 */
1154 int may_umount_tree(struct vfsmount *m)
1155 {
1156 struct mount *mnt = real_mount(m);
1157 int actual_refs = 0;
1158 int minimum_refs = 0;
1159 struct mount *p;
1160 BUG_ON(!m);
1161
1162 /* write lock needed for mnt_get_count */
1163 lock_mount_hash();
1164 for (p = mnt; p; p = next_mnt(p, mnt)) {
1165 actual_refs += mnt_get_count(p);
1166 minimum_refs += 2;
1167 }
1168 unlock_mount_hash();
1169
1170 if (actual_refs > minimum_refs)
1171 return 0;
1172
1173 return 1;
1174 }
1175
1176 EXPORT_SYMBOL(may_umount_tree);
1177
1178 /**
1179 * may_umount - check if a mount point is busy
1180 * @mnt: root of mount
1181 *
1182 * This is called to check if a mount point has any
1183 * open files, pwds, chroots or sub mounts. If the
1184 * mount has sub mounts this will return busy
1185 * regardless of whether the sub mounts are busy.
1186 *
1187 * Doesn't take quota and stuff into account. IOW, in some cases it will
1188 * give false negatives. The main reason why it's here is that we need
1189 * a non-destructive way to look for easily umountable filesystems.
1190 */
1191 int may_umount(struct vfsmount *mnt)
1192 {
1193 int ret = 1;
1194 down_read(&namespace_sem);
1195 lock_mount_hash();
1196 if (propagate_mount_busy(real_mount(mnt), 2))
1197 ret = 0;
1198 unlock_mount_hash();
1199 up_read(&namespace_sem);
1200 return ret;
1201 }
1202
1203 EXPORT_SYMBOL(may_umount);
1204
1205 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1206
1207 static void namespace_unlock(void)
1208 {
1209 struct mount *mnt;
1210 struct hlist_head head = unmounted;
1211
1212 if (likely(hlist_empty(&head))) {
1213 up_write(&namespace_sem);
1214 return;
1215 }
1216
1217 head.first->pprev = &head.first;
1218 INIT_HLIST_HEAD(&unmounted);
1219
1220 /* undo decrements we'd done in umount_tree() */
1221 hlist_for_each_entry(mnt, &head, mnt_hash)
1222 if (mnt->mnt_ex_mountpoint.mnt)
1223 mntget(mnt->mnt_ex_mountpoint.mnt);
1224
1225 up_write(&namespace_sem);
1226
1227 synchronize_rcu();
1228
1229 while (!hlist_empty(&head)) {
1230 mnt = hlist_entry(head.first, struct mount, mnt_hash);
1231 hlist_del_init(&mnt->mnt_hash);
1232 if (mnt->mnt_ex_mountpoint.mnt)
1233 path_put(&mnt->mnt_ex_mountpoint);
1234 mntput(&mnt->mnt);
1235 }
1236 }
1237
1238 static inline void namespace_lock(void)
1239 {
1240 down_write(&namespace_sem);
1241 }
1242
1243 /*
1244 * mount_lock must be held
1245 * namespace_sem must be held for write
1246 * how = 0 => just this tree, don't propagate
1247 * how = 1 => propagate; we know that nobody else has reference to any victims
1248 * how = 2 => lazy umount
1249 */
1250 void umount_tree(struct mount *mnt, int how)
1251 {
1252 HLIST_HEAD(tmp_list);
1253 struct mount *p;
1254 struct mount *last = NULL;
1255
1256 for (p = mnt; p; p = next_mnt(p, mnt)) {
1257 hlist_del_init_rcu(&p->mnt_hash);
1258 hlist_add_head(&p->mnt_hash, &tmp_list);
1259 }
1260
1261 hlist_for_each_entry(p, &tmp_list, mnt_hash)
1262 list_del_init(&p->mnt_child);
1263
1264 if (how)
1265 propagate_umount(&tmp_list);
1266
1267 hlist_for_each_entry(p, &tmp_list, mnt_hash) {
1268 list_del_init(&p->mnt_expire);
1269 list_del_init(&p->mnt_list);
1270 __touch_mnt_namespace(p->mnt_ns);
1271 p->mnt_ns = NULL;
1272 if (how < 2)
1273 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1274 if (mnt_has_parent(p)) {
1275 put_mountpoint(p->mnt_mp);
1276 mnt_add_count(p->mnt_parent, -1);
1277 /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1278 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1279 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1280 p->mnt_mountpoint = p->mnt.mnt_root;
1281 p->mnt_parent = p;
1282 p->mnt_mp = NULL;
1283 }
1284 change_mnt_propagation(p, MS_PRIVATE);
1285 last = p;
1286 }
1287 if (last) {
1288 last->mnt_hash.next = unmounted.first;
1289 unmounted.first = tmp_list.first;
1290 unmounted.first->pprev = &unmounted.first;
1291 }
1292 }
1293
1294 static void shrink_submounts(struct mount *mnt);
1295
1296 static int do_umount(struct mount *mnt, int flags)
1297 {
1298 struct super_block *sb = mnt->mnt.mnt_sb;
1299 int retval;
1300
1301 retval = security_sb_umount(&mnt->mnt, flags);
1302 if (retval)
1303 return retval;
1304
1305 /*
1306 * Allow userspace to request a mountpoint be expired rather than
1307 * unmounting unconditionally. Unmount only happens if:
1308 * (1) the mark is already set (the mark is cleared by mntput())
1309 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1310 */
1311 if (flags & MNT_EXPIRE) {
1312 if (&mnt->mnt == current->fs->root.mnt ||
1313 flags & (MNT_FORCE | MNT_DETACH))
1314 return -EINVAL;
1315
1316 /*
1317 * probably don't strictly need the lock here if we examined
1318 * all race cases, but it's a slowpath.
1319 */
1320 lock_mount_hash();
1321 if (mnt_get_count(mnt) != 2) {
1322 unlock_mount_hash();
1323 return -EBUSY;
1324 }
1325 unlock_mount_hash();
1326
1327 if (!xchg(&mnt->mnt_expiry_mark, 1))
1328 return -EAGAIN;
1329 }
1330
1331 /*
1332 * If we may have to abort operations to get out of this
1333 * mount, and they will themselves hold resources we must
1334 * allow the fs to do things. In the Unix tradition of
1335 * 'Gee thats tricky lets do it in userspace' the umount_begin
1336 * might fail to complete on the first run through as other tasks
1337 * must return, and the like. Thats for the mount program to worry
1338 * about for the moment.
1339 */
1340
1341 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1342 sb->s_op->umount_begin(sb);
1343 }
1344
1345 /*
1346 * No sense to grab the lock for this test, but test itself looks
1347 * somewhat bogus. Suggestions for better replacement?
1348 * Ho-hum... In principle, we might treat that as umount + switch
1349 * to rootfs. GC would eventually take care of the old vfsmount.
1350 * Actually it makes sense, especially if rootfs would contain a
1351 * /reboot - static binary that would close all descriptors and
1352 * call reboot(9). Then init(8) could umount root and exec /reboot.
1353 */
1354 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1355 /*
1356 * Special case for "unmounting" root ...
1357 * we just try to remount it readonly.
1358 */
1359 down_write(&sb->s_umount);
1360 if (!(sb->s_flags & MS_RDONLY))
1361 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1362 up_write(&sb->s_umount);
1363 return retval;
1364 }
1365
1366 namespace_lock();
1367 lock_mount_hash();
1368 event++;
1369
1370 if (flags & MNT_DETACH) {
1371 if (!list_empty(&mnt->mnt_list))
1372 umount_tree(mnt, 2);
1373 retval = 0;
1374 } else {
1375 shrink_submounts(mnt);
1376 retval = -EBUSY;
1377 if (!propagate_mount_busy(mnt, 2)) {
1378 if (!list_empty(&mnt->mnt_list))
1379 umount_tree(mnt, 1);
1380 retval = 0;
1381 }
1382 }
1383 unlock_mount_hash();
1384 namespace_unlock();
1385 return retval;
1386 }
1387
1388 /*
1389 * Is the caller allowed to modify his namespace?
1390 */
1391 static inline bool may_mount(void)
1392 {
1393 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1394 }
1395
1396 /*
1397 * Now umount can handle mount points as well as block devices.
1398 * This is important for filesystems which use unnamed block devices.
1399 *
1400 * We now support a flag for forced unmount like the other 'big iron'
1401 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1402 */
1403
1404 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1405 {
1406 struct path path;
1407 struct mount *mnt;
1408 int retval;
1409 int lookup_flags = 0;
1410
1411 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1412 return -EINVAL;
1413
1414 if (!may_mount())
1415 return -EPERM;
1416
1417 if (!(flags & UMOUNT_NOFOLLOW))
1418 lookup_flags |= LOOKUP_FOLLOW;
1419
1420 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1421 if (retval)
1422 goto out;
1423 mnt = real_mount(path.mnt);
1424 retval = -EINVAL;
1425 if (path.dentry != path.mnt->mnt_root)
1426 goto dput_and_out;
1427 if (!check_mnt(mnt))
1428 goto dput_and_out;
1429 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1430 goto dput_and_out;
1431
1432 retval = do_umount(mnt, flags);
1433 dput_and_out:
1434 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1435 dput(path.dentry);
1436 mntput_no_expire(mnt);
1437 out:
1438 return retval;
1439 }
1440
1441 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1442
1443 /*
1444 * The 2.0 compatible umount. No flags.
1445 */
1446 SYSCALL_DEFINE1(oldumount, char __user *, name)
1447 {
1448 return sys_umount(name, 0);
1449 }
1450
1451 #endif
1452
1453 static bool is_mnt_ns_file(struct dentry *dentry)
1454 {
1455 /* Is this a proxy for a mount namespace? */
1456 struct inode *inode = dentry->d_inode;
1457 struct proc_ns *ei;
1458
1459 if (!proc_ns_inode(inode))
1460 return false;
1461
1462 ei = get_proc_ns(inode);
1463 if (ei->ns_ops != &mntns_operations)
1464 return false;
1465
1466 return true;
1467 }
1468
1469 static bool mnt_ns_loop(struct dentry *dentry)
1470 {
1471 /* Could bind mounting the mount namespace inode cause a
1472 * mount namespace loop?
1473 */
1474 struct mnt_namespace *mnt_ns;
1475 if (!is_mnt_ns_file(dentry))
1476 return false;
1477
1478 mnt_ns = get_proc_ns(dentry->d_inode)->ns;
1479 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1480 }
1481
1482 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1483 int flag)
1484 {
1485 struct mount *res, *p, *q, *r, *parent;
1486
1487 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1488 return ERR_PTR(-EINVAL);
1489
1490 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1491 return ERR_PTR(-EINVAL);
1492
1493 res = q = clone_mnt(mnt, dentry, flag);
1494 if (IS_ERR(q))
1495 return q;
1496
1497 q->mnt.mnt_flags &= ~MNT_LOCKED;
1498 q->mnt_mountpoint = mnt->mnt_mountpoint;
1499
1500 p = mnt;
1501 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1502 struct mount *s;
1503 if (!is_subdir(r->mnt_mountpoint, dentry))
1504 continue;
1505
1506 for (s = r; s; s = next_mnt(s, r)) {
1507 struct mount *t = NULL;
1508 if (!(flag & CL_COPY_UNBINDABLE) &&
1509 IS_MNT_UNBINDABLE(s)) {
1510 s = skip_mnt_tree(s);
1511 continue;
1512 }
1513 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1514 is_mnt_ns_file(s->mnt.mnt_root)) {
1515 s = skip_mnt_tree(s);
1516 continue;
1517 }
1518 while (p != s->mnt_parent) {
1519 p = p->mnt_parent;
1520 q = q->mnt_parent;
1521 }
1522 p = s;
1523 parent = q;
1524 q = clone_mnt(p, p->mnt.mnt_root, flag);
1525 if (IS_ERR(q))
1526 goto out;
1527 lock_mount_hash();
1528 list_add_tail(&q->mnt_list, &res->mnt_list);
1529 mnt_set_mountpoint(parent, p->mnt_mp, q);
1530 if (!list_empty(&parent->mnt_mounts)) {
1531 t = list_last_entry(&parent->mnt_mounts,
1532 struct mount, mnt_child);
1533 if (t->mnt_mp != p->mnt_mp)
1534 t = NULL;
1535 }
1536 attach_shadowed(q, parent, t);
1537 unlock_mount_hash();
1538 }
1539 }
1540 return res;
1541 out:
1542 if (res) {
1543 lock_mount_hash();
1544 umount_tree(res, 0);
1545 unlock_mount_hash();
1546 }
1547 return q;
1548 }
1549
1550 /* Caller should check returned pointer for errors */
1551
1552 struct vfsmount *collect_mounts(struct path *path)
1553 {
1554 struct mount *tree;
1555 namespace_lock();
1556 tree = copy_tree(real_mount(path->mnt), path->dentry,
1557 CL_COPY_ALL | CL_PRIVATE);
1558 namespace_unlock();
1559 if (IS_ERR(tree))
1560 return ERR_CAST(tree);
1561 return &tree->mnt;
1562 }
1563
1564 void drop_collected_mounts(struct vfsmount *mnt)
1565 {
1566 namespace_lock();
1567 lock_mount_hash();
1568 umount_tree(real_mount(mnt), 0);
1569 unlock_mount_hash();
1570 namespace_unlock();
1571 }
1572
1573 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1574 struct vfsmount *root)
1575 {
1576 struct mount *mnt;
1577 int res = f(root, arg);
1578 if (res)
1579 return res;
1580 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1581 res = f(&mnt->mnt, arg);
1582 if (res)
1583 return res;
1584 }
1585 return 0;
1586 }
1587
1588 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1589 {
1590 struct mount *p;
1591
1592 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1593 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1594 mnt_release_group_id(p);
1595 }
1596 }
1597
1598 static int invent_group_ids(struct mount *mnt, bool recurse)
1599 {
1600 struct mount *p;
1601
1602 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1603 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1604 int err = mnt_alloc_group_id(p);
1605 if (err) {
1606 cleanup_group_ids(mnt, p);
1607 return err;
1608 }
1609 }
1610 }
1611
1612 return 0;
1613 }
1614
1615 /*
1616 * @source_mnt : mount tree to be attached
1617 * @nd : place the mount tree @source_mnt is attached
1618 * @parent_nd : if non-null, detach the source_mnt from its parent and
1619 * store the parent mount and mountpoint dentry.
1620 * (done when source_mnt is moved)
1621 *
1622 * NOTE: in the table below explains the semantics when a source mount
1623 * of a given type is attached to a destination mount of a given type.
1624 * ---------------------------------------------------------------------------
1625 * | BIND MOUNT OPERATION |
1626 * |**************************************************************************
1627 * | source-->| shared | private | slave | unbindable |
1628 * | dest | | | | |
1629 * | | | | | | |
1630 * | v | | | | |
1631 * |**************************************************************************
1632 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1633 * | | | | | |
1634 * |non-shared| shared (+) | private | slave (*) | invalid |
1635 * ***************************************************************************
1636 * A bind operation clones the source mount and mounts the clone on the
1637 * destination mount.
1638 *
1639 * (++) the cloned mount is propagated to all the mounts in the propagation
1640 * tree of the destination mount and the cloned mount is added to
1641 * the peer group of the source mount.
1642 * (+) the cloned mount is created under the destination mount and is marked
1643 * as shared. The cloned mount is added to the peer group of the source
1644 * mount.
1645 * (+++) the mount is propagated to all the mounts in the propagation tree
1646 * of the destination mount and the cloned mount is made slave
1647 * of the same master as that of the source mount. The cloned mount
1648 * is marked as 'shared and slave'.
1649 * (*) the cloned mount is made a slave of the same master as that of the
1650 * source mount.
1651 *
1652 * ---------------------------------------------------------------------------
1653 * | MOVE MOUNT OPERATION |
1654 * |**************************************************************************
1655 * | source-->| shared | private | slave | unbindable |
1656 * | dest | | | | |
1657 * | | | | | | |
1658 * | v | | | | |
1659 * |**************************************************************************
1660 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1661 * | | | | | |
1662 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1663 * ***************************************************************************
1664 *
1665 * (+) the mount is moved to the destination. And is then propagated to
1666 * all the mounts in the propagation tree of the destination mount.
1667 * (+*) the mount is moved to the destination.
1668 * (+++) the mount is moved to the destination and is then propagated to
1669 * all the mounts belonging to the destination mount's propagation tree.
1670 * the mount is marked as 'shared and slave'.
1671 * (*) the mount continues to be a slave at the new location.
1672 *
1673 * if the source mount is a tree, the operations explained above is
1674 * applied to each mount in the tree.
1675 * Must be called without spinlocks held, since this function can sleep
1676 * in allocations.
1677 */
1678 static int attach_recursive_mnt(struct mount *source_mnt,
1679 struct mount *dest_mnt,
1680 struct mountpoint *dest_mp,
1681 struct path *parent_path)
1682 {
1683 HLIST_HEAD(tree_list);
1684 struct mount *child, *p;
1685 struct hlist_node *n;
1686 int err;
1687
1688 if (IS_MNT_SHARED(dest_mnt)) {
1689 err = invent_group_ids(source_mnt, true);
1690 if (err)
1691 goto out;
1692 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1693 lock_mount_hash();
1694 if (err)
1695 goto out_cleanup_ids;
1696 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1697 set_mnt_shared(p);
1698 } else {
1699 lock_mount_hash();
1700 }
1701 if (parent_path) {
1702 detach_mnt(source_mnt, parent_path);
1703 attach_mnt(source_mnt, dest_mnt, dest_mp);
1704 touch_mnt_namespace(source_mnt->mnt_ns);
1705 } else {
1706 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1707 commit_tree(source_mnt, NULL);
1708 }
1709
1710 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1711 struct mount *q;
1712 hlist_del_init(&child->mnt_hash);
1713 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1714 child->mnt_mountpoint);
1715 commit_tree(child, q);
1716 }
1717 unlock_mount_hash();
1718
1719 return 0;
1720
1721 out_cleanup_ids:
1722 while (!hlist_empty(&tree_list)) {
1723 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1724 umount_tree(child, 0);
1725 }
1726 unlock_mount_hash();
1727 cleanup_group_ids(source_mnt, NULL);
1728 out:
1729 return err;
1730 }
1731
1732 static struct mountpoint *lock_mount(struct path *path)
1733 {
1734 struct vfsmount *mnt;
1735 struct dentry *dentry = path->dentry;
1736 retry:
1737 mutex_lock(&dentry->d_inode->i_mutex);
1738 if (unlikely(cant_mount(dentry))) {
1739 mutex_unlock(&dentry->d_inode->i_mutex);
1740 return ERR_PTR(-ENOENT);
1741 }
1742 namespace_lock();
1743 mnt = lookup_mnt(path);
1744 if (likely(!mnt)) {
1745 struct mountpoint *mp = new_mountpoint(dentry);
1746 if (IS_ERR(mp)) {
1747 namespace_unlock();
1748 mutex_unlock(&dentry->d_inode->i_mutex);
1749 return mp;
1750 }
1751 return mp;
1752 }
1753 namespace_unlock();
1754 mutex_unlock(&path->dentry->d_inode->i_mutex);
1755 path_put(path);
1756 path->mnt = mnt;
1757 dentry = path->dentry = dget(mnt->mnt_root);
1758 goto retry;
1759 }
1760
1761 static void unlock_mount(struct mountpoint *where)
1762 {
1763 struct dentry *dentry = where->m_dentry;
1764 put_mountpoint(where);
1765 namespace_unlock();
1766 mutex_unlock(&dentry->d_inode->i_mutex);
1767 }
1768
1769 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1770 {
1771 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1772 return -EINVAL;
1773
1774 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1775 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1776 return -ENOTDIR;
1777
1778 return attach_recursive_mnt(mnt, p, mp, NULL);
1779 }
1780
1781 /*
1782 * Sanity check the flags to change_mnt_propagation.
1783 */
1784
1785 static int flags_to_propagation_type(int flags)
1786 {
1787 int type = flags & ~(MS_REC | MS_SILENT);
1788
1789 /* Fail if any non-propagation flags are set */
1790 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1791 return 0;
1792 /* Only one propagation flag should be set */
1793 if (!is_power_of_2(type))
1794 return 0;
1795 return type;
1796 }
1797
1798 /*
1799 * recursively change the type of the mountpoint.
1800 */
1801 static int do_change_type(struct path *path, int flag)
1802 {
1803 struct mount *m;
1804 struct mount *mnt = real_mount(path->mnt);
1805 int recurse = flag & MS_REC;
1806 int type;
1807 int err = 0;
1808
1809 if (path->dentry != path->mnt->mnt_root)
1810 return -EINVAL;
1811
1812 type = flags_to_propagation_type(flag);
1813 if (!type)
1814 return -EINVAL;
1815
1816 namespace_lock();
1817 if (type == MS_SHARED) {
1818 err = invent_group_ids(mnt, recurse);
1819 if (err)
1820 goto out_unlock;
1821 }
1822
1823 lock_mount_hash();
1824 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1825 change_mnt_propagation(m, type);
1826 unlock_mount_hash();
1827
1828 out_unlock:
1829 namespace_unlock();
1830 return err;
1831 }
1832
1833 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1834 {
1835 struct mount *child;
1836 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1837 if (!is_subdir(child->mnt_mountpoint, dentry))
1838 continue;
1839
1840 if (child->mnt.mnt_flags & MNT_LOCKED)
1841 return true;
1842 }
1843 return false;
1844 }
1845
1846 /*
1847 * do loopback mount.
1848 */
1849 static int do_loopback(struct path *path, const char *old_name,
1850 int recurse)
1851 {
1852 struct path old_path;
1853 struct mount *mnt = NULL, *old, *parent;
1854 struct mountpoint *mp;
1855 int err;
1856 if (!old_name || !*old_name)
1857 return -EINVAL;
1858 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1859 if (err)
1860 return err;
1861
1862 err = -EINVAL;
1863 if (mnt_ns_loop(old_path.dentry))
1864 goto out;
1865
1866 mp = lock_mount(path);
1867 err = PTR_ERR(mp);
1868 if (IS_ERR(mp))
1869 goto out;
1870
1871 old = real_mount(old_path.mnt);
1872 parent = real_mount(path->mnt);
1873
1874 err = -EINVAL;
1875 if (IS_MNT_UNBINDABLE(old))
1876 goto out2;
1877
1878 if (!check_mnt(parent) || !check_mnt(old))
1879 goto out2;
1880
1881 if (!recurse && has_locked_children(old, old_path.dentry))
1882 goto out2;
1883
1884 if (recurse)
1885 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
1886 else
1887 mnt = clone_mnt(old, old_path.dentry, 0);
1888
1889 if (IS_ERR(mnt)) {
1890 err = PTR_ERR(mnt);
1891 goto out2;
1892 }
1893
1894 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1895
1896 err = graft_tree(mnt, parent, mp);
1897 if (err) {
1898 lock_mount_hash();
1899 umount_tree(mnt, 0);
1900 unlock_mount_hash();
1901 }
1902 out2:
1903 unlock_mount(mp);
1904 out:
1905 path_put(&old_path);
1906 return err;
1907 }
1908
1909 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1910 {
1911 int error = 0;
1912 int readonly_request = 0;
1913
1914 if (ms_flags & MS_RDONLY)
1915 readonly_request = 1;
1916 if (readonly_request == __mnt_is_readonly(mnt))
1917 return 0;
1918
1919 if (readonly_request)
1920 error = mnt_make_readonly(real_mount(mnt));
1921 else
1922 __mnt_unmake_readonly(real_mount(mnt));
1923 return error;
1924 }
1925
1926 /*
1927 * change filesystem flags. dir should be a physical root of filesystem.
1928 * If you've mounted a non-root directory somewhere and want to do remount
1929 * on it - tough luck.
1930 */
1931 static int do_remount(struct path *path, int flags, int mnt_flags,
1932 void *data)
1933 {
1934 int err;
1935 struct super_block *sb = path->mnt->mnt_sb;
1936 struct mount *mnt = real_mount(path->mnt);
1937
1938 if (!check_mnt(mnt))
1939 return -EINVAL;
1940
1941 if (path->dentry != path->mnt->mnt_root)
1942 return -EINVAL;
1943
1944 /* Don't allow changing of locked mnt flags.
1945 *
1946 * No locks need to be held here while testing the various
1947 * MNT_LOCK flags because those flags can never be cleared
1948 * once they are set.
1949 */
1950 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
1951 !(mnt_flags & MNT_READONLY)) {
1952 return -EPERM;
1953 }
1954 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
1955 !(mnt_flags & MNT_NODEV)) {
1956 return -EPERM;
1957 }
1958 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
1959 !(mnt_flags & MNT_NOSUID)) {
1960 return -EPERM;
1961 }
1962 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
1963 !(mnt_flags & MNT_NOEXEC)) {
1964 return -EPERM;
1965 }
1966 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
1967 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
1968 return -EPERM;
1969 }
1970
1971 err = security_sb_remount(sb, data);
1972 if (err)
1973 return err;
1974
1975 down_write(&sb->s_umount);
1976 if (flags & MS_BIND)
1977 err = change_mount_flags(path->mnt, flags);
1978 else if (!capable(CAP_SYS_ADMIN))
1979 err = -EPERM;
1980 else
1981 err = do_remount_sb(sb, flags, data, 0);
1982 if (!err) {
1983 lock_mount_hash();
1984 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
1985 mnt->mnt.mnt_flags = mnt_flags;
1986 touch_mnt_namespace(mnt->mnt_ns);
1987 unlock_mount_hash();
1988 }
1989 up_write(&sb->s_umount);
1990 return err;
1991 }
1992
1993 static inline int tree_contains_unbindable(struct mount *mnt)
1994 {
1995 struct mount *p;
1996 for (p = mnt; p; p = next_mnt(p, mnt)) {
1997 if (IS_MNT_UNBINDABLE(p))
1998 return 1;
1999 }
2000 return 0;
2001 }
2002
2003 static int do_move_mount(struct path *path, const char *old_name)
2004 {
2005 struct path old_path, parent_path;
2006 struct mount *p;
2007 struct mount *old;
2008 struct mountpoint *mp;
2009 int err;
2010 if (!old_name || !*old_name)
2011 return -EINVAL;
2012 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2013 if (err)
2014 return err;
2015
2016 mp = lock_mount(path);
2017 err = PTR_ERR(mp);
2018 if (IS_ERR(mp))
2019 goto out;
2020
2021 old = real_mount(old_path.mnt);
2022 p = real_mount(path->mnt);
2023
2024 err = -EINVAL;
2025 if (!check_mnt(p) || !check_mnt(old))
2026 goto out1;
2027
2028 if (old->mnt.mnt_flags & MNT_LOCKED)
2029 goto out1;
2030
2031 err = -EINVAL;
2032 if (old_path.dentry != old_path.mnt->mnt_root)
2033 goto out1;
2034
2035 if (!mnt_has_parent(old))
2036 goto out1;
2037
2038 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
2039 S_ISDIR(old_path.dentry->d_inode->i_mode))
2040 goto out1;
2041 /*
2042 * Don't move a mount residing in a shared parent.
2043 */
2044 if (IS_MNT_SHARED(old->mnt_parent))
2045 goto out1;
2046 /*
2047 * Don't move a mount tree containing unbindable mounts to a destination
2048 * mount which is shared.
2049 */
2050 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2051 goto out1;
2052 err = -ELOOP;
2053 for (; mnt_has_parent(p); p = p->mnt_parent)
2054 if (p == old)
2055 goto out1;
2056
2057 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2058 if (err)
2059 goto out1;
2060
2061 /* if the mount is moved, it should no longer be expire
2062 * automatically */
2063 list_del_init(&old->mnt_expire);
2064 out1:
2065 unlock_mount(mp);
2066 out:
2067 if (!err)
2068 path_put(&parent_path);
2069 path_put(&old_path);
2070 return err;
2071 }
2072
2073 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2074 {
2075 int err;
2076 const char *subtype = strchr(fstype, '.');
2077 if (subtype) {
2078 subtype++;
2079 err = -EINVAL;
2080 if (!subtype[0])
2081 goto err;
2082 } else
2083 subtype = "";
2084
2085 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2086 err = -ENOMEM;
2087 if (!mnt->mnt_sb->s_subtype)
2088 goto err;
2089 return mnt;
2090
2091 err:
2092 mntput(mnt);
2093 return ERR_PTR(err);
2094 }
2095
2096 /*
2097 * add a mount into a namespace's mount tree
2098 */
2099 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2100 {
2101 struct mountpoint *mp;
2102 struct mount *parent;
2103 int err;
2104
2105 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2106
2107 mp = lock_mount(path);
2108 if (IS_ERR(mp))
2109 return PTR_ERR(mp);
2110
2111 parent = real_mount(path->mnt);
2112 err = -EINVAL;
2113 if (unlikely(!check_mnt(parent))) {
2114 /* that's acceptable only for automounts done in private ns */
2115 if (!(mnt_flags & MNT_SHRINKABLE))
2116 goto unlock;
2117 /* ... and for those we'd better have mountpoint still alive */
2118 if (!parent->mnt_ns)
2119 goto unlock;
2120 }
2121
2122 /* Refuse the same filesystem on the same mount point */
2123 err = -EBUSY;
2124 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2125 path->mnt->mnt_root == path->dentry)
2126 goto unlock;
2127
2128 err = -EINVAL;
2129 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
2130 goto unlock;
2131
2132 newmnt->mnt.mnt_flags = mnt_flags;
2133 err = graft_tree(newmnt, parent, mp);
2134
2135 unlock:
2136 unlock_mount(mp);
2137 return err;
2138 }
2139
2140 /*
2141 * create a new mount for userspace and request it to be added into the
2142 * namespace's tree
2143 */
2144 static int do_new_mount(struct path *path, const char *fstype, int flags,
2145 int mnt_flags, const char *name, void *data)
2146 {
2147 struct file_system_type *type;
2148 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2149 struct vfsmount *mnt;
2150 int err;
2151
2152 if (!fstype)
2153 return -EINVAL;
2154
2155 type = get_fs_type(fstype);
2156 if (!type)
2157 return -ENODEV;
2158
2159 if (user_ns != &init_user_ns) {
2160 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2161 put_filesystem(type);
2162 return -EPERM;
2163 }
2164 /* Only in special cases allow devices from mounts
2165 * created outside the initial user namespace.
2166 */
2167 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2168 flags |= MS_NODEV;
2169 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2170 }
2171 }
2172
2173 mnt = vfs_kern_mount(type, flags, name, data);
2174 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2175 !mnt->mnt_sb->s_subtype)
2176 mnt = fs_set_subtype(mnt, fstype);
2177
2178 put_filesystem(type);
2179 if (IS_ERR(mnt))
2180 return PTR_ERR(mnt);
2181
2182 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2183 if (err)
2184 mntput(mnt);
2185 return err;
2186 }
2187
2188 int finish_automount(struct vfsmount *m, struct path *path)
2189 {
2190 struct mount *mnt = real_mount(m);
2191 int err;
2192 /* The new mount record should have at least 2 refs to prevent it being
2193 * expired before we get a chance to add it
2194 */
2195 BUG_ON(mnt_get_count(mnt) < 2);
2196
2197 if (m->mnt_sb == path->mnt->mnt_sb &&
2198 m->mnt_root == path->dentry) {
2199 err = -ELOOP;
2200 goto fail;
2201 }
2202
2203 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2204 if (!err)
2205 return 0;
2206 fail:
2207 /* remove m from any expiration list it may be on */
2208 if (!list_empty(&mnt->mnt_expire)) {
2209 namespace_lock();
2210 list_del_init(&mnt->mnt_expire);
2211 namespace_unlock();
2212 }
2213 mntput(m);
2214 mntput(m);
2215 return err;
2216 }
2217
2218 /**
2219 * mnt_set_expiry - Put a mount on an expiration list
2220 * @mnt: The mount to list.
2221 * @expiry_list: The list to add the mount to.
2222 */
2223 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2224 {
2225 namespace_lock();
2226
2227 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2228
2229 namespace_unlock();
2230 }
2231 EXPORT_SYMBOL(mnt_set_expiry);
2232
2233 /*
2234 * process a list of expirable mountpoints with the intent of discarding any
2235 * mountpoints that aren't in use and haven't been touched since last we came
2236 * here
2237 */
2238 void mark_mounts_for_expiry(struct list_head *mounts)
2239 {
2240 struct mount *mnt, *next;
2241 LIST_HEAD(graveyard);
2242
2243 if (list_empty(mounts))
2244 return;
2245
2246 namespace_lock();
2247 lock_mount_hash();
2248
2249 /* extract from the expiration list every vfsmount that matches the
2250 * following criteria:
2251 * - only referenced by its parent vfsmount
2252 * - still marked for expiry (marked on the last call here; marks are
2253 * cleared by mntput())
2254 */
2255 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2256 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2257 propagate_mount_busy(mnt, 1))
2258 continue;
2259 list_move(&mnt->mnt_expire, &graveyard);
2260 }
2261 while (!list_empty(&graveyard)) {
2262 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2263 touch_mnt_namespace(mnt->mnt_ns);
2264 umount_tree(mnt, 1);
2265 }
2266 unlock_mount_hash();
2267 namespace_unlock();
2268 }
2269
2270 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2271
2272 /*
2273 * Ripoff of 'select_parent()'
2274 *
2275 * search the list of submounts for a given mountpoint, and move any
2276 * shrinkable submounts to the 'graveyard' list.
2277 */
2278 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2279 {
2280 struct mount *this_parent = parent;
2281 struct list_head *next;
2282 int found = 0;
2283
2284 repeat:
2285 next = this_parent->mnt_mounts.next;
2286 resume:
2287 while (next != &this_parent->mnt_mounts) {
2288 struct list_head *tmp = next;
2289 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2290
2291 next = tmp->next;
2292 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2293 continue;
2294 /*
2295 * Descend a level if the d_mounts list is non-empty.
2296 */
2297 if (!list_empty(&mnt->mnt_mounts)) {
2298 this_parent = mnt;
2299 goto repeat;
2300 }
2301
2302 if (!propagate_mount_busy(mnt, 1)) {
2303 list_move_tail(&mnt->mnt_expire, graveyard);
2304 found++;
2305 }
2306 }
2307 /*
2308 * All done at this level ... ascend and resume the search
2309 */
2310 if (this_parent != parent) {
2311 next = this_parent->mnt_child.next;
2312 this_parent = this_parent->mnt_parent;
2313 goto resume;
2314 }
2315 return found;
2316 }
2317
2318 /*
2319 * process a list of expirable mountpoints with the intent of discarding any
2320 * submounts of a specific parent mountpoint
2321 *
2322 * mount_lock must be held for write
2323 */
2324 static void shrink_submounts(struct mount *mnt)
2325 {
2326 LIST_HEAD(graveyard);
2327 struct mount *m;
2328
2329 /* extract submounts of 'mountpoint' from the expiration list */
2330 while (select_submounts(mnt, &graveyard)) {
2331 while (!list_empty(&graveyard)) {
2332 m = list_first_entry(&graveyard, struct mount,
2333 mnt_expire);
2334 touch_mnt_namespace(m->mnt_ns);
2335 umount_tree(m, 1);
2336 }
2337 }
2338 }
2339
2340 /*
2341 * Some copy_from_user() implementations do not return the exact number of
2342 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2343 * Note that this function differs from copy_from_user() in that it will oops
2344 * on bad values of `to', rather than returning a short copy.
2345 */
2346 static long exact_copy_from_user(void *to, const void __user * from,
2347 unsigned long n)
2348 {
2349 char *t = to;
2350 const char __user *f = from;
2351 char c;
2352
2353 if (!access_ok(VERIFY_READ, from, n))
2354 return n;
2355
2356 while (n) {
2357 if (__get_user(c, f)) {
2358 memset(t, 0, n);
2359 break;
2360 }
2361 *t++ = c;
2362 f++;
2363 n--;
2364 }
2365 return n;
2366 }
2367
2368 int copy_mount_options(const void __user * data, unsigned long *where)
2369 {
2370 int i;
2371 unsigned long page;
2372 unsigned long size;
2373
2374 *where = 0;
2375 if (!data)
2376 return 0;
2377
2378 if (!(page = __get_free_page(GFP_KERNEL)))
2379 return -ENOMEM;
2380
2381 /* We only care that *some* data at the address the user
2382 * gave us is valid. Just in case, we'll zero
2383 * the remainder of the page.
2384 */
2385 /* copy_from_user cannot cross TASK_SIZE ! */
2386 size = TASK_SIZE - (unsigned long)data;
2387 if (size > PAGE_SIZE)
2388 size = PAGE_SIZE;
2389
2390 i = size - exact_copy_from_user((void *)page, data, size);
2391 if (!i) {
2392 free_page(page);
2393 return -EFAULT;
2394 }
2395 if (i != PAGE_SIZE)
2396 memset((char *)page + i, 0, PAGE_SIZE - i);
2397 *where = page;
2398 return 0;
2399 }
2400
2401 int copy_mount_string(const void __user *data, char **where)
2402 {
2403 char *tmp;
2404
2405 if (!data) {
2406 *where = NULL;
2407 return 0;
2408 }
2409
2410 tmp = strndup_user(data, PAGE_SIZE);
2411 if (IS_ERR(tmp))
2412 return PTR_ERR(tmp);
2413
2414 *where = tmp;
2415 return 0;
2416 }
2417
2418 /*
2419 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2420 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2421 *
2422 * data is a (void *) that can point to any structure up to
2423 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2424 * information (or be NULL).
2425 *
2426 * Pre-0.97 versions of mount() didn't have a flags word.
2427 * When the flags word was introduced its top half was required
2428 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2429 * Therefore, if this magic number is present, it carries no information
2430 * and must be discarded.
2431 */
2432 long do_mount(const char *dev_name, const char *dir_name,
2433 const char *type_page, unsigned long flags, void *data_page)
2434 {
2435 struct path path;
2436 int retval = 0;
2437 int mnt_flags = 0;
2438
2439 /* Discard magic */
2440 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2441 flags &= ~MS_MGC_MSK;
2442
2443 /* Basic sanity checks */
2444
2445 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2446 return -EINVAL;
2447
2448 if (data_page)
2449 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2450
2451 /* ... and get the mountpoint */
2452 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2453 if (retval)
2454 return retval;
2455
2456 retval = security_sb_mount(dev_name, &path,
2457 type_page, flags, data_page);
2458 if (!retval && !may_mount())
2459 retval = -EPERM;
2460 if (retval)
2461 goto dput_out;
2462
2463 /* Default to relatime unless overriden */
2464 if (!(flags & MS_NOATIME))
2465 mnt_flags |= MNT_RELATIME;
2466
2467 /* Separate the per-mountpoint flags */
2468 if (flags & MS_NOSUID)
2469 mnt_flags |= MNT_NOSUID;
2470 if (flags & MS_NODEV)
2471 mnt_flags |= MNT_NODEV;
2472 if (flags & MS_NOEXEC)
2473 mnt_flags |= MNT_NOEXEC;
2474 if (flags & MS_NOATIME)
2475 mnt_flags |= MNT_NOATIME;
2476 if (flags & MS_NODIRATIME)
2477 mnt_flags |= MNT_NODIRATIME;
2478 if (flags & MS_STRICTATIME)
2479 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2480 if (flags & MS_RDONLY)
2481 mnt_flags |= MNT_READONLY;
2482
2483 /* The default atime for remount is preservation */
2484 if ((flags & MS_REMOUNT) &&
2485 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2486 MS_STRICTATIME)) == 0)) {
2487 mnt_flags &= ~MNT_ATIME_MASK;
2488 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2489 }
2490
2491 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2492 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2493 MS_STRICTATIME);
2494
2495 if (flags & MS_REMOUNT)
2496 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2497 data_page);
2498 else if (flags & MS_BIND)
2499 retval = do_loopback(&path, dev_name, flags & MS_REC);
2500 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2501 retval = do_change_type(&path, flags);
2502 else if (flags & MS_MOVE)
2503 retval = do_move_mount(&path, dev_name);
2504 else
2505 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2506 dev_name, data_page);
2507 dput_out:
2508 path_put(&path);
2509 return retval;
2510 }
2511
2512 static void free_mnt_ns(struct mnt_namespace *ns)
2513 {
2514 proc_free_inum(ns->proc_inum);
2515 put_user_ns(ns->user_ns);
2516 kfree(ns);
2517 }
2518
2519 /*
2520 * Assign a sequence number so we can detect when we attempt to bind
2521 * mount a reference to an older mount namespace into the current
2522 * mount namespace, preventing reference counting loops. A 64bit
2523 * number incrementing at 10Ghz will take 12,427 years to wrap which
2524 * is effectively never, so we can ignore the possibility.
2525 */
2526 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2527
2528 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2529 {
2530 struct mnt_namespace *new_ns;
2531 int ret;
2532
2533 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2534 if (!new_ns)
2535 return ERR_PTR(-ENOMEM);
2536 ret = proc_alloc_inum(&new_ns->proc_inum);
2537 if (ret) {
2538 kfree(new_ns);
2539 return ERR_PTR(ret);
2540 }
2541 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2542 atomic_set(&new_ns->count, 1);
2543 new_ns->root = NULL;
2544 INIT_LIST_HEAD(&new_ns->list);
2545 init_waitqueue_head(&new_ns->poll);
2546 new_ns->event = 0;
2547 new_ns->user_ns = get_user_ns(user_ns);
2548 return new_ns;
2549 }
2550
2551 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2552 struct user_namespace *user_ns, struct fs_struct *new_fs)
2553 {
2554 struct mnt_namespace *new_ns;
2555 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2556 struct mount *p, *q;
2557 struct mount *old;
2558 struct mount *new;
2559 int copy_flags;
2560
2561 BUG_ON(!ns);
2562
2563 if (likely(!(flags & CLONE_NEWNS))) {
2564 get_mnt_ns(ns);
2565 return ns;
2566 }
2567
2568 old = ns->root;
2569
2570 new_ns = alloc_mnt_ns(user_ns);
2571 if (IS_ERR(new_ns))
2572 return new_ns;
2573
2574 namespace_lock();
2575 /* First pass: copy the tree topology */
2576 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2577 if (user_ns != ns->user_ns)
2578 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2579 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2580 if (IS_ERR(new)) {
2581 namespace_unlock();
2582 free_mnt_ns(new_ns);
2583 return ERR_CAST(new);
2584 }
2585 new_ns->root = new;
2586 list_add_tail(&new_ns->list, &new->mnt_list);
2587
2588 /*
2589 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2590 * as belonging to new namespace. We have already acquired a private
2591 * fs_struct, so tsk->fs->lock is not needed.
2592 */
2593 p = old;
2594 q = new;
2595 while (p) {
2596 q->mnt_ns = new_ns;
2597 if (new_fs) {
2598 if (&p->mnt == new_fs->root.mnt) {
2599 new_fs->root.mnt = mntget(&q->mnt);
2600 rootmnt = &p->mnt;
2601 }
2602 if (&p->mnt == new_fs->pwd.mnt) {
2603 new_fs->pwd.mnt = mntget(&q->mnt);
2604 pwdmnt = &p->mnt;
2605 }
2606 }
2607 p = next_mnt(p, old);
2608 q = next_mnt(q, new);
2609 if (!q)
2610 break;
2611 while (p->mnt.mnt_root != q->mnt.mnt_root)
2612 p = next_mnt(p, old);
2613 }
2614 namespace_unlock();
2615
2616 if (rootmnt)
2617 mntput(rootmnt);
2618 if (pwdmnt)
2619 mntput(pwdmnt);
2620
2621 return new_ns;
2622 }
2623
2624 /**
2625 * create_mnt_ns - creates a private namespace and adds a root filesystem
2626 * @mnt: pointer to the new root filesystem mountpoint
2627 */
2628 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2629 {
2630 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2631 if (!IS_ERR(new_ns)) {
2632 struct mount *mnt = real_mount(m);
2633 mnt->mnt_ns = new_ns;
2634 new_ns->root = mnt;
2635 list_add(&mnt->mnt_list, &new_ns->list);
2636 } else {
2637 mntput(m);
2638 }
2639 return new_ns;
2640 }
2641
2642 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2643 {
2644 struct mnt_namespace *ns;
2645 struct super_block *s;
2646 struct path path;
2647 int err;
2648
2649 ns = create_mnt_ns(mnt);
2650 if (IS_ERR(ns))
2651 return ERR_CAST(ns);
2652
2653 err = vfs_path_lookup(mnt->mnt_root, mnt,
2654 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2655
2656 put_mnt_ns(ns);
2657
2658 if (err)
2659 return ERR_PTR(err);
2660
2661 /* trade a vfsmount reference for active sb one */
2662 s = path.mnt->mnt_sb;
2663 atomic_inc(&s->s_active);
2664 mntput(path.mnt);
2665 /* lock the sucker */
2666 down_write(&s->s_umount);
2667 /* ... and return the root of (sub)tree on it */
2668 return path.dentry;
2669 }
2670 EXPORT_SYMBOL(mount_subtree);
2671
2672 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2673 char __user *, type, unsigned long, flags, void __user *, data)
2674 {
2675 int ret;
2676 char *kernel_type;
2677 struct filename *kernel_dir;
2678 char *kernel_dev;
2679 unsigned long data_page;
2680
2681 ret = copy_mount_string(type, &kernel_type);
2682 if (ret < 0)
2683 goto out_type;
2684
2685 kernel_dir = getname(dir_name);
2686 if (IS_ERR(kernel_dir)) {
2687 ret = PTR_ERR(kernel_dir);
2688 goto out_dir;
2689 }
2690
2691 ret = copy_mount_string(dev_name, &kernel_dev);
2692 if (ret < 0)
2693 goto out_dev;
2694
2695 ret = copy_mount_options(data, &data_page);
2696 if (ret < 0)
2697 goto out_data;
2698
2699 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2700 (void *) data_page);
2701
2702 free_page(data_page);
2703 out_data:
2704 kfree(kernel_dev);
2705 out_dev:
2706 putname(kernel_dir);
2707 out_dir:
2708 kfree(kernel_type);
2709 out_type:
2710 return ret;
2711 }
2712
2713 /*
2714 * Return true if path is reachable from root
2715 *
2716 * namespace_sem or mount_lock is held
2717 */
2718 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2719 const struct path *root)
2720 {
2721 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2722 dentry = mnt->mnt_mountpoint;
2723 mnt = mnt->mnt_parent;
2724 }
2725 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2726 }
2727
2728 int path_is_under(struct path *path1, struct path *path2)
2729 {
2730 int res;
2731 read_seqlock_excl(&mount_lock);
2732 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2733 read_sequnlock_excl(&mount_lock);
2734 return res;
2735 }
2736 EXPORT_SYMBOL(path_is_under);
2737
2738 /*
2739 * pivot_root Semantics:
2740 * Moves the root file system of the current process to the directory put_old,
2741 * makes new_root as the new root file system of the current process, and sets
2742 * root/cwd of all processes which had them on the current root to new_root.
2743 *
2744 * Restrictions:
2745 * The new_root and put_old must be directories, and must not be on the
2746 * same file system as the current process root. The put_old must be
2747 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2748 * pointed to by put_old must yield the same directory as new_root. No other
2749 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2750 *
2751 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2752 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2753 * in this situation.
2754 *
2755 * Notes:
2756 * - we don't move root/cwd if they are not at the root (reason: if something
2757 * cared enough to change them, it's probably wrong to force them elsewhere)
2758 * - it's okay to pick a root that isn't the root of a file system, e.g.
2759 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2760 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2761 * first.
2762 */
2763 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2764 const char __user *, put_old)
2765 {
2766 struct path new, old, parent_path, root_parent, root;
2767 struct mount *new_mnt, *root_mnt, *old_mnt;
2768 struct mountpoint *old_mp, *root_mp;
2769 int error;
2770
2771 if (!may_mount())
2772 return -EPERM;
2773
2774 error = user_path_dir(new_root, &new);
2775 if (error)
2776 goto out0;
2777
2778 error = user_path_dir(put_old, &old);
2779 if (error)
2780 goto out1;
2781
2782 error = security_sb_pivotroot(&old, &new);
2783 if (error)
2784 goto out2;
2785
2786 get_fs_root(current->fs, &root);
2787 old_mp = lock_mount(&old);
2788 error = PTR_ERR(old_mp);
2789 if (IS_ERR(old_mp))
2790 goto out3;
2791
2792 error = -EINVAL;
2793 new_mnt = real_mount(new.mnt);
2794 root_mnt = real_mount(root.mnt);
2795 old_mnt = real_mount(old.mnt);
2796 if (IS_MNT_SHARED(old_mnt) ||
2797 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2798 IS_MNT_SHARED(root_mnt->mnt_parent))
2799 goto out4;
2800 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2801 goto out4;
2802 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2803 goto out4;
2804 error = -ENOENT;
2805 if (d_unlinked(new.dentry))
2806 goto out4;
2807 error = -EBUSY;
2808 if (new_mnt == root_mnt || old_mnt == root_mnt)
2809 goto out4; /* loop, on the same file system */
2810 error = -EINVAL;
2811 if (root.mnt->mnt_root != root.dentry)
2812 goto out4; /* not a mountpoint */
2813 if (!mnt_has_parent(root_mnt))
2814 goto out4; /* not attached */
2815 root_mp = root_mnt->mnt_mp;
2816 if (new.mnt->mnt_root != new.dentry)
2817 goto out4; /* not a mountpoint */
2818 if (!mnt_has_parent(new_mnt))
2819 goto out4; /* not attached */
2820 /* make sure we can reach put_old from new_root */
2821 if (!is_path_reachable(old_mnt, old.dentry, &new))
2822 goto out4;
2823 root_mp->m_count++; /* pin it so it won't go away */
2824 lock_mount_hash();
2825 detach_mnt(new_mnt, &parent_path);
2826 detach_mnt(root_mnt, &root_parent);
2827 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2828 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2829 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2830 }
2831 /* mount old root on put_old */
2832 attach_mnt(root_mnt, old_mnt, old_mp);
2833 /* mount new_root on / */
2834 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2835 touch_mnt_namespace(current->nsproxy->mnt_ns);
2836 unlock_mount_hash();
2837 chroot_fs_refs(&root, &new);
2838 put_mountpoint(root_mp);
2839 error = 0;
2840 out4:
2841 unlock_mount(old_mp);
2842 if (!error) {
2843 path_put(&root_parent);
2844 path_put(&parent_path);
2845 }
2846 out3:
2847 path_put(&root);
2848 out2:
2849 path_put(&old);
2850 out1:
2851 path_put(&new);
2852 out0:
2853 return error;
2854 }
2855
2856 static void __init init_mount_tree(void)
2857 {
2858 struct vfsmount *mnt;
2859 struct mnt_namespace *ns;
2860 struct path root;
2861 struct file_system_type *type;
2862
2863 type = get_fs_type("rootfs");
2864 if (!type)
2865 panic("Can't find rootfs type");
2866 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2867 put_filesystem(type);
2868 if (IS_ERR(mnt))
2869 panic("Can't create rootfs");
2870
2871 ns = create_mnt_ns(mnt);
2872 if (IS_ERR(ns))
2873 panic("Can't allocate initial namespace");
2874
2875 init_task.nsproxy->mnt_ns = ns;
2876 get_mnt_ns(ns);
2877
2878 root.mnt = mnt;
2879 root.dentry = mnt->mnt_root;
2880
2881 set_fs_pwd(current->fs, &root);
2882 set_fs_root(current->fs, &root);
2883 }
2884
2885 void __init mnt_init(void)
2886 {
2887 unsigned u;
2888 int err;
2889
2890 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2891 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2892
2893 mount_hashtable = alloc_large_system_hash("Mount-cache",
2894 sizeof(struct hlist_head),
2895 mhash_entries, 19,
2896 0,
2897 &m_hash_shift, &m_hash_mask, 0, 0);
2898 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
2899 sizeof(struct hlist_head),
2900 mphash_entries, 19,
2901 0,
2902 &mp_hash_shift, &mp_hash_mask, 0, 0);
2903
2904 if (!mount_hashtable || !mountpoint_hashtable)
2905 panic("Failed to allocate mount hash table\n");
2906
2907 for (u = 0; u <= m_hash_mask; u++)
2908 INIT_HLIST_HEAD(&mount_hashtable[u]);
2909 for (u = 0; u <= mp_hash_mask; u++)
2910 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
2911
2912 kernfs_init();
2913
2914 err = sysfs_init();
2915 if (err)
2916 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2917 __func__, err);
2918 fs_kobj = kobject_create_and_add("fs", NULL);
2919 if (!fs_kobj)
2920 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2921 init_rootfs();
2922 init_mount_tree();
2923 }
2924
2925 void put_mnt_ns(struct mnt_namespace *ns)
2926 {
2927 if (!atomic_dec_and_test(&ns->count))
2928 return;
2929 drop_collected_mounts(&ns->root->mnt);
2930 free_mnt_ns(ns);
2931 }
2932
2933 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2934 {
2935 struct vfsmount *mnt;
2936 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2937 if (!IS_ERR(mnt)) {
2938 /*
2939 * it is a longterm mount, don't release mnt until
2940 * we unmount before file sys is unregistered
2941 */
2942 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2943 }
2944 return mnt;
2945 }
2946 EXPORT_SYMBOL_GPL(kern_mount_data);
2947
2948 void kern_unmount(struct vfsmount *mnt)
2949 {
2950 /* release long term mount so mount point can be released */
2951 if (!IS_ERR_OR_NULL(mnt)) {
2952 real_mount(mnt)->mnt_ns = NULL;
2953 synchronize_rcu(); /* yecchhh... */
2954 mntput(mnt);
2955 }
2956 }
2957 EXPORT_SYMBOL(kern_unmount);
2958
2959 bool our_mnt(struct vfsmount *mnt)
2960 {
2961 return check_mnt(real_mount(mnt));
2962 }
2963
2964 bool current_chrooted(void)
2965 {
2966 /* Does the current process have a non-standard root */
2967 struct path ns_root;
2968 struct path fs_root;
2969 bool chrooted;
2970
2971 /* Find the namespace root */
2972 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2973 ns_root.dentry = ns_root.mnt->mnt_root;
2974 path_get(&ns_root);
2975 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2976 ;
2977
2978 get_fs_root(current->fs, &fs_root);
2979
2980 chrooted = !path_equal(&fs_root, &ns_root);
2981
2982 path_put(&fs_root);
2983 path_put(&ns_root);
2984
2985 return chrooted;
2986 }
2987
2988 bool fs_fully_visible(struct file_system_type *type)
2989 {
2990 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2991 struct mount *mnt;
2992 bool visible = false;
2993
2994 if (unlikely(!ns))
2995 return false;
2996
2997 down_read(&namespace_sem);
2998 list_for_each_entry(mnt, &ns->list, mnt_list) {
2999 struct mount *child;
3000 if (mnt->mnt.mnt_sb->s_type != type)
3001 continue;
3002
3003 /* This mount is not fully visible if there are any child mounts
3004 * that cover anything except for empty directories.
3005 */
3006 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3007 struct inode *inode = child->mnt_mountpoint->d_inode;
3008 if (!S_ISDIR(inode->i_mode))
3009 goto next;
3010 if (inode->i_nlink > 2)
3011 goto next;
3012 }
3013 visible = true;
3014 goto found;
3015 next: ;
3016 }
3017 found:
3018 up_read(&namespace_sem);
3019 return visible;
3020 }
3021
3022 static void *mntns_get(struct task_struct *task)
3023 {
3024 struct mnt_namespace *ns = NULL;
3025 struct nsproxy *nsproxy;
3026
3027 task_lock(task);
3028 nsproxy = task->nsproxy;
3029 if (nsproxy) {
3030 ns = nsproxy->mnt_ns;
3031 get_mnt_ns(ns);
3032 }
3033 task_unlock(task);
3034
3035 return ns;
3036 }
3037
3038 static void mntns_put(void *ns)
3039 {
3040 put_mnt_ns(ns);
3041 }
3042
3043 static int mntns_install(struct nsproxy *nsproxy, void *ns)
3044 {
3045 struct fs_struct *fs = current->fs;
3046 struct mnt_namespace *mnt_ns = ns;
3047 struct path root;
3048
3049 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3050 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3051 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3052 return -EPERM;
3053
3054 if (fs->users != 1)
3055 return -EINVAL;
3056
3057 get_mnt_ns(mnt_ns);
3058 put_mnt_ns(nsproxy->mnt_ns);
3059 nsproxy->mnt_ns = mnt_ns;
3060
3061 /* Find the root */
3062 root.mnt = &mnt_ns->root->mnt;
3063 root.dentry = mnt_ns->root->mnt.mnt_root;
3064 path_get(&root);
3065 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3066 ;
3067
3068 /* Update the pwd and root */
3069 set_fs_pwd(fs, &root);
3070 set_fs_root(fs, &root);
3071
3072 path_put(&root);
3073 return 0;
3074 }
3075
3076 static unsigned int mntns_inum(void *ns)
3077 {
3078 struct mnt_namespace *mnt_ns = ns;
3079 return mnt_ns->proc_inum;
3080 }
3081
3082 const struct proc_ns_operations mntns_operations = {
3083 .name = "mnt",
3084 .type = CLONE_NEWNS,
3085 .get = mntns_get,
3086 .put = mntns_put,
3087 .install = mntns_install,
3088 .inum = mntns_inum,
3089 };