]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/namespace.c
mnt: Don't propagate unmounts to locked mounts
[mirror_ubuntu-artful-kernel.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
29
30 static unsigned int m_hash_mask __read_mostly;
31 static unsigned int m_hash_shift __read_mostly;
32 static unsigned int mp_hash_mask __read_mostly;
33 static unsigned int mp_hash_shift __read_mostly;
34
35 static __initdata unsigned long mhash_entries;
36 static int __init set_mhash_entries(char *str)
37 {
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42 }
43 __setup("mhash_entries=", set_mhash_entries);
44
45 static __initdata unsigned long mphash_entries;
46 static int __init set_mphash_entries(char *str)
47 {
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52 }
53 __setup("mphash_entries=", set_mphash_entries);
54
55 static u64 event;
56 static DEFINE_IDA(mnt_id_ida);
57 static DEFINE_IDA(mnt_group_ida);
58 static DEFINE_SPINLOCK(mnt_id_lock);
59 static int mnt_id_start = 0;
60 static int mnt_group_start = 1;
61
62 static struct hlist_head *mount_hashtable __read_mostly;
63 static struct hlist_head *mountpoint_hashtable __read_mostly;
64 static struct kmem_cache *mnt_cache __read_mostly;
65 static DECLARE_RWSEM(namespace_sem);
66
67 /* /sys/fs */
68 struct kobject *fs_kobj;
69 EXPORT_SYMBOL_GPL(fs_kobj);
70
71 /*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
80
81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
82 {
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87 }
88
89 static inline struct hlist_head *mp_hash(struct dentry *dentry)
90 {
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
94 }
95
96 /*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
100 static int mnt_alloc_id(struct mount *mnt)
101 {
102 int res;
103
104 retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
106 spin_lock(&mnt_id_lock);
107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
108 if (!res)
109 mnt_id_start = mnt->mnt_id + 1;
110 spin_unlock(&mnt_id_lock);
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115 }
116
117 static void mnt_free_id(struct mount *mnt)
118 {
119 int id = mnt->mnt_id;
120 spin_lock(&mnt_id_lock);
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
124 spin_unlock(&mnt_id_lock);
125 }
126
127 /*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
132 static int mnt_alloc_group_id(struct mount *mnt)
133 {
134 int res;
135
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
141 &mnt->mnt_group_id);
142 if (!res)
143 mnt_group_start = mnt->mnt_group_id + 1;
144
145 return res;
146 }
147
148 /*
149 * Release a peer group ID
150 */
151 void mnt_release_group_id(struct mount *mnt)
152 {
153 int id = mnt->mnt_group_id;
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
157 mnt->mnt_group_id = 0;
158 }
159
160 /*
161 * vfsmount lock must be held for read
162 */
163 static inline void mnt_add_count(struct mount *mnt, int n)
164 {
165 #ifdef CONFIG_SMP
166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
167 #else
168 preempt_disable();
169 mnt->mnt_count += n;
170 preempt_enable();
171 #endif
172 }
173
174 /*
175 * vfsmount lock must be held for write
176 */
177 unsigned int mnt_get_count(struct mount *mnt)
178 {
179 #ifdef CONFIG_SMP
180 unsigned int count = 0;
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
185 }
186
187 return count;
188 #else
189 return mnt->mnt_count;
190 #endif
191 }
192
193 static void drop_mountpoint(struct fs_pin *p)
194 {
195 struct mount *m = container_of(p, struct mount, mnt_umount);
196 dput(m->mnt_ex_mountpoint);
197 pin_remove(p);
198 mntput(&m->mnt);
199 }
200
201 static struct mount *alloc_vfsmnt(const char *name)
202 {
203 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
204 if (mnt) {
205 int err;
206
207 err = mnt_alloc_id(mnt);
208 if (err)
209 goto out_free_cache;
210
211 if (name) {
212 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
213 if (!mnt->mnt_devname)
214 goto out_free_id;
215 }
216
217 #ifdef CONFIG_SMP
218 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
219 if (!mnt->mnt_pcp)
220 goto out_free_devname;
221
222 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
223 #else
224 mnt->mnt_count = 1;
225 mnt->mnt_writers = 0;
226 #endif
227
228 INIT_HLIST_NODE(&mnt->mnt_hash);
229 INIT_LIST_HEAD(&mnt->mnt_child);
230 INIT_LIST_HEAD(&mnt->mnt_mounts);
231 INIT_LIST_HEAD(&mnt->mnt_list);
232 INIT_LIST_HEAD(&mnt->mnt_expire);
233 INIT_LIST_HEAD(&mnt->mnt_share);
234 INIT_LIST_HEAD(&mnt->mnt_slave_list);
235 INIT_LIST_HEAD(&mnt->mnt_slave);
236 INIT_HLIST_NODE(&mnt->mnt_mp_list);
237 #ifdef CONFIG_FSNOTIFY
238 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
239 #endif
240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
241 }
242 return mnt;
243
244 #ifdef CONFIG_SMP
245 out_free_devname:
246 kfree_const(mnt->mnt_devname);
247 #endif
248 out_free_id:
249 mnt_free_id(mnt);
250 out_free_cache:
251 kmem_cache_free(mnt_cache, mnt);
252 return NULL;
253 }
254
255 /*
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
262 */
263 /*
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
266 *
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
273 */
274 int __mnt_is_readonly(struct vfsmount *mnt)
275 {
276 if (mnt->mnt_flags & MNT_READONLY)
277 return 1;
278 if (mnt->mnt_sb->s_flags & MS_RDONLY)
279 return 1;
280 return 0;
281 }
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283
284 static inline void mnt_inc_writers(struct mount *mnt)
285 {
286 #ifdef CONFIG_SMP
287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
288 #else
289 mnt->mnt_writers++;
290 #endif
291 }
292
293 static inline void mnt_dec_writers(struct mount *mnt)
294 {
295 #ifdef CONFIG_SMP
296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
297 #else
298 mnt->mnt_writers--;
299 #endif
300 }
301
302 static unsigned int mnt_get_writers(struct mount *mnt)
303 {
304 #ifdef CONFIG_SMP
305 unsigned int count = 0;
306 int cpu;
307
308 for_each_possible_cpu(cpu) {
309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
310 }
311
312 return count;
313 #else
314 return mnt->mnt_writers;
315 #endif
316 }
317
318 static int mnt_is_readonly(struct vfsmount *mnt)
319 {
320 if (mnt->mnt_sb->s_readonly_remount)
321 return 1;
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 smp_rmb();
324 return __mnt_is_readonly(mnt);
325 }
326
327 /*
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
332 */
333 /**
334 * __mnt_want_write - get write access to a mount without freeze protection
335 * @m: the mount on which to take a write
336 *
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
342 */
343 int __mnt_want_write(struct vfsmount *m)
344 {
345 struct mount *mnt = real_mount(m);
346 int ret = 0;
347
348 preempt_disable();
349 mnt_inc_writers(mnt);
350 /*
351 * The store to mnt_inc_writers must be visible before we pass
352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
354 */
355 smp_mb();
356 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
357 cpu_relax();
358 /*
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
362 */
363 smp_rmb();
364 if (mnt_is_readonly(m)) {
365 mnt_dec_writers(mnt);
366 ret = -EROFS;
367 }
368 preempt_enable();
369
370 return ret;
371 }
372
373 /**
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
376 *
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
381 */
382 int mnt_want_write(struct vfsmount *m)
383 {
384 int ret;
385
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
388 if (ret)
389 sb_end_write(m->mnt_sb);
390 return ret;
391 }
392 EXPORT_SYMBOL_GPL(mnt_want_write);
393
394 /**
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
397 *
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
402 *
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
405 */
406 int mnt_clone_write(struct vfsmount *mnt)
407 {
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
410 return -EROFS;
411 preempt_disable();
412 mnt_inc_writers(real_mount(mnt));
413 preempt_enable();
414 return 0;
415 }
416 EXPORT_SYMBOL_GPL(mnt_clone_write);
417
418 /**
419 * __mnt_want_write_file - get write access to a file's mount
420 * @file: the file who's mount on which to take a write
421 *
422 * This is like __mnt_want_write, but it takes a file and can
423 * do some optimisations if the file is open for write already
424 */
425 int __mnt_want_write_file(struct file *file)
426 {
427 if (!(file->f_mode & FMODE_WRITER))
428 return __mnt_want_write(file->f_path.mnt);
429 else
430 return mnt_clone_write(file->f_path.mnt);
431 }
432
433 /**
434 * mnt_want_write_file - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
436 *
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
439 */
440 int mnt_want_write_file(struct file *file)
441 {
442 int ret;
443
444 sb_start_write(file->f_path.mnt->mnt_sb);
445 ret = __mnt_want_write_file(file);
446 if (ret)
447 sb_end_write(file->f_path.mnt->mnt_sb);
448 return ret;
449 }
450 EXPORT_SYMBOL_GPL(mnt_want_write_file);
451
452 /**
453 * __mnt_drop_write - give up write access to a mount
454 * @mnt: the mount on which to give up write access
455 *
456 * Tells the low-level filesystem that we are done
457 * performing writes to it. Must be matched with
458 * __mnt_want_write() call above.
459 */
460 void __mnt_drop_write(struct vfsmount *mnt)
461 {
462 preempt_disable();
463 mnt_dec_writers(real_mount(mnt));
464 preempt_enable();
465 }
466
467 /**
468 * mnt_drop_write - give up write access to a mount
469 * @mnt: the mount on which to give up write access
470 *
471 * Tells the low-level filesystem that we are done performing writes to it and
472 * also allows filesystem to be frozen again. Must be matched with
473 * mnt_want_write() call above.
474 */
475 void mnt_drop_write(struct vfsmount *mnt)
476 {
477 __mnt_drop_write(mnt);
478 sb_end_write(mnt->mnt_sb);
479 }
480 EXPORT_SYMBOL_GPL(mnt_drop_write);
481
482 void __mnt_drop_write_file(struct file *file)
483 {
484 __mnt_drop_write(file->f_path.mnt);
485 }
486
487 void mnt_drop_write_file(struct file *file)
488 {
489 mnt_drop_write(file->f_path.mnt);
490 }
491 EXPORT_SYMBOL(mnt_drop_write_file);
492
493 static int mnt_make_readonly(struct mount *mnt)
494 {
495 int ret = 0;
496
497 lock_mount_hash();
498 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
499 /*
500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 * should be visible before we do.
502 */
503 smp_mb();
504
505 /*
506 * With writers on hold, if this value is zero, then there are
507 * definitely no active writers (although held writers may subsequently
508 * increment the count, they'll have to wait, and decrement it after
509 * seeing MNT_READONLY).
510 *
511 * It is OK to have counter incremented on one CPU and decremented on
512 * another: the sum will add up correctly. The danger would be when we
513 * sum up each counter, if we read a counter before it is incremented,
514 * but then read another CPU's count which it has been subsequently
515 * decremented from -- we would see more decrements than we should.
516 * MNT_WRITE_HOLD protects against this scenario, because
517 * mnt_want_write first increments count, then smp_mb, then spins on
518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 * we're counting up here.
520 */
521 if (mnt_get_writers(mnt) > 0)
522 ret = -EBUSY;
523 else
524 mnt->mnt.mnt_flags |= MNT_READONLY;
525 /*
526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 * that become unheld will see MNT_READONLY.
528 */
529 smp_wmb();
530 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
531 unlock_mount_hash();
532 return ret;
533 }
534
535 static void __mnt_unmake_readonly(struct mount *mnt)
536 {
537 lock_mount_hash();
538 mnt->mnt.mnt_flags &= ~MNT_READONLY;
539 unlock_mount_hash();
540 }
541
542 int sb_prepare_remount_readonly(struct super_block *sb)
543 {
544 struct mount *mnt;
545 int err = 0;
546
547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
548 if (atomic_long_read(&sb->s_remove_count))
549 return -EBUSY;
550
551 lock_mount_hash();
552 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
553 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
554 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
555 smp_mb();
556 if (mnt_get_writers(mnt) > 0) {
557 err = -EBUSY;
558 break;
559 }
560 }
561 }
562 if (!err && atomic_long_read(&sb->s_remove_count))
563 err = -EBUSY;
564
565 if (!err) {
566 sb->s_readonly_remount = 1;
567 smp_wmb();
568 }
569 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
570 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
571 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
572 }
573 unlock_mount_hash();
574
575 return err;
576 }
577
578 static void free_vfsmnt(struct mount *mnt)
579 {
580 kfree_const(mnt->mnt_devname);
581 #ifdef CONFIG_SMP
582 free_percpu(mnt->mnt_pcp);
583 #endif
584 kmem_cache_free(mnt_cache, mnt);
585 }
586
587 static void delayed_free_vfsmnt(struct rcu_head *head)
588 {
589 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
590 }
591
592 /* call under rcu_read_lock */
593 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
594 {
595 struct mount *mnt;
596 if (read_seqretry(&mount_lock, seq))
597 return false;
598 if (bastard == NULL)
599 return true;
600 mnt = real_mount(bastard);
601 mnt_add_count(mnt, 1);
602 if (likely(!read_seqretry(&mount_lock, seq)))
603 return true;
604 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
605 mnt_add_count(mnt, -1);
606 return false;
607 }
608 rcu_read_unlock();
609 mntput(bastard);
610 rcu_read_lock();
611 return false;
612 }
613
614 /*
615 * find the first mount at @dentry on vfsmount @mnt.
616 * call under rcu_read_lock()
617 */
618 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
619 {
620 struct hlist_head *head = m_hash(mnt, dentry);
621 struct mount *p;
622
623 hlist_for_each_entry_rcu(p, head, mnt_hash)
624 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
625 return p;
626 return NULL;
627 }
628
629 /*
630 * find the last mount at @dentry on vfsmount @mnt.
631 * mount_lock must be held.
632 */
633 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
634 {
635 struct mount *p, *res = NULL;
636 p = __lookup_mnt(mnt, dentry);
637 if (!p)
638 goto out;
639 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
640 res = p;
641 hlist_for_each_entry_continue(p, mnt_hash) {
642 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
643 break;
644 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
645 res = p;
646 }
647 out:
648 return res;
649 }
650
651 /*
652 * lookup_mnt - Return the first child mount mounted at path
653 *
654 * "First" means first mounted chronologically. If you create the
655 * following mounts:
656 *
657 * mount /dev/sda1 /mnt
658 * mount /dev/sda2 /mnt
659 * mount /dev/sda3 /mnt
660 *
661 * Then lookup_mnt() on the base /mnt dentry in the root mount will
662 * return successively the root dentry and vfsmount of /dev/sda1, then
663 * /dev/sda2, then /dev/sda3, then NULL.
664 *
665 * lookup_mnt takes a reference to the found vfsmount.
666 */
667 struct vfsmount *lookup_mnt(struct path *path)
668 {
669 struct mount *child_mnt;
670 struct vfsmount *m;
671 unsigned seq;
672
673 rcu_read_lock();
674 do {
675 seq = read_seqbegin(&mount_lock);
676 child_mnt = __lookup_mnt(path->mnt, path->dentry);
677 m = child_mnt ? &child_mnt->mnt : NULL;
678 } while (!legitimize_mnt(m, seq));
679 rcu_read_unlock();
680 return m;
681 }
682
683 /*
684 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
685 * current mount namespace.
686 *
687 * The common case is dentries are not mountpoints at all and that
688 * test is handled inline. For the slow case when we are actually
689 * dealing with a mountpoint of some kind, walk through all of the
690 * mounts in the current mount namespace and test to see if the dentry
691 * is a mountpoint.
692 *
693 * The mount_hashtable is not usable in the context because we
694 * need to identify all mounts that may be in the current mount
695 * namespace not just a mount that happens to have some specified
696 * parent mount.
697 */
698 bool __is_local_mountpoint(struct dentry *dentry)
699 {
700 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
701 struct mount *mnt;
702 bool is_covered = false;
703
704 if (!d_mountpoint(dentry))
705 goto out;
706
707 down_read(&namespace_sem);
708 list_for_each_entry(mnt, &ns->list, mnt_list) {
709 is_covered = (mnt->mnt_mountpoint == dentry);
710 if (is_covered)
711 break;
712 }
713 up_read(&namespace_sem);
714 out:
715 return is_covered;
716 }
717
718 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
719 {
720 struct hlist_head *chain = mp_hash(dentry);
721 struct mountpoint *mp;
722
723 hlist_for_each_entry(mp, chain, m_hash) {
724 if (mp->m_dentry == dentry) {
725 /* might be worth a WARN_ON() */
726 if (d_unlinked(dentry))
727 return ERR_PTR(-ENOENT);
728 mp->m_count++;
729 return mp;
730 }
731 }
732 return NULL;
733 }
734
735 static struct mountpoint *new_mountpoint(struct dentry *dentry)
736 {
737 struct hlist_head *chain = mp_hash(dentry);
738 struct mountpoint *mp;
739 int ret;
740
741 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
742 if (!mp)
743 return ERR_PTR(-ENOMEM);
744
745 ret = d_set_mounted(dentry);
746 if (ret) {
747 kfree(mp);
748 return ERR_PTR(ret);
749 }
750
751 mp->m_dentry = dentry;
752 mp->m_count = 1;
753 hlist_add_head(&mp->m_hash, chain);
754 INIT_HLIST_HEAD(&mp->m_list);
755 return mp;
756 }
757
758 static void put_mountpoint(struct mountpoint *mp)
759 {
760 if (!--mp->m_count) {
761 struct dentry *dentry = mp->m_dentry;
762 BUG_ON(!hlist_empty(&mp->m_list));
763 spin_lock(&dentry->d_lock);
764 dentry->d_flags &= ~DCACHE_MOUNTED;
765 spin_unlock(&dentry->d_lock);
766 hlist_del(&mp->m_hash);
767 kfree(mp);
768 }
769 }
770
771 static inline int check_mnt(struct mount *mnt)
772 {
773 return mnt->mnt_ns == current->nsproxy->mnt_ns;
774 }
775
776 /*
777 * vfsmount lock must be held for write
778 */
779 static void touch_mnt_namespace(struct mnt_namespace *ns)
780 {
781 if (ns) {
782 ns->event = ++event;
783 wake_up_interruptible(&ns->poll);
784 }
785 }
786
787 /*
788 * vfsmount lock must be held for write
789 */
790 static void __touch_mnt_namespace(struct mnt_namespace *ns)
791 {
792 if (ns && ns->event != event) {
793 ns->event = event;
794 wake_up_interruptible(&ns->poll);
795 }
796 }
797
798 /*
799 * vfsmount lock must be held for write
800 */
801 static void detach_mnt(struct mount *mnt, struct path *old_path)
802 {
803 old_path->dentry = mnt->mnt_mountpoint;
804 old_path->mnt = &mnt->mnt_parent->mnt;
805 mnt->mnt_parent = mnt;
806 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
807 list_del_init(&mnt->mnt_child);
808 hlist_del_init_rcu(&mnt->mnt_hash);
809 hlist_del_init(&mnt->mnt_mp_list);
810 put_mountpoint(mnt->mnt_mp);
811 mnt->mnt_mp = NULL;
812 }
813
814 /*
815 * vfsmount lock must be held for write
816 */
817 void mnt_set_mountpoint(struct mount *mnt,
818 struct mountpoint *mp,
819 struct mount *child_mnt)
820 {
821 mp->m_count++;
822 mnt_add_count(mnt, 1); /* essentially, that's mntget */
823 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
824 child_mnt->mnt_parent = mnt;
825 child_mnt->mnt_mp = mp;
826 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
827 }
828
829 /*
830 * vfsmount lock must be held for write
831 */
832 static void attach_mnt(struct mount *mnt,
833 struct mount *parent,
834 struct mountpoint *mp)
835 {
836 mnt_set_mountpoint(parent, mp, mnt);
837 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
838 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
839 }
840
841 static void attach_shadowed(struct mount *mnt,
842 struct mount *parent,
843 struct mount *shadows)
844 {
845 if (shadows) {
846 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
847 list_add(&mnt->mnt_child, &shadows->mnt_child);
848 } else {
849 hlist_add_head_rcu(&mnt->mnt_hash,
850 m_hash(&parent->mnt, mnt->mnt_mountpoint));
851 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
852 }
853 }
854
855 /*
856 * vfsmount lock must be held for write
857 */
858 static void commit_tree(struct mount *mnt, struct mount *shadows)
859 {
860 struct mount *parent = mnt->mnt_parent;
861 struct mount *m;
862 LIST_HEAD(head);
863 struct mnt_namespace *n = parent->mnt_ns;
864
865 BUG_ON(parent == mnt);
866
867 list_add_tail(&head, &mnt->mnt_list);
868 list_for_each_entry(m, &head, mnt_list)
869 m->mnt_ns = n;
870
871 list_splice(&head, n->list.prev);
872
873 attach_shadowed(mnt, parent, shadows);
874 touch_mnt_namespace(n);
875 }
876
877 static struct mount *next_mnt(struct mount *p, struct mount *root)
878 {
879 struct list_head *next = p->mnt_mounts.next;
880 if (next == &p->mnt_mounts) {
881 while (1) {
882 if (p == root)
883 return NULL;
884 next = p->mnt_child.next;
885 if (next != &p->mnt_parent->mnt_mounts)
886 break;
887 p = p->mnt_parent;
888 }
889 }
890 return list_entry(next, struct mount, mnt_child);
891 }
892
893 static struct mount *skip_mnt_tree(struct mount *p)
894 {
895 struct list_head *prev = p->mnt_mounts.prev;
896 while (prev != &p->mnt_mounts) {
897 p = list_entry(prev, struct mount, mnt_child);
898 prev = p->mnt_mounts.prev;
899 }
900 return p;
901 }
902
903 struct vfsmount *
904 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
905 {
906 struct mount *mnt;
907 struct dentry *root;
908
909 if (!type)
910 return ERR_PTR(-ENODEV);
911
912 mnt = alloc_vfsmnt(name);
913 if (!mnt)
914 return ERR_PTR(-ENOMEM);
915
916 if (flags & MS_KERNMOUNT)
917 mnt->mnt.mnt_flags = MNT_INTERNAL;
918
919 root = mount_fs(type, flags, name, data);
920 if (IS_ERR(root)) {
921 mnt_free_id(mnt);
922 free_vfsmnt(mnt);
923 return ERR_CAST(root);
924 }
925
926 mnt->mnt.mnt_root = root;
927 mnt->mnt.mnt_sb = root->d_sb;
928 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
929 mnt->mnt_parent = mnt;
930 lock_mount_hash();
931 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
932 unlock_mount_hash();
933 return &mnt->mnt;
934 }
935 EXPORT_SYMBOL_GPL(vfs_kern_mount);
936
937 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
938 int flag)
939 {
940 struct super_block *sb = old->mnt.mnt_sb;
941 struct mount *mnt;
942 int err;
943
944 mnt = alloc_vfsmnt(old->mnt_devname);
945 if (!mnt)
946 return ERR_PTR(-ENOMEM);
947
948 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
949 mnt->mnt_group_id = 0; /* not a peer of original */
950 else
951 mnt->mnt_group_id = old->mnt_group_id;
952
953 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
954 err = mnt_alloc_group_id(mnt);
955 if (err)
956 goto out_free;
957 }
958
959 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
960 /* Don't allow unprivileged users to change mount flags */
961 if (flag & CL_UNPRIVILEGED) {
962 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
963
964 if (mnt->mnt.mnt_flags & MNT_READONLY)
965 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
966
967 if (mnt->mnt.mnt_flags & MNT_NODEV)
968 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
969
970 if (mnt->mnt.mnt_flags & MNT_NOSUID)
971 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
972
973 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
974 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
975 }
976
977 /* Don't allow unprivileged users to reveal what is under a mount */
978 if ((flag & CL_UNPRIVILEGED) &&
979 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
980 mnt->mnt.mnt_flags |= MNT_LOCKED;
981
982 atomic_inc(&sb->s_active);
983 mnt->mnt.mnt_sb = sb;
984 mnt->mnt.mnt_root = dget(root);
985 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
986 mnt->mnt_parent = mnt;
987 lock_mount_hash();
988 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
989 unlock_mount_hash();
990
991 if ((flag & CL_SLAVE) ||
992 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
993 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
994 mnt->mnt_master = old;
995 CLEAR_MNT_SHARED(mnt);
996 } else if (!(flag & CL_PRIVATE)) {
997 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
998 list_add(&mnt->mnt_share, &old->mnt_share);
999 if (IS_MNT_SLAVE(old))
1000 list_add(&mnt->mnt_slave, &old->mnt_slave);
1001 mnt->mnt_master = old->mnt_master;
1002 }
1003 if (flag & CL_MAKE_SHARED)
1004 set_mnt_shared(mnt);
1005
1006 /* stick the duplicate mount on the same expiry list
1007 * as the original if that was on one */
1008 if (flag & CL_EXPIRE) {
1009 if (!list_empty(&old->mnt_expire))
1010 list_add(&mnt->mnt_expire, &old->mnt_expire);
1011 }
1012
1013 return mnt;
1014
1015 out_free:
1016 mnt_free_id(mnt);
1017 free_vfsmnt(mnt);
1018 return ERR_PTR(err);
1019 }
1020
1021 static void cleanup_mnt(struct mount *mnt)
1022 {
1023 /*
1024 * This probably indicates that somebody messed
1025 * up a mnt_want/drop_write() pair. If this
1026 * happens, the filesystem was probably unable
1027 * to make r/w->r/o transitions.
1028 */
1029 /*
1030 * The locking used to deal with mnt_count decrement provides barriers,
1031 * so mnt_get_writers() below is safe.
1032 */
1033 WARN_ON(mnt_get_writers(mnt));
1034 if (unlikely(mnt->mnt_pins.first))
1035 mnt_pin_kill(mnt);
1036 fsnotify_vfsmount_delete(&mnt->mnt);
1037 dput(mnt->mnt.mnt_root);
1038 deactivate_super(mnt->mnt.mnt_sb);
1039 mnt_free_id(mnt);
1040 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1041 }
1042
1043 static void __cleanup_mnt(struct rcu_head *head)
1044 {
1045 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1046 }
1047
1048 static LLIST_HEAD(delayed_mntput_list);
1049 static void delayed_mntput(struct work_struct *unused)
1050 {
1051 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1052 struct llist_node *next;
1053
1054 for (; node; node = next) {
1055 next = llist_next(node);
1056 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1057 }
1058 }
1059 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1060
1061 static void mntput_no_expire(struct mount *mnt)
1062 {
1063 rcu_read_lock();
1064 mnt_add_count(mnt, -1);
1065 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1066 rcu_read_unlock();
1067 return;
1068 }
1069 lock_mount_hash();
1070 if (mnt_get_count(mnt)) {
1071 rcu_read_unlock();
1072 unlock_mount_hash();
1073 return;
1074 }
1075 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1076 rcu_read_unlock();
1077 unlock_mount_hash();
1078 return;
1079 }
1080 mnt->mnt.mnt_flags |= MNT_DOOMED;
1081 rcu_read_unlock();
1082
1083 list_del(&mnt->mnt_instance);
1084 unlock_mount_hash();
1085
1086 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1087 struct task_struct *task = current;
1088 if (likely(!(task->flags & PF_KTHREAD))) {
1089 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1090 if (!task_work_add(task, &mnt->mnt_rcu, true))
1091 return;
1092 }
1093 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1094 schedule_delayed_work(&delayed_mntput_work, 1);
1095 return;
1096 }
1097 cleanup_mnt(mnt);
1098 }
1099
1100 void mntput(struct vfsmount *mnt)
1101 {
1102 if (mnt) {
1103 struct mount *m = real_mount(mnt);
1104 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1105 if (unlikely(m->mnt_expiry_mark))
1106 m->mnt_expiry_mark = 0;
1107 mntput_no_expire(m);
1108 }
1109 }
1110 EXPORT_SYMBOL(mntput);
1111
1112 struct vfsmount *mntget(struct vfsmount *mnt)
1113 {
1114 if (mnt)
1115 mnt_add_count(real_mount(mnt), 1);
1116 return mnt;
1117 }
1118 EXPORT_SYMBOL(mntget);
1119
1120 struct vfsmount *mnt_clone_internal(struct path *path)
1121 {
1122 struct mount *p;
1123 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1124 if (IS_ERR(p))
1125 return ERR_CAST(p);
1126 p->mnt.mnt_flags |= MNT_INTERNAL;
1127 return &p->mnt;
1128 }
1129
1130 static inline void mangle(struct seq_file *m, const char *s)
1131 {
1132 seq_escape(m, s, " \t\n\\");
1133 }
1134
1135 /*
1136 * Simple .show_options callback for filesystems which don't want to
1137 * implement more complex mount option showing.
1138 *
1139 * See also save_mount_options().
1140 */
1141 int generic_show_options(struct seq_file *m, struct dentry *root)
1142 {
1143 const char *options;
1144
1145 rcu_read_lock();
1146 options = rcu_dereference(root->d_sb->s_options);
1147
1148 if (options != NULL && options[0]) {
1149 seq_putc(m, ',');
1150 mangle(m, options);
1151 }
1152 rcu_read_unlock();
1153
1154 return 0;
1155 }
1156 EXPORT_SYMBOL(generic_show_options);
1157
1158 /*
1159 * If filesystem uses generic_show_options(), this function should be
1160 * called from the fill_super() callback.
1161 *
1162 * The .remount_fs callback usually needs to be handled in a special
1163 * way, to make sure, that previous options are not overwritten if the
1164 * remount fails.
1165 *
1166 * Also note, that if the filesystem's .remount_fs function doesn't
1167 * reset all options to their default value, but changes only newly
1168 * given options, then the displayed options will not reflect reality
1169 * any more.
1170 */
1171 void save_mount_options(struct super_block *sb, char *options)
1172 {
1173 BUG_ON(sb->s_options);
1174 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1175 }
1176 EXPORT_SYMBOL(save_mount_options);
1177
1178 void replace_mount_options(struct super_block *sb, char *options)
1179 {
1180 char *old = sb->s_options;
1181 rcu_assign_pointer(sb->s_options, options);
1182 if (old) {
1183 synchronize_rcu();
1184 kfree(old);
1185 }
1186 }
1187 EXPORT_SYMBOL(replace_mount_options);
1188
1189 #ifdef CONFIG_PROC_FS
1190 /* iterator; we want it to have access to namespace_sem, thus here... */
1191 static void *m_start(struct seq_file *m, loff_t *pos)
1192 {
1193 struct proc_mounts *p = proc_mounts(m);
1194
1195 down_read(&namespace_sem);
1196 if (p->cached_event == p->ns->event) {
1197 void *v = p->cached_mount;
1198 if (*pos == p->cached_index)
1199 return v;
1200 if (*pos == p->cached_index + 1) {
1201 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1202 return p->cached_mount = v;
1203 }
1204 }
1205
1206 p->cached_event = p->ns->event;
1207 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1208 p->cached_index = *pos;
1209 return p->cached_mount;
1210 }
1211
1212 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1213 {
1214 struct proc_mounts *p = proc_mounts(m);
1215
1216 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1217 p->cached_index = *pos;
1218 return p->cached_mount;
1219 }
1220
1221 static void m_stop(struct seq_file *m, void *v)
1222 {
1223 up_read(&namespace_sem);
1224 }
1225
1226 static int m_show(struct seq_file *m, void *v)
1227 {
1228 struct proc_mounts *p = proc_mounts(m);
1229 struct mount *r = list_entry(v, struct mount, mnt_list);
1230 return p->show(m, &r->mnt);
1231 }
1232
1233 const struct seq_operations mounts_op = {
1234 .start = m_start,
1235 .next = m_next,
1236 .stop = m_stop,
1237 .show = m_show,
1238 };
1239 #endif /* CONFIG_PROC_FS */
1240
1241 /**
1242 * may_umount_tree - check if a mount tree is busy
1243 * @mnt: root of mount tree
1244 *
1245 * This is called to check if a tree of mounts has any
1246 * open files, pwds, chroots or sub mounts that are
1247 * busy.
1248 */
1249 int may_umount_tree(struct vfsmount *m)
1250 {
1251 struct mount *mnt = real_mount(m);
1252 int actual_refs = 0;
1253 int minimum_refs = 0;
1254 struct mount *p;
1255 BUG_ON(!m);
1256
1257 /* write lock needed for mnt_get_count */
1258 lock_mount_hash();
1259 for (p = mnt; p; p = next_mnt(p, mnt)) {
1260 actual_refs += mnt_get_count(p);
1261 minimum_refs += 2;
1262 }
1263 unlock_mount_hash();
1264
1265 if (actual_refs > minimum_refs)
1266 return 0;
1267
1268 return 1;
1269 }
1270
1271 EXPORT_SYMBOL(may_umount_tree);
1272
1273 /**
1274 * may_umount - check if a mount point is busy
1275 * @mnt: root of mount
1276 *
1277 * This is called to check if a mount point has any
1278 * open files, pwds, chroots or sub mounts. If the
1279 * mount has sub mounts this will return busy
1280 * regardless of whether the sub mounts are busy.
1281 *
1282 * Doesn't take quota and stuff into account. IOW, in some cases it will
1283 * give false negatives. The main reason why it's here is that we need
1284 * a non-destructive way to look for easily umountable filesystems.
1285 */
1286 int may_umount(struct vfsmount *mnt)
1287 {
1288 int ret = 1;
1289 down_read(&namespace_sem);
1290 lock_mount_hash();
1291 if (propagate_mount_busy(real_mount(mnt), 2))
1292 ret = 0;
1293 unlock_mount_hash();
1294 up_read(&namespace_sem);
1295 return ret;
1296 }
1297
1298 EXPORT_SYMBOL(may_umount);
1299
1300 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1301
1302 static void namespace_unlock(void)
1303 {
1304 struct hlist_head head;
1305
1306 hlist_move_list(&unmounted, &head);
1307
1308 up_write(&namespace_sem);
1309
1310 if (likely(hlist_empty(&head)))
1311 return;
1312
1313 synchronize_rcu();
1314
1315 group_pin_kill(&head);
1316 }
1317
1318 static inline void namespace_lock(void)
1319 {
1320 down_write(&namespace_sem);
1321 }
1322
1323 enum umount_tree_flags {
1324 UMOUNT_SYNC = 1,
1325 UMOUNT_PROPAGATE = 2,
1326 };
1327 /*
1328 * mount_lock must be held
1329 * namespace_sem must be held for write
1330 */
1331 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1332 {
1333 LIST_HEAD(tmp_list);
1334 struct mount *p;
1335
1336 if (how & UMOUNT_PROPAGATE)
1337 propagate_mount_unlock(mnt);
1338
1339 /* Gather the mounts to umount */
1340 for (p = mnt; p; p = next_mnt(p, mnt)) {
1341 p->mnt.mnt_flags |= MNT_UMOUNT;
1342 list_move(&p->mnt_list, &tmp_list);
1343 }
1344
1345 /* Hide the mounts from mnt_mounts */
1346 list_for_each_entry(p, &tmp_list, mnt_list) {
1347 list_del_init(&p->mnt_child);
1348 }
1349
1350 /* Add propogated mounts to the tmp_list */
1351 if (how & UMOUNT_PROPAGATE)
1352 propagate_umount(&tmp_list);
1353
1354 while (!list_empty(&tmp_list)) {
1355 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1356 list_del_init(&p->mnt_expire);
1357 list_del_init(&p->mnt_list);
1358 __touch_mnt_namespace(p->mnt_ns);
1359 p->mnt_ns = NULL;
1360 if (how & UMOUNT_SYNC)
1361 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1362
1363 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt, &unmounted);
1364 if (mnt_has_parent(p)) {
1365 hlist_del_init(&p->mnt_mp_list);
1366 put_mountpoint(p->mnt_mp);
1367 mnt_add_count(p->mnt_parent, -1);
1368 /* old mountpoint will be dropped when we can do that */
1369 p->mnt_ex_mountpoint = p->mnt_mountpoint;
1370 p->mnt_mountpoint = p->mnt.mnt_root;
1371 p->mnt_parent = p;
1372 p->mnt_mp = NULL;
1373 hlist_del_init_rcu(&p->mnt_hash);
1374 }
1375 change_mnt_propagation(p, MS_PRIVATE);
1376 }
1377 }
1378
1379 static void shrink_submounts(struct mount *mnt);
1380
1381 static int do_umount(struct mount *mnt, int flags)
1382 {
1383 struct super_block *sb = mnt->mnt.mnt_sb;
1384 int retval;
1385
1386 retval = security_sb_umount(&mnt->mnt, flags);
1387 if (retval)
1388 return retval;
1389
1390 /*
1391 * Allow userspace to request a mountpoint be expired rather than
1392 * unmounting unconditionally. Unmount only happens if:
1393 * (1) the mark is already set (the mark is cleared by mntput())
1394 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1395 */
1396 if (flags & MNT_EXPIRE) {
1397 if (&mnt->mnt == current->fs->root.mnt ||
1398 flags & (MNT_FORCE | MNT_DETACH))
1399 return -EINVAL;
1400
1401 /*
1402 * probably don't strictly need the lock here if we examined
1403 * all race cases, but it's a slowpath.
1404 */
1405 lock_mount_hash();
1406 if (mnt_get_count(mnt) != 2) {
1407 unlock_mount_hash();
1408 return -EBUSY;
1409 }
1410 unlock_mount_hash();
1411
1412 if (!xchg(&mnt->mnt_expiry_mark, 1))
1413 return -EAGAIN;
1414 }
1415
1416 /*
1417 * If we may have to abort operations to get out of this
1418 * mount, and they will themselves hold resources we must
1419 * allow the fs to do things. In the Unix tradition of
1420 * 'Gee thats tricky lets do it in userspace' the umount_begin
1421 * might fail to complete on the first run through as other tasks
1422 * must return, and the like. Thats for the mount program to worry
1423 * about for the moment.
1424 */
1425
1426 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1427 sb->s_op->umount_begin(sb);
1428 }
1429
1430 /*
1431 * No sense to grab the lock for this test, but test itself looks
1432 * somewhat bogus. Suggestions for better replacement?
1433 * Ho-hum... In principle, we might treat that as umount + switch
1434 * to rootfs. GC would eventually take care of the old vfsmount.
1435 * Actually it makes sense, especially if rootfs would contain a
1436 * /reboot - static binary that would close all descriptors and
1437 * call reboot(9). Then init(8) could umount root and exec /reboot.
1438 */
1439 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1440 /*
1441 * Special case for "unmounting" root ...
1442 * we just try to remount it readonly.
1443 */
1444 if (!capable(CAP_SYS_ADMIN))
1445 return -EPERM;
1446 down_write(&sb->s_umount);
1447 if (!(sb->s_flags & MS_RDONLY))
1448 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1449 up_write(&sb->s_umount);
1450 return retval;
1451 }
1452
1453 namespace_lock();
1454 lock_mount_hash();
1455 event++;
1456
1457 if (flags & MNT_DETACH) {
1458 if (!list_empty(&mnt->mnt_list))
1459 umount_tree(mnt, UMOUNT_PROPAGATE);
1460 retval = 0;
1461 } else {
1462 shrink_submounts(mnt);
1463 retval = -EBUSY;
1464 if (!propagate_mount_busy(mnt, 2)) {
1465 if (!list_empty(&mnt->mnt_list))
1466 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1467 retval = 0;
1468 }
1469 }
1470 unlock_mount_hash();
1471 namespace_unlock();
1472 return retval;
1473 }
1474
1475 /*
1476 * __detach_mounts - lazily unmount all mounts on the specified dentry
1477 *
1478 * During unlink, rmdir, and d_drop it is possible to loose the path
1479 * to an existing mountpoint, and wind up leaking the mount.
1480 * detach_mounts allows lazily unmounting those mounts instead of
1481 * leaking them.
1482 *
1483 * The caller may hold dentry->d_inode->i_mutex.
1484 */
1485 void __detach_mounts(struct dentry *dentry)
1486 {
1487 struct mountpoint *mp;
1488 struct mount *mnt;
1489
1490 namespace_lock();
1491 mp = lookup_mountpoint(dentry);
1492 if (!mp)
1493 goto out_unlock;
1494
1495 lock_mount_hash();
1496 while (!hlist_empty(&mp->m_list)) {
1497 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1498 umount_tree(mnt, 0);
1499 }
1500 unlock_mount_hash();
1501 put_mountpoint(mp);
1502 out_unlock:
1503 namespace_unlock();
1504 }
1505
1506 /*
1507 * Is the caller allowed to modify his namespace?
1508 */
1509 static inline bool may_mount(void)
1510 {
1511 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1512 }
1513
1514 /*
1515 * Now umount can handle mount points as well as block devices.
1516 * This is important for filesystems which use unnamed block devices.
1517 *
1518 * We now support a flag for forced unmount like the other 'big iron'
1519 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1520 */
1521
1522 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1523 {
1524 struct path path;
1525 struct mount *mnt;
1526 int retval;
1527 int lookup_flags = 0;
1528
1529 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1530 return -EINVAL;
1531
1532 if (!may_mount())
1533 return -EPERM;
1534
1535 if (!(flags & UMOUNT_NOFOLLOW))
1536 lookup_flags |= LOOKUP_FOLLOW;
1537
1538 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1539 if (retval)
1540 goto out;
1541 mnt = real_mount(path.mnt);
1542 retval = -EINVAL;
1543 if (path.dentry != path.mnt->mnt_root)
1544 goto dput_and_out;
1545 if (!check_mnt(mnt))
1546 goto dput_and_out;
1547 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1548 goto dput_and_out;
1549 retval = -EPERM;
1550 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1551 goto dput_and_out;
1552
1553 retval = do_umount(mnt, flags);
1554 dput_and_out:
1555 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1556 dput(path.dentry);
1557 mntput_no_expire(mnt);
1558 out:
1559 return retval;
1560 }
1561
1562 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1563
1564 /*
1565 * The 2.0 compatible umount. No flags.
1566 */
1567 SYSCALL_DEFINE1(oldumount, char __user *, name)
1568 {
1569 return sys_umount(name, 0);
1570 }
1571
1572 #endif
1573
1574 static bool is_mnt_ns_file(struct dentry *dentry)
1575 {
1576 /* Is this a proxy for a mount namespace? */
1577 return dentry->d_op == &ns_dentry_operations &&
1578 dentry->d_fsdata == &mntns_operations;
1579 }
1580
1581 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1582 {
1583 return container_of(ns, struct mnt_namespace, ns);
1584 }
1585
1586 static bool mnt_ns_loop(struct dentry *dentry)
1587 {
1588 /* Could bind mounting the mount namespace inode cause a
1589 * mount namespace loop?
1590 */
1591 struct mnt_namespace *mnt_ns;
1592 if (!is_mnt_ns_file(dentry))
1593 return false;
1594
1595 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1596 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1597 }
1598
1599 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1600 int flag)
1601 {
1602 struct mount *res, *p, *q, *r, *parent;
1603
1604 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1605 return ERR_PTR(-EINVAL);
1606
1607 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1608 return ERR_PTR(-EINVAL);
1609
1610 res = q = clone_mnt(mnt, dentry, flag);
1611 if (IS_ERR(q))
1612 return q;
1613
1614 q->mnt_mountpoint = mnt->mnt_mountpoint;
1615
1616 p = mnt;
1617 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1618 struct mount *s;
1619 if (!is_subdir(r->mnt_mountpoint, dentry))
1620 continue;
1621
1622 for (s = r; s; s = next_mnt(s, r)) {
1623 struct mount *t = NULL;
1624 if (!(flag & CL_COPY_UNBINDABLE) &&
1625 IS_MNT_UNBINDABLE(s)) {
1626 s = skip_mnt_tree(s);
1627 continue;
1628 }
1629 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1630 is_mnt_ns_file(s->mnt.mnt_root)) {
1631 s = skip_mnt_tree(s);
1632 continue;
1633 }
1634 while (p != s->mnt_parent) {
1635 p = p->mnt_parent;
1636 q = q->mnt_parent;
1637 }
1638 p = s;
1639 parent = q;
1640 q = clone_mnt(p, p->mnt.mnt_root, flag);
1641 if (IS_ERR(q))
1642 goto out;
1643 lock_mount_hash();
1644 list_add_tail(&q->mnt_list, &res->mnt_list);
1645 mnt_set_mountpoint(parent, p->mnt_mp, q);
1646 if (!list_empty(&parent->mnt_mounts)) {
1647 t = list_last_entry(&parent->mnt_mounts,
1648 struct mount, mnt_child);
1649 if (t->mnt_mp != p->mnt_mp)
1650 t = NULL;
1651 }
1652 attach_shadowed(q, parent, t);
1653 unlock_mount_hash();
1654 }
1655 }
1656 return res;
1657 out:
1658 if (res) {
1659 lock_mount_hash();
1660 umount_tree(res, UMOUNT_SYNC);
1661 unlock_mount_hash();
1662 }
1663 return q;
1664 }
1665
1666 /* Caller should check returned pointer for errors */
1667
1668 struct vfsmount *collect_mounts(struct path *path)
1669 {
1670 struct mount *tree;
1671 namespace_lock();
1672 tree = copy_tree(real_mount(path->mnt), path->dentry,
1673 CL_COPY_ALL | CL_PRIVATE);
1674 namespace_unlock();
1675 if (IS_ERR(tree))
1676 return ERR_CAST(tree);
1677 return &tree->mnt;
1678 }
1679
1680 void drop_collected_mounts(struct vfsmount *mnt)
1681 {
1682 namespace_lock();
1683 lock_mount_hash();
1684 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1685 unlock_mount_hash();
1686 namespace_unlock();
1687 }
1688
1689 /**
1690 * clone_private_mount - create a private clone of a path
1691 *
1692 * This creates a new vfsmount, which will be the clone of @path. The new will
1693 * not be attached anywhere in the namespace and will be private (i.e. changes
1694 * to the originating mount won't be propagated into this).
1695 *
1696 * Release with mntput().
1697 */
1698 struct vfsmount *clone_private_mount(struct path *path)
1699 {
1700 struct mount *old_mnt = real_mount(path->mnt);
1701 struct mount *new_mnt;
1702
1703 if (IS_MNT_UNBINDABLE(old_mnt))
1704 return ERR_PTR(-EINVAL);
1705
1706 down_read(&namespace_sem);
1707 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1708 up_read(&namespace_sem);
1709 if (IS_ERR(new_mnt))
1710 return ERR_CAST(new_mnt);
1711
1712 return &new_mnt->mnt;
1713 }
1714 EXPORT_SYMBOL_GPL(clone_private_mount);
1715
1716 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1717 struct vfsmount *root)
1718 {
1719 struct mount *mnt;
1720 int res = f(root, arg);
1721 if (res)
1722 return res;
1723 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1724 res = f(&mnt->mnt, arg);
1725 if (res)
1726 return res;
1727 }
1728 return 0;
1729 }
1730
1731 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1732 {
1733 struct mount *p;
1734
1735 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1736 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1737 mnt_release_group_id(p);
1738 }
1739 }
1740
1741 static int invent_group_ids(struct mount *mnt, bool recurse)
1742 {
1743 struct mount *p;
1744
1745 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1746 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1747 int err = mnt_alloc_group_id(p);
1748 if (err) {
1749 cleanup_group_ids(mnt, p);
1750 return err;
1751 }
1752 }
1753 }
1754
1755 return 0;
1756 }
1757
1758 /*
1759 * @source_mnt : mount tree to be attached
1760 * @nd : place the mount tree @source_mnt is attached
1761 * @parent_nd : if non-null, detach the source_mnt from its parent and
1762 * store the parent mount and mountpoint dentry.
1763 * (done when source_mnt is moved)
1764 *
1765 * NOTE: in the table below explains the semantics when a source mount
1766 * of a given type is attached to a destination mount of a given type.
1767 * ---------------------------------------------------------------------------
1768 * | BIND MOUNT OPERATION |
1769 * |**************************************************************************
1770 * | source-->| shared | private | slave | unbindable |
1771 * | dest | | | | |
1772 * | | | | | | |
1773 * | v | | | | |
1774 * |**************************************************************************
1775 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1776 * | | | | | |
1777 * |non-shared| shared (+) | private | slave (*) | invalid |
1778 * ***************************************************************************
1779 * A bind operation clones the source mount and mounts the clone on the
1780 * destination mount.
1781 *
1782 * (++) the cloned mount is propagated to all the mounts in the propagation
1783 * tree of the destination mount and the cloned mount is added to
1784 * the peer group of the source mount.
1785 * (+) the cloned mount is created under the destination mount and is marked
1786 * as shared. The cloned mount is added to the peer group of the source
1787 * mount.
1788 * (+++) the mount is propagated to all the mounts in the propagation tree
1789 * of the destination mount and the cloned mount is made slave
1790 * of the same master as that of the source mount. The cloned mount
1791 * is marked as 'shared and slave'.
1792 * (*) the cloned mount is made a slave of the same master as that of the
1793 * source mount.
1794 *
1795 * ---------------------------------------------------------------------------
1796 * | MOVE MOUNT OPERATION |
1797 * |**************************************************************************
1798 * | source-->| shared | private | slave | unbindable |
1799 * | dest | | | | |
1800 * | | | | | | |
1801 * | v | | | | |
1802 * |**************************************************************************
1803 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1804 * | | | | | |
1805 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1806 * ***************************************************************************
1807 *
1808 * (+) the mount is moved to the destination. And is then propagated to
1809 * all the mounts in the propagation tree of the destination mount.
1810 * (+*) the mount is moved to the destination.
1811 * (+++) the mount is moved to the destination and is then propagated to
1812 * all the mounts belonging to the destination mount's propagation tree.
1813 * the mount is marked as 'shared and slave'.
1814 * (*) the mount continues to be a slave at the new location.
1815 *
1816 * if the source mount is a tree, the operations explained above is
1817 * applied to each mount in the tree.
1818 * Must be called without spinlocks held, since this function can sleep
1819 * in allocations.
1820 */
1821 static int attach_recursive_mnt(struct mount *source_mnt,
1822 struct mount *dest_mnt,
1823 struct mountpoint *dest_mp,
1824 struct path *parent_path)
1825 {
1826 HLIST_HEAD(tree_list);
1827 struct mount *child, *p;
1828 struct hlist_node *n;
1829 int err;
1830
1831 if (IS_MNT_SHARED(dest_mnt)) {
1832 err = invent_group_ids(source_mnt, true);
1833 if (err)
1834 goto out;
1835 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1836 lock_mount_hash();
1837 if (err)
1838 goto out_cleanup_ids;
1839 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1840 set_mnt_shared(p);
1841 } else {
1842 lock_mount_hash();
1843 }
1844 if (parent_path) {
1845 detach_mnt(source_mnt, parent_path);
1846 attach_mnt(source_mnt, dest_mnt, dest_mp);
1847 touch_mnt_namespace(source_mnt->mnt_ns);
1848 } else {
1849 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1850 commit_tree(source_mnt, NULL);
1851 }
1852
1853 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1854 struct mount *q;
1855 hlist_del_init(&child->mnt_hash);
1856 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1857 child->mnt_mountpoint);
1858 commit_tree(child, q);
1859 }
1860 unlock_mount_hash();
1861
1862 return 0;
1863
1864 out_cleanup_ids:
1865 while (!hlist_empty(&tree_list)) {
1866 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1867 umount_tree(child, UMOUNT_SYNC);
1868 }
1869 unlock_mount_hash();
1870 cleanup_group_ids(source_mnt, NULL);
1871 out:
1872 return err;
1873 }
1874
1875 static struct mountpoint *lock_mount(struct path *path)
1876 {
1877 struct vfsmount *mnt;
1878 struct dentry *dentry = path->dentry;
1879 retry:
1880 mutex_lock(&dentry->d_inode->i_mutex);
1881 if (unlikely(cant_mount(dentry))) {
1882 mutex_unlock(&dentry->d_inode->i_mutex);
1883 return ERR_PTR(-ENOENT);
1884 }
1885 namespace_lock();
1886 mnt = lookup_mnt(path);
1887 if (likely(!mnt)) {
1888 struct mountpoint *mp = lookup_mountpoint(dentry);
1889 if (!mp)
1890 mp = new_mountpoint(dentry);
1891 if (IS_ERR(mp)) {
1892 namespace_unlock();
1893 mutex_unlock(&dentry->d_inode->i_mutex);
1894 return mp;
1895 }
1896 return mp;
1897 }
1898 namespace_unlock();
1899 mutex_unlock(&path->dentry->d_inode->i_mutex);
1900 path_put(path);
1901 path->mnt = mnt;
1902 dentry = path->dentry = dget(mnt->mnt_root);
1903 goto retry;
1904 }
1905
1906 static void unlock_mount(struct mountpoint *where)
1907 {
1908 struct dentry *dentry = where->m_dentry;
1909 put_mountpoint(where);
1910 namespace_unlock();
1911 mutex_unlock(&dentry->d_inode->i_mutex);
1912 }
1913
1914 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1915 {
1916 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1917 return -EINVAL;
1918
1919 if (d_is_dir(mp->m_dentry) !=
1920 d_is_dir(mnt->mnt.mnt_root))
1921 return -ENOTDIR;
1922
1923 return attach_recursive_mnt(mnt, p, mp, NULL);
1924 }
1925
1926 /*
1927 * Sanity check the flags to change_mnt_propagation.
1928 */
1929
1930 static int flags_to_propagation_type(int flags)
1931 {
1932 int type = flags & ~(MS_REC | MS_SILENT);
1933
1934 /* Fail if any non-propagation flags are set */
1935 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1936 return 0;
1937 /* Only one propagation flag should be set */
1938 if (!is_power_of_2(type))
1939 return 0;
1940 return type;
1941 }
1942
1943 /*
1944 * recursively change the type of the mountpoint.
1945 */
1946 static int do_change_type(struct path *path, int flag)
1947 {
1948 struct mount *m;
1949 struct mount *mnt = real_mount(path->mnt);
1950 int recurse = flag & MS_REC;
1951 int type;
1952 int err = 0;
1953
1954 if (path->dentry != path->mnt->mnt_root)
1955 return -EINVAL;
1956
1957 type = flags_to_propagation_type(flag);
1958 if (!type)
1959 return -EINVAL;
1960
1961 namespace_lock();
1962 if (type == MS_SHARED) {
1963 err = invent_group_ids(mnt, recurse);
1964 if (err)
1965 goto out_unlock;
1966 }
1967
1968 lock_mount_hash();
1969 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1970 change_mnt_propagation(m, type);
1971 unlock_mount_hash();
1972
1973 out_unlock:
1974 namespace_unlock();
1975 return err;
1976 }
1977
1978 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1979 {
1980 struct mount *child;
1981 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1982 if (!is_subdir(child->mnt_mountpoint, dentry))
1983 continue;
1984
1985 if (child->mnt.mnt_flags & MNT_LOCKED)
1986 return true;
1987 }
1988 return false;
1989 }
1990
1991 /*
1992 * do loopback mount.
1993 */
1994 static int do_loopback(struct path *path, const char *old_name,
1995 int recurse)
1996 {
1997 struct path old_path;
1998 struct mount *mnt = NULL, *old, *parent;
1999 struct mountpoint *mp;
2000 int err;
2001 if (!old_name || !*old_name)
2002 return -EINVAL;
2003 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2004 if (err)
2005 return err;
2006
2007 err = -EINVAL;
2008 if (mnt_ns_loop(old_path.dentry))
2009 goto out;
2010
2011 mp = lock_mount(path);
2012 err = PTR_ERR(mp);
2013 if (IS_ERR(mp))
2014 goto out;
2015
2016 old = real_mount(old_path.mnt);
2017 parent = real_mount(path->mnt);
2018
2019 err = -EINVAL;
2020 if (IS_MNT_UNBINDABLE(old))
2021 goto out2;
2022
2023 if (!check_mnt(parent))
2024 goto out2;
2025
2026 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2027 goto out2;
2028
2029 if (!recurse && has_locked_children(old, old_path.dentry))
2030 goto out2;
2031
2032 if (recurse)
2033 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2034 else
2035 mnt = clone_mnt(old, old_path.dentry, 0);
2036
2037 if (IS_ERR(mnt)) {
2038 err = PTR_ERR(mnt);
2039 goto out2;
2040 }
2041
2042 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2043
2044 err = graft_tree(mnt, parent, mp);
2045 if (err) {
2046 lock_mount_hash();
2047 umount_tree(mnt, UMOUNT_SYNC);
2048 unlock_mount_hash();
2049 }
2050 out2:
2051 unlock_mount(mp);
2052 out:
2053 path_put(&old_path);
2054 return err;
2055 }
2056
2057 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2058 {
2059 int error = 0;
2060 int readonly_request = 0;
2061
2062 if (ms_flags & MS_RDONLY)
2063 readonly_request = 1;
2064 if (readonly_request == __mnt_is_readonly(mnt))
2065 return 0;
2066
2067 if (readonly_request)
2068 error = mnt_make_readonly(real_mount(mnt));
2069 else
2070 __mnt_unmake_readonly(real_mount(mnt));
2071 return error;
2072 }
2073
2074 /*
2075 * change filesystem flags. dir should be a physical root of filesystem.
2076 * If you've mounted a non-root directory somewhere and want to do remount
2077 * on it - tough luck.
2078 */
2079 static int do_remount(struct path *path, int flags, int mnt_flags,
2080 void *data)
2081 {
2082 int err;
2083 struct super_block *sb = path->mnt->mnt_sb;
2084 struct mount *mnt = real_mount(path->mnt);
2085
2086 if (!check_mnt(mnt))
2087 return -EINVAL;
2088
2089 if (path->dentry != path->mnt->mnt_root)
2090 return -EINVAL;
2091
2092 /* Don't allow changing of locked mnt flags.
2093 *
2094 * No locks need to be held here while testing the various
2095 * MNT_LOCK flags because those flags can never be cleared
2096 * once they are set.
2097 */
2098 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2099 !(mnt_flags & MNT_READONLY)) {
2100 return -EPERM;
2101 }
2102 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2103 !(mnt_flags & MNT_NODEV)) {
2104 /* Was the nodev implicitly added in mount? */
2105 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2106 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2107 mnt_flags |= MNT_NODEV;
2108 } else {
2109 return -EPERM;
2110 }
2111 }
2112 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2113 !(mnt_flags & MNT_NOSUID)) {
2114 return -EPERM;
2115 }
2116 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2117 !(mnt_flags & MNT_NOEXEC)) {
2118 return -EPERM;
2119 }
2120 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2121 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2122 return -EPERM;
2123 }
2124
2125 err = security_sb_remount(sb, data);
2126 if (err)
2127 return err;
2128
2129 down_write(&sb->s_umount);
2130 if (flags & MS_BIND)
2131 err = change_mount_flags(path->mnt, flags);
2132 else if (!capable(CAP_SYS_ADMIN))
2133 err = -EPERM;
2134 else
2135 err = do_remount_sb(sb, flags, data, 0);
2136 if (!err) {
2137 lock_mount_hash();
2138 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2139 mnt->mnt.mnt_flags = mnt_flags;
2140 touch_mnt_namespace(mnt->mnt_ns);
2141 unlock_mount_hash();
2142 }
2143 up_write(&sb->s_umount);
2144 return err;
2145 }
2146
2147 static inline int tree_contains_unbindable(struct mount *mnt)
2148 {
2149 struct mount *p;
2150 for (p = mnt; p; p = next_mnt(p, mnt)) {
2151 if (IS_MNT_UNBINDABLE(p))
2152 return 1;
2153 }
2154 return 0;
2155 }
2156
2157 static int do_move_mount(struct path *path, const char *old_name)
2158 {
2159 struct path old_path, parent_path;
2160 struct mount *p;
2161 struct mount *old;
2162 struct mountpoint *mp;
2163 int err;
2164 if (!old_name || !*old_name)
2165 return -EINVAL;
2166 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2167 if (err)
2168 return err;
2169
2170 mp = lock_mount(path);
2171 err = PTR_ERR(mp);
2172 if (IS_ERR(mp))
2173 goto out;
2174
2175 old = real_mount(old_path.mnt);
2176 p = real_mount(path->mnt);
2177
2178 err = -EINVAL;
2179 if (!check_mnt(p) || !check_mnt(old))
2180 goto out1;
2181
2182 if (old->mnt.mnt_flags & MNT_LOCKED)
2183 goto out1;
2184
2185 err = -EINVAL;
2186 if (old_path.dentry != old_path.mnt->mnt_root)
2187 goto out1;
2188
2189 if (!mnt_has_parent(old))
2190 goto out1;
2191
2192 if (d_is_dir(path->dentry) !=
2193 d_is_dir(old_path.dentry))
2194 goto out1;
2195 /*
2196 * Don't move a mount residing in a shared parent.
2197 */
2198 if (IS_MNT_SHARED(old->mnt_parent))
2199 goto out1;
2200 /*
2201 * Don't move a mount tree containing unbindable mounts to a destination
2202 * mount which is shared.
2203 */
2204 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2205 goto out1;
2206 err = -ELOOP;
2207 for (; mnt_has_parent(p); p = p->mnt_parent)
2208 if (p == old)
2209 goto out1;
2210
2211 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2212 if (err)
2213 goto out1;
2214
2215 /* if the mount is moved, it should no longer be expire
2216 * automatically */
2217 list_del_init(&old->mnt_expire);
2218 out1:
2219 unlock_mount(mp);
2220 out:
2221 if (!err)
2222 path_put(&parent_path);
2223 path_put(&old_path);
2224 return err;
2225 }
2226
2227 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2228 {
2229 int err;
2230 const char *subtype = strchr(fstype, '.');
2231 if (subtype) {
2232 subtype++;
2233 err = -EINVAL;
2234 if (!subtype[0])
2235 goto err;
2236 } else
2237 subtype = "";
2238
2239 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2240 err = -ENOMEM;
2241 if (!mnt->mnt_sb->s_subtype)
2242 goto err;
2243 return mnt;
2244
2245 err:
2246 mntput(mnt);
2247 return ERR_PTR(err);
2248 }
2249
2250 /*
2251 * add a mount into a namespace's mount tree
2252 */
2253 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2254 {
2255 struct mountpoint *mp;
2256 struct mount *parent;
2257 int err;
2258
2259 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2260
2261 mp = lock_mount(path);
2262 if (IS_ERR(mp))
2263 return PTR_ERR(mp);
2264
2265 parent = real_mount(path->mnt);
2266 err = -EINVAL;
2267 if (unlikely(!check_mnt(parent))) {
2268 /* that's acceptable only for automounts done in private ns */
2269 if (!(mnt_flags & MNT_SHRINKABLE))
2270 goto unlock;
2271 /* ... and for those we'd better have mountpoint still alive */
2272 if (!parent->mnt_ns)
2273 goto unlock;
2274 }
2275
2276 /* Refuse the same filesystem on the same mount point */
2277 err = -EBUSY;
2278 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2279 path->mnt->mnt_root == path->dentry)
2280 goto unlock;
2281
2282 err = -EINVAL;
2283 if (d_is_symlink(newmnt->mnt.mnt_root))
2284 goto unlock;
2285
2286 newmnt->mnt.mnt_flags = mnt_flags;
2287 err = graft_tree(newmnt, parent, mp);
2288
2289 unlock:
2290 unlock_mount(mp);
2291 return err;
2292 }
2293
2294 /*
2295 * create a new mount for userspace and request it to be added into the
2296 * namespace's tree
2297 */
2298 static int do_new_mount(struct path *path, const char *fstype, int flags,
2299 int mnt_flags, const char *name, void *data)
2300 {
2301 struct file_system_type *type;
2302 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2303 struct vfsmount *mnt;
2304 int err;
2305
2306 if (!fstype)
2307 return -EINVAL;
2308
2309 type = get_fs_type(fstype);
2310 if (!type)
2311 return -ENODEV;
2312
2313 if (user_ns != &init_user_ns) {
2314 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2315 put_filesystem(type);
2316 return -EPERM;
2317 }
2318 /* Only in special cases allow devices from mounts
2319 * created outside the initial user namespace.
2320 */
2321 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2322 flags |= MS_NODEV;
2323 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2324 }
2325 }
2326
2327 mnt = vfs_kern_mount(type, flags, name, data);
2328 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2329 !mnt->mnt_sb->s_subtype)
2330 mnt = fs_set_subtype(mnt, fstype);
2331
2332 put_filesystem(type);
2333 if (IS_ERR(mnt))
2334 return PTR_ERR(mnt);
2335
2336 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2337 if (err)
2338 mntput(mnt);
2339 return err;
2340 }
2341
2342 int finish_automount(struct vfsmount *m, struct path *path)
2343 {
2344 struct mount *mnt = real_mount(m);
2345 int err;
2346 /* The new mount record should have at least 2 refs to prevent it being
2347 * expired before we get a chance to add it
2348 */
2349 BUG_ON(mnt_get_count(mnt) < 2);
2350
2351 if (m->mnt_sb == path->mnt->mnt_sb &&
2352 m->mnt_root == path->dentry) {
2353 err = -ELOOP;
2354 goto fail;
2355 }
2356
2357 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2358 if (!err)
2359 return 0;
2360 fail:
2361 /* remove m from any expiration list it may be on */
2362 if (!list_empty(&mnt->mnt_expire)) {
2363 namespace_lock();
2364 list_del_init(&mnt->mnt_expire);
2365 namespace_unlock();
2366 }
2367 mntput(m);
2368 mntput(m);
2369 return err;
2370 }
2371
2372 /**
2373 * mnt_set_expiry - Put a mount on an expiration list
2374 * @mnt: The mount to list.
2375 * @expiry_list: The list to add the mount to.
2376 */
2377 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2378 {
2379 namespace_lock();
2380
2381 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2382
2383 namespace_unlock();
2384 }
2385 EXPORT_SYMBOL(mnt_set_expiry);
2386
2387 /*
2388 * process a list of expirable mountpoints with the intent of discarding any
2389 * mountpoints that aren't in use and haven't been touched since last we came
2390 * here
2391 */
2392 void mark_mounts_for_expiry(struct list_head *mounts)
2393 {
2394 struct mount *mnt, *next;
2395 LIST_HEAD(graveyard);
2396
2397 if (list_empty(mounts))
2398 return;
2399
2400 namespace_lock();
2401 lock_mount_hash();
2402
2403 /* extract from the expiration list every vfsmount that matches the
2404 * following criteria:
2405 * - only referenced by its parent vfsmount
2406 * - still marked for expiry (marked on the last call here; marks are
2407 * cleared by mntput())
2408 */
2409 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2410 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2411 propagate_mount_busy(mnt, 1))
2412 continue;
2413 list_move(&mnt->mnt_expire, &graveyard);
2414 }
2415 while (!list_empty(&graveyard)) {
2416 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2417 touch_mnt_namespace(mnt->mnt_ns);
2418 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2419 }
2420 unlock_mount_hash();
2421 namespace_unlock();
2422 }
2423
2424 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2425
2426 /*
2427 * Ripoff of 'select_parent()'
2428 *
2429 * search the list of submounts for a given mountpoint, and move any
2430 * shrinkable submounts to the 'graveyard' list.
2431 */
2432 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2433 {
2434 struct mount *this_parent = parent;
2435 struct list_head *next;
2436 int found = 0;
2437
2438 repeat:
2439 next = this_parent->mnt_mounts.next;
2440 resume:
2441 while (next != &this_parent->mnt_mounts) {
2442 struct list_head *tmp = next;
2443 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2444
2445 next = tmp->next;
2446 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2447 continue;
2448 /*
2449 * Descend a level if the d_mounts list is non-empty.
2450 */
2451 if (!list_empty(&mnt->mnt_mounts)) {
2452 this_parent = mnt;
2453 goto repeat;
2454 }
2455
2456 if (!propagate_mount_busy(mnt, 1)) {
2457 list_move_tail(&mnt->mnt_expire, graveyard);
2458 found++;
2459 }
2460 }
2461 /*
2462 * All done at this level ... ascend and resume the search
2463 */
2464 if (this_parent != parent) {
2465 next = this_parent->mnt_child.next;
2466 this_parent = this_parent->mnt_parent;
2467 goto resume;
2468 }
2469 return found;
2470 }
2471
2472 /*
2473 * process a list of expirable mountpoints with the intent of discarding any
2474 * submounts of a specific parent mountpoint
2475 *
2476 * mount_lock must be held for write
2477 */
2478 static void shrink_submounts(struct mount *mnt)
2479 {
2480 LIST_HEAD(graveyard);
2481 struct mount *m;
2482
2483 /* extract submounts of 'mountpoint' from the expiration list */
2484 while (select_submounts(mnt, &graveyard)) {
2485 while (!list_empty(&graveyard)) {
2486 m = list_first_entry(&graveyard, struct mount,
2487 mnt_expire);
2488 touch_mnt_namespace(m->mnt_ns);
2489 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2490 }
2491 }
2492 }
2493
2494 /*
2495 * Some copy_from_user() implementations do not return the exact number of
2496 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2497 * Note that this function differs from copy_from_user() in that it will oops
2498 * on bad values of `to', rather than returning a short copy.
2499 */
2500 static long exact_copy_from_user(void *to, const void __user * from,
2501 unsigned long n)
2502 {
2503 char *t = to;
2504 const char __user *f = from;
2505 char c;
2506
2507 if (!access_ok(VERIFY_READ, from, n))
2508 return n;
2509
2510 while (n) {
2511 if (__get_user(c, f)) {
2512 memset(t, 0, n);
2513 break;
2514 }
2515 *t++ = c;
2516 f++;
2517 n--;
2518 }
2519 return n;
2520 }
2521
2522 int copy_mount_options(const void __user * data, unsigned long *where)
2523 {
2524 int i;
2525 unsigned long page;
2526 unsigned long size;
2527
2528 *where = 0;
2529 if (!data)
2530 return 0;
2531
2532 if (!(page = __get_free_page(GFP_KERNEL)))
2533 return -ENOMEM;
2534
2535 /* We only care that *some* data at the address the user
2536 * gave us is valid. Just in case, we'll zero
2537 * the remainder of the page.
2538 */
2539 /* copy_from_user cannot cross TASK_SIZE ! */
2540 size = TASK_SIZE - (unsigned long)data;
2541 if (size > PAGE_SIZE)
2542 size = PAGE_SIZE;
2543
2544 i = size - exact_copy_from_user((void *)page, data, size);
2545 if (!i) {
2546 free_page(page);
2547 return -EFAULT;
2548 }
2549 if (i != PAGE_SIZE)
2550 memset((char *)page + i, 0, PAGE_SIZE - i);
2551 *where = page;
2552 return 0;
2553 }
2554
2555 char *copy_mount_string(const void __user *data)
2556 {
2557 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2558 }
2559
2560 /*
2561 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2562 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2563 *
2564 * data is a (void *) that can point to any structure up to
2565 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2566 * information (or be NULL).
2567 *
2568 * Pre-0.97 versions of mount() didn't have a flags word.
2569 * When the flags word was introduced its top half was required
2570 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2571 * Therefore, if this magic number is present, it carries no information
2572 * and must be discarded.
2573 */
2574 long do_mount(const char *dev_name, const char __user *dir_name,
2575 const char *type_page, unsigned long flags, void *data_page)
2576 {
2577 struct path path;
2578 int retval = 0;
2579 int mnt_flags = 0;
2580
2581 /* Discard magic */
2582 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2583 flags &= ~MS_MGC_MSK;
2584
2585 /* Basic sanity checks */
2586 if (data_page)
2587 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2588
2589 /* ... and get the mountpoint */
2590 retval = user_path(dir_name, &path);
2591 if (retval)
2592 return retval;
2593
2594 retval = security_sb_mount(dev_name, &path,
2595 type_page, flags, data_page);
2596 if (!retval && !may_mount())
2597 retval = -EPERM;
2598 if (retval)
2599 goto dput_out;
2600
2601 /* Default to relatime unless overriden */
2602 if (!(flags & MS_NOATIME))
2603 mnt_flags |= MNT_RELATIME;
2604
2605 /* Separate the per-mountpoint flags */
2606 if (flags & MS_NOSUID)
2607 mnt_flags |= MNT_NOSUID;
2608 if (flags & MS_NODEV)
2609 mnt_flags |= MNT_NODEV;
2610 if (flags & MS_NOEXEC)
2611 mnt_flags |= MNT_NOEXEC;
2612 if (flags & MS_NOATIME)
2613 mnt_flags |= MNT_NOATIME;
2614 if (flags & MS_NODIRATIME)
2615 mnt_flags |= MNT_NODIRATIME;
2616 if (flags & MS_STRICTATIME)
2617 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2618 if (flags & MS_RDONLY)
2619 mnt_flags |= MNT_READONLY;
2620
2621 /* The default atime for remount is preservation */
2622 if ((flags & MS_REMOUNT) &&
2623 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2624 MS_STRICTATIME)) == 0)) {
2625 mnt_flags &= ~MNT_ATIME_MASK;
2626 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2627 }
2628
2629 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2630 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2631 MS_STRICTATIME);
2632
2633 if (flags & MS_REMOUNT)
2634 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2635 data_page);
2636 else if (flags & MS_BIND)
2637 retval = do_loopback(&path, dev_name, flags & MS_REC);
2638 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2639 retval = do_change_type(&path, flags);
2640 else if (flags & MS_MOVE)
2641 retval = do_move_mount(&path, dev_name);
2642 else
2643 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2644 dev_name, data_page);
2645 dput_out:
2646 path_put(&path);
2647 return retval;
2648 }
2649
2650 static void free_mnt_ns(struct mnt_namespace *ns)
2651 {
2652 ns_free_inum(&ns->ns);
2653 put_user_ns(ns->user_ns);
2654 kfree(ns);
2655 }
2656
2657 /*
2658 * Assign a sequence number so we can detect when we attempt to bind
2659 * mount a reference to an older mount namespace into the current
2660 * mount namespace, preventing reference counting loops. A 64bit
2661 * number incrementing at 10Ghz will take 12,427 years to wrap which
2662 * is effectively never, so we can ignore the possibility.
2663 */
2664 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2665
2666 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2667 {
2668 struct mnt_namespace *new_ns;
2669 int ret;
2670
2671 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2672 if (!new_ns)
2673 return ERR_PTR(-ENOMEM);
2674 ret = ns_alloc_inum(&new_ns->ns);
2675 if (ret) {
2676 kfree(new_ns);
2677 return ERR_PTR(ret);
2678 }
2679 new_ns->ns.ops = &mntns_operations;
2680 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2681 atomic_set(&new_ns->count, 1);
2682 new_ns->root = NULL;
2683 INIT_LIST_HEAD(&new_ns->list);
2684 init_waitqueue_head(&new_ns->poll);
2685 new_ns->event = 0;
2686 new_ns->user_ns = get_user_ns(user_ns);
2687 return new_ns;
2688 }
2689
2690 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2691 struct user_namespace *user_ns, struct fs_struct *new_fs)
2692 {
2693 struct mnt_namespace *new_ns;
2694 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2695 struct mount *p, *q;
2696 struct mount *old;
2697 struct mount *new;
2698 int copy_flags;
2699
2700 BUG_ON(!ns);
2701
2702 if (likely(!(flags & CLONE_NEWNS))) {
2703 get_mnt_ns(ns);
2704 return ns;
2705 }
2706
2707 old = ns->root;
2708
2709 new_ns = alloc_mnt_ns(user_ns);
2710 if (IS_ERR(new_ns))
2711 return new_ns;
2712
2713 namespace_lock();
2714 /* First pass: copy the tree topology */
2715 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2716 if (user_ns != ns->user_ns)
2717 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2718 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2719 if (IS_ERR(new)) {
2720 namespace_unlock();
2721 free_mnt_ns(new_ns);
2722 return ERR_CAST(new);
2723 }
2724 new_ns->root = new;
2725 list_add_tail(&new_ns->list, &new->mnt_list);
2726
2727 /*
2728 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2729 * as belonging to new namespace. We have already acquired a private
2730 * fs_struct, so tsk->fs->lock is not needed.
2731 */
2732 p = old;
2733 q = new;
2734 while (p) {
2735 q->mnt_ns = new_ns;
2736 if (new_fs) {
2737 if (&p->mnt == new_fs->root.mnt) {
2738 new_fs->root.mnt = mntget(&q->mnt);
2739 rootmnt = &p->mnt;
2740 }
2741 if (&p->mnt == new_fs->pwd.mnt) {
2742 new_fs->pwd.mnt = mntget(&q->mnt);
2743 pwdmnt = &p->mnt;
2744 }
2745 }
2746 p = next_mnt(p, old);
2747 q = next_mnt(q, new);
2748 if (!q)
2749 break;
2750 while (p->mnt.mnt_root != q->mnt.mnt_root)
2751 p = next_mnt(p, old);
2752 }
2753 namespace_unlock();
2754
2755 if (rootmnt)
2756 mntput(rootmnt);
2757 if (pwdmnt)
2758 mntput(pwdmnt);
2759
2760 return new_ns;
2761 }
2762
2763 /**
2764 * create_mnt_ns - creates a private namespace and adds a root filesystem
2765 * @mnt: pointer to the new root filesystem mountpoint
2766 */
2767 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2768 {
2769 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2770 if (!IS_ERR(new_ns)) {
2771 struct mount *mnt = real_mount(m);
2772 mnt->mnt_ns = new_ns;
2773 new_ns->root = mnt;
2774 list_add(&mnt->mnt_list, &new_ns->list);
2775 } else {
2776 mntput(m);
2777 }
2778 return new_ns;
2779 }
2780
2781 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2782 {
2783 struct mnt_namespace *ns;
2784 struct super_block *s;
2785 struct path path;
2786 int err;
2787
2788 ns = create_mnt_ns(mnt);
2789 if (IS_ERR(ns))
2790 return ERR_CAST(ns);
2791
2792 err = vfs_path_lookup(mnt->mnt_root, mnt,
2793 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2794
2795 put_mnt_ns(ns);
2796
2797 if (err)
2798 return ERR_PTR(err);
2799
2800 /* trade a vfsmount reference for active sb one */
2801 s = path.mnt->mnt_sb;
2802 atomic_inc(&s->s_active);
2803 mntput(path.mnt);
2804 /* lock the sucker */
2805 down_write(&s->s_umount);
2806 /* ... and return the root of (sub)tree on it */
2807 return path.dentry;
2808 }
2809 EXPORT_SYMBOL(mount_subtree);
2810
2811 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2812 char __user *, type, unsigned long, flags, void __user *, data)
2813 {
2814 int ret;
2815 char *kernel_type;
2816 char *kernel_dev;
2817 unsigned long data_page;
2818
2819 kernel_type = copy_mount_string(type);
2820 ret = PTR_ERR(kernel_type);
2821 if (IS_ERR(kernel_type))
2822 goto out_type;
2823
2824 kernel_dev = copy_mount_string(dev_name);
2825 ret = PTR_ERR(kernel_dev);
2826 if (IS_ERR(kernel_dev))
2827 goto out_dev;
2828
2829 ret = copy_mount_options(data, &data_page);
2830 if (ret < 0)
2831 goto out_data;
2832
2833 ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
2834 (void *) data_page);
2835
2836 free_page(data_page);
2837 out_data:
2838 kfree(kernel_dev);
2839 out_dev:
2840 kfree(kernel_type);
2841 out_type:
2842 return ret;
2843 }
2844
2845 /*
2846 * Return true if path is reachable from root
2847 *
2848 * namespace_sem or mount_lock is held
2849 */
2850 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2851 const struct path *root)
2852 {
2853 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2854 dentry = mnt->mnt_mountpoint;
2855 mnt = mnt->mnt_parent;
2856 }
2857 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2858 }
2859
2860 int path_is_under(struct path *path1, struct path *path2)
2861 {
2862 int res;
2863 read_seqlock_excl(&mount_lock);
2864 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2865 read_sequnlock_excl(&mount_lock);
2866 return res;
2867 }
2868 EXPORT_SYMBOL(path_is_under);
2869
2870 /*
2871 * pivot_root Semantics:
2872 * Moves the root file system of the current process to the directory put_old,
2873 * makes new_root as the new root file system of the current process, and sets
2874 * root/cwd of all processes which had them on the current root to new_root.
2875 *
2876 * Restrictions:
2877 * The new_root and put_old must be directories, and must not be on the
2878 * same file system as the current process root. The put_old must be
2879 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2880 * pointed to by put_old must yield the same directory as new_root. No other
2881 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2882 *
2883 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2884 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2885 * in this situation.
2886 *
2887 * Notes:
2888 * - we don't move root/cwd if they are not at the root (reason: if something
2889 * cared enough to change them, it's probably wrong to force them elsewhere)
2890 * - it's okay to pick a root that isn't the root of a file system, e.g.
2891 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2892 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2893 * first.
2894 */
2895 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2896 const char __user *, put_old)
2897 {
2898 struct path new, old, parent_path, root_parent, root;
2899 struct mount *new_mnt, *root_mnt, *old_mnt;
2900 struct mountpoint *old_mp, *root_mp;
2901 int error;
2902
2903 if (!may_mount())
2904 return -EPERM;
2905
2906 error = user_path_dir(new_root, &new);
2907 if (error)
2908 goto out0;
2909
2910 error = user_path_dir(put_old, &old);
2911 if (error)
2912 goto out1;
2913
2914 error = security_sb_pivotroot(&old, &new);
2915 if (error)
2916 goto out2;
2917
2918 get_fs_root(current->fs, &root);
2919 old_mp = lock_mount(&old);
2920 error = PTR_ERR(old_mp);
2921 if (IS_ERR(old_mp))
2922 goto out3;
2923
2924 error = -EINVAL;
2925 new_mnt = real_mount(new.mnt);
2926 root_mnt = real_mount(root.mnt);
2927 old_mnt = real_mount(old.mnt);
2928 if (IS_MNT_SHARED(old_mnt) ||
2929 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2930 IS_MNT_SHARED(root_mnt->mnt_parent))
2931 goto out4;
2932 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2933 goto out4;
2934 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2935 goto out4;
2936 error = -ENOENT;
2937 if (d_unlinked(new.dentry))
2938 goto out4;
2939 error = -EBUSY;
2940 if (new_mnt == root_mnt || old_mnt == root_mnt)
2941 goto out4; /* loop, on the same file system */
2942 error = -EINVAL;
2943 if (root.mnt->mnt_root != root.dentry)
2944 goto out4; /* not a mountpoint */
2945 if (!mnt_has_parent(root_mnt))
2946 goto out4; /* not attached */
2947 root_mp = root_mnt->mnt_mp;
2948 if (new.mnt->mnt_root != new.dentry)
2949 goto out4; /* not a mountpoint */
2950 if (!mnt_has_parent(new_mnt))
2951 goto out4; /* not attached */
2952 /* make sure we can reach put_old from new_root */
2953 if (!is_path_reachable(old_mnt, old.dentry, &new))
2954 goto out4;
2955 /* make certain new is below the root */
2956 if (!is_path_reachable(new_mnt, new.dentry, &root))
2957 goto out4;
2958 root_mp->m_count++; /* pin it so it won't go away */
2959 lock_mount_hash();
2960 detach_mnt(new_mnt, &parent_path);
2961 detach_mnt(root_mnt, &root_parent);
2962 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2963 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2964 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2965 }
2966 /* mount old root on put_old */
2967 attach_mnt(root_mnt, old_mnt, old_mp);
2968 /* mount new_root on / */
2969 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2970 touch_mnt_namespace(current->nsproxy->mnt_ns);
2971 /* A moved mount should not expire automatically */
2972 list_del_init(&new_mnt->mnt_expire);
2973 unlock_mount_hash();
2974 chroot_fs_refs(&root, &new);
2975 put_mountpoint(root_mp);
2976 error = 0;
2977 out4:
2978 unlock_mount(old_mp);
2979 if (!error) {
2980 path_put(&root_parent);
2981 path_put(&parent_path);
2982 }
2983 out3:
2984 path_put(&root);
2985 out2:
2986 path_put(&old);
2987 out1:
2988 path_put(&new);
2989 out0:
2990 return error;
2991 }
2992
2993 static void __init init_mount_tree(void)
2994 {
2995 struct vfsmount *mnt;
2996 struct mnt_namespace *ns;
2997 struct path root;
2998 struct file_system_type *type;
2999
3000 type = get_fs_type("rootfs");
3001 if (!type)
3002 panic("Can't find rootfs type");
3003 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3004 put_filesystem(type);
3005 if (IS_ERR(mnt))
3006 panic("Can't create rootfs");
3007
3008 ns = create_mnt_ns(mnt);
3009 if (IS_ERR(ns))
3010 panic("Can't allocate initial namespace");
3011
3012 init_task.nsproxy->mnt_ns = ns;
3013 get_mnt_ns(ns);
3014
3015 root.mnt = mnt;
3016 root.dentry = mnt->mnt_root;
3017 mnt->mnt_flags |= MNT_LOCKED;
3018
3019 set_fs_pwd(current->fs, &root);
3020 set_fs_root(current->fs, &root);
3021 }
3022
3023 void __init mnt_init(void)
3024 {
3025 unsigned u;
3026 int err;
3027
3028 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3029 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3030
3031 mount_hashtable = alloc_large_system_hash("Mount-cache",
3032 sizeof(struct hlist_head),
3033 mhash_entries, 19,
3034 0,
3035 &m_hash_shift, &m_hash_mask, 0, 0);
3036 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3037 sizeof(struct hlist_head),
3038 mphash_entries, 19,
3039 0,
3040 &mp_hash_shift, &mp_hash_mask, 0, 0);
3041
3042 if (!mount_hashtable || !mountpoint_hashtable)
3043 panic("Failed to allocate mount hash table\n");
3044
3045 for (u = 0; u <= m_hash_mask; u++)
3046 INIT_HLIST_HEAD(&mount_hashtable[u]);
3047 for (u = 0; u <= mp_hash_mask; u++)
3048 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3049
3050 kernfs_init();
3051
3052 err = sysfs_init();
3053 if (err)
3054 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3055 __func__, err);
3056 fs_kobj = kobject_create_and_add("fs", NULL);
3057 if (!fs_kobj)
3058 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3059 init_rootfs();
3060 init_mount_tree();
3061 }
3062
3063 void put_mnt_ns(struct mnt_namespace *ns)
3064 {
3065 if (!atomic_dec_and_test(&ns->count))
3066 return;
3067 drop_collected_mounts(&ns->root->mnt);
3068 free_mnt_ns(ns);
3069 }
3070
3071 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3072 {
3073 struct vfsmount *mnt;
3074 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3075 if (!IS_ERR(mnt)) {
3076 /*
3077 * it is a longterm mount, don't release mnt until
3078 * we unmount before file sys is unregistered
3079 */
3080 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3081 }
3082 return mnt;
3083 }
3084 EXPORT_SYMBOL_GPL(kern_mount_data);
3085
3086 void kern_unmount(struct vfsmount *mnt)
3087 {
3088 /* release long term mount so mount point can be released */
3089 if (!IS_ERR_OR_NULL(mnt)) {
3090 real_mount(mnt)->mnt_ns = NULL;
3091 synchronize_rcu(); /* yecchhh... */
3092 mntput(mnt);
3093 }
3094 }
3095 EXPORT_SYMBOL(kern_unmount);
3096
3097 bool our_mnt(struct vfsmount *mnt)
3098 {
3099 return check_mnt(real_mount(mnt));
3100 }
3101
3102 bool current_chrooted(void)
3103 {
3104 /* Does the current process have a non-standard root */
3105 struct path ns_root;
3106 struct path fs_root;
3107 bool chrooted;
3108
3109 /* Find the namespace root */
3110 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3111 ns_root.dentry = ns_root.mnt->mnt_root;
3112 path_get(&ns_root);
3113 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3114 ;
3115
3116 get_fs_root(current->fs, &fs_root);
3117
3118 chrooted = !path_equal(&fs_root, &ns_root);
3119
3120 path_put(&fs_root);
3121 path_put(&ns_root);
3122
3123 return chrooted;
3124 }
3125
3126 bool fs_fully_visible(struct file_system_type *type)
3127 {
3128 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3129 struct mount *mnt;
3130 bool visible = false;
3131
3132 if (unlikely(!ns))
3133 return false;
3134
3135 down_read(&namespace_sem);
3136 list_for_each_entry(mnt, &ns->list, mnt_list) {
3137 struct mount *child;
3138 if (mnt->mnt.mnt_sb->s_type != type)
3139 continue;
3140
3141 /* This mount is not fully visible if there are any child mounts
3142 * that cover anything except for empty directories.
3143 */
3144 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3145 struct inode *inode = child->mnt_mountpoint->d_inode;
3146 if (!S_ISDIR(inode->i_mode))
3147 goto next;
3148 if (inode->i_nlink > 2)
3149 goto next;
3150 }
3151 visible = true;
3152 goto found;
3153 next: ;
3154 }
3155 found:
3156 up_read(&namespace_sem);
3157 return visible;
3158 }
3159
3160 static struct ns_common *mntns_get(struct task_struct *task)
3161 {
3162 struct ns_common *ns = NULL;
3163 struct nsproxy *nsproxy;
3164
3165 task_lock(task);
3166 nsproxy = task->nsproxy;
3167 if (nsproxy) {
3168 ns = &nsproxy->mnt_ns->ns;
3169 get_mnt_ns(to_mnt_ns(ns));
3170 }
3171 task_unlock(task);
3172
3173 return ns;
3174 }
3175
3176 static void mntns_put(struct ns_common *ns)
3177 {
3178 put_mnt_ns(to_mnt_ns(ns));
3179 }
3180
3181 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3182 {
3183 struct fs_struct *fs = current->fs;
3184 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3185 struct path root;
3186
3187 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3188 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3189 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3190 return -EPERM;
3191
3192 if (fs->users != 1)
3193 return -EINVAL;
3194
3195 get_mnt_ns(mnt_ns);
3196 put_mnt_ns(nsproxy->mnt_ns);
3197 nsproxy->mnt_ns = mnt_ns;
3198
3199 /* Find the root */
3200 root.mnt = &mnt_ns->root->mnt;
3201 root.dentry = mnt_ns->root->mnt.mnt_root;
3202 path_get(&root);
3203 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3204 ;
3205
3206 /* Update the pwd and root */
3207 set_fs_pwd(fs, &root);
3208 set_fs_root(fs, &root);
3209
3210 path_put(&root);
3211 return 0;
3212 }
3213
3214 const struct proc_ns_operations mntns_operations = {
3215 .name = "mnt",
3216 .type = CLONE_NEWNS,
3217 .get = mntns_get,
3218 .put = mntns_put,
3219 .install = mntns_install,
3220 };