]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/namespace.c
vfs: spread struct mount - commit_tree
[mirror_ubuntu-focal-kernel.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/percpu.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/cpumask.h>
21 #include <linux/module.h>
22 #include <linux/sysfs.h>
23 #include <linux/seq_file.h>
24 #include <linux/mnt_namespace.h>
25 #include <linux/namei.h>
26 #include <linux/nsproxy.h>
27 #include <linux/security.h>
28 #include <linux/mount.h>
29 #include <linux/ramfs.h>
30 #include <linux/log2.h>
31 #include <linux/idr.h>
32 #include <linux/fs_struct.h>
33 #include <linux/fsnotify.h>
34 #include <asm/uaccess.h>
35 #include <asm/unistd.h>
36 #include "pnode.h"
37 #include "internal.h"
38
39 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40 #define HASH_SIZE (1UL << HASH_SHIFT)
41
42 static int event;
43 static DEFINE_IDA(mnt_id_ida);
44 static DEFINE_IDA(mnt_group_ida);
45 static DEFINE_SPINLOCK(mnt_id_lock);
46 static int mnt_id_start = 0;
47 static int mnt_group_start = 1;
48
49 static struct list_head *mount_hashtable __read_mostly;
50 static struct kmem_cache *mnt_cache __read_mostly;
51 static struct rw_semaphore namespace_sem;
52
53 /* /sys/fs */
54 struct kobject *fs_kobj;
55 EXPORT_SYMBOL_GPL(fs_kobj);
56
57 /*
58 * vfsmount lock may be taken for read to prevent changes to the
59 * vfsmount hash, ie. during mountpoint lookups or walking back
60 * up the tree.
61 *
62 * It should be taken for write in all cases where the vfsmount
63 * tree or hash is modified or when a vfsmount structure is modified.
64 */
65 DEFINE_BRLOCK(vfsmount_lock);
66
67 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
68 {
69 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
70 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
71 tmp = tmp + (tmp >> HASH_SHIFT);
72 return tmp & (HASH_SIZE - 1);
73 }
74
75 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
76
77 /*
78 * allocation is serialized by namespace_sem, but we need the spinlock to
79 * serialize with freeing.
80 */
81 static int mnt_alloc_id(struct vfsmount *mnt)
82 {
83 int res;
84
85 retry:
86 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
87 spin_lock(&mnt_id_lock);
88 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
89 if (!res)
90 mnt_id_start = mnt->mnt_id + 1;
91 spin_unlock(&mnt_id_lock);
92 if (res == -EAGAIN)
93 goto retry;
94
95 return res;
96 }
97
98 static void mnt_free_id(struct vfsmount *mnt)
99 {
100 int id = mnt->mnt_id;
101 spin_lock(&mnt_id_lock);
102 ida_remove(&mnt_id_ida, id);
103 if (mnt_id_start > id)
104 mnt_id_start = id;
105 spin_unlock(&mnt_id_lock);
106 }
107
108 /*
109 * Allocate a new peer group ID
110 *
111 * mnt_group_ida is protected by namespace_sem
112 */
113 static int mnt_alloc_group_id(struct vfsmount *mnt)
114 {
115 int res;
116
117 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
118 return -ENOMEM;
119
120 res = ida_get_new_above(&mnt_group_ida,
121 mnt_group_start,
122 &mnt->mnt_group_id);
123 if (!res)
124 mnt_group_start = mnt->mnt_group_id + 1;
125
126 return res;
127 }
128
129 /*
130 * Release a peer group ID
131 */
132 void mnt_release_group_id(struct vfsmount *mnt)
133 {
134 int id = mnt->mnt_group_id;
135 ida_remove(&mnt_group_ida, id);
136 if (mnt_group_start > id)
137 mnt_group_start = id;
138 mnt->mnt_group_id = 0;
139 }
140
141 /*
142 * vfsmount lock must be held for read
143 */
144 static inline void mnt_add_count(struct vfsmount *mnt, int n)
145 {
146 #ifdef CONFIG_SMP
147 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
148 #else
149 preempt_disable();
150 mnt->mnt_count += n;
151 preempt_enable();
152 #endif
153 }
154
155 /*
156 * vfsmount lock must be held for write
157 */
158 unsigned int mnt_get_count(struct vfsmount *mnt)
159 {
160 #ifdef CONFIG_SMP
161 unsigned int count = 0;
162 int cpu;
163
164 for_each_possible_cpu(cpu) {
165 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
166 }
167
168 return count;
169 #else
170 return mnt->mnt_count;
171 #endif
172 }
173
174 static struct vfsmount *alloc_vfsmnt(const char *name)
175 {
176 struct mount *p = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
177 if (p) {
178 struct vfsmount *mnt = &p->mnt;
179 int err;
180
181 err = mnt_alloc_id(mnt);
182 if (err)
183 goto out_free_cache;
184
185 if (name) {
186 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
187 if (!mnt->mnt_devname)
188 goto out_free_id;
189 }
190
191 #ifdef CONFIG_SMP
192 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
193 if (!mnt->mnt_pcp)
194 goto out_free_devname;
195
196 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
197 #else
198 mnt->mnt_count = 1;
199 mnt->mnt_writers = 0;
200 #endif
201
202 INIT_LIST_HEAD(&mnt->mnt_hash);
203 INIT_LIST_HEAD(&mnt->mnt_child);
204 INIT_LIST_HEAD(&mnt->mnt_mounts);
205 INIT_LIST_HEAD(&mnt->mnt_list);
206 INIT_LIST_HEAD(&mnt->mnt_expire);
207 INIT_LIST_HEAD(&mnt->mnt_share);
208 INIT_LIST_HEAD(&mnt->mnt_slave_list);
209 INIT_LIST_HEAD(&mnt->mnt_slave);
210 #ifdef CONFIG_FSNOTIFY
211 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
212 #endif
213 }
214 return &p->mnt;
215
216 #ifdef CONFIG_SMP
217 out_free_devname:
218 kfree(p->mnt.mnt_devname);
219 #endif
220 out_free_id:
221 mnt_free_id(&p->mnt);
222 out_free_cache:
223 kmem_cache_free(mnt_cache, p);
224 return NULL;
225 }
226
227 /*
228 * Most r/o checks on a fs are for operations that take
229 * discrete amounts of time, like a write() or unlink().
230 * We must keep track of when those operations start
231 * (for permission checks) and when they end, so that
232 * we can determine when writes are able to occur to
233 * a filesystem.
234 */
235 /*
236 * __mnt_is_readonly: check whether a mount is read-only
237 * @mnt: the mount to check for its write status
238 *
239 * This shouldn't be used directly ouside of the VFS.
240 * It does not guarantee that the filesystem will stay
241 * r/w, just that it is right *now*. This can not and
242 * should not be used in place of IS_RDONLY(inode).
243 * mnt_want/drop_write() will _keep_ the filesystem
244 * r/w.
245 */
246 int __mnt_is_readonly(struct vfsmount *mnt)
247 {
248 if (mnt->mnt_flags & MNT_READONLY)
249 return 1;
250 if (mnt->mnt_sb->s_flags & MS_RDONLY)
251 return 1;
252 return 0;
253 }
254 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
255
256 static inline void mnt_inc_writers(struct vfsmount *mnt)
257 {
258 #ifdef CONFIG_SMP
259 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
260 #else
261 mnt->mnt_writers++;
262 #endif
263 }
264
265 static inline void mnt_dec_writers(struct vfsmount *mnt)
266 {
267 #ifdef CONFIG_SMP
268 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
269 #else
270 mnt->mnt_writers--;
271 #endif
272 }
273
274 static unsigned int mnt_get_writers(struct vfsmount *mnt)
275 {
276 #ifdef CONFIG_SMP
277 unsigned int count = 0;
278 int cpu;
279
280 for_each_possible_cpu(cpu) {
281 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
282 }
283
284 return count;
285 #else
286 return mnt->mnt_writers;
287 #endif
288 }
289
290 /*
291 * Most r/o checks on a fs are for operations that take
292 * discrete amounts of time, like a write() or unlink().
293 * We must keep track of when those operations start
294 * (for permission checks) and when they end, so that
295 * we can determine when writes are able to occur to
296 * a filesystem.
297 */
298 /**
299 * mnt_want_write - get write access to a mount
300 * @mnt: the mount on which to take a write
301 *
302 * This tells the low-level filesystem that a write is
303 * about to be performed to it, and makes sure that
304 * writes are allowed before returning success. When
305 * the write operation is finished, mnt_drop_write()
306 * must be called. This is effectively a refcount.
307 */
308 int mnt_want_write(struct vfsmount *mnt)
309 {
310 int ret = 0;
311
312 preempt_disable();
313 mnt_inc_writers(mnt);
314 /*
315 * The store to mnt_inc_writers must be visible before we pass
316 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
317 * incremented count after it has set MNT_WRITE_HOLD.
318 */
319 smp_mb();
320 while (mnt->mnt_flags & MNT_WRITE_HOLD)
321 cpu_relax();
322 /*
323 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
324 * be set to match its requirements. So we must not load that until
325 * MNT_WRITE_HOLD is cleared.
326 */
327 smp_rmb();
328 if (__mnt_is_readonly(mnt)) {
329 mnt_dec_writers(mnt);
330 ret = -EROFS;
331 goto out;
332 }
333 out:
334 preempt_enable();
335 return ret;
336 }
337 EXPORT_SYMBOL_GPL(mnt_want_write);
338
339 /**
340 * mnt_clone_write - get write access to a mount
341 * @mnt: the mount on which to take a write
342 *
343 * This is effectively like mnt_want_write, except
344 * it must only be used to take an extra write reference
345 * on a mountpoint that we already know has a write reference
346 * on it. This allows some optimisation.
347 *
348 * After finished, mnt_drop_write must be called as usual to
349 * drop the reference.
350 */
351 int mnt_clone_write(struct vfsmount *mnt)
352 {
353 /* superblock may be r/o */
354 if (__mnt_is_readonly(mnt))
355 return -EROFS;
356 preempt_disable();
357 mnt_inc_writers(mnt);
358 preempt_enable();
359 return 0;
360 }
361 EXPORT_SYMBOL_GPL(mnt_clone_write);
362
363 /**
364 * mnt_want_write_file - get write access to a file's mount
365 * @file: the file who's mount on which to take a write
366 *
367 * This is like mnt_want_write, but it takes a file and can
368 * do some optimisations if the file is open for write already
369 */
370 int mnt_want_write_file(struct file *file)
371 {
372 struct inode *inode = file->f_dentry->d_inode;
373 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
374 return mnt_want_write(file->f_path.mnt);
375 else
376 return mnt_clone_write(file->f_path.mnt);
377 }
378 EXPORT_SYMBOL_GPL(mnt_want_write_file);
379
380 /**
381 * mnt_drop_write - give up write access to a mount
382 * @mnt: the mount on which to give up write access
383 *
384 * Tells the low-level filesystem that we are done
385 * performing writes to it. Must be matched with
386 * mnt_want_write() call above.
387 */
388 void mnt_drop_write(struct vfsmount *mnt)
389 {
390 preempt_disable();
391 mnt_dec_writers(mnt);
392 preempt_enable();
393 }
394 EXPORT_SYMBOL_GPL(mnt_drop_write);
395
396 void mnt_drop_write_file(struct file *file)
397 {
398 mnt_drop_write(file->f_path.mnt);
399 }
400 EXPORT_SYMBOL(mnt_drop_write_file);
401
402 static int mnt_make_readonly(struct vfsmount *mnt)
403 {
404 int ret = 0;
405
406 br_write_lock(vfsmount_lock);
407 mnt->mnt_flags |= MNT_WRITE_HOLD;
408 /*
409 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
410 * should be visible before we do.
411 */
412 smp_mb();
413
414 /*
415 * With writers on hold, if this value is zero, then there are
416 * definitely no active writers (although held writers may subsequently
417 * increment the count, they'll have to wait, and decrement it after
418 * seeing MNT_READONLY).
419 *
420 * It is OK to have counter incremented on one CPU and decremented on
421 * another: the sum will add up correctly. The danger would be when we
422 * sum up each counter, if we read a counter before it is incremented,
423 * but then read another CPU's count which it has been subsequently
424 * decremented from -- we would see more decrements than we should.
425 * MNT_WRITE_HOLD protects against this scenario, because
426 * mnt_want_write first increments count, then smp_mb, then spins on
427 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
428 * we're counting up here.
429 */
430 if (mnt_get_writers(mnt) > 0)
431 ret = -EBUSY;
432 else
433 mnt->mnt_flags |= MNT_READONLY;
434 /*
435 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
436 * that become unheld will see MNT_READONLY.
437 */
438 smp_wmb();
439 mnt->mnt_flags &= ~MNT_WRITE_HOLD;
440 br_write_unlock(vfsmount_lock);
441 return ret;
442 }
443
444 static void __mnt_unmake_readonly(struct vfsmount *mnt)
445 {
446 br_write_lock(vfsmount_lock);
447 mnt->mnt_flags &= ~MNT_READONLY;
448 br_write_unlock(vfsmount_lock);
449 }
450
451 static void free_vfsmnt(struct vfsmount *mnt)
452 {
453 struct mount *p = real_mount(mnt);
454 kfree(mnt->mnt_devname);
455 mnt_free_id(mnt);
456 #ifdef CONFIG_SMP
457 free_percpu(mnt->mnt_pcp);
458 #endif
459 kmem_cache_free(mnt_cache, p);
460 }
461
462 /*
463 * find the first or last mount at @dentry on vfsmount @mnt depending on
464 * @dir. If @dir is set return the first mount else return the last mount.
465 * vfsmount_lock must be held for read or write.
466 */
467 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
468 int dir)
469 {
470 struct list_head *head = mount_hashtable + hash(mnt, dentry);
471 struct list_head *tmp = head;
472 struct mount *p, *found = NULL;
473
474 for (;;) {
475 tmp = dir ? tmp->next : tmp->prev;
476 p = NULL;
477 if (tmp == head)
478 break;
479 p = list_entry(tmp, struct mount, mnt.mnt_hash);
480 if (p->mnt.mnt_parent == mnt && p->mnt.mnt_mountpoint == dentry) {
481 found = p;
482 break;
483 }
484 }
485 return found;
486 }
487
488 /*
489 * lookup_mnt increments the ref count before returning
490 * the vfsmount struct.
491 */
492 struct vfsmount *lookup_mnt(struct path *path)
493 {
494 struct mount *child_mnt;
495
496 br_read_lock(vfsmount_lock);
497 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
498 if (child_mnt) {
499 mnt_add_count(child_mnt, 1);
500 br_read_unlock(vfsmount_lock);
501 return &child_mnt->mnt;
502 } else {
503 br_read_unlock(vfsmount_lock);
504 return NULL;
505 }
506 }
507
508 static inline int check_mnt(struct vfsmount *mnt)
509 {
510 return mnt->mnt_ns == current->nsproxy->mnt_ns;
511 }
512
513 /*
514 * vfsmount lock must be held for write
515 */
516 static void touch_mnt_namespace(struct mnt_namespace *ns)
517 {
518 if (ns) {
519 ns->event = ++event;
520 wake_up_interruptible(&ns->poll);
521 }
522 }
523
524 /*
525 * vfsmount lock must be held for write
526 */
527 static void __touch_mnt_namespace(struct mnt_namespace *ns)
528 {
529 if (ns && ns->event != event) {
530 ns->event = event;
531 wake_up_interruptible(&ns->poll);
532 }
533 }
534
535 /*
536 * Clear dentry's mounted state if it has no remaining mounts.
537 * vfsmount_lock must be held for write.
538 */
539 static void dentry_reset_mounted(struct dentry *dentry)
540 {
541 unsigned u;
542
543 for (u = 0; u < HASH_SIZE; u++) {
544 struct vfsmount *p;
545
546 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
547 if (p->mnt_mountpoint == dentry)
548 return;
549 }
550 }
551 spin_lock(&dentry->d_lock);
552 dentry->d_flags &= ~DCACHE_MOUNTED;
553 spin_unlock(&dentry->d_lock);
554 }
555
556 /*
557 * vfsmount lock must be held for write
558 */
559 static void detach_mnt(struct mount *mnt, struct path *old_path)
560 {
561 old_path->dentry = mnt->mnt.mnt_mountpoint;
562 old_path->mnt = mnt->mnt.mnt_parent;
563 mnt->mnt.mnt_parent = &mnt->mnt;
564 mnt->mnt.mnt_mountpoint = mnt->mnt.mnt_root;
565 list_del_init(&mnt->mnt.mnt_child);
566 list_del_init(&mnt->mnt.mnt_hash);
567 dentry_reset_mounted(old_path->dentry);
568 }
569
570 /*
571 * vfsmount lock must be held for write
572 */
573 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
574 struct vfsmount *child_mnt)
575 {
576 child_mnt->mnt_parent = mntget(mnt);
577 child_mnt->mnt_mountpoint = dget(dentry);
578 spin_lock(&dentry->d_lock);
579 dentry->d_flags |= DCACHE_MOUNTED;
580 spin_unlock(&dentry->d_lock);
581 }
582
583 /*
584 * vfsmount lock must be held for write
585 */
586 static void attach_mnt(struct mount *mnt, struct path *path)
587 {
588 mnt_set_mountpoint(path->mnt, path->dentry, &mnt->mnt);
589 list_add_tail(&mnt->mnt.mnt_hash, mount_hashtable +
590 hash(path->mnt, path->dentry));
591 list_add_tail(&mnt->mnt.mnt_child, &path->mnt->mnt_mounts);
592 }
593
594 static inline void __mnt_make_longterm(struct vfsmount *mnt)
595 {
596 #ifdef CONFIG_SMP
597 atomic_inc(&mnt->mnt_longterm);
598 #endif
599 }
600
601 /* needs vfsmount lock for write */
602 static inline void __mnt_make_shortterm(struct vfsmount *mnt)
603 {
604 #ifdef CONFIG_SMP
605 atomic_dec(&mnt->mnt_longterm);
606 #endif
607 }
608
609 /*
610 * vfsmount lock must be held for write
611 */
612 static void commit_tree(struct mount *mnt)
613 {
614 struct vfsmount *parent = mnt->mnt.mnt_parent;
615 struct vfsmount *m;
616 LIST_HEAD(head);
617 struct mnt_namespace *n = parent->mnt_ns;
618
619 BUG_ON(parent == &mnt->mnt);
620
621 list_add_tail(&head, &mnt->mnt.mnt_list);
622 list_for_each_entry(m, &head, mnt_list) {
623 m->mnt_ns = n;
624 __mnt_make_longterm(m);
625 }
626
627 list_splice(&head, n->list.prev);
628
629 list_add_tail(&mnt->mnt.mnt_hash, mount_hashtable +
630 hash(parent, mnt->mnt.mnt_mountpoint));
631 list_add_tail(&mnt->mnt.mnt_child, &parent->mnt_mounts);
632 touch_mnt_namespace(n);
633 }
634
635 static struct mount *next_mnt(struct mount *p, struct vfsmount *root)
636 {
637 struct list_head *next = p->mnt.mnt_mounts.next;
638 if (next == &p->mnt.mnt_mounts) {
639 while (1) {
640 if (&p->mnt == root)
641 return NULL;
642 next = p->mnt.mnt_child.next;
643 if (next != &p->mnt.mnt_parent->mnt_mounts)
644 break;
645 p = real_mount(p->mnt.mnt_parent);
646 }
647 }
648 return list_entry(next, struct mount, mnt.mnt_child);
649 }
650
651 static struct mount *skip_mnt_tree(struct mount *p)
652 {
653 struct list_head *prev = p->mnt.mnt_mounts.prev;
654 while (prev != &p->mnt.mnt_mounts) {
655 p = list_entry(prev, struct mount, mnt.mnt_child);
656 prev = p->mnt.mnt_mounts.prev;
657 }
658 return p;
659 }
660
661 struct vfsmount *
662 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
663 {
664 struct vfsmount *mnt;
665 struct dentry *root;
666
667 if (!type)
668 return ERR_PTR(-ENODEV);
669
670 mnt = alloc_vfsmnt(name);
671 if (!mnt)
672 return ERR_PTR(-ENOMEM);
673
674 if (flags & MS_KERNMOUNT)
675 mnt->mnt_flags = MNT_INTERNAL;
676
677 root = mount_fs(type, flags, name, data);
678 if (IS_ERR(root)) {
679 free_vfsmnt(mnt);
680 return ERR_CAST(root);
681 }
682
683 mnt->mnt_root = root;
684 mnt->mnt_sb = root->d_sb;
685 mnt->mnt_mountpoint = mnt->mnt_root;
686 mnt->mnt_parent = mnt;
687 return mnt;
688 }
689 EXPORT_SYMBOL_GPL(vfs_kern_mount);
690
691 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
692 int flag)
693 {
694 struct super_block *sb = old->mnt_sb;
695 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
696
697 if (mnt) {
698 if (flag & (CL_SLAVE | CL_PRIVATE))
699 mnt->mnt_group_id = 0; /* not a peer of original */
700 else
701 mnt->mnt_group_id = old->mnt_group_id;
702
703 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
704 int err = mnt_alloc_group_id(mnt);
705 if (err)
706 goto out_free;
707 }
708
709 mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
710 atomic_inc(&sb->s_active);
711 mnt->mnt_sb = sb;
712 mnt->mnt_root = dget(root);
713 mnt->mnt_mountpoint = mnt->mnt_root;
714 mnt->mnt_parent = mnt;
715
716 if (flag & CL_SLAVE) {
717 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
718 mnt->mnt_master = old;
719 CLEAR_MNT_SHARED(mnt);
720 } else if (!(flag & CL_PRIVATE)) {
721 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
722 list_add(&mnt->mnt_share, &old->mnt_share);
723 if (IS_MNT_SLAVE(old))
724 list_add(&mnt->mnt_slave, &old->mnt_slave);
725 mnt->mnt_master = old->mnt_master;
726 }
727 if (flag & CL_MAKE_SHARED)
728 set_mnt_shared(mnt);
729
730 /* stick the duplicate mount on the same expiry list
731 * as the original if that was on one */
732 if (flag & CL_EXPIRE) {
733 if (!list_empty(&old->mnt_expire))
734 list_add(&mnt->mnt_expire, &old->mnt_expire);
735 }
736 }
737 return mnt;
738
739 out_free:
740 free_vfsmnt(mnt);
741 return NULL;
742 }
743
744 static inline void mntfree(struct vfsmount *mnt)
745 {
746 struct super_block *sb = mnt->mnt_sb;
747
748 /*
749 * This probably indicates that somebody messed
750 * up a mnt_want/drop_write() pair. If this
751 * happens, the filesystem was probably unable
752 * to make r/w->r/o transitions.
753 */
754 /*
755 * The locking used to deal with mnt_count decrement provides barriers,
756 * so mnt_get_writers() below is safe.
757 */
758 WARN_ON(mnt_get_writers(mnt));
759 fsnotify_vfsmount_delete(mnt);
760 dput(mnt->mnt_root);
761 free_vfsmnt(mnt);
762 deactivate_super(sb);
763 }
764
765 static void mntput_no_expire(struct vfsmount *mnt)
766 {
767 put_again:
768 #ifdef CONFIG_SMP
769 br_read_lock(vfsmount_lock);
770 if (likely(atomic_read(&mnt->mnt_longterm))) {
771 mnt_add_count(mnt, -1);
772 br_read_unlock(vfsmount_lock);
773 return;
774 }
775 br_read_unlock(vfsmount_lock);
776
777 br_write_lock(vfsmount_lock);
778 mnt_add_count(mnt, -1);
779 if (mnt_get_count(mnt)) {
780 br_write_unlock(vfsmount_lock);
781 return;
782 }
783 #else
784 mnt_add_count(mnt, -1);
785 if (likely(mnt_get_count(mnt)))
786 return;
787 br_write_lock(vfsmount_lock);
788 #endif
789 if (unlikely(mnt->mnt_pinned)) {
790 mnt_add_count(mnt, mnt->mnt_pinned + 1);
791 mnt->mnt_pinned = 0;
792 br_write_unlock(vfsmount_lock);
793 acct_auto_close_mnt(mnt);
794 goto put_again;
795 }
796 br_write_unlock(vfsmount_lock);
797 mntfree(mnt);
798 }
799
800 void mntput(struct vfsmount *mnt)
801 {
802 if (mnt) {
803 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
804 if (unlikely(mnt->mnt_expiry_mark))
805 mnt->mnt_expiry_mark = 0;
806 mntput_no_expire(mnt);
807 }
808 }
809 EXPORT_SYMBOL(mntput);
810
811 struct vfsmount *mntget(struct vfsmount *mnt)
812 {
813 if (mnt)
814 mnt_add_count(mnt, 1);
815 return mnt;
816 }
817 EXPORT_SYMBOL(mntget);
818
819 void mnt_pin(struct vfsmount *mnt)
820 {
821 br_write_lock(vfsmount_lock);
822 mnt->mnt_pinned++;
823 br_write_unlock(vfsmount_lock);
824 }
825 EXPORT_SYMBOL(mnt_pin);
826
827 void mnt_unpin(struct vfsmount *mnt)
828 {
829 br_write_lock(vfsmount_lock);
830 if (mnt->mnt_pinned) {
831 mnt_add_count(mnt, 1);
832 mnt->mnt_pinned--;
833 }
834 br_write_unlock(vfsmount_lock);
835 }
836 EXPORT_SYMBOL(mnt_unpin);
837
838 static inline void mangle(struct seq_file *m, const char *s)
839 {
840 seq_escape(m, s, " \t\n\\");
841 }
842
843 /*
844 * Simple .show_options callback for filesystems which don't want to
845 * implement more complex mount option showing.
846 *
847 * See also save_mount_options().
848 */
849 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
850 {
851 const char *options;
852
853 rcu_read_lock();
854 options = rcu_dereference(mnt->mnt_sb->s_options);
855
856 if (options != NULL && options[0]) {
857 seq_putc(m, ',');
858 mangle(m, options);
859 }
860 rcu_read_unlock();
861
862 return 0;
863 }
864 EXPORT_SYMBOL(generic_show_options);
865
866 /*
867 * If filesystem uses generic_show_options(), this function should be
868 * called from the fill_super() callback.
869 *
870 * The .remount_fs callback usually needs to be handled in a special
871 * way, to make sure, that previous options are not overwritten if the
872 * remount fails.
873 *
874 * Also note, that if the filesystem's .remount_fs function doesn't
875 * reset all options to their default value, but changes only newly
876 * given options, then the displayed options will not reflect reality
877 * any more.
878 */
879 void save_mount_options(struct super_block *sb, char *options)
880 {
881 BUG_ON(sb->s_options);
882 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
883 }
884 EXPORT_SYMBOL(save_mount_options);
885
886 void replace_mount_options(struct super_block *sb, char *options)
887 {
888 char *old = sb->s_options;
889 rcu_assign_pointer(sb->s_options, options);
890 if (old) {
891 synchronize_rcu();
892 kfree(old);
893 }
894 }
895 EXPORT_SYMBOL(replace_mount_options);
896
897 #ifdef CONFIG_PROC_FS
898 /* iterator */
899 static void *m_start(struct seq_file *m, loff_t *pos)
900 {
901 struct proc_mounts *p = m->private;
902
903 down_read(&namespace_sem);
904 return seq_list_start(&p->ns->list, *pos);
905 }
906
907 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
908 {
909 struct proc_mounts *p = m->private;
910
911 return seq_list_next(v, &p->ns->list, pos);
912 }
913
914 static void m_stop(struct seq_file *m, void *v)
915 {
916 up_read(&namespace_sem);
917 }
918
919 int mnt_had_events(struct proc_mounts *p)
920 {
921 struct mnt_namespace *ns = p->ns;
922 int res = 0;
923
924 br_read_lock(vfsmount_lock);
925 if (p->m.poll_event != ns->event) {
926 p->m.poll_event = ns->event;
927 res = 1;
928 }
929 br_read_unlock(vfsmount_lock);
930
931 return res;
932 }
933
934 struct proc_fs_info {
935 int flag;
936 const char *str;
937 };
938
939 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
940 {
941 static const struct proc_fs_info fs_info[] = {
942 { MS_SYNCHRONOUS, ",sync" },
943 { MS_DIRSYNC, ",dirsync" },
944 { MS_MANDLOCK, ",mand" },
945 { 0, NULL }
946 };
947 const struct proc_fs_info *fs_infop;
948
949 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
950 if (sb->s_flags & fs_infop->flag)
951 seq_puts(m, fs_infop->str);
952 }
953
954 return security_sb_show_options(m, sb);
955 }
956
957 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
958 {
959 static const struct proc_fs_info mnt_info[] = {
960 { MNT_NOSUID, ",nosuid" },
961 { MNT_NODEV, ",nodev" },
962 { MNT_NOEXEC, ",noexec" },
963 { MNT_NOATIME, ",noatime" },
964 { MNT_NODIRATIME, ",nodiratime" },
965 { MNT_RELATIME, ",relatime" },
966 { 0, NULL }
967 };
968 const struct proc_fs_info *fs_infop;
969
970 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
971 if (mnt->mnt_flags & fs_infop->flag)
972 seq_puts(m, fs_infop->str);
973 }
974 }
975
976 static void show_type(struct seq_file *m, struct super_block *sb)
977 {
978 mangle(m, sb->s_type->name);
979 if (sb->s_subtype && sb->s_subtype[0]) {
980 seq_putc(m, '.');
981 mangle(m, sb->s_subtype);
982 }
983 }
984
985 static int show_vfsmnt(struct seq_file *m, void *v)
986 {
987 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
988 int err = 0;
989 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
990
991 if (mnt->mnt_sb->s_op->show_devname) {
992 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
993 if (err)
994 goto out;
995 } else {
996 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
997 }
998 seq_putc(m, ' ');
999 seq_path(m, &mnt_path, " \t\n\\");
1000 seq_putc(m, ' ');
1001 show_type(m, mnt->mnt_sb);
1002 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
1003 err = show_sb_opts(m, mnt->mnt_sb);
1004 if (err)
1005 goto out;
1006 show_mnt_opts(m, mnt);
1007 if (mnt->mnt_sb->s_op->show_options)
1008 err = mnt->mnt_sb->s_op->show_options(m, mnt);
1009 seq_puts(m, " 0 0\n");
1010 out:
1011 return err;
1012 }
1013
1014 const struct seq_operations mounts_op = {
1015 .start = m_start,
1016 .next = m_next,
1017 .stop = m_stop,
1018 .show = show_vfsmnt
1019 };
1020
1021 static int show_mountinfo(struct seq_file *m, void *v)
1022 {
1023 struct proc_mounts *p = m->private;
1024 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1025 struct super_block *sb = mnt->mnt_sb;
1026 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1027 struct path root = p->root;
1028 int err = 0;
1029
1030 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
1031 MAJOR(sb->s_dev), MINOR(sb->s_dev));
1032 if (sb->s_op->show_path)
1033 err = sb->s_op->show_path(m, mnt);
1034 else
1035 seq_dentry(m, mnt->mnt_root, " \t\n\\");
1036 if (err)
1037 goto out;
1038 seq_putc(m, ' ');
1039
1040 /* mountpoints outside of chroot jail will give SEQ_SKIP on this */
1041 err = seq_path_root(m, &mnt_path, &root, " \t\n\\");
1042 if (err)
1043 goto out;
1044
1045 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
1046 show_mnt_opts(m, mnt);
1047
1048 /* Tagged fields ("foo:X" or "bar") */
1049 if (IS_MNT_SHARED(mnt))
1050 seq_printf(m, " shared:%i", mnt->mnt_group_id);
1051 if (IS_MNT_SLAVE(mnt)) {
1052 int master = mnt->mnt_master->mnt_group_id;
1053 int dom = get_dominating_id(mnt, &p->root);
1054 seq_printf(m, " master:%i", master);
1055 if (dom && dom != master)
1056 seq_printf(m, " propagate_from:%i", dom);
1057 }
1058 if (IS_MNT_UNBINDABLE(mnt))
1059 seq_puts(m, " unbindable");
1060
1061 /* Filesystem specific data */
1062 seq_puts(m, " - ");
1063 show_type(m, sb);
1064 seq_putc(m, ' ');
1065 if (sb->s_op->show_devname)
1066 err = sb->s_op->show_devname(m, mnt);
1067 else
1068 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
1069 if (err)
1070 goto out;
1071 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
1072 err = show_sb_opts(m, sb);
1073 if (err)
1074 goto out;
1075 if (sb->s_op->show_options)
1076 err = sb->s_op->show_options(m, mnt);
1077 seq_putc(m, '\n');
1078 out:
1079 return err;
1080 }
1081
1082 const struct seq_operations mountinfo_op = {
1083 .start = m_start,
1084 .next = m_next,
1085 .stop = m_stop,
1086 .show = show_mountinfo,
1087 };
1088
1089 static int show_vfsstat(struct seq_file *m, void *v)
1090 {
1091 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1092 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1093 int err = 0;
1094
1095 /* device */
1096 if (mnt->mnt_sb->s_op->show_devname) {
1097 seq_puts(m, "device ");
1098 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
1099 } else {
1100 if (mnt->mnt_devname) {
1101 seq_puts(m, "device ");
1102 mangle(m, mnt->mnt_devname);
1103 } else
1104 seq_puts(m, "no device");
1105 }
1106
1107 /* mount point */
1108 seq_puts(m, " mounted on ");
1109 seq_path(m, &mnt_path, " \t\n\\");
1110 seq_putc(m, ' ');
1111
1112 /* file system type */
1113 seq_puts(m, "with fstype ");
1114 show_type(m, mnt->mnt_sb);
1115
1116 /* optional statistics */
1117 if (mnt->mnt_sb->s_op->show_stats) {
1118 seq_putc(m, ' ');
1119 if (!err)
1120 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
1121 }
1122
1123 seq_putc(m, '\n');
1124 return err;
1125 }
1126
1127 const struct seq_operations mountstats_op = {
1128 .start = m_start,
1129 .next = m_next,
1130 .stop = m_stop,
1131 .show = show_vfsstat,
1132 };
1133 #endif /* CONFIG_PROC_FS */
1134
1135 /**
1136 * may_umount_tree - check if a mount tree is busy
1137 * @mnt: root of mount tree
1138 *
1139 * This is called to check if a tree of mounts has any
1140 * open files, pwds, chroots or sub mounts that are
1141 * busy.
1142 */
1143 int may_umount_tree(struct vfsmount *mnt)
1144 {
1145 int actual_refs = 0;
1146 int minimum_refs = 0;
1147 struct mount *p;
1148 BUG_ON(!mnt);
1149
1150 /* write lock needed for mnt_get_count */
1151 br_write_lock(vfsmount_lock);
1152 for (p = real_mount(mnt); p; p = next_mnt(p, mnt)) {
1153 actual_refs += mnt_get_count(&p->mnt);
1154 minimum_refs += 2;
1155 }
1156 br_write_unlock(vfsmount_lock);
1157
1158 if (actual_refs > minimum_refs)
1159 return 0;
1160
1161 return 1;
1162 }
1163
1164 EXPORT_SYMBOL(may_umount_tree);
1165
1166 /**
1167 * may_umount - check if a mount point is busy
1168 * @mnt: root of mount
1169 *
1170 * This is called to check if a mount point has any
1171 * open files, pwds, chroots or sub mounts. If the
1172 * mount has sub mounts this will return busy
1173 * regardless of whether the sub mounts are busy.
1174 *
1175 * Doesn't take quota and stuff into account. IOW, in some cases it will
1176 * give false negatives. The main reason why it's here is that we need
1177 * a non-destructive way to look for easily umountable filesystems.
1178 */
1179 int may_umount(struct vfsmount *mnt)
1180 {
1181 int ret = 1;
1182 down_read(&namespace_sem);
1183 br_write_lock(vfsmount_lock);
1184 if (propagate_mount_busy(mnt, 2))
1185 ret = 0;
1186 br_write_unlock(vfsmount_lock);
1187 up_read(&namespace_sem);
1188 return ret;
1189 }
1190
1191 EXPORT_SYMBOL(may_umount);
1192
1193 void release_mounts(struct list_head *head)
1194 {
1195 struct vfsmount *mnt;
1196 while (!list_empty(head)) {
1197 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
1198 list_del_init(&mnt->mnt_hash);
1199 if (mnt_has_parent(mnt)) {
1200 struct dentry *dentry;
1201 struct vfsmount *m;
1202
1203 br_write_lock(vfsmount_lock);
1204 dentry = mnt->mnt_mountpoint;
1205 m = mnt->mnt_parent;
1206 mnt->mnt_mountpoint = mnt->mnt_root;
1207 mnt->mnt_parent = mnt;
1208 m->mnt_ghosts--;
1209 br_write_unlock(vfsmount_lock);
1210 dput(dentry);
1211 mntput(m);
1212 }
1213 mntput(mnt);
1214 }
1215 }
1216
1217 /*
1218 * vfsmount lock must be held for write
1219 * namespace_sem must be held for write
1220 */
1221 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1222 {
1223 LIST_HEAD(tmp_list);
1224 struct mount *p;
1225
1226 for (p = real_mount(mnt); p; p = next_mnt(p, mnt))
1227 list_move(&p->mnt.mnt_hash, &tmp_list);
1228
1229 if (propagate)
1230 propagate_umount(&tmp_list);
1231
1232 list_for_each_entry(p, &tmp_list, mnt.mnt_hash) {
1233 list_del_init(&p->mnt.mnt_expire);
1234 list_del_init(&p->mnt.mnt_list);
1235 __touch_mnt_namespace(p->mnt.mnt_ns);
1236 p->mnt.mnt_ns = NULL;
1237 __mnt_make_shortterm(&p->mnt);
1238 list_del_init(&p->mnt.mnt_child);
1239 if (mnt_has_parent(&p->mnt)) {
1240 p->mnt.mnt_parent->mnt_ghosts++;
1241 dentry_reset_mounted(p->mnt.mnt_mountpoint);
1242 }
1243 change_mnt_propagation(&p->mnt, MS_PRIVATE);
1244 }
1245 list_splice(&tmp_list, kill);
1246 }
1247
1248 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1249
1250 static int do_umount(struct vfsmount *mnt, int flags)
1251 {
1252 struct super_block *sb = mnt->mnt_sb;
1253 int retval;
1254 LIST_HEAD(umount_list);
1255
1256 retval = security_sb_umount(mnt, flags);
1257 if (retval)
1258 return retval;
1259
1260 /*
1261 * Allow userspace to request a mountpoint be expired rather than
1262 * unmounting unconditionally. Unmount only happens if:
1263 * (1) the mark is already set (the mark is cleared by mntput())
1264 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1265 */
1266 if (flags & MNT_EXPIRE) {
1267 if (mnt == current->fs->root.mnt ||
1268 flags & (MNT_FORCE | MNT_DETACH))
1269 return -EINVAL;
1270
1271 /*
1272 * probably don't strictly need the lock here if we examined
1273 * all race cases, but it's a slowpath.
1274 */
1275 br_write_lock(vfsmount_lock);
1276 if (mnt_get_count(mnt) != 2) {
1277 br_write_unlock(vfsmount_lock);
1278 return -EBUSY;
1279 }
1280 br_write_unlock(vfsmount_lock);
1281
1282 if (!xchg(&mnt->mnt_expiry_mark, 1))
1283 return -EAGAIN;
1284 }
1285
1286 /*
1287 * If we may have to abort operations to get out of this
1288 * mount, and they will themselves hold resources we must
1289 * allow the fs to do things. In the Unix tradition of
1290 * 'Gee thats tricky lets do it in userspace' the umount_begin
1291 * might fail to complete on the first run through as other tasks
1292 * must return, and the like. Thats for the mount program to worry
1293 * about for the moment.
1294 */
1295
1296 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1297 sb->s_op->umount_begin(sb);
1298 }
1299
1300 /*
1301 * No sense to grab the lock for this test, but test itself looks
1302 * somewhat bogus. Suggestions for better replacement?
1303 * Ho-hum... In principle, we might treat that as umount + switch
1304 * to rootfs. GC would eventually take care of the old vfsmount.
1305 * Actually it makes sense, especially if rootfs would contain a
1306 * /reboot - static binary that would close all descriptors and
1307 * call reboot(9). Then init(8) could umount root and exec /reboot.
1308 */
1309 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1310 /*
1311 * Special case for "unmounting" root ...
1312 * we just try to remount it readonly.
1313 */
1314 down_write(&sb->s_umount);
1315 if (!(sb->s_flags & MS_RDONLY))
1316 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1317 up_write(&sb->s_umount);
1318 return retval;
1319 }
1320
1321 down_write(&namespace_sem);
1322 br_write_lock(vfsmount_lock);
1323 event++;
1324
1325 if (!(flags & MNT_DETACH))
1326 shrink_submounts(mnt, &umount_list);
1327
1328 retval = -EBUSY;
1329 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1330 if (!list_empty(&mnt->mnt_list))
1331 umount_tree(mnt, 1, &umount_list);
1332 retval = 0;
1333 }
1334 br_write_unlock(vfsmount_lock);
1335 up_write(&namespace_sem);
1336 release_mounts(&umount_list);
1337 return retval;
1338 }
1339
1340 /*
1341 * Now umount can handle mount points as well as block devices.
1342 * This is important for filesystems which use unnamed block devices.
1343 *
1344 * We now support a flag for forced unmount like the other 'big iron'
1345 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1346 */
1347
1348 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1349 {
1350 struct path path;
1351 int retval;
1352 int lookup_flags = 0;
1353
1354 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1355 return -EINVAL;
1356
1357 if (!(flags & UMOUNT_NOFOLLOW))
1358 lookup_flags |= LOOKUP_FOLLOW;
1359
1360 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1361 if (retval)
1362 goto out;
1363 retval = -EINVAL;
1364 if (path.dentry != path.mnt->mnt_root)
1365 goto dput_and_out;
1366 if (!check_mnt(path.mnt))
1367 goto dput_and_out;
1368
1369 retval = -EPERM;
1370 if (!capable(CAP_SYS_ADMIN))
1371 goto dput_and_out;
1372
1373 retval = do_umount(path.mnt, flags);
1374 dput_and_out:
1375 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1376 dput(path.dentry);
1377 mntput_no_expire(path.mnt);
1378 out:
1379 return retval;
1380 }
1381
1382 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1383
1384 /*
1385 * The 2.0 compatible umount. No flags.
1386 */
1387 SYSCALL_DEFINE1(oldumount, char __user *, name)
1388 {
1389 return sys_umount(name, 0);
1390 }
1391
1392 #endif
1393
1394 static int mount_is_safe(struct path *path)
1395 {
1396 if (capable(CAP_SYS_ADMIN))
1397 return 0;
1398 return -EPERM;
1399 #ifdef notyet
1400 if (S_ISLNK(path->dentry->d_inode->i_mode))
1401 return -EPERM;
1402 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1403 if (current_uid() != path->dentry->d_inode->i_uid)
1404 return -EPERM;
1405 }
1406 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1407 return -EPERM;
1408 return 0;
1409 #endif
1410 }
1411
1412 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1413 int flag)
1414 {
1415 struct vfsmount *res, *p, *q, *r;
1416 struct path path;
1417
1418 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1419 return NULL;
1420
1421 res = q = clone_mnt(mnt, dentry, flag);
1422 if (!q)
1423 goto Enomem;
1424 q->mnt_mountpoint = mnt->mnt_mountpoint;
1425
1426 p = mnt;
1427 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1428 struct mount *s;
1429 if (!is_subdir(r->mnt_mountpoint, dentry))
1430 continue;
1431
1432 for (s = real_mount(r); s; s = next_mnt(s, r)) {
1433 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(&s->mnt)) {
1434 s = skip_mnt_tree(s);
1435 continue;
1436 }
1437 while (p != s->mnt.mnt_parent) {
1438 p = p->mnt_parent;
1439 q = q->mnt_parent;
1440 }
1441 p = &s->mnt;
1442 path.mnt = q;
1443 path.dentry = p->mnt_mountpoint;
1444 q = clone_mnt(p, p->mnt_root, flag);
1445 if (!q)
1446 goto Enomem;
1447 br_write_lock(vfsmount_lock);
1448 list_add_tail(&q->mnt_list, &res->mnt_list);
1449 attach_mnt(real_mount(q), &path);
1450 br_write_unlock(vfsmount_lock);
1451 }
1452 }
1453 return res;
1454 Enomem:
1455 if (res) {
1456 LIST_HEAD(umount_list);
1457 br_write_lock(vfsmount_lock);
1458 umount_tree(res, 0, &umount_list);
1459 br_write_unlock(vfsmount_lock);
1460 release_mounts(&umount_list);
1461 }
1462 return NULL;
1463 }
1464
1465 struct vfsmount *collect_mounts(struct path *path)
1466 {
1467 struct vfsmount *tree;
1468 down_write(&namespace_sem);
1469 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1470 up_write(&namespace_sem);
1471 return tree;
1472 }
1473
1474 void drop_collected_mounts(struct vfsmount *mnt)
1475 {
1476 LIST_HEAD(umount_list);
1477 down_write(&namespace_sem);
1478 br_write_lock(vfsmount_lock);
1479 umount_tree(mnt, 0, &umount_list);
1480 br_write_unlock(vfsmount_lock);
1481 up_write(&namespace_sem);
1482 release_mounts(&umount_list);
1483 }
1484
1485 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1486 struct vfsmount *root)
1487 {
1488 struct vfsmount *mnt;
1489 int res = f(root, arg);
1490 if (res)
1491 return res;
1492 list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1493 res = f(mnt, arg);
1494 if (res)
1495 return res;
1496 }
1497 return 0;
1498 }
1499
1500 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1501 {
1502 struct mount *p;
1503
1504 for (p = real_mount(mnt); &p->mnt != end; p = next_mnt(p, mnt)) {
1505 if (p->mnt.mnt_group_id && !IS_MNT_SHARED(&p->mnt))
1506 mnt_release_group_id(&p->mnt);
1507 }
1508 }
1509
1510 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1511 {
1512 struct mount *p;
1513
1514 for (p = real_mount(mnt); p; p = recurse ? next_mnt(p, mnt) : NULL) {
1515 if (!p->mnt.mnt_group_id && !IS_MNT_SHARED(&p->mnt)) {
1516 int err = mnt_alloc_group_id(&p->mnt);
1517 if (err) {
1518 cleanup_group_ids(mnt, &p->mnt);
1519 return err;
1520 }
1521 }
1522 }
1523
1524 return 0;
1525 }
1526
1527 /*
1528 * @source_mnt : mount tree to be attached
1529 * @nd : place the mount tree @source_mnt is attached
1530 * @parent_nd : if non-null, detach the source_mnt from its parent and
1531 * store the parent mount and mountpoint dentry.
1532 * (done when source_mnt is moved)
1533 *
1534 * NOTE: in the table below explains the semantics when a source mount
1535 * of a given type is attached to a destination mount of a given type.
1536 * ---------------------------------------------------------------------------
1537 * | BIND MOUNT OPERATION |
1538 * |**************************************************************************
1539 * | source-->| shared | private | slave | unbindable |
1540 * | dest | | | | |
1541 * | | | | | | |
1542 * | v | | | | |
1543 * |**************************************************************************
1544 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1545 * | | | | | |
1546 * |non-shared| shared (+) | private | slave (*) | invalid |
1547 * ***************************************************************************
1548 * A bind operation clones the source mount and mounts the clone on the
1549 * destination mount.
1550 *
1551 * (++) the cloned mount is propagated to all the mounts in the propagation
1552 * tree of the destination mount and the cloned mount is added to
1553 * the peer group of the source mount.
1554 * (+) the cloned mount is created under the destination mount and is marked
1555 * as shared. The cloned mount is added to the peer group of the source
1556 * mount.
1557 * (+++) the mount is propagated to all the mounts in the propagation tree
1558 * of the destination mount and the cloned mount is made slave
1559 * of the same master as that of the source mount. The cloned mount
1560 * is marked as 'shared and slave'.
1561 * (*) the cloned mount is made a slave of the same master as that of the
1562 * source mount.
1563 *
1564 * ---------------------------------------------------------------------------
1565 * | MOVE MOUNT OPERATION |
1566 * |**************************************************************************
1567 * | source-->| shared | private | slave | unbindable |
1568 * | dest | | | | |
1569 * | | | | | | |
1570 * | v | | | | |
1571 * |**************************************************************************
1572 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1573 * | | | | | |
1574 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1575 * ***************************************************************************
1576 *
1577 * (+) the mount is moved to the destination. And is then propagated to
1578 * all the mounts in the propagation tree of the destination mount.
1579 * (+*) the mount is moved to the destination.
1580 * (+++) the mount is moved to the destination and is then propagated to
1581 * all the mounts belonging to the destination mount's propagation tree.
1582 * the mount is marked as 'shared and slave'.
1583 * (*) the mount continues to be a slave at the new location.
1584 *
1585 * if the source mount is a tree, the operations explained above is
1586 * applied to each mount in the tree.
1587 * Must be called without spinlocks held, since this function can sleep
1588 * in allocations.
1589 */
1590 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1591 struct path *path, struct path *parent_path)
1592 {
1593 LIST_HEAD(tree_list);
1594 struct vfsmount *dest_mnt = path->mnt;
1595 struct dentry *dest_dentry = path->dentry;
1596 struct mount *child, *p;
1597 int err;
1598
1599 if (IS_MNT_SHARED(dest_mnt)) {
1600 err = invent_group_ids(source_mnt, true);
1601 if (err)
1602 goto out;
1603 }
1604 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1605 if (err)
1606 goto out_cleanup_ids;
1607
1608 br_write_lock(vfsmount_lock);
1609
1610 if (IS_MNT_SHARED(dest_mnt)) {
1611 for (p = real_mount(source_mnt); p; p = next_mnt(p, source_mnt))
1612 set_mnt_shared(&p->mnt);
1613 }
1614 if (parent_path) {
1615 detach_mnt(real_mount(source_mnt), parent_path);
1616 attach_mnt(real_mount(source_mnt), path);
1617 touch_mnt_namespace(parent_path->mnt->mnt_ns);
1618 } else {
1619 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1620 commit_tree(real_mount(source_mnt));
1621 }
1622
1623 list_for_each_entry_safe(child, p, &tree_list, mnt.mnt_hash) {
1624 list_del_init(&child->mnt.mnt_hash);
1625 commit_tree(child);
1626 }
1627 br_write_unlock(vfsmount_lock);
1628
1629 return 0;
1630
1631 out_cleanup_ids:
1632 if (IS_MNT_SHARED(dest_mnt))
1633 cleanup_group_ids(source_mnt, NULL);
1634 out:
1635 return err;
1636 }
1637
1638 static int lock_mount(struct path *path)
1639 {
1640 struct vfsmount *mnt;
1641 retry:
1642 mutex_lock(&path->dentry->d_inode->i_mutex);
1643 if (unlikely(cant_mount(path->dentry))) {
1644 mutex_unlock(&path->dentry->d_inode->i_mutex);
1645 return -ENOENT;
1646 }
1647 down_write(&namespace_sem);
1648 mnt = lookup_mnt(path);
1649 if (likely(!mnt))
1650 return 0;
1651 up_write(&namespace_sem);
1652 mutex_unlock(&path->dentry->d_inode->i_mutex);
1653 path_put(path);
1654 path->mnt = mnt;
1655 path->dentry = dget(mnt->mnt_root);
1656 goto retry;
1657 }
1658
1659 static void unlock_mount(struct path *path)
1660 {
1661 up_write(&namespace_sem);
1662 mutex_unlock(&path->dentry->d_inode->i_mutex);
1663 }
1664
1665 static int graft_tree(struct vfsmount *mnt, struct path *path)
1666 {
1667 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1668 return -EINVAL;
1669
1670 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1671 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1672 return -ENOTDIR;
1673
1674 if (d_unlinked(path->dentry))
1675 return -ENOENT;
1676
1677 return attach_recursive_mnt(mnt, path, NULL);
1678 }
1679
1680 /*
1681 * Sanity check the flags to change_mnt_propagation.
1682 */
1683
1684 static int flags_to_propagation_type(int flags)
1685 {
1686 int type = flags & ~(MS_REC | MS_SILENT);
1687
1688 /* Fail if any non-propagation flags are set */
1689 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1690 return 0;
1691 /* Only one propagation flag should be set */
1692 if (!is_power_of_2(type))
1693 return 0;
1694 return type;
1695 }
1696
1697 /*
1698 * recursively change the type of the mountpoint.
1699 */
1700 static int do_change_type(struct path *path, int flag)
1701 {
1702 struct mount *m;
1703 struct vfsmount *mnt = path->mnt;
1704 int recurse = flag & MS_REC;
1705 int type;
1706 int err = 0;
1707
1708 if (!capable(CAP_SYS_ADMIN))
1709 return -EPERM;
1710
1711 if (path->dentry != path->mnt->mnt_root)
1712 return -EINVAL;
1713
1714 type = flags_to_propagation_type(flag);
1715 if (!type)
1716 return -EINVAL;
1717
1718 down_write(&namespace_sem);
1719 if (type == MS_SHARED) {
1720 err = invent_group_ids(mnt, recurse);
1721 if (err)
1722 goto out_unlock;
1723 }
1724
1725 br_write_lock(vfsmount_lock);
1726 for (m = real_mount(mnt); m; m = (recurse ? next_mnt(m, mnt) : NULL))
1727 change_mnt_propagation(&m->mnt, type);
1728 br_write_unlock(vfsmount_lock);
1729
1730 out_unlock:
1731 up_write(&namespace_sem);
1732 return err;
1733 }
1734
1735 /*
1736 * do loopback mount.
1737 */
1738 static int do_loopback(struct path *path, char *old_name,
1739 int recurse)
1740 {
1741 LIST_HEAD(umount_list);
1742 struct path old_path;
1743 struct vfsmount *mnt = NULL;
1744 int err = mount_is_safe(path);
1745 if (err)
1746 return err;
1747 if (!old_name || !*old_name)
1748 return -EINVAL;
1749 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1750 if (err)
1751 return err;
1752
1753 err = lock_mount(path);
1754 if (err)
1755 goto out;
1756
1757 err = -EINVAL;
1758 if (IS_MNT_UNBINDABLE(old_path.mnt))
1759 goto out2;
1760
1761 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1762 goto out2;
1763
1764 err = -ENOMEM;
1765 if (recurse)
1766 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1767 else
1768 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1769
1770 if (!mnt)
1771 goto out2;
1772
1773 err = graft_tree(mnt, path);
1774 if (err) {
1775 br_write_lock(vfsmount_lock);
1776 umount_tree(mnt, 0, &umount_list);
1777 br_write_unlock(vfsmount_lock);
1778 }
1779 out2:
1780 unlock_mount(path);
1781 release_mounts(&umount_list);
1782 out:
1783 path_put(&old_path);
1784 return err;
1785 }
1786
1787 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1788 {
1789 int error = 0;
1790 int readonly_request = 0;
1791
1792 if (ms_flags & MS_RDONLY)
1793 readonly_request = 1;
1794 if (readonly_request == __mnt_is_readonly(mnt))
1795 return 0;
1796
1797 if (readonly_request)
1798 error = mnt_make_readonly(mnt);
1799 else
1800 __mnt_unmake_readonly(mnt);
1801 return error;
1802 }
1803
1804 /*
1805 * change filesystem flags. dir should be a physical root of filesystem.
1806 * If you've mounted a non-root directory somewhere and want to do remount
1807 * on it - tough luck.
1808 */
1809 static int do_remount(struct path *path, int flags, int mnt_flags,
1810 void *data)
1811 {
1812 int err;
1813 struct super_block *sb = path->mnt->mnt_sb;
1814
1815 if (!capable(CAP_SYS_ADMIN))
1816 return -EPERM;
1817
1818 if (!check_mnt(path->mnt))
1819 return -EINVAL;
1820
1821 if (path->dentry != path->mnt->mnt_root)
1822 return -EINVAL;
1823
1824 err = security_sb_remount(sb, data);
1825 if (err)
1826 return err;
1827
1828 down_write(&sb->s_umount);
1829 if (flags & MS_BIND)
1830 err = change_mount_flags(path->mnt, flags);
1831 else
1832 err = do_remount_sb(sb, flags, data, 0);
1833 if (!err) {
1834 br_write_lock(vfsmount_lock);
1835 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
1836 path->mnt->mnt_flags = mnt_flags;
1837 br_write_unlock(vfsmount_lock);
1838 }
1839 up_write(&sb->s_umount);
1840 if (!err) {
1841 br_write_lock(vfsmount_lock);
1842 touch_mnt_namespace(path->mnt->mnt_ns);
1843 br_write_unlock(vfsmount_lock);
1844 }
1845 return err;
1846 }
1847
1848 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1849 {
1850 struct mount *p;
1851 for (p = real_mount(mnt); p; p = next_mnt(p, mnt)) {
1852 if (IS_MNT_UNBINDABLE(&p->mnt))
1853 return 1;
1854 }
1855 return 0;
1856 }
1857
1858 static int do_move_mount(struct path *path, char *old_name)
1859 {
1860 struct path old_path, parent_path;
1861 struct vfsmount *p;
1862 int err = 0;
1863 if (!capable(CAP_SYS_ADMIN))
1864 return -EPERM;
1865 if (!old_name || !*old_name)
1866 return -EINVAL;
1867 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1868 if (err)
1869 return err;
1870
1871 err = lock_mount(path);
1872 if (err < 0)
1873 goto out;
1874
1875 err = -EINVAL;
1876 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1877 goto out1;
1878
1879 if (d_unlinked(path->dentry))
1880 goto out1;
1881
1882 err = -EINVAL;
1883 if (old_path.dentry != old_path.mnt->mnt_root)
1884 goto out1;
1885
1886 if (!mnt_has_parent(old_path.mnt))
1887 goto out1;
1888
1889 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1890 S_ISDIR(old_path.dentry->d_inode->i_mode))
1891 goto out1;
1892 /*
1893 * Don't move a mount residing in a shared parent.
1894 */
1895 if (IS_MNT_SHARED(old_path.mnt->mnt_parent))
1896 goto out1;
1897 /*
1898 * Don't move a mount tree containing unbindable mounts to a destination
1899 * mount which is shared.
1900 */
1901 if (IS_MNT_SHARED(path->mnt) &&
1902 tree_contains_unbindable(old_path.mnt))
1903 goto out1;
1904 err = -ELOOP;
1905 for (p = path->mnt; mnt_has_parent(p); p = p->mnt_parent)
1906 if (p == old_path.mnt)
1907 goto out1;
1908
1909 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1910 if (err)
1911 goto out1;
1912
1913 /* if the mount is moved, it should no longer be expire
1914 * automatically */
1915 list_del_init(&old_path.mnt->mnt_expire);
1916 out1:
1917 unlock_mount(path);
1918 out:
1919 if (!err)
1920 path_put(&parent_path);
1921 path_put(&old_path);
1922 return err;
1923 }
1924
1925 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1926 {
1927 int err;
1928 const char *subtype = strchr(fstype, '.');
1929 if (subtype) {
1930 subtype++;
1931 err = -EINVAL;
1932 if (!subtype[0])
1933 goto err;
1934 } else
1935 subtype = "";
1936
1937 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1938 err = -ENOMEM;
1939 if (!mnt->mnt_sb->s_subtype)
1940 goto err;
1941 return mnt;
1942
1943 err:
1944 mntput(mnt);
1945 return ERR_PTR(err);
1946 }
1947
1948 static struct vfsmount *
1949 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1950 {
1951 struct file_system_type *type = get_fs_type(fstype);
1952 struct vfsmount *mnt;
1953 if (!type)
1954 return ERR_PTR(-ENODEV);
1955 mnt = vfs_kern_mount(type, flags, name, data);
1956 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1957 !mnt->mnt_sb->s_subtype)
1958 mnt = fs_set_subtype(mnt, fstype);
1959 put_filesystem(type);
1960 return mnt;
1961 }
1962
1963 /*
1964 * add a mount into a namespace's mount tree
1965 */
1966 static int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags)
1967 {
1968 int err;
1969
1970 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1971
1972 err = lock_mount(path);
1973 if (err)
1974 return err;
1975
1976 err = -EINVAL;
1977 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1978 goto unlock;
1979
1980 /* Refuse the same filesystem on the same mount point */
1981 err = -EBUSY;
1982 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1983 path->mnt->mnt_root == path->dentry)
1984 goto unlock;
1985
1986 err = -EINVAL;
1987 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1988 goto unlock;
1989
1990 newmnt->mnt_flags = mnt_flags;
1991 err = graft_tree(newmnt, path);
1992
1993 unlock:
1994 unlock_mount(path);
1995 return err;
1996 }
1997
1998 /*
1999 * create a new mount for userspace and request it to be added into the
2000 * namespace's tree
2001 */
2002 static int do_new_mount(struct path *path, char *type, int flags,
2003 int mnt_flags, char *name, void *data)
2004 {
2005 struct vfsmount *mnt;
2006 int err;
2007
2008 if (!type)
2009 return -EINVAL;
2010
2011 /* we need capabilities... */
2012 if (!capable(CAP_SYS_ADMIN))
2013 return -EPERM;
2014
2015 mnt = do_kern_mount(type, flags, name, data);
2016 if (IS_ERR(mnt))
2017 return PTR_ERR(mnt);
2018
2019 err = do_add_mount(mnt, path, mnt_flags);
2020 if (err)
2021 mntput(mnt);
2022 return err;
2023 }
2024
2025 int finish_automount(struct vfsmount *m, struct path *path)
2026 {
2027 int err;
2028 /* The new mount record should have at least 2 refs to prevent it being
2029 * expired before we get a chance to add it
2030 */
2031 BUG_ON(mnt_get_count(m) < 2);
2032
2033 if (m->mnt_sb == path->mnt->mnt_sb &&
2034 m->mnt_root == path->dentry) {
2035 err = -ELOOP;
2036 goto fail;
2037 }
2038
2039 err = do_add_mount(m, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2040 if (!err)
2041 return 0;
2042 fail:
2043 /* remove m from any expiration list it may be on */
2044 if (!list_empty(&m->mnt_expire)) {
2045 down_write(&namespace_sem);
2046 br_write_lock(vfsmount_lock);
2047 list_del_init(&m->mnt_expire);
2048 br_write_unlock(vfsmount_lock);
2049 up_write(&namespace_sem);
2050 }
2051 mntput(m);
2052 mntput(m);
2053 return err;
2054 }
2055
2056 /**
2057 * mnt_set_expiry - Put a mount on an expiration list
2058 * @mnt: The mount to list.
2059 * @expiry_list: The list to add the mount to.
2060 */
2061 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2062 {
2063 down_write(&namespace_sem);
2064 br_write_lock(vfsmount_lock);
2065
2066 list_add_tail(&mnt->mnt_expire, expiry_list);
2067
2068 br_write_unlock(vfsmount_lock);
2069 up_write(&namespace_sem);
2070 }
2071 EXPORT_SYMBOL(mnt_set_expiry);
2072
2073 /*
2074 * process a list of expirable mountpoints with the intent of discarding any
2075 * mountpoints that aren't in use and haven't been touched since last we came
2076 * here
2077 */
2078 void mark_mounts_for_expiry(struct list_head *mounts)
2079 {
2080 struct vfsmount *mnt, *next;
2081 LIST_HEAD(graveyard);
2082 LIST_HEAD(umounts);
2083
2084 if (list_empty(mounts))
2085 return;
2086
2087 down_write(&namespace_sem);
2088 br_write_lock(vfsmount_lock);
2089
2090 /* extract from the expiration list every vfsmount that matches the
2091 * following criteria:
2092 * - only referenced by its parent vfsmount
2093 * - still marked for expiry (marked on the last call here; marks are
2094 * cleared by mntput())
2095 */
2096 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2097 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2098 propagate_mount_busy(mnt, 1))
2099 continue;
2100 list_move(&mnt->mnt_expire, &graveyard);
2101 }
2102 while (!list_empty(&graveyard)) {
2103 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
2104 touch_mnt_namespace(mnt->mnt_ns);
2105 umount_tree(mnt, 1, &umounts);
2106 }
2107 br_write_unlock(vfsmount_lock);
2108 up_write(&namespace_sem);
2109
2110 release_mounts(&umounts);
2111 }
2112
2113 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2114
2115 /*
2116 * Ripoff of 'select_parent()'
2117 *
2118 * search the list of submounts for a given mountpoint, and move any
2119 * shrinkable submounts to the 'graveyard' list.
2120 */
2121 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
2122 {
2123 struct vfsmount *this_parent = parent;
2124 struct list_head *next;
2125 int found = 0;
2126
2127 repeat:
2128 next = this_parent->mnt_mounts.next;
2129 resume:
2130 while (next != &this_parent->mnt_mounts) {
2131 struct list_head *tmp = next;
2132 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
2133
2134 next = tmp->next;
2135 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
2136 continue;
2137 /*
2138 * Descend a level if the d_mounts list is non-empty.
2139 */
2140 if (!list_empty(&mnt->mnt_mounts)) {
2141 this_parent = mnt;
2142 goto repeat;
2143 }
2144
2145 if (!propagate_mount_busy(mnt, 1)) {
2146 list_move_tail(&mnt->mnt_expire, graveyard);
2147 found++;
2148 }
2149 }
2150 /*
2151 * All done at this level ... ascend and resume the search
2152 */
2153 if (this_parent != parent) {
2154 next = this_parent->mnt_child.next;
2155 this_parent = this_parent->mnt_parent;
2156 goto resume;
2157 }
2158 return found;
2159 }
2160
2161 /*
2162 * process a list of expirable mountpoints with the intent of discarding any
2163 * submounts of a specific parent mountpoint
2164 *
2165 * vfsmount_lock must be held for write
2166 */
2167 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
2168 {
2169 LIST_HEAD(graveyard);
2170 struct vfsmount *m;
2171
2172 /* extract submounts of 'mountpoint' from the expiration list */
2173 while (select_submounts(mnt, &graveyard)) {
2174 while (!list_empty(&graveyard)) {
2175 m = list_first_entry(&graveyard, struct vfsmount,
2176 mnt_expire);
2177 touch_mnt_namespace(m->mnt_ns);
2178 umount_tree(m, 1, umounts);
2179 }
2180 }
2181 }
2182
2183 /*
2184 * Some copy_from_user() implementations do not return the exact number of
2185 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2186 * Note that this function differs from copy_from_user() in that it will oops
2187 * on bad values of `to', rather than returning a short copy.
2188 */
2189 static long exact_copy_from_user(void *to, const void __user * from,
2190 unsigned long n)
2191 {
2192 char *t = to;
2193 const char __user *f = from;
2194 char c;
2195
2196 if (!access_ok(VERIFY_READ, from, n))
2197 return n;
2198
2199 while (n) {
2200 if (__get_user(c, f)) {
2201 memset(t, 0, n);
2202 break;
2203 }
2204 *t++ = c;
2205 f++;
2206 n--;
2207 }
2208 return n;
2209 }
2210
2211 int copy_mount_options(const void __user * data, unsigned long *where)
2212 {
2213 int i;
2214 unsigned long page;
2215 unsigned long size;
2216
2217 *where = 0;
2218 if (!data)
2219 return 0;
2220
2221 if (!(page = __get_free_page(GFP_KERNEL)))
2222 return -ENOMEM;
2223
2224 /* We only care that *some* data at the address the user
2225 * gave us is valid. Just in case, we'll zero
2226 * the remainder of the page.
2227 */
2228 /* copy_from_user cannot cross TASK_SIZE ! */
2229 size = TASK_SIZE - (unsigned long)data;
2230 if (size > PAGE_SIZE)
2231 size = PAGE_SIZE;
2232
2233 i = size - exact_copy_from_user((void *)page, data, size);
2234 if (!i) {
2235 free_page(page);
2236 return -EFAULT;
2237 }
2238 if (i != PAGE_SIZE)
2239 memset((char *)page + i, 0, PAGE_SIZE - i);
2240 *where = page;
2241 return 0;
2242 }
2243
2244 int copy_mount_string(const void __user *data, char **where)
2245 {
2246 char *tmp;
2247
2248 if (!data) {
2249 *where = NULL;
2250 return 0;
2251 }
2252
2253 tmp = strndup_user(data, PAGE_SIZE);
2254 if (IS_ERR(tmp))
2255 return PTR_ERR(tmp);
2256
2257 *where = tmp;
2258 return 0;
2259 }
2260
2261 /*
2262 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2263 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2264 *
2265 * data is a (void *) that can point to any structure up to
2266 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2267 * information (or be NULL).
2268 *
2269 * Pre-0.97 versions of mount() didn't have a flags word.
2270 * When the flags word was introduced its top half was required
2271 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2272 * Therefore, if this magic number is present, it carries no information
2273 * and must be discarded.
2274 */
2275 long do_mount(char *dev_name, char *dir_name, char *type_page,
2276 unsigned long flags, void *data_page)
2277 {
2278 struct path path;
2279 int retval = 0;
2280 int mnt_flags = 0;
2281
2282 /* Discard magic */
2283 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2284 flags &= ~MS_MGC_MSK;
2285
2286 /* Basic sanity checks */
2287
2288 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2289 return -EINVAL;
2290
2291 if (data_page)
2292 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2293
2294 /* ... and get the mountpoint */
2295 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2296 if (retval)
2297 return retval;
2298
2299 retval = security_sb_mount(dev_name, &path,
2300 type_page, flags, data_page);
2301 if (retval)
2302 goto dput_out;
2303
2304 /* Default to relatime unless overriden */
2305 if (!(flags & MS_NOATIME))
2306 mnt_flags |= MNT_RELATIME;
2307
2308 /* Separate the per-mountpoint flags */
2309 if (flags & MS_NOSUID)
2310 mnt_flags |= MNT_NOSUID;
2311 if (flags & MS_NODEV)
2312 mnt_flags |= MNT_NODEV;
2313 if (flags & MS_NOEXEC)
2314 mnt_flags |= MNT_NOEXEC;
2315 if (flags & MS_NOATIME)
2316 mnt_flags |= MNT_NOATIME;
2317 if (flags & MS_NODIRATIME)
2318 mnt_flags |= MNT_NODIRATIME;
2319 if (flags & MS_STRICTATIME)
2320 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2321 if (flags & MS_RDONLY)
2322 mnt_flags |= MNT_READONLY;
2323
2324 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2325 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2326 MS_STRICTATIME);
2327
2328 if (flags & MS_REMOUNT)
2329 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2330 data_page);
2331 else if (flags & MS_BIND)
2332 retval = do_loopback(&path, dev_name, flags & MS_REC);
2333 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2334 retval = do_change_type(&path, flags);
2335 else if (flags & MS_MOVE)
2336 retval = do_move_mount(&path, dev_name);
2337 else
2338 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2339 dev_name, data_page);
2340 dput_out:
2341 path_put(&path);
2342 return retval;
2343 }
2344
2345 static struct mnt_namespace *alloc_mnt_ns(void)
2346 {
2347 struct mnt_namespace *new_ns;
2348
2349 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2350 if (!new_ns)
2351 return ERR_PTR(-ENOMEM);
2352 atomic_set(&new_ns->count, 1);
2353 new_ns->root = NULL;
2354 INIT_LIST_HEAD(&new_ns->list);
2355 init_waitqueue_head(&new_ns->poll);
2356 new_ns->event = 0;
2357 return new_ns;
2358 }
2359
2360 void mnt_make_longterm(struct vfsmount *mnt)
2361 {
2362 __mnt_make_longterm(mnt);
2363 }
2364
2365 void mnt_make_shortterm(struct vfsmount *mnt)
2366 {
2367 #ifdef CONFIG_SMP
2368 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
2369 return;
2370 br_write_lock(vfsmount_lock);
2371 atomic_dec(&mnt->mnt_longterm);
2372 br_write_unlock(vfsmount_lock);
2373 #endif
2374 }
2375
2376 /*
2377 * Allocate a new namespace structure and populate it with contents
2378 * copied from the namespace of the passed in task structure.
2379 */
2380 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2381 struct fs_struct *fs)
2382 {
2383 struct mnt_namespace *new_ns;
2384 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2385 struct mount *p, *q;
2386
2387 new_ns = alloc_mnt_ns();
2388 if (IS_ERR(new_ns))
2389 return new_ns;
2390
2391 down_write(&namespace_sem);
2392 /* First pass: copy the tree topology */
2393 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
2394 CL_COPY_ALL | CL_EXPIRE);
2395 if (!new_ns->root) {
2396 up_write(&namespace_sem);
2397 kfree(new_ns);
2398 return ERR_PTR(-ENOMEM);
2399 }
2400 br_write_lock(vfsmount_lock);
2401 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2402 br_write_unlock(vfsmount_lock);
2403
2404 /*
2405 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2406 * as belonging to new namespace. We have already acquired a private
2407 * fs_struct, so tsk->fs->lock is not needed.
2408 */
2409 p = real_mount(mnt_ns->root);
2410 q = real_mount(new_ns->root);
2411 while (p) {
2412 q->mnt.mnt_ns = new_ns;
2413 __mnt_make_longterm(&q->mnt);
2414 if (fs) {
2415 if (&p->mnt == fs->root.mnt) {
2416 fs->root.mnt = mntget(&q->mnt);
2417 __mnt_make_longterm(&q->mnt);
2418 mnt_make_shortterm(&p->mnt);
2419 rootmnt = &p->mnt;
2420 }
2421 if (&p->mnt == fs->pwd.mnt) {
2422 fs->pwd.mnt = mntget(&q->mnt);
2423 __mnt_make_longterm(&q->mnt);
2424 mnt_make_shortterm(&p->mnt);
2425 pwdmnt = &p->mnt;
2426 }
2427 }
2428 p = next_mnt(p, mnt_ns->root);
2429 q = next_mnt(q, new_ns->root);
2430 }
2431 up_write(&namespace_sem);
2432
2433 if (rootmnt)
2434 mntput(rootmnt);
2435 if (pwdmnt)
2436 mntput(pwdmnt);
2437
2438 return new_ns;
2439 }
2440
2441 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2442 struct fs_struct *new_fs)
2443 {
2444 struct mnt_namespace *new_ns;
2445
2446 BUG_ON(!ns);
2447 get_mnt_ns(ns);
2448
2449 if (!(flags & CLONE_NEWNS))
2450 return ns;
2451
2452 new_ns = dup_mnt_ns(ns, new_fs);
2453
2454 put_mnt_ns(ns);
2455 return new_ns;
2456 }
2457
2458 /**
2459 * create_mnt_ns - creates a private namespace and adds a root filesystem
2460 * @mnt: pointer to the new root filesystem mountpoint
2461 */
2462 static struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
2463 {
2464 struct mnt_namespace *new_ns;
2465
2466 new_ns = alloc_mnt_ns();
2467 if (!IS_ERR(new_ns)) {
2468 mnt->mnt_ns = new_ns;
2469 __mnt_make_longterm(mnt);
2470 new_ns->root = mnt;
2471 list_add(&new_ns->list, &new_ns->root->mnt_list);
2472 } else {
2473 mntput(mnt);
2474 }
2475 return new_ns;
2476 }
2477
2478 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2479 {
2480 struct mnt_namespace *ns;
2481 struct super_block *s;
2482 struct path path;
2483 int err;
2484
2485 ns = create_mnt_ns(mnt);
2486 if (IS_ERR(ns))
2487 return ERR_CAST(ns);
2488
2489 err = vfs_path_lookup(mnt->mnt_root, mnt,
2490 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2491
2492 put_mnt_ns(ns);
2493
2494 if (err)
2495 return ERR_PTR(err);
2496
2497 /* trade a vfsmount reference for active sb one */
2498 s = path.mnt->mnt_sb;
2499 atomic_inc(&s->s_active);
2500 mntput(path.mnt);
2501 /* lock the sucker */
2502 down_write(&s->s_umount);
2503 /* ... and return the root of (sub)tree on it */
2504 return path.dentry;
2505 }
2506 EXPORT_SYMBOL(mount_subtree);
2507
2508 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2509 char __user *, type, unsigned long, flags, void __user *, data)
2510 {
2511 int ret;
2512 char *kernel_type;
2513 char *kernel_dir;
2514 char *kernel_dev;
2515 unsigned long data_page;
2516
2517 ret = copy_mount_string(type, &kernel_type);
2518 if (ret < 0)
2519 goto out_type;
2520
2521 kernel_dir = getname(dir_name);
2522 if (IS_ERR(kernel_dir)) {
2523 ret = PTR_ERR(kernel_dir);
2524 goto out_dir;
2525 }
2526
2527 ret = copy_mount_string(dev_name, &kernel_dev);
2528 if (ret < 0)
2529 goto out_dev;
2530
2531 ret = copy_mount_options(data, &data_page);
2532 if (ret < 0)
2533 goto out_data;
2534
2535 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2536 (void *) data_page);
2537
2538 free_page(data_page);
2539 out_data:
2540 kfree(kernel_dev);
2541 out_dev:
2542 putname(kernel_dir);
2543 out_dir:
2544 kfree(kernel_type);
2545 out_type:
2546 return ret;
2547 }
2548
2549 /*
2550 * Return true if path is reachable from root
2551 *
2552 * namespace_sem or vfsmount_lock is held
2553 */
2554 bool is_path_reachable(struct vfsmount *mnt, struct dentry *dentry,
2555 const struct path *root)
2556 {
2557 while (mnt != root->mnt && mnt_has_parent(mnt)) {
2558 dentry = mnt->mnt_mountpoint;
2559 mnt = mnt->mnt_parent;
2560 }
2561 return mnt == root->mnt && is_subdir(dentry, root->dentry);
2562 }
2563
2564 int path_is_under(struct path *path1, struct path *path2)
2565 {
2566 int res;
2567 br_read_lock(vfsmount_lock);
2568 res = is_path_reachable(path1->mnt, path1->dentry, path2);
2569 br_read_unlock(vfsmount_lock);
2570 return res;
2571 }
2572 EXPORT_SYMBOL(path_is_under);
2573
2574 /*
2575 * pivot_root Semantics:
2576 * Moves the root file system of the current process to the directory put_old,
2577 * makes new_root as the new root file system of the current process, and sets
2578 * root/cwd of all processes which had them on the current root to new_root.
2579 *
2580 * Restrictions:
2581 * The new_root and put_old must be directories, and must not be on the
2582 * same file system as the current process root. The put_old must be
2583 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2584 * pointed to by put_old must yield the same directory as new_root. No other
2585 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2586 *
2587 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2588 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2589 * in this situation.
2590 *
2591 * Notes:
2592 * - we don't move root/cwd if they are not at the root (reason: if something
2593 * cared enough to change them, it's probably wrong to force them elsewhere)
2594 * - it's okay to pick a root that isn't the root of a file system, e.g.
2595 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2596 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2597 * first.
2598 */
2599 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2600 const char __user *, put_old)
2601 {
2602 struct path new, old, parent_path, root_parent, root;
2603 struct mount *new_mnt, *root_mnt;
2604 int error;
2605
2606 if (!capable(CAP_SYS_ADMIN))
2607 return -EPERM;
2608
2609 error = user_path_dir(new_root, &new);
2610 if (error)
2611 goto out0;
2612
2613 error = user_path_dir(put_old, &old);
2614 if (error)
2615 goto out1;
2616
2617 error = security_sb_pivotroot(&old, &new);
2618 if (error)
2619 goto out2;
2620
2621 get_fs_root(current->fs, &root);
2622 error = lock_mount(&old);
2623 if (error)
2624 goto out3;
2625
2626 error = -EINVAL;
2627 new_mnt = real_mount(new.mnt);
2628 root_mnt = real_mount(root.mnt);
2629 if (IS_MNT_SHARED(old.mnt) ||
2630 IS_MNT_SHARED(new.mnt->mnt_parent) ||
2631 IS_MNT_SHARED(root.mnt->mnt_parent))
2632 goto out4;
2633 if (!check_mnt(root.mnt) || !check_mnt(new.mnt))
2634 goto out4;
2635 error = -ENOENT;
2636 if (d_unlinked(new.dentry))
2637 goto out4;
2638 if (d_unlinked(old.dentry))
2639 goto out4;
2640 error = -EBUSY;
2641 if (new.mnt == root.mnt ||
2642 old.mnt == root.mnt)
2643 goto out4; /* loop, on the same file system */
2644 error = -EINVAL;
2645 if (root.mnt->mnt_root != root.dentry)
2646 goto out4; /* not a mountpoint */
2647 if (!mnt_has_parent(root.mnt))
2648 goto out4; /* not attached */
2649 if (new.mnt->mnt_root != new.dentry)
2650 goto out4; /* not a mountpoint */
2651 if (!mnt_has_parent(new.mnt))
2652 goto out4; /* not attached */
2653 /* make sure we can reach put_old from new_root */
2654 if (!is_path_reachable(old.mnt, old.dentry, &new))
2655 goto out4;
2656 br_write_lock(vfsmount_lock);
2657 detach_mnt(new_mnt, &parent_path);
2658 detach_mnt(root_mnt, &root_parent);
2659 /* mount old root on put_old */
2660 attach_mnt(root_mnt, &old);
2661 /* mount new_root on / */
2662 attach_mnt(new_mnt, &root_parent);
2663 touch_mnt_namespace(current->nsproxy->mnt_ns);
2664 br_write_unlock(vfsmount_lock);
2665 chroot_fs_refs(&root, &new);
2666 error = 0;
2667 out4:
2668 unlock_mount(&old);
2669 if (!error) {
2670 path_put(&root_parent);
2671 path_put(&parent_path);
2672 }
2673 out3:
2674 path_put(&root);
2675 out2:
2676 path_put(&old);
2677 out1:
2678 path_put(&new);
2679 out0:
2680 return error;
2681 }
2682
2683 static void __init init_mount_tree(void)
2684 {
2685 struct vfsmount *mnt;
2686 struct mnt_namespace *ns;
2687 struct path root;
2688
2689 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2690 if (IS_ERR(mnt))
2691 panic("Can't create rootfs");
2692
2693 ns = create_mnt_ns(mnt);
2694 if (IS_ERR(ns))
2695 panic("Can't allocate initial namespace");
2696
2697 init_task.nsproxy->mnt_ns = ns;
2698 get_mnt_ns(ns);
2699
2700 root.mnt = ns->root;
2701 root.dentry = ns->root->mnt_root;
2702
2703 set_fs_pwd(current->fs, &root);
2704 set_fs_root(current->fs, &root);
2705 }
2706
2707 void __init mnt_init(void)
2708 {
2709 unsigned u;
2710 int err;
2711
2712 init_rwsem(&namespace_sem);
2713
2714 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2715 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2716
2717 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2718
2719 if (!mount_hashtable)
2720 panic("Failed to allocate mount hash table\n");
2721
2722 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2723
2724 for (u = 0; u < HASH_SIZE; u++)
2725 INIT_LIST_HEAD(&mount_hashtable[u]);
2726
2727 br_lock_init(vfsmount_lock);
2728
2729 err = sysfs_init();
2730 if (err)
2731 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2732 __func__, err);
2733 fs_kobj = kobject_create_and_add("fs", NULL);
2734 if (!fs_kobj)
2735 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2736 init_rootfs();
2737 init_mount_tree();
2738 }
2739
2740 void put_mnt_ns(struct mnt_namespace *ns)
2741 {
2742 LIST_HEAD(umount_list);
2743
2744 if (!atomic_dec_and_test(&ns->count))
2745 return;
2746 down_write(&namespace_sem);
2747 br_write_lock(vfsmount_lock);
2748 umount_tree(ns->root, 0, &umount_list);
2749 br_write_unlock(vfsmount_lock);
2750 up_write(&namespace_sem);
2751 release_mounts(&umount_list);
2752 kfree(ns);
2753 }
2754
2755 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2756 {
2757 struct vfsmount *mnt;
2758 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2759 if (!IS_ERR(mnt)) {
2760 /*
2761 * it is a longterm mount, don't release mnt until
2762 * we unmount before file sys is unregistered
2763 */
2764 mnt_make_longterm(mnt);
2765 }
2766 return mnt;
2767 }
2768 EXPORT_SYMBOL_GPL(kern_mount_data);
2769
2770 void kern_unmount(struct vfsmount *mnt)
2771 {
2772 /* release long term mount so mount point can be released */
2773 if (!IS_ERR_OR_NULL(mnt)) {
2774 mnt_make_shortterm(mnt);
2775 mntput(mnt);
2776 }
2777 }
2778 EXPORT_SYMBOL(kern_unmount);
2779
2780 bool our_mnt(struct vfsmount *mnt)
2781 {
2782 return check_mnt(mnt);
2783 }