]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/namespace.c
make struct mountpoint bear the dentry reference to mountpoint, not struct mount
[mirror_ubuntu-jammy-kernel.git] / fs / namespace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/task_work.h>
29 #include <linux/sched/task.h>
30 #include <uapi/linux/mount.h>
31 #include <linux/fs_context.h>
32
33 #include "pnode.h"
34 #include "internal.h"
35
36 /* Maximum number of mounts in a mount namespace */
37 unsigned int sysctl_mount_max __read_mostly = 100000;
38
39 static unsigned int m_hash_mask __read_mostly;
40 static unsigned int m_hash_shift __read_mostly;
41 static unsigned int mp_hash_mask __read_mostly;
42 static unsigned int mp_hash_shift __read_mostly;
43
44 static __initdata unsigned long mhash_entries;
45 static int __init set_mhash_entries(char *str)
46 {
47 if (!str)
48 return 0;
49 mhash_entries = simple_strtoul(str, &str, 0);
50 return 1;
51 }
52 __setup("mhash_entries=", set_mhash_entries);
53
54 static __initdata unsigned long mphash_entries;
55 static int __init set_mphash_entries(char *str)
56 {
57 if (!str)
58 return 0;
59 mphash_entries = simple_strtoul(str, &str, 0);
60 return 1;
61 }
62 __setup("mphash_entries=", set_mphash_entries);
63
64 static u64 event;
65 static DEFINE_IDA(mnt_id_ida);
66 static DEFINE_IDA(mnt_group_ida);
67
68 static struct hlist_head *mount_hashtable __read_mostly;
69 static struct hlist_head *mountpoint_hashtable __read_mostly;
70 static struct kmem_cache *mnt_cache __read_mostly;
71 static DECLARE_RWSEM(namespace_sem);
72 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
73 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
74
75 /* /sys/fs */
76 struct kobject *fs_kobj;
77 EXPORT_SYMBOL_GPL(fs_kobj);
78
79 /*
80 * vfsmount lock may be taken for read to prevent changes to the
81 * vfsmount hash, ie. during mountpoint lookups or walking back
82 * up the tree.
83 *
84 * It should be taken for write in all cases where the vfsmount
85 * tree or hash is modified or when a vfsmount structure is modified.
86 */
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
88
89 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
90 {
91 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
92 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
93 tmp = tmp + (tmp >> m_hash_shift);
94 return &mount_hashtable[tmp & m_hash_mask];
95 }
96
97 static inline struct hlist_head *mp_hash(struct dentry *dentry)
98 {
99 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
100 tmp = tmp + (tmp >> mp_hash_shift);
101 return &mountpoint_hashtable[tmp & mp_hash_mask];
102 }
103
104 static int mnt_alloc_id(struct mount *mnt)
105 {
106 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
107
108 if (res < 0)
109 return res;
110 mnt->mnt_id = res;
111 return 0;
112 }
113
114 static void mnt_free_id(struct mount *mnt)
115 {
116 ida_free(&mnt_id_ida, mnt->mnt_id);
117 }
118
119 /*
120 * Allocate a new peer group ID
121 */
122 static int mnt_alloc_group_id(struct mount *mnt)
123 {
124 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
125
126 if (res < 0)
127 return res;
128 mnt->mnt_group_id = res;
129 return 0;
130 }
131
132 /*
133 * Release a peer group ID
134 */
135 void mnt_release_group_id(struct mount *mnt)
136 {
137 ida_free(&mnt_group_ida, mnt->mnt_group_id);
138 mnt->mnt_group_id = 0;
139 }
140
141 /*
142 * vfsmount lock must be held for read
143 */
144 static inline void mnt_add_count(struct mount *mnt, int n)
145 {
146 #ifdef CONFIG_SMP
147 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
148 #else
149 preempt_disable();
150 mnt->mnt_count += n;
151 preempt_enable();
152 #endif
153 }
154
155 /*
156 * vfsmount lock must be held for write
157 */
158 unsigned int mnt_get_count(struct mount *mnt)
159 {
160 #ifdef CONFIG_SMP
161 unsigned int count = 0;
162 int cpu;
163
164 for_each_possible_cpu(cpu) {
165 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
166 }
167
168 return count;
169 #else
170 return mnt->mnt_count;
171 #endif
172 }
173
174 static void drop_mountpoint(struct fs_pin *p)
175 {
176 struct mount *m = container_of(p, struct mount, mnt_umount);
177 pin_remove(p);
178 mntput(&m->mnt);
179 }
180
181 static struct mount *alloc_vfsmnt(const char *name)
182 {
183 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
184 if (mnt) {
185 int err;
186
187 err = mnt_alloc_id(mnt);
188 if (err)
189 goto out_free_cache;
190
191 if (name) {
192 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
193 if (!mnt->mnt_devname)
194 goto out_free_id;
195 }
196
197 #ifdef CONFIG_SMP
198 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
199 if (!mnt->mnt_pcp)
200 goto out_free_devname;
201
202 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
203 #else
204 mnt->mnt_count = 1;
205 mnt->mnt_writers = 0;
206 #endif
207
208 INIT_HLIST_NODE(&mnt->mnt_hash);
209 INIT_LIST_HEAD(&mnt->mnt_child);
210 INIT_LIST_HEAD(&mnt->mnt_mounts);
211 INIT_LIST_HEAD(&mnt->mnt_list);
212 INIT_LIST_HEAD(&mnt->mnt_expire);
213 INIT_LIST_HEAD(&mnt->mnt_share);
214 INIT_LIST_HEAD(&mnt->mnt_slave_list);
215 INIT_LIST_HEAD(&mnt->mnt_slave);
216 INIT_HLIST_NODE(&mnt->mnt_mp_list);
217 INIT_LIST_HEAD(&mnt->mnt_umounting);
218 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
219 }
220 return mnt;
221
222 #ifdef CONFIG_SMP
223 out_free_devname:
224 kfree_const(mnt->mnt_devname);
225 #endif
226 out_free_id:
227 mnt_free_id(mnt);
228 out_free_cache:
229 kmem_cache_free(mnt_cache, mnt);
230 return NULL;
231 }
232
233 /*
234 * Most r/o checks on a fs are for operations that take
235 * discrete amounts of time, like a write() or unlink().
236 * We must keep track of when those operations start
237 * (for permission checks) and when they end, so that
238 * we can determine when writes are able to occur to
239 * a filesystem.
240 */
241 /*
242 * __mnt_is_readonly: check whether a mount is read-only
243 * @mnt: the mount to check for its write status
244 *
245 * This shouldn't be used directly ouside of the VFS.
246 * It does not guarantee that the filesystem will stay
247 * r/w, just that it is right *now*. This can not and
248 * should not be used in place of IS_RDONLY(inode).
249 * mnt_want/drop_write() will _keep_ the filesystem
250 * r/w.
251 */
252 bool __mnt_is_readonly(struct vfsmount *mnt)
253 {
254 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
255 }
256 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
257
258 static inline void mnt_inc_writers(struct mount *mnt)
259 {
260 #ifdef CONFIG_SMP
261 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
262 #else
263 mnt->mnt_writers++;
264 #endif
265 }
266
267 static inline void mnt_dec_writers(struct mount *mnt)
268 {
269 #ifdef CONFIG_SMP
270 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
271 #else
272 mnt->mnt_writers--;
273 #endif
274 }
275
276 static unsigned int mnt_get_writers(struct mount *mnt)
277 {
278 #ifdef CONFIG_SMP
279 unsigned int count = 0;
280 int cpu;
281
282 for_each_possible_cpu(cpu) {
283 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
284 }
285
286 return count;
287 #else
288 return mnt->mnt_writers;
289 #endif
290 }
291
292 static int mnt_is_readonly(struct vfsmount *mnt)
293 {
294 if (mnt->mnt_sb->s_readonly_remount)
295 return 1;
296 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
297 smp_rmb();
298 return __mnt_is_readonly(mnt);
299 }
300
301 /*
302 * Most r/o & frozen checks on a fs are for operations that take discrete
303 * amounts of time, like a write() or unlink(). We must keep track of when
304 * those operations start (for permission checks) and when they end, so that we
305 * can determine when writes are able to occur to a filesystem.
306 */
307 /**
308 * __mnt_want_write - get write access to a mount without freeze protection
309 * @m: the mount on which to take a write
310 *
311 * This tells the low-level filesystem that a write is about to be performed to
312 * it, and makes sure that writes are allowed (mnt it read-write) before
313 * returning success. This operation does not protect against filesystem being
314 * frozen. When the write operation is finished, __mnt_drop_write() must be
315 * called. This is effectively a refcount.
316 */
317 int __mnt_want_write(struct vfsmount *m)
318 {
319 struct mount *mnt = real_mount(m);
320 int ret = 0;
321
322 preempt_disable();
323 mnt_inc_writers(mnt);
324 /*
325 * The store to mnt_inc_writers must be visible before we pass
326 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
327 * incremented count after it has set MNT_WRITE_HOLD.
328 */
329 smp_mb();
330 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
331 cpu_relax();
332 /*
333 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
334 * be set to match its requirements. So we must not load that until
335 * MNT_WRITE_HOLD is cleared.
336 */
337 smp_rmb();
338 if (mnt_is_readonly(m)) {
339 mnt_dec_writers(mnt);
340 ret = -EROFS;
341 }
342 preempt_enable();
343
344 return ret;
345 }
346
347 /**
348 * mnt_want_write - get write access to a mount
349 * @m: the mount on which to take a write
350 *
351 * This tells the low-level filesystem that a write is about to be performed to
352 * it, and makes sure that writes are allowed (mount is read-write, filesystem
353 * is not frozen) before returning success. When the write operation is
354 * finished, mnt_drop_write() must be called. This is effectively a refcount.
355 */
356 int mnt_want_write(struct vfsmount *m)
357 {
358 int ret;
359
360 sb_start_write(m->mnt_sb);
361 ret = __mnt_want_write(m);
362 if (ret)
363 sb_end_write(m->mnt_sb);
364 return ret;
365 }
366 EXPORT_SYMBOL_GPL(mnt_want_write);
367
368 /**
369 * mnt_clone_write - get write access to a mount
370 * @mnt: the mount on which to take a write
371 *
372 * This is effectively like mnt_want_write, except
373 * it must only be used to take an extra write reference
374 * on a mountpoint that we already know has a write reference
375 * on it. This allows some optimisation.
376 *
377 * After finished, mnt_drop_write must be called as usual to
378 * drop the reference.
379 */
380 int mnt_clone_write(struct vfsmount *mnt)
381 {
382 /* superblock may be r/o */
383 if (__mnt_is_readonly(mnt))
384 return -EROFS;
385 preempt_disable();
386 mnt_inc_writers(real_mount(mnt));
387 preempt_enable();
388 return 0;
389 }
390 EXPORT_SYMBOL_GPL(mnt_clone_write);
391
392 /**
393 * __mnt_want_write_file - get write access to a file's mount
394 * @file: the file who's mount on which to take a write
395 *
396 * This is like __mnt_want_write, but it takes a file and can
397 * do some optimisations if the file is open for write already
398 */
399 int __mnt_want_write_file(struct file *file)
400 {
401 if (!(file->f_mode & FMODE_WRITER))
402 return __mnt_want_write(file->f_path.mnt);
403 else
404 return mnt_clone_write(file->f_path.mnt);
405 }
406
407 /**
408 * mnt_want_write_file - get write access to a file's mount
409 * @file: the file who's mount on which to take a write
410 *
411 * This is like mnt_want_write, but it takes a file and can
412 * do some optimisations if the file is open for write already
413 */
414 int mnt_want_write_file(struct file *file)
415 {
416 int ret;
417
418 sb_start_write(file_inode(file)->i_sb);
419 ret = __mnt_want_write_file(file);
420 if (ret)
421 sb_end_write(file_inode(file)->i_sb);
422 return ret;
423 }
424 EXPORT_SYMBOL_GPL(mnt_want_write_file);
425
426 /**
427 * __mnt_drop_write - give up write access to a mount
428 * @mnt: the mount on which to give up write access
429 *
430 * Tells the low-level filesystem that we are done
431 * performing writes to it. Must be matched with
432 * __mnt_want_write() call above.
433 */
434 void __mnt_drop_write(struct vfsmount *mnt)
435 {
436 preempt_disable();
437 mnt_dec_writers(real_mount(mnt));
438 preempt_enable();
439 }
440
441 /**
442 * mnt_drop_write - give up write access to a mount
443 * @mnt: the mount on which to give up write access
444 *
445 * Tells the low-level filesystem that we are done performing writes to it and
446 * also allows filesystem to be frozen again. Must be matched with
447 * mnt_want_write() call above.
448 */
449 void mnt_drop_write(struct vfsmount *mnt)
450 {
451 __mnt_drop_write(mnt);
452 sb_end_write(mnt->mnt_sb);
453 }
454 EXPORT_SYMBOL_GPL(mnt_drop_write);
455
456 void __mnt_drop_write_file(struct file *file)
457 {
458 __mnt_drop_write(file->f_path.mnt);
459 }
460
461 void mnt_drop_write_file(struct file *file)
462 {
463 __mnt_drop_write_file(file);
464 sb_end_write(file_inode(file)->i_sb);
465 }
466 EXPORT_SYMBOL(mnt_drop_write_file);
467
468 static int mnt_make_readonly(struct mount *mnt)
469 {
470 int ret = 0;
471
472 lock_mount_hash();
473 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
474 /*
475 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
476 * should be visible before we do.
477 */
478 smp_mb();
479
480 /*
481 * With writers on hold, if this value is zero, then there are
482 * definitely no active writers (although held writers may subsequently
483 * increment the count, they'll have to wait, and decrement it after
484 * seeing MNT_READONLY).
485 *
486 * It is OK to have counter incremented on one CPU and decremented on
487 * another: the sum will add up correctly. The danger would be when we
488 * sum up each counter, if we read a counter before it is incremented,
489 * but then read another CPU's count which it has been subsequently
490 * decremented from -- we would see more decrements than we should.
491 * MNT_WRITE_HOLD protects against this scenario, because
492 * mnt_want_write first increments count, then smp_mb, then spins on
493 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
494 * we're counting up here.
495 */
496 if (mnt_get_writers(mnt) > 0)
497 ret = -EBUSY;
498 else
499 mnt->mnt.mnt_flags |= MNT_READONLY;
500 /*
501 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
502 * that become unheld will see MNT_READONLY.
503 */
504 smp_wmb();
505 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
506 unlock_mount_hash();
507 return ret;
508 }
509
510 static int __mnt_unmake_readonly(struct mount *mnt)
511 {
512 lock_mount_hash();
513 mnt->mnt.mnt_flags &= ~MNT_READONLY;
514 unlock_mount_hash();
515 return 0;
516 }
517
518 int sb_prepare_remount_readonly(struct super_block *sb)
519 {
520 struct mount *mnt;
521 int err = 0;
522
523 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
524 if (atomic_long_read(&sb->s_remove_count))
525 return -EBUSY;
526
527 lock_mount_hash();
528 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
529 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
530 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
531 smp_mb();
532 if (mnt_get_writers(mnt) > 0) {
533 err = -EBUSY;
534 break;
535 }
536 }
537 }
538 if (!err && atomic_long_read(&sb->s_remove_count))
539 err = -EBUSY;
540
541 if (!err) {
542 sb->s_readonly_remount = 1;
543 smp_wmb();
544 }
545 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
546 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
547 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
548 }
549 unlock_mount_hash();
550
551 return err;
552 }
553
554 static void free_vfsmnt(struct mount *mnt)
555 {
556 kfree_const(mnt->mnt_devname);
557 #ifdef CONFIG_SMP
558 free_percpu(mnt->mnt_pcp);
559 #endif
560 kmem_cache_free(mnt_cache, mnt);
561 }
562
563 static void delayed_free_vfsmnt(struct rcu_head *head)
564 {
565 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
566 }
567
568 /* call under rcu_read_lock */
569 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
570 {
571 struct mount *mnt;
572 if (read_seqretry(&mount_lock, seq))
573 return 1;
574 if (bastard == NULL)
575 return 0;
576 mnt = real_mount(bastard);
577 mnt_add_count(mnt, 1);
578 smp_mb(); // see mntput_no_expire()
579 if (likely(!read_seqretry(&mount_lock, seq)))
580 return 0;
581 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
582 mnt_add_count(mnt, -1);
583 return 1;
584 }
585 lock_mount_hash();
586 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
587 mnt_add_count(mnt, -1);
588 unlock_mount_hash();
589 return 1;
590 }
591 unlock_mount_hash();
592 /* caller will mntput() */
593 return -1;
594 }
595
596 /* call under rcu_read_lock */
597 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
598 {
599 int res = __legitimize_mnt(bastard, seq);
600 if (likely(!res))
601 return true;
602 if (unlikely(res < 0)) {
603 rcu_read_unlock();
604 mntput(bastard);
605 rcu_read_lock();
606 }
607 return false;
608 }
609
610 /*
611 * find the first mount at @dentry on vfsmount @mnt.
612 * call under rcu_read_lock()
613 */
614 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
615 {
616 struct hlist_head *head = m_hash(mnt, dentry);
617 struct mount *p;
618
619 hlist_for_each_entry_rcu(p, head, mnt_hash)
620 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
621 return p;
622 return NULL;
623 }
624
625 /*
626 * lookup_mnt - Return the first child mount mounted at path
627 *
628 * "First" means first mounted chronologically. If you create the
629 * following mounts:
630 *
631 * mount /dev/sda1 /mnt
632 * mount /dev/sda2 /mnt
633 * mount /dev/sda3 /mnt
634 *
635 * Then lookup_mnt() on the base /mnt dentry in the root mount will
636 * return successively the root dentry and vfsmount of /dev/sda1, then
637 * /dev/sda2, then /dev/sda3, then NULL.
638 *
639 * lookup_mnt takes a reference to the found vfsmount.
640 */
641 struct vfsmount *lookup_mnt(const struct path *path)
642 {
643 struct mount *child_mnt;
644 struct vfsmount *m;
645 unsigned seq;
646
647 rcu_read_lock();
648 do {
649 seq = read_seqbegin(&mount_lock);
650 child_mnt = __lookup_mnt(path->mnt, path->dentry);
651 m = child_mnt ? &child_mnt->mnt : NULL;
652 } while (!legitimize_mnt(m, seq));
653 rcu_read_unlock();
654 return m;
655 }
656
657 /*
658 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
659 * current mount namespace.
660 *
661 * The common case is dentries are not mountpoints at all and that
662 * test is handled inline. For the slow case when we are actually
663 * dealing with a mountpoint of some kind, walk through all of the
664 * mounts in the current mount namespace and test to see if the dentry
665 * is a mountpoint.
666 *
667 * The mount_hashtable is not usable in the context because we
668 * need to identify all mounts that may be in the current mount
669 * namespace not just a mount that happens to have some specified
670 * parent mount.
671 */
672 bool __is_local_mountpoint(struct dentry *dentry)
673 {
674 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
675 struct mount *mnt;
676 bool is_covered = false;
677
678 if (!d_mountpoint(dentry))
679 goto out;
680
681 down_read(&namespace_sem);
682 list_for_each_entry(mnt, &ns->list, mnt_list) {
683 is_covered = (mnt->mnt_mountpoint == dentry);
684 if (is_covered)
685 break;
686 }
687 up_read(&namespace_sem);
688 out:
689 return is_covered;
690 }
691
692 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
693 {
694 struct hlist_head *chain = mp_hash(dentry);
695 struct mountpoint *mp;
696
697 hlist_for_each_entry(mp, chain, m_hash) {
698 if (mp->m_dentry == dentry) {
699 mp->m_count++;
700 return mp;
701 }
702 }
703 return NULL;
704 }
705
706 static struct mountpoint *get_mountpoint(struct dentry *dentry)
707 {
708 struct mountpoint *mp, *new = NULL;
709 int ret;
710
711 if (d_mountpoint(dentry)) {
712 /* might be worth a WARN_ON() */
713 if (d_unlinked(dentry))
714 return ERR_PTR(-ENOENT);
715 mountpoint:
716 read_seqlock_excl(&mount_lock);
717 mp = lookup_mountpoint(dentry);
718 read_sequnlock_excl(&mount_lock);
719 if (mp)
720 goto done;
721 }
722
723 if (!new)
724 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
725 if (!new)
726 return ERR_PTR(-ENOMEM);
727
728
729 /* Exactly one processes may set d_mounted */
730 ret = d_set_mounted(dentry);
731
732 /* Someone else set d_mounted? */
733 if (ret == -EBUSY)
734 goto mountpoint;
735
736 /* The dentry is not available as a mountpoint? */
737 mp = ERR_PTR(ret);
738 if (ret)
739 goto done;
740
741 /* Add the new mountpoint to the hash table */
742 read_seqlock_excl(&mount_lock);
743 new->m_dentry = dget(dentry);
744 new->m_count = 1;
745 hlist_add_head(&new->m_hash, mp_hash(dentry));
746 INIT_HLIST_HEAD(&new->m_list);
747 read_sequnlock_excl(&mount_lock);
748
749 mp = new;
750 new = NULL;
751 done:
752 kfree(new);
753 return mp;
754 }
755
756 /*
757 * vfsmount lock must be held. Additionally, the caller is responsible
758 * for serializing calls for given disposal list.
759 */
760 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
761 {
762 if (!--mp->m_count) {
763 struct dentry *dentry = mp->m_dentry;
764 BUG_ON(!hlist_empty(&mp->m_list));
765 spin_lock(&dentry->d_lock);
766 dentry->d_flags &= ~DCACHE_MOUNTED;
767 spin_unlock(&dentry->d_lock);
768 dput_to_list(dentry, list);
769 hlist_del(&mp->m_hash);
770 kfree(mp);
771 }
772 }
773
774 /* called with namespace_lock and vfsmount lock */
775 static void put_mountpoint(struct mountpoint *mp)
776 {
777 __put_mountpoint(mp, &ex_mountpoints);
778 }
779
780 static inline int check_mnt(struct mount *mnt)
781 {
782 return mnt->mnt_ns == current->nsproxy->mnt_ns;
783 }
784
785 /*
786 * vfsmount lock must be held for write
787 */
788 static void touch_mnt_namespace(struct mnt_namespace *ns)
789 {
790 if (ns) {
791 ns->event = ++event;
792 wake_up_interruptible(&ns->poll);
793 }
794 }
795
796 /*
797 * vfsmount lock must be held for write
798 */
799 static void __touch_mnt_namespace(struct mnt_namespace *ns)
800 {
801 if (ns && ns->event != event) {
802 ns->event = event;
803 wake_up_interruptible(&ns->poll);
804 }
805 }
806
807 /*
808 * vfsmount lock must be held for write
809 */
810 static struct mountpoint *unhash_mnt(struct mount *mnt)
811 {
812 struct mountpoint *mp;
813 mnt->mnt_parent = mnt;
814 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
815 list_del_init(&mnt->mnt_child);
816 hlist_del_init_rcu(&mnt->mnt_hash);
817 hlist_del_init(&mnt->mnt_mp_list);
818 mp = mnt->mnt_mp;
819 mnt->mnt_mp = NULL;
820 return mp;
821 }
822
823 /*
824 * vfsmount lock must be held for write
825 */
826 static void detach_mnt(struct mount *mnt, struct path *old_path)
827 {
828 old_path->dentry = dget(mnt->mnt_mountpoint);
829 old_path->mnt = &mnt->mnt_parent->mnt;
830 put_mountpoint(unhash_mnt(mnt));
831 }
832
833 /*
834 * vfsmount lock must be held for write
835 */
836 static void umount_mnt(struct mount *mnt)
837 {
838 put_mountpoint(unhash_mnt(mnt));
839 }
840
841 /*
842 * vfsmount lock must be held for write
843 */
844 void mnt_set_mountpoint(struct mount *mnt,
845 struct mountpoint *mp,
846 struct mount *child_mnt)
847 {
848 mp->m_count++;
849 mnt_add_count(mnt, 1); /* essentially, that's mntget */
850 child_mnt->mnt_mountpoint = mp->m_dentry;
851 child_mnt->mnt_parent = mnt;
852 child_mnt->mnt_mp = mp;
853 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
854 }
855
856 static void __attach_mnt(struct mount *mnt, struct mount *parent)
857 {
858 hlist_add_head_rcu(&mnt->mnt_hash,
859 m_hash(&parent->mnt, mnt->mnt_mountpoint));
860 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
861 }
862
863 /*
864 * vfsmount lock must be held for write
865 */
866 static void attach_mnt(struct mount *mnt,
867 struct mount *parent,
868 struct mountpoint *mp)
869 {
870 mnt_set_mountpoint(parent, mp, mnt);
871 __attach_mnt(mnt, parent);
872 }
873
874 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
875 {
876 struct mountpoint *old_mp = mnt->mnt_mp;
877 struct mount *old_parent = mnt->mnt_parent;
878
879 list_del_init(&mnt->mnt_child);
880 hlist_del_init(&mnt->mnt_mp_list);
881 hlist_del_init_rcu(&mnt->mnt_hash);
882
883 attach_mnt(mnt, parent, mp);
884
885 put_mountpoint(old_mp);
886 mnt_add_count(old_parent, -1);
887 }
888
889 /*
890 * vfsmount lock must be held for write
891 */
892 static void commit_tree(struct mount *mnt)
893 {
894 struct mount *parent = mnt->mnt_parent;
895 struct mount *m;
896 LIST_HEAD(head);
897 struct mnt_namespace *n = parent->mnt_ns;
898
899 BUG_ON(parent == mnt);
900
901 list_add_tail(&head, &mnt->mnt_list);
902 list_for_each_entry(m, &head, mnt_list)
903 m->mnt_ns = n;
904
905 list_splice(&head, n->list.prev);
906
907 n->mounts += n->pending_mounts;
908 n->pending_mounts = 0;
909
910 __attach_mnt(mnt, parent);
911 touch_mnt_namespace(n);
912 }
913
914 static struct mount *next_mnt(struct mount *p, struct mount *root)
915 {
916 struct list_head *next = p->mnt_mounts.next;
917 if (next == &p->mnt_mounts) {
918 while (1) {
919 if (p == root)
920 return NULL;
921 next = p->mnt_child.next;
922 if (next != &p->mnt_parent->mnt_mounts)
923 break;
924 p = p->mnt_parent;
925 }
926 }
927 return list_entry(next, struct mount, mnt_child);
928 }
929
930 static struct mount *skip_mnt_tree(struct mount *p)
931 {
932 struct list_head *prev = p->mnt_mounts.prev;
933 while (prev != &p->mnt_mounts) {
934 p = list_entry(prev, struct mount, mnt_child);
935 prev = p->mnt_mounts.prev;
936 }
937 return p;
938 }
939
940 /**
941 * vfs_create_mount - Create a mount for a configured superblock
942 * @fc: The configuration context with the superblock attached
943 *
944 * Create a mount to an already configured superblock. If necessary, the
945 * caller should invoke vfs_get_tree() before calling this.
946 *
947 * Note that this does not attach the mount to anything.
948 */
949 struct vfsmount *vfs_create_mount(struct fs_context *fc)
950 {
951 struct mount *mnt;
952
953 if (!fc->root)
954 return ERR_PTR(-EINVAL);
955
956 mnt = alloc_vfsmnt(fc->source ?: "none");
957 if (!mnt)
958 return ERR_PTR(-ENOMEM);
959
960 if (fc->sb_flags & SB_KERNMOUNT)
961 mnt->mnt.mnt_flags = MNT_INTERNAL;
962
963 atomic_inc(&fc->root->d_sb->s_active);
964 mnt->mnt.mnt_sb = fc->root->d_sb;
965 mnt->mnt.mnt_root = dget(fc->root);
966 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
967 mnt->mnt_parent = mnt;
968
969 lock_mount_hash();
970 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
971 unlock_mount_hash();
972 return &mnt->mnt;
973 }
974 EXPORT_SYMBOL(vfs_create_mount);
975
976 struct vfsmount *fc_mount(struct fs_context *fc)
977 {
978 int err = vfs_get_tree(fc);
979 if (!err) {
980 up_write(&fc->root->d_sb->s_umount);
981 return vfs_create_mount(fc);
982 }
983 return ERR_PTR(err);
984 }
985 EXPORT_SYMBOL(fc_mount);
986
987 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
988 int flags, const char *name,
989 void *data)
990 {
991 struct fs_context *fc;
992 struct vfsmount *mnt;
993 int ret = 0;
994
995 if (!type)
996 return ERR_PTR(-EINVAL);
997
998 fc = fs_context_for_mount(type, flags);
999 if (IS_ERR(fc))
1000 return ERR_CAST(fc);
1001
1002 if (name)
1003 ret = vfs_parse_fs_string(fc, "source",
1004 name, strlen(name));
1005 if (!ret)
1006 ret = parse_monolithic_mount_data(fc, data);
1007 if (!ret)
1008 mnt = fc_mount(fc);
1009 else
1010 mnt = ERR_PTR(ret);
1011
1012 put_fs_context(fc);
1013 return mnt;
1014 }
1015 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1016
1017 struct vfsmount *
1018 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1019 const char *name, void *data)
1020 {
1021 /* Until it is worked out how to pass the user namespace
1022 * through from the parent mount to the submount don't support
1023 * unprivileged mounts with submounts.
1024 */
1025 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1026 return ERR_PTR(-EPERM);
1027
1028 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1029 }
1030 EXPORT_SYMBOL_GPL(vfs_submount);
1031
1032 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1033 int flag)
1034 {
1035 struct super_block *sb = old->mnt.mnt_sb;
1036 struct mount *mnt;
1037 int err;
1038
1039 mnt = alloc_vfsmnt(old->mnt_devname);
1040 if (!mnt)
1041 return ERR_PTR(-ENOMEM);
1042
1043 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1044 mnt->mnt_group_id = 0; /* not a peer of original */
1045 else
1046 mnt->mnt_group_id = old->mnt_group_id;
1047
1048 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1049 err = mnt_alloc_group_id(mnt);
1050 if (err)
1051 goto out_free;
1052 }
1053
1054 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1055 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1056
1057 atomic_inc(&sb->s_active);
1058 mnt->mnt.mnt_sb = sb;
1059 mnt->mnt.mnt_root = dget(root);
1060 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1061 mnt->mnt_parent = mnt;
1062 lock_mount_hash();
1063 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1064 unlock_mount_hash();
1065
1066 if ((flag & CL_SLAVE) ||
1067 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1068 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1069 mnt->mnt_master = old;
1070 CLEAR_MNT_SHARED(mnt);
1071 } else if (!(flag & CL_PRIVATE)) {
1072 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1073 list_add(&mnt->mnt_share, &old->mnt_share);
1074 if (IS_MNT_SLAVE(old))
1075 list_add(&mnt->mnt_slave, &old->mnt_slave);
1076 mnt->mnt_master = old->mnt_master;
1077 } else {
1078 CLEAR_MNT_SHARED(mnt);
1079 }
1080 if (flag & CL_MAKE_SHARED)
1081 set_mnt_shared(mnt);
1082
1083 /* stick the duplicate mount on the same expiry list
1084 * as the original if that was on one */
1085 if (flag & CL_EXPIRE) {
1086 if (!list_empty(&old->mnt_expire))
1087 list_add(&mnt->mnt_expire, &old->mnt_expire);
1088 }
1089
1090 return mnt;
1091
1092 out_free:
1093 mnt_free_id(mnt);
1094 free_vfsmnt(mnt);
1095 return ERR_PTR(err);
1096 }
1097
1098 static void cleanup_mnt(struct mount *mnt)
1099 {
1100 /*
1101 * This probably indicates that somebody messed
1102 * up a mnt_want/drop_write() pair. If this
1103 * happens, the filesystem was probably unable
1104 * to make r/w->r/o transitions.
1105 */
1106 /*
1107 * The locking used to deal with mnt_count decrement provides barriers,
1108 * so mnt_get_writers() below is safe.
1109 */
1110 WARN_ON(mnt_get_writers(mnt));
1111 if (unlikely(mnt->mnt_pins.first))
1112 mnt_pin_kill(mnt);
1113 fsnotify_vfsmount_delete(&mnt->mnt);
1114 dput(mnt->mnt.mnt_root);
1115 deactivate_super(mnt->mnt.mnt_sb);
1116 mnt_free_id(mnt);
1117 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1118 }
1119
1120 static void __cleanup_mnt(struct rcu_head *head)
1121 {
1122 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1123 }
1124
1125 static LLIST_HEAD(delayed_mntput_list);
1126 static void delayed_mntput(struct work_struct *unused)
1127 {
1128 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1129 struct mount *m, *t;
1130
1131 llist_for_each_entry_safe(m, t, node, mnt_llist)
1132 cleanup_mnt(m);
1133 }
1134 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1135
1136 static void mntput_no_expire(struct mount *mnt)
1137 {
1138 LIST_HEAD(list);
1139
1140 rcu_read_lock();
1141 if (likely(READ_ONCE(mnt->mnt_ns))) {
1142 /*
1143 * Since we don't do lock_mount_hash() here,
1144 * ->mnt_ns can change under us. However, if it's
1145 * non-NULL, then there's a reference that won't
1146 * be dropped until after an RCU delay done after
1147 * turning ->mnt_ns NULL. So if we observe it
1148 * non-NULL under rcu_read_lock(), the reference
1149 * we are dropping is not the final one.
1150 */
1151 mnt_add_count(mnt, -1);
1152 rcu_read_unlock();
1153 return;
1154 }
1155 lock_mount_hash();
1156 /*
1157 * make sure that if __legitimize_mnt() has not seen us grab
1158 * mount_lock, we'll see their refcount increment here.
1159 */
1160 smp_mb();
1161 mnt_add_count(mnt, -1);
1162 if (mnt_get_count(mnt)) {
1163 rcu_read_unlock();
1164 unlock_mount_hash();
1165 return;
1166 }
1167 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1168 rcu_read_unlock();
1169 unlock_mount_hash();
1170 return;
1171 }
1172 mnt->mnt.mnt_flags |= MNT_DOOMED;
1173 rcu_read_unlock();
1174
1175 list_del(&mnt->mnt_instance);
1176
1177 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1178 struct mount *p, *tmp;
1179 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1180 __put_mountpoint(unhash_mnt(p), &list);
1181 }
1182 }
1183 unlock_mount_hash();
1184 shrink_dentry_list(&list);
1185
1186 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1187 struct task_struct *task = current;
1188 if (likely(!(task->flags & PF_KTHREAD))) {
1189 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1190 if (!task_work_add(task, &mnt->mnt_rcu, true))
1191 return;
1192 }
1193 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1194 schedule_delayed_work(&delayed_mntput_work, 1);
1195 return;
1196 }
1197 cleanup_mnt(mnt);
1198 }
1199
1200 void mntput(struct vfsmount *mnt)
1201 {
1202 if (mnt) {
1203 struct mount *m = real_mount(mnt);
1204 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1205 if (unlikely(m->mnt_expiry_mark))
1206 m->mnt_expiry_mark = 0;
1207 mntput_no_expire(m);
1208 }
1209 }
1210 EXPORT_SYMBOL(mntput);
1211
1212 struct vfsmount *mntget(struct vfsmount *mnt)
1213 {
1214 if (mnt)
1215 mnt_add_count(real_mount(mnt), 1);
1216 return mnt;
1217 }
1218 EXPORT_SYMBOL(mntget);
1219
1220 /* path_is_mountpoint() - Check if path is a mount in the current
1221 * namespace.
1222 *
1223 * d_mountpoint() can only be used reliably to establish if a dentry is
1224 * not mounted in any namespace and that common case is handled inline.
1225 * d_mountpoint() isn't aware of the possibility there may be multiple
1226 * mounts using a given dentry in a different namespace. This function
1227 * checks if the passed in path is a mountpoint rather than the dentry
1228 * alone.
1229 */
1230 bool path_is_mountpoint(const struct path *path)
1231 {
1232 unsigned seq;
1233 bool res;
1234
1235 if (!d_mountpoint(path->dentry))
1236 return false;
1237
1238 rcu_read_lock();
1239 do {
1240 seq = read_seqbegin(&mount_lock);
1241 res = __path_is_mountpoint(path);
1242 } while (read_seqretry(&mount_lock, seq));
1243 rcu_read_unlock();
1244
1245 return res;
1246 }
1247 EXPORT_SYMBOL(path_is_mountpoint);
1248
1249 struct vfsmount *mnt_clone_internal(const struct path *path)
1250 {
1251 struct mount *p;
1252 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1253 if (IS_ERR(p))
1254 return ERR_CAST(p);
1255 p->mnt.mnt_flags |= MNT_INTERNAL;
1256 return &p->mnt;
1257 }
1258
1259 #ifdef CONFIG_PROC_FS
1260 /* iterator; we want it to have access to namespace_sem, thus here... */
1261 static void *m_start(struct seq_file *m, loff_t *pos)
1262 {
1263 struct proc_mounts *p = m->private;
1264
1265 down_read(&namespace_sem);
1266 if (p->cached_event == p->ns->event) {
1267 void *v = p->cached_mount;
1268 if (*pos == p->cached_index)
1269 return v;
1270 if (*pos == p->cached_index + 1) {
1271 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1272 return p->cached_mount = v;
1273 }
1274 }
1275
1276 p->cached_event = p->ns->event;
1277 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1278 p->cached_index = *pos;
1279 return p->cached_mount;
1280 }
1281
1282 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1283 {
1284 struct proc_mounts *p = m->private;
1285
1286 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1287 p->cached_index = *pos;
1288 return p->cached_mount;
1289 }
1290
1291 static void m_stop(struct seq_file *m, void *v)
1292 {
1293 up_read(&namespace_sem);
1294 }
1295
1296 static int m_show(struct seq_file *m, void *v)
1297 {
1298 struct proc_mounts *p = m->private;
1299 struct mount *r = list_entry(v, struct mount, mnt_list);
1300 return p->show(m, &r->mnt);
1301 }
1302
1303 const struct seq_operations mounts_op = {
1304 .start = m_start,
1305 .next = m_next,
1306 .stop = m_stop,
1307 .show = m_show,
1308 };
1309 #endif /* CONFIG_PROC_FS */
1310
1311 /**
1312 * may_umount_tree - check if a mount tree is busy
1313 * @mnt: root of mount tree
1314 *
1315 * This is called to check if a tree of mounts has any
1316 * open files, pwds, chroots or sub mounts that are
1317 * busy.
1318 */
1319 int may_umount_tree(struct vfsmount *m)
1320 {
1321 struct mount *mnt = real_mount(m);
1322 int actual_refs = 0;
1323 int minimum_refs = 0;
1324 struct mount *p;
1325 BUG_ON(!m);
1326
1327 /* write lock needed for mnt_get_count */
1328 lock_mount_hash();
1329 for (p = mnt; p; p = next_mnt(p, mnt)) {
1330 actual_refs += mnt_get_count(p);
1331 minimum_refs += 2;
1332 }
1333 unlock_mount_hash();
1334
1335 if (actual_refs > minimum_refs)
1336 return 0;
1337
1338 return 1;
1339 }
1340
1341 EXPORT_SYMBOL(may_umount_tree);
1342
1343 /**
1344 * may_umount - check if a mount point is busy
1345 * @mnt: root of mount
1346 *
1347 * This is called to check if a mount point has any
1348 * open files, pwds, chroots or sub mounts. If the
1349 * mount has sub mounts this will return busy
1350 * regardless of whether the sub mounts are busy.
1351 *
1352 * Doesn't take quota and stuff into account. IOW, in some cases it will
1353 * give false negatives. The main reason why it's here is that we need
1354 * a non-destructive way to look for easily umountable filesystems.
1355 */
1356 int may_umount(struct vfsmount *mnt)
1357 {
1358 int ret = 1;
1359 down_read(&namespace_sem);
1360 lock_mount_hash();
1361 if (propagate_mount_busy(real_mount(mnt), 2))
1362 ret = 0;
1363 unlock_mount_hash();
1364 up_read(&namespace_sem);
1365 return ret;
1366 }
1367
1368 EXPORT_SYMBOL(may_umount);
1369
1370 static void namespace_unlock(void)
1371 {
1372 struct hlist_head head;
1373 LIST_HEAD(list);
1374
1375 hlist_move_list(&unmounted, &head);
1376 list_splice_init(&ex_mountpoints, &list);
1377
1378 up_write(&namespace_sem);
1379
1380 shrink_dentry_list(&list);
1381
1382 if (likely(hlist_empty(&head)))
1383 return;
1384
1385 synchronize_rcu_expedited();
1386
1387 group_pin_kill(&head);
1388 }
1389
1390 static inline void namespace_lock(void)
1391 {
1392 down_write(&namespace_sem);
1393 }
1394
1395 enum umount_tree_flags {
1396 UMOUNT_SYNC = 1,
1397 UMOUNT_PROPAGATE = 2,
1398 UMOUNT_CONNECTED = 4,
1399 };
1400
1401 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1402 {
1403 /* Leaving mounts connected is only valid for lazy umounts */
1404 if (how & UMOUNT_SYNC)
1405 return true;
1406
1407 /* A mount without a parent has nothing to be connected to */
1408 if (!mnt_has_parent(mnt))
1409 return true;
1410
1411 /* Because the reference counting rules change when mounts are
1412 * unmounted and connected, umounted mounts may not be
1413 * connected to mounted mounts.
1414 */
1415 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1416 return true;
1417
1418 /* Has it been requested that the mount remain connected? */
1419 if (how & UMOUNT_CONNECTED)
1420 return false;
1421
1422 /* Is the mount locked such that it needs to remain connected? */
1423 if (IS_MNT_LOCKED(mnt))
1424 return false;
1425
1426 /* By default disconnect the mount */
1427 return true;
1428 }
1429
1430 /*
1431 * mount_lock must be held
1432 * namespace_sem must be held for write
1433 */
1434 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1435 {
1436 LIST_HEAD(tmp_list);
1437 struct mount *p;
1438
1439 if (how & UMOUNT_PROPAGATE)
1440 propagate_mount_unlock(mnt);
1441
1442 /* Gather the mounts to umount */
1443 for (p = mnt; p; p = next_mnt(p, mnt)) {
1444 p->mnt.mnt_flags |= MNT_UMOUNT;
1445 list_move(&p->mnt_list, &tmp_list);
1446 }
1447
1448 /* Hide the mounts from mnt_mounts */
1449 list_for_each_entry(p, &tmp_list, mnt_list) {
1450 list_del_init(&p->mnt_child);
1451 }
1452
1453 /* Add propogated mounts to the tmp_list */
1454 if (how & UMOUNT_PROPAGATE)
1455 propagate_umount(&tmp_list);
1456
1457 while (!list_empty(&tmp_list)) {
1458 struct mnt_namespace *ns;
1459 bool disconnect;
1460 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1461 list_del_init(&p->mnt_expire);
1462 list_del_init(&p->mnt_list);
1463 ns = p->mnt_ns;
1464 if (ns) {
1465 ns->mounts--;
1466 __touch_mnt_namespace(ns);
1467 }
1468 p->mnt_ns = NULL;
1469 if (how & UMOUNT_SYNC)
1470 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1471
1472 disconnect = disconnect_mount(p, how);
1473
1474 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1475 disconnect ? &unmounted : NULL);
1476 if (mnt_has_parent(p)) {
1477 mnt_add_count(p->mnt_parent, -1);
1478 if (!disconnect) {
1479 /* Don't forget about p */
1480 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1481 } else {
1482 umount_mnt(p);
1483 }
1484 }
1485 change_mnt_propagation(p, MS_PRIVATE);
1486 }
1487 }
1488
1489 static void shrink_submounts(struct mount *mnt);
1490
1491 static int do_umount_root(struct super_block *sb)
1492 {
1493 int ret = 0;
1494
1495 down_write(&sb->s_umount);
1496 if (!sb_rdonly(sb)) {
1497 struct fs_context *fc;
1498
1499 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1500 SB_RDONLY);
1501 if (IS_ERR(fc)) {
1502 ret = PTR_ERR(fc);
1503 } else {
1504 ret = parse_monolithic_mount_data(fc, NULL);
1505 if (!ret)
1506 ret = reconfigure_super(fc);
1507 put_fs_context(fc);
1508 }
1509 }
1510 up_write(&sb->s_umount);
1511 return ret;
1512 }
1513
1514 static int do_umount(struct mount *mnt, int flags)
1515 {
1516 struct super_block *sb = mnt->mnt.mnt_sb;
1517 int retval;
1518
1519 retval = security_sb_umount(&mnt->mnt, flags);
1520 if (retval)
1521 return retval;
1522
1523 /*
1524 * Allow userspace to request a mountpoint be expired rather than
1525 * unmounting unconditionally. Unmount only happens if:
1526 * (1) the mark is already set (the mark is cleared by mntput())
1527 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1528 */
1529 if (flags & MNT_EXPIRE) {
1530 if (&mnt->mnt == current->fs->root.mnt ||
1531 flags & (MNT_FORCE | MNT_DETACH))
1532 return -EINVAL;
1533
1534 /*
1535 * probably don't strictly need the lock here if we examined
1536 * all race cases, but it's a slowpath.
1537 */
1538 lock_mount_hash();
1539 if (mnt_get_count(mnt) != 2) {
1540 unlock_mount_hash();
1541 return -EBUSY;
1542 }
1543 unlock_mount_hash();
1544
1545 if (!xchg(&mnt->mnt_expiry_mark, 1))
1546 return -EAGAIN;
1547 }
1548
1549 /*
1550 * If we may have to abort operations to get out of this
1551 * mount, and they will themselves hold resources we must
1552 * allow the fs to do things. In the Unix tradition of
1553 * 'Gee thats tricky lets do it in userspace' the umount_begin
1554 * might fail to complete on the first run through as other tasks
1555 * must return, and the like. Thats for the mount program to worry
1556 * about for the moment.
1557 */
1558
1559 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1560 sb->s_op->umount_begin(sb);
1561 }
1562
1563 /*
1564 * No sense to grab the lock for this test, but test itself looks
1565 * somewhat bogus. Suggestions for better replacement?
1566 * Ho-hum... In principle, we might treat that as umount + switch
1567 * to rootfs. GC would eventually take care of the old vfsmount.
1568 * Actually it makes sense, especially if rootfs would contain a
1569 * /reboot - static binary that would close all descriptors and
1570 * call reboot(9). Then init(8) could umount root and exec /reboot.
1571 */
1572 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1573 /*
1574 * Special case for "unmounting" root ...
1575 * we just try to remount it readonly.
1576 */
1577 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1578 return -EPERM;
1579 return do_umount_root(sb);
1580 }
1581
1582 namespace_lock();
1583 lock_mount_hash();
1584
1585 /* Recheck MNT_LOCKED with the locks held */
1586 retval = -EINVAL;
1587 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1588 goto out;
1589
1590 event++;
1591 if (flags & MNT_DETACH) {
1592 if (!list_empty(&mnt->mnt_list))
1593 umount_tree(mnt, UMOUNT_PROPAGATE);
1594 retval = 0;
1595 } else {
1596 shrink_submounts(mnt);
1597 retval = -EBUSY;
1598 if (!propagate_mount_busy(mnt, 2)) {
1599 if (!list_empty(&mnt->mnt_list))
1600 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1601 retval = 0;
1602 }
1603 }
1604 out:
1605 unlock_mount_hash();
1606 namespace_unlock();
1607 return retval;
1608 }
1609
1610 /*
1611 * __detach_mounts - lazily unmount all mounts on the specified dentry
1612 *
1613 * During unlink, rmdir, and d_drop it is possible to loose the path
1614 * to an existing mountpoint, and wind up leaking the mount.
1615 * detach_mounts allows lazily unmounting those mounts instead of
1616 * leaking them.
1617 *
1618 * The caller may hold dentry->d_inode->i_mutex.
1619 */
1620 void __detach_mounts(struct dentry *dentry)
1621 {
1622 struct mountpoint *mp;
1623 struct mount *mnt;
1624
1625 namespace_lock();
1626 lock_mount_hash();
1627 mp = lookup_mountpoint(dentry);
1628 if (!mp)
1629 goto out_unlock;
1630
1631 event++;
1632 while (!hlist_empty(&mp->m_list)) {
1633 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1634 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1635 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1636 umount_mnt(mnt);
1637 }
1638 else umount_tree(mnt, UMOUNT_CONNECTED);
1639 }
1640 put_mountpoint(mp);
1641 out_unlock:
1642 unlock_mount_hash();
1643 namespace_unlock();
1644 }
1645
1646 /*
1647 * Is the caller allowed to modify his namespace?
1648 */
1649 static inline bool may_mount(void)
1650 {
1651 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1652 }
1653
1654 static inline bool may_mandlock(void)
1655 {
1656 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1657 return false;
1658 #endif
1659 return capable(CAP_SYS_ADMIN);
1660 }
1661
1662 /*
1663 * Now umount can handle mount points as well as block devices.
1664 * This is important for filesystems which use unnamed block devices.
1665 *
1666 * We now support a flag for forced unmount like the other 'big iron'
1667 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1668 */
1669
1670 int ksys_umount(char __user *name, int flags)
1671 {
1672 struct path path;
1673 struct mount *mnt;
1674 int retval;
1675 int lookup_flags = 0;
1676
1677 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1678 return -EINVAL;
1679
1680 if (!may_mount())
1681 return -EPERM;
1682
1683 if (!(flags & UMOUNT_NOFOLLOW))
1684 lookup_flags |= LOOKUP_FOLLOW;
1685
1686 lookup_flags |= LOOKUP_NO_EVAL;
1687
1688 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1689 if (retval)
1690 goto out;
1691 mnt = real_mount(path.mnt);
1692 retval = -EINVAL;
1693 if (path.dentry != path.mnt->mnt_root)
1694 goto dput_and_out;
1695 if (!check_mnt(mnt))
1696 goto dput_and_out;
1697 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1698 goto dput_and_out;
1699 retval = -EPERM;
1700 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1701 goto dput_and_out;
1702
1703 retval = do_umount(mnt, flags);
1704 dput_and_out:
1705 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1706 dput(path.dentry);
1707 mntput_no_expire(mnt);
1708 out:
1709 return retval;
1710 }
1711
1712 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1713 {
1714 return ksys_umount(name, flags);
1715 }
1716
1717 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1718
1719 /*
1720 * The 2.0 compatible umount. No flags.
1721 */
1722 SYSCALL_DEFINE1(oldumount, char __user *, name)
1723 {
1724 return ksys_umount(name, 0);
1725 }
1726
1727 #endif
1728
1729 static bool is_mnt_ns_file(struct dentry *dentry)
1730 {
1731 /* Is this a proxy for a mount namespace? */
1732 return dentry->d_op == &ns_dentry_operations &&
1733 dentry->d_fsdata == &mntns_operations;
1734 }
1735
1736 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1737 {
1738 return container_of(ns, struct mnt_namespace, ns);
1739 }
1740
1741 static bool mnt_ns_loop(struct dentry *dentry)
1742 {
1743 /* Could bind mounting the mount namespace inode cause a
1744 * mount namespace loop?
1745 */
1746 struct mnt_namespace *mnt_ns;
1747 if (!is_mnt_ns_file(dentry))
1748 return false;
1749
1750 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1751 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1752 }
1753
1754 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1755 int flag)
1756 {
1757 struct mount *res, *p, *q, *r, *parent;
1758
1759 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1760 return ERR_PTR(-EINVAL);
1761
1762 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1763 return ERR_PTR(-EINVAL);
1764
1765 res = q = clone_mnt(mnt, dentry, flag);
1766 if (IS_ERR(q))
1767 return q;
1768
1769 q->mnt_mountpoint = mnt->mnt_mountpoint;
1770
1771 p = mnt;
1772 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1773 struct mount *s;
1774 if (!is_subdir(r->mnt_mountpoint, dentry))
1775 continue;
1776
1777 for (s = r; s; s = next_mnt(s, r)) {
1778 if (!(flag & CL_COPY_UNBINDABLE) &&
1779 IS_MNT_UNBINDABLE(s)) {
1780 if (s->mnt.mnt_flags & MNT_LOCKED) {
1781 /* Both unbindable and locked. */
1782 q = ERR_PTR(-EPERM);
1783 goto out;
1784 } else {
1785 s = skip_mnt_tree(s);
1786 continue;
1787 }
1788 }
1789 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1790 is_mnt_ns_file(s->mnt.mnt_root)) {
1791 s = skip_mnt_tree(s);
1792 continue;
1793 }
1794 while (p != s->mnt_parent) {
1795 p = p->mnt_parent;
1796 q = q->mnt_parent;
1797 }
1798 p = s;
1799 parent = q;
1800 q = clone_mnt(p, p->mnt.mnt_root, flag);
1801 if (IS_ERR(q))
1802 goto out;
1803 lock_mount_hash();
1804 list_add_tail(&q->mnt_list, &res->mnt_list);
1805 attach_mnt(q, parent, p->mnt_mp);
1806 unlock_mount_hash();
1807 }
1808 }
1809 return res;
1810 out:
1811 if (res) {
1812 lock_mount_hash();
1813 umount_tree(res, UMOUNT_SYNC);
1814 unlock_mount_hash();
1815 }
1816 return q;
1817 }
1818
1819 /* Caller should check returned pointer for errors */
1820
1821 struct vfsmount *collect_mounts(const struct path *path)
1822 {
1823 struct mount *tree;
1824 namespace_lock();
1825 if (!check_mnt(real_mount(path->mnt)))
1826 tree = ERR_PTR(-EINVAL);
1827 else
1828 tree = copy_tree(real_mount(path->mnt), path->dentry,
1829 CL_COPY_ALL | CL_PRIVATE);
1830 namespace_unlock();
1831 if (IS_ERR(tree))
1832 return ERR_CAST(tree);
1833 return &tree->mnt;
1834 }
1835
1836 static void free_mnt_ns(struct mnt_namespace *);
1837 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1838
1839 void dissolve_on_fput(struct vfsmount *mnt)
1840 {
1841 struct mnt_namespace *ns;
1842 namespace_lock();
1843 lock_mount_hash();
1844 ns = real_mount(mnt)->mnt_ns;
1845 if (ns) {
1846 if (is_anon_ns(ns))
1847 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1848 else
1849 ns = NULL;
1850 }
1851 unlock_mount_hash();
1852 namespace_unlock();
1853 if (ns)
1854 free_mnt_ns(ns);
1855 }
1856
1857 void drop_collected_mounts(struct vfsmount *mnt)
1858 {
1859 namespace_lock();
1860 lock_mount_hash();
1861 umount_tree(real_mount(mnt), 0);
1862 unlock_mount_hash();
1863 namespace_unlock();
1864 }
1865
1866 /**
1867 * clone_private_mount - create a private clone of a path
1868 *
1869 * This creates a new vfsmount, which will be the clone of @path. The new will
1870 * not be attached anywhere in the namespace and will be private (i.e. changes
1871 * to the originating mount won't be propagated into this).
1872 *
1873 * Release with mntput().
1874 */
1875 struct vfsmount *clone_private_mount(const struct path *path)
1876 {
1877 struct mount *old_mnt = real_mount(path->mnt);
1878 struct mount *new_mnt;
1879
1880 if (IS_MNT_UNBINDABLE(old_mnt))
1881 return ERR_PTR(-EINVAL);
1882
1883 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1884 if (IS_ERR(new_mnt))
1885 return ERR_CAST(new_mnt);
1886
1887 return &new_mnt->mnt;
1888 }
1889 EXPORT_SYMBOL_GPL(clone_private_mount);
1890
1891 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1892 struct vfsmount *root)
1893 {
1894 struct mount *mnt;
1895 int res = f(root, arg);
1896 if (res)
1897 return res;
1898 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1899 res = f(&mnt->mnt, arg);
1900 if (res)
1901 return res;
1902 }
1903 return 0;
1904 }
1905
1906 static void lock_mnt_tree(struct mount *mnt)
1907 {
1908 struct mount *p;
1909
1910 for (p = mnt; p; p = next_mnt(p, mnt)) {
1911 int flags = p->mnt.mnt_flags;
1912 /* Don't allow unprivileged users to change mount flags */
1913 flags |= MNT_LOCK_ATIME;
1914
1915 if (flags & MNT_READONLY)
1916 flags |= MNT_LOCK_READONLY;
1917
1918 if (flags & MNT_NODEV)
1919 flags |= MNT_LOCK_NODEV;
1920
1921 if (flags & MNT_NOSUID)
1922 flags |= MNT_LOCK_NOSUID;
1923
1924 if (flags & MNT_NOEXEC)
1925 flags |= MNT_LOCK_NOEXEC;
1926 /* Don't allow unprivileged users to reveal what is under a mount */
1927 if (list_empty(&p->mnt_expire))
1928 flags |= MNT_LOCKED;
1929 p->mnt.mnt_flags = flags;
1930 }
1931 }
1932
1933 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1934 {
1935 struct mount *p;
1936
1937 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1938 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1939 mnt_release_group_id(p);
1940 }
1941 }
1942
1943 static int invent_group_ids(struct mount *mnt, bool recurse)
1944 {
1945 struct mount *p;
1946
1947 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1948 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1949 int err = mnt_alloc_group_id(p);
1950 if (err) {
1951 cleanup_group_ids(mnt, p);
1952 return err;
1953 }
1954 }
1955 }
1956
1957 return 0;
1958 }
1959
1960 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1961 {
1962 unsigned int max = READ_ONCE(sysctl_mount_max);
1963 unsigned int mounts = 0, old, pending, sum;
1964 struct mount *p;
1965
1966 for (p = mnt; p; p = next_mnt(p, mnt))
1967 mounts++;
1968
1969 old = ns->mounts;
1970 pending = ns->pending_mounts;
1971 sum = old + pending;
1972 if ((old > sum) ||
1973 (pending > sum) ||
1974 (max < sum) ||
1975 (mounts > (max - sum)))
1976 return -ENOSPC;
1977
1978 ns->pending_mounts = pending + mounts;
1979 return 0;
1980 }
1981
1982 /*
1983 * @source_mnt : mount tree to be attached
1984 * @nd : place the mount tree @source_mnt is attached
1985 * @parent_nd : if non-null, detach the source_mnt from its parent and
1986 * store the parent mount and mountpoint dentry.
1987 * (done when source_mnt is moved)
1988 *
1989 * NOTE: in the table below explains the semantics when a source mount
1990 * of a given type is attached to a destination mount of a given type.
1991 * ---------------------------------------------------------------------------
1992 * | BIND MOUNT OPERATION |
1993 * |**************************************************************************
1994 * | source-->| shared | private | slave | unbindable |
1995 * | dest | | | | |
1996 * | | | | | | |
1997 * | v | | | | |
1998 * |**************************************************************************
1999 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2000 * | | | | | |
2001 * |non-shared| shared (+) | private | slave (*) | invalid |
2002 * ***************************************************************************
2003 * A bind operation clones the source mount and mounts the clone on the
2004 * destination mount.
2005 *
2006 * (++) the cloned mount is propagated to all the mounts in the propagation
2007 * tree of the destination mount and the cloned mount is added to
2008 * the peer group of the source mount.
2009 * (+) the cloned mount is created under the destination mount and is marked
2010 * as shared. The cloned mount is added to the peer group of the source
2011 * mount.
2012 * (+++) the mount is propagated to all the mounts in the propagation tree
2013 * of the destination mount and the cloned mount is made slave
2014 * of the same master as that of the source mount. The cloned mount
2015 * is marked as 'shared and slave'.
2016 * (*) the cloned mount is made a slave of the same master as that of the
2017 * source mount.
2018 *
2019 * ---------------------------------------------------------------------------
2020 * | MOVE MOUNT OPERATION |
2021 * |**************************************************************************
2022 * | source-->| shared | private | slave | unbindable |
2023 * | dest | | | | |
2024 * | | | | | | |
2025 * | v | | | | |
2026 * |**************************************************************************
2027 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2028 * | | | | | |
2029 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2030 * ***************************************************************************
2031 *
2032 * (+) the mount is moved to the destination. And is then propagated to
2033 * all the mounts in the propagation tree of the destination mount.
2034 * (+*) the mount is moved to the destination.
2035 * (+++) the mount is moved to the destination and is then propagated to
2036 * all the mounts belonging to the destination mount's propagation tree.
2037 * the mount is marked as 'shared and slave'.
2038 * (*) the mount continues to be a slave at the new location.
2039 *
2040 * if the source mount is a tree, the operations explained above is
2041 * applied to each mount in the tree.
2042 * Must be called without spinlocks held, since this function can sleep
2043 * in allocations.
2044 */
2045 static int attach_recursive_mnt(struct mount *source_mnt,
2046 struct mount *dest_mnt,
2047 struct mountpoint *dest_mp,
2048 struct path *parent_path)
2049 {
2050 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2051 HLIST_HEAD(tree_list);
2052 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2053 struct mountpoint *smp;
2054 struct mount *child, *p;
2055 struct hlist_node *n;
2056 int err;
2057
2058 /* Preallocate a mountpoint in case the new mounts need
2059 * to be tucked under other mounts.
2060 */
2061 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2062 if (IS_ERR(smp))
2063 return PTR_ERR(smp);
2064
2065 /* Is there space to add these mounts to the mount namespace? */
2066 if (!parent_path) {
2067 err = count_mounts(ns, source_mnt);
2068 if (err)
2069 goto out;
2070 }
2071
2072 if (IS_MNT_SHARED(dest_mnt)) {
2073 err = invent_group_ids(source_mnt, true);
2074 if (err)
2075 goto out;
2076 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2077 lock_mount_hash();
2078 if (err)
2079 goto out_cleanup_ids;
2080 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2081 set_mnt_shared(p);
2082 } else {
2083 lock_mount_hash();
2084 }
2085 if (parent_path) {
2086 detach_mnt(source_mnt, parent_path);
2087 attach_mnt(source_mnt, dest_mnt, dest_mp);
2088 touch_mnt_namespace(source_mnt->mnt_ns);
2089 } else {
2090 if (source_mnt->mnt_ns) {
2091 /* move from anon - the caller will destroy */
2092 list_del_init(&source_mnt->mnt_ns->list);
2093 }
2094 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2095 commit_tree(source_mnt);
2096 }
2097
2098 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2099 struct mount *q;
2100 hlist_del_init(&child->mnt_hash);
2101 q = __lookup_mnt(&child->mnt_parent->mnt,
2102 child->mnt_mountpoint);
2103 if (q)
2104 mnt_change_mountpoint(child, smp, q);
2105 /* Notice when we are propagating across user namespaces */
2106 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2107 lock_mnt_tree(child);
2108 child->mnt.mnt_flags &= ~MNT_LOCKED;
2109 commit_tree(child);
2110 }
2111 put_mountpoint(smp);
2112 unlock_mount_hash();
2113
2114 return 0;
2115
2116 out_cleanup_ids:
2117 while (!hlist_empty(&tree_list)) {
2118 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2119 child->mnt_parent->mnt_ns->pending_mounts = 0;
2120 umount_tree(child, UMOUNT_SYNC);
2121 }
2122 unlock_mount_hash();
2123 cleanup_group_ids(source_mnt, NULL);
2124 out:
2125 ns->pending_mounts = 0;
2126
2127 read_seqlock_excl(&mount_lock);
2128 put_mountpoint(smp);
2129 read_sequnlock_excl(&mount_lock);
2130
2131 return err;
2132 }
2133
2134 static struct mountpoint *lock_mount(struct path *path)
2135 {
2136 struct vfsmount *mnt;
2137 struct dentry *dentry = path->dentry;
2138 retry:
2139 inode_lock(dentry->d_inode);
2140 if (unlikely(cant_mount(dentry))) {
2141 inode_unlock(dentry->d_inode);
2142 return ERR_PTR(-ENOENT);
2143 }
2144 namespace_lock();
2145 mnt = lookup_mnt(path);
2146 if (likely(!mnt)) {
2147 struct mountpoint *mp = get_mountpoint(dentry);
2148 if (IS_ERR(mp)) {
2149 namespace_unlock();
2150 inode_unlock(dentry->d_inode);
2151 return mp;
2152 }
2153 return mp;
2154 }
2155 namespace_unlock();
2156 inode_unlock(path->dentry->d_inode);
2157 path_put(path);
2158 path->mnt = mnt;
2159 dentry = path->dentry = dget(mnt->mnt_root);
2160 goto retry;
2161 }
2162
2163 static void unlock_mount(struct mountpoint *where)
2164 {
2165 struct dentry *dentry = where->m_dentry;
2166
2167 read_seqlock_excl(&mount_lock);
2168 put_mountpoint(where);
2169 read_sequnlock_excl(&mount_lock);
2170
2171 namespace_unlock();
2172 inode_unlock(dentry->d_inode);
2173 }
2174
2175 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2176 {
2177 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2178 return -EINVAL;
2179
2180 if (d_is_dir(mp->m_dentry) !=
2181 d_is_dir(mnt->mnt.mnt_root))
2182 return -ENOTDIR;
2183
2184 return attach_recursive_mnt(mnt, p, mp, NULL);
2185 }
2186
2187 /*
2188 * Sanity check the flags to change_mnt_propagation.
2189 */
2190
2191 static int flags_to_propagation_type(int ms_flags)
2192 {
2193 int type = ms_flags & ~(MS_REC | MS_SILENT);
2194
2195 /* Fail if any non-propagation flags are set */
2196 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2197 return 0;
2198 /* Only one propagation flag should be set */
2199 if (!is_power_of_2(type))
2200 return 0;
2201 return type;
2202 }
2203
2204 /*
2205 * recursively change the type of the mountpoint.
2206 */
2207 static int do_change_type(struct path *path, int ms_flags)
2208 {
2209 struct mount *m;
2210 struct mount *mnt = real_mount(path->mnt);
2211 int recurse = ms_flags & MS_REC;
2212 int type;
2213 int err = 0;
2214
2215 if (path->dentry != path->mnt->mnt_root)
2216 return -EINVAL;
2217
2218 type = flags_to_propagation_type(ms_flags);
2219 if (!type)
2220 return -EINVAL;
2221
2222 namespace_lock();
2223 if (type == MS_SHARED) {
2224 err = invent_group_ids(mnt, recurse);
2225 if (err)
2226 goto out_unlock;
2227 }
2228
2229 lock_mount_hash();
2230 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2231 change_mnt_propagation(m, type);
2232 unlock_mount_hash();
2233
2234 out_unlock:
2235 namespace_unlock();
2236 return err;
2237 }
2238
2239 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2240 {
2241 struct mount *child;
2242 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2243 if (!is_subdir(child->mnt_mountpoint, dentry))
2244 continue;
2245
2246 if (child->mnt.mnt_flags & MNT_LOCKED)
2247 return true;
2248 }
2249 return false;
2250 }
2251
2252 static struct mount *__do_loopback(struct path *old_path, int recurse)
2253 {
2254 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2255
2256 if (IS_MNT_UNBINDABLE(old))
2257 return mnt;
2258
2259 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2260 return mnt;
2261
2262 if (!recurse && has_locked_children(old, old_path->dentry))
2263 return mnt;
2264
2265 if (recurse)
2266 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2267 else
2268 mnt = clone_mnt(old, old_path->dentry, 0);
2269
2270 if (!IS_ERR(mnt))
2271 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2272
2273 return mnt;
2274 }
2275
2276 /*
2277 * do loopback mount.
2278 */
2279 static int do_loopback(struct path *path, const char *old_name,
2280 int recurse)
2281 {
2282 struct path old_path;
2283 struct mount *mnt = NULL, *parent;
2284 struct mountpoint *mp;
2285 int err;
2286 if (!old_name || !*old_name)
2287 return -EINVAL;
2288 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2289 if (err)
2290 return err;
2291
2292 err = -EINVAL;
2293 if (mnt_ns_loop(old_path.dentry))
2294 goto out;
2295
2296 mp = lock_mount(path);
2297 if (IS_ERR(mp)) {
2298 err = PTR_ERR(mp);
2299 goto out;
2300 }
2301
2302 parent = real_mount(path->mnt);
2303 if (!check_mnt(parent))
2304 goto out2;
2305
2306 mnt = __do_loopback(&old_path, recurse);
2307 if (IS_ERR(mnt)) {
2308 err = PTR_ERR(mnt);
2309 goto out2;
2310 }
2311
2312 err = graft_tree(mnt, parent, mp);
2313 if (err) {
2314 lock_mount_hash();
2315 umount_tree(mnt, UMOUNT_SYNC);
2316 unlock_mount_hash();
2317 }
2318 out2:
2319 unlock_mount(mp);
2320 out:
2321 path_put(&old_path);
2322 return err;
2323 }
2324
2325 static struct file *open_detached_copy(struct path *path, bool recursive)
2326 {
2327 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2328 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2329 struct mount *mnt, *p;
2330 struct file *file;
2331
2332 if (IS_ERR(ns))
2333 return ERR_CAST(ns);
2334
2335 namespace_lock();
2336 mnt = __do_loopback(path, recursive);
2337 if (IS_ERR(mnt)) {
2338 namespace_unlock();
2339 free_mnt_ns(ns);
2340 return ERR_CAST(mnt);
2341 }
2342
2343 lock_mount_hash();
2344 for (p = mnt; p; p = next_mnt(p, mnt)) {
2345 p->mnt_ns = ns;
2346 ns->mounts++;
2347 }
2348 ns->root = mnt;
2349 list_add_tail(&ns->list, &mnt->mnt_list);
2350 mntget(&mnt->mnt);
2351 unlock_mount_hash();
2352 namespace_unlock();
2353
2354 mntput(path->mnt);
2355 path->mnt = &mnt->mnt;
2356 file = dentry_open(path, O_PATH, current_cred());
2357 if (IS_ERR(file))
2358 dissolve_on_fput(path->mnt);
2359 else
2360 file->f_mode |= FMODE_NEED_UNMOUNT;
2361 return file;
2362 }
2363
2364 SYSCALL_DEFINE3(open_tree, int, dfd, const char *, filename, unsigned, flags)
2365 {
2366 struct file *file;
2367 struct path path;
2368 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2369 bool detached = flags & OPEN_TREE_CLONE;
2370 int error;
2371 int fd;
2372
2373 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2374
2375 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2376 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2377 OPEN_TREE_CLOEXEC))
2378 return -EINVAL;
2379
2380 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2381 return -EINVAL;
2382
2383 if (flags & AT_NO_AUTOMOUNT)
2384 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2385 if (flags & AT_SYMLINK_NOFOLLOW)
2386 lookup_flags &= ~LOOKUP_FOLLOW;
2387 if (flags & AT_EMPTY_PATH)
2388 lookup_flags |= LOOKUP_EMPTY;
2389
2390 if (detached && !may_mount())
2391 return -EPERM;
2392
2393 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2394 if (fd < 0)
2395 return fd;
2396
2397 error = user_path_at(dfd, filename, lookup_flags, &path);
2398 if (unlikely(error)) {
2399 file = ERR_PTR(error);
2400 } else {
2401 if (detached)
2402 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2403 else
2404 file = dentry_open(&path, O_PATH, current_cred());
2405 path_put(&path);
2406 }
2407 if (IS_ERR(file)) {
2408 put_unused_fd(fd);
2409 return PTR_ERR(file);
2410 }
2411 fd_install(fd, file);
2412 return fd;
2413 }
2414
2415 /*
2416 * Don't allow locked mount flags to be cleared.
2417 *
2418 * No locks need to be held here while testing the various MNT_LOCK
2419 * flags because those flags can never be cleared once they are set.
2420 */
2421 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2422 {
2423 unsigned int fl = mnt->mnt.mnt_flags;
2424
2425 if ((fl & MNT_LOCK_READONLY) &&
2426 !(mnt_flags & MNT_READONLY))
2427 return false;
2428
2429 if ((fl & MNT_LOCK_NODEV) &&
2430 !(mnt_flags & MNT_NODEV))
2431 return false;
2432
2433 if ((fl & MNT_LOCK_NOSUID) &&
2434 !(mnt_flags & MNT_NOSUID))
2435 return false;
2436
2437 if ((fl & MNT_LOCK_NOEXEC) &&
2438 !(mnt_flags & MNT_NOEXEC))
2439 return false;
2440
2441 if ((fl & MNT_LOCK_ATIME) &&
2442 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2443 return false;
2444
2445 return true;
2446 }
2447
2448 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2449 {
2450 bool readonly_request = (mnt_flags & MNT_READONLY);
2451
2452 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2453 return 0;
2454
2455 if (readonly_request)
2456 return mnt_make_readonly(mnt);
2457
2458 return __mnt_unmake_readonly(mnt);
2459 }
2460
2461 /*
2462 * Update the user-settable attributes on a mount. The caller must hold
2463 * sb->s_umount for writing.
2464 */
2465 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2466 {
2467 lock_mount_hash();
2468 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2469 mnt->mnt.mnt_flags = mnt_flags;
2470 touch_mnt_namespace(mnt->mnt_ns);
2471 unlock_mount_hash();
2472 }
2473
2474 /*
2475 * Handle reconfiguration of the mountpoint only without alteration of the
2476 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2477 * to mount(2).
2478 */
2479 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2480 {
2481 struct super_block *sb = path->mnt->mnt_sb;
2482 struct mount *mnt = real_mount(path->mnt);
2483 int ret;
2484
2485 if (!check_mnt(mnt))
2486 return -EINVAL;
2487
2488 if (path->dentry != mnt->mnt.mnt_root)
2489 return -EINVAL;
2490
2491 if (!can_change_locked_flags(mnt, mnt_flags))
2492 return -EPERM;
2493
2494 down_write(&sb->s_umount);
2495 ret = change_mount_ro_state(mnt, mnt_flags);
2496 if (ret == 0)
2497 set_mount_attributes(mnt, mnt_flags);
2498 up_write(&sb->s_umount);
2499 return ret;
2500 }
2501
2502 /*
2503 * change filesystem flags. dir should be a physical root of filesystem.
2504 * If you've mounted a non-root directory somewhere and want to do remount
2505 * on it - tough luck.
2506 */
2507 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2508 int mnt_flags, void *data)
2509 {
2510 int err;
2511 struct super_block *sb = path->mnt->mnt_sb;
2512 struct mount *mnt = real_mount(path->mnt);
2513 struct fs_context *fc;
2514
2515 if (!check_mnt(mnt))
2516 return -EINVAL;
2517
2518 if (path->dentry != path->mnt->mnt_root)
2519 return -EINVAL;
2520
2521 if (!can_change_locked_flags(mnt, mnt_flags))
2522 return -EPERM;
2523
2524 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2525 if (IS_ERR(fc))
2526 return PTR_ERR(fc);
2527
2528 err = parse_monolithic_mount_data(fc, data);
2529 if (!err) {
2530 down_write(&sb->s_umount);
2531 err = -EPERM;
2532 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2533 err = reconfigure_super(fc);
2534 if (!err)
2535 set_mount_attributes(mnt, mnt_flags);
2536 }
2537 up_write(&sb->s_umount);
2538 }
2539 put_fs_context(fc);
2540 return err;
2541 }
2542
2543 static inline int tree_contains_unbindable(struct mount *mnt)
2544 {
2545 struct mount *p;
2546 for (p = mnt; p; p = next_mnt(p, mnt)) {
2547 if (IS_MNT_UNBINDABLE(p))
2548 return 1;
2549 }
2550 return 0;
2551 }
2552
2553 /*
2554 * Check that there aren't references to earlier/same mount namespaces in the
2555 * specified subtree. Such references can act as pins for mount namespaces
2556 * that aren't checked by the mount-cycle checking code, thereby allowing
2557 * cycles to be made.
2558 */
2559 static bool check_for_nsfs_mounts(struct mount *subtree)
2560 {
2561 struct mount *p;
2562 bool ret = false;
2563
2564 lock_mount_hash();
2565 for (p = subtree; p; p = next_mnt(p, subtree))
2566 if (mnt_ns_loop(p->mnt.mnt_root))
2567 goto out;
2568
2569 ret = true;
2570 out:
2571 unlock_mount_hash();
2572 return ret;
2573 }
2574
2575 static int do_move_mount(struct path *old_path, struct path *new_path)
2576 {
2577 struct path parent_path = {.mnt = NULL, .dentry = NULL};
2578 struct mnt_namespace *ns;
2579 struct mount *p;
2580 struct mount *old;
2581 struct mountpoint *mp;
2582 int err;
2583 bool attached;
2584
2585 mp = lock_mount(new_path);
2586 if (IS_ERR(mp))
2587 return PTR_ERR(mp);
2588
2589 old = real_mount(old_path->mnt);
2590 p = real_mount(new_path->mnt);
2591 attached = mnt_has_parent(old);
2592 ns = old->mnt_ns;
2593
2594 err = -EINVAL;
2595 /* The mountpoint must be in our namespace. */
2596 if (!check_mnt(p))
2597 goto out;
2598
2599 /* The thing moved must be mounted... */
2600 if (!is_mounted(&old->mnt))
2601 goto out;
2602
2603 /* ... and either ours or the root of anon namespace */
2604 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2605 goto out;
2606
2607 if (old->mnt.mnt_flags & MNT_LOCKED)
2608 goto out;
2609
2610 if (old_path->dentry != old_path->mnt->mnt_root)
2611 goto out;
2612
2613 if (d_is_dir(new_path->dentry) !=
2614 d_is_dir(old_path->dentry))
2615 goto out;
2616 /*
2617 * Don't move a mount residing in a shared parent.
2618 */
2619 if (attached && IS_MNT_SHARED(old->mnt_parent))
2620 goto out;
2621 /*
2622 * Don't move a mount tree containing unbindable mounts to a destination
2623 * mount which is shared.
2624 */
2625 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2626 goto out;
2627 err = -ELOOP;
2628 if (!check_for_nsfs_mounts(old))
2629 goto out;
2630 for (; mnt_has_parent(p); p = p->mnt_parent)
2631 if (p == old)
2632 goto out;
2633
2634 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2635 attached ? &parent_path : NULL);
2636 if (err)
2637 goto out;
2638
2639 /* if the mount is moved, it should no longer be expire
2640 * automatically */
2641 list_del_init(&old->mnt_expire);
2642 out:
2643 unlock_mount(mp);
2644 if (!err) {
2645 path_put(&parent_path);
2646 if (!attached)
2647 free_mnt_ns(ns);
2648 }
2649 return err;
2650 }
2651
2652 static int do_move_mount_old(struct path *path, const char *old_name)
2653 {
2654 struct path old_path;
2655 int err;
2656
2657 if (!old_name || !*old_name)
2658 return -EINVAL;
2659
2660 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2661 if (err)
2662 return err;
2663
2664 err = do_move_mount(&old_path, path);
2665 path_put(&old_path);
2666 return err;
2667 }
2668
2669 /*
2670 * add a mount into a namespace's mount tree
2671 */
2672 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2673 {
2674 struct mountpoint *mp;
2675 struct mount *parent;
2676 int err;
2677
2678 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2679
2680 mp = lock_mount(path);
2681 if (IS_ERR(mp))
2682 return PTR_ERR(mp);
2683
2684 parent = real_mount(path->mnt);
2685 err = -EINVAL;
2686 if (unlikely(!check_mnt(parent))) {
2687 /* that's acceptable only for automounts done in private ns */
2688 if (!(mnt_flags & MNT_SHRINKABLE))
2689 goto unlock;
2690 /* ... and for those we'd better have mountpoint still alive */
2691 if (!parent->mnt_ns)
2692 goto unlock;
2693 }
2694
2695 /* Refuse the same filesystem on the same mount point */
2696 err = -EBUSY;
2697 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2698 path->mnt->mnt_root == path->dentry)
2699 goto unlock;
2700
2701 err = -EINVAL;
2702 if (d_is_symlink(newmnt->mnt.mnt_root))
2703 goto unlock;
2704
2705 newmnt->mnt.mnt_flags = mnt_flags;
2706 err = graft_tree(newmnt, parent, mp);
2707
2708 unlock:
2709 unlock_mount(mp);
2710 return err;
2711 }
2712
2713 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2714
2715 /*
2716 * Create a new mount using a superblock configuration and request it
2717 * be added to the namespace tree.
2718 */
2719 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2720 unsigned int mnt_flags)
2721 {
2722 struct vfsmount *mnt;
2723 struct super_block *sb = fc->root->d_sb;
2724 int error;
2725
2726 error = security_sb_kern_mount(sb);
2727 if (!error && mount_too_revealing(sb, &mnt_flags))
2728 error = -EPERM;
2729
2730 if (unlikely(error)) {
2731 fc_drop_locked(fc);
2732 return error;
2733 }
2734
2735 up_write(&sb->s_umount);
2736
2737 mnt = vfs_create_mount(fc);
2738 if (IS_ERR(mnt))
2739 return PTR_ERR(mnt);
2740
2741 error = do_add_mount(real_mount(mnt), mountpoint, mnt_flags);
2742 if (error < 0)
2743 mntput(mnt);
2744 return error;
2745 }
2746
2747 /*
2748 * create a new mount for userspace and request it to be added into the
2749 * namespace's tree
2750 */
2751 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2752 int mnt_flags, const char *name, void *data)
2753 {
2754 struct file_system_type *type;
2755 struct fs_context *fc;
2756 const char *subtype = NULL;
2757 int err = 0;
2758
2759 if (!fstype)
2760 return -EINVAL;
2761
2762 type = get_fs_type(fstype);
2763 if (!type)
2764 return -ENODEV;
2765
2766 if (type->fs_flags & FS_HAS_SUBTYPE) {
2767 subtype = strchr(fstype, '.');
2768 if (subtype) {
2769 subtype++;
2770 if (!*subtype) {
2771 put_filesystem(type);
2772 return -EINVAL;
2773 }
2774 } else {
2775 subtype = "";
2776 }
2777 }
2778
2779 fc = fs_context_for_mount(type, sb_flags);
2780 put_filesystem(type);
2781 if (IS_ERR(fc))
2782 return PTR_ERR(fc);
2783
2784 if (subtype)
2785 err = vfs_parse_fs_string(fc, "subtype",
2786 subtype, strlen(subtype));
2787 if (!err && name)
2788 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2789 if (!err)
2790 err = parse_monolithic_mount_data(fc, data);
2791 if (!err)
2792 err = vfs_get_tree(fc);
2793 if (!err)
2794 err = do_new_mount_fc(fc, path, mnt_flags);
2795
2796 put_fs_context(fc);
2797 return err;
2798 }
2799
2800 int finish_automount(struct vfsmount *m, struct path *path)
2801 {
2802 struct mount *mnt = real_mount(m);
2803 int err;
2804 /* The new mount record should have at least 2 refs to prevent it being
2805 * expired before we get a chance to add it
2806 */
2807 BUG_ON(mnt_get_count(mnt) < 2);
2808
2809 if (m->mnt_sb == path->mnt->mnt_sb &&
2810 m->mnt_root == path->dentry) {
2811 err = -ELOOP;
2812 goto fail;
2813 }
2814
2815 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2816 if (!err)
2817 return 0;
2818 fail:
2819 /* remove m from any expiration list it may be on */
2820 if (!list_empty(&mnt->mnt_expire)) {
2821 namespace_lock();
2822 list_del_init(&mnt->mnt_expire);
2823 namespace_unlock();
2824 }
2825 mntput(m);
2826 mntput(m);
2827 return err;
2828 }
2829
2830 /**
2831 * mnt_set_expiry - Put a mount on an expiration list
2832 * @mnt: The mount to list.
2833 * @expiry_list: The list to add the mount to.
2834 */
2835 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2836 {
2837 namespace_lock();
2838
2839 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2840
2841 namespace_unlock();
2842 }
2843 EXPORT_SYMBOL(mnt_set_expiry);
2844
2845 /*
2846 * process a list of expirable mountpoints with the intent of discarding any
2847 * mountpoints that aren't in use and haven't been touched since last we came
2848 * here
2849 */
2850 void mark_mounts_for_expiry(struct list_head *mounts)
2851 {
2852 struct mount *mnt, *next;
2853 LIST_HEAD(graveyard);
2854
2855 if (list_empty(mounts))
2856 return;
2857
2858 namespace_lock();
2859 lock_mount_hash();
2860
2861 /* extract from the expiration list every vfsmount that matches the
2862 * following criteria:
2863 * - only referenced by its parent vfsmount
2864 * - still marked for expiry (marked on the last call here; marks are
2865 * cleared by mntput())
2866 */
2867 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2868 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2869 propagate_mount_busy(mnt, 1))
2870 continue;
2871 list_move(&mnt->mnt_expire, &graveyard);
2872 }
2873 while (!list_empty(&graveyard)) {
2874 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2875 touch_mnt_namespace(mnt->mnt_ns);
2876 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2877 }
2878 unlock_mount_hash();
2879 namespace_unlock();
2880 }
2881
2882 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2883
2884 /*
2885 * Ripoff of 'select_parent()'
2886 *
2887 * search the list of submounts for a given mountpoint, and move any
2888 * shrinkable submounts to the 'graveyard' list.
2889 */
2890 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2891 {
2892 struct mount *this_parent = parent;
2893 struct list_head *next;
2894 int found = 0;
2895
2896 repeat:
2897 next = this_parent->mnt_mounts.next;
2898 resume:
2899 while (next != &this_parent->mnt_mounts) {
2900 struct list_head *tmp = next;
2901 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2902
2903 next = tmp->next;
2904 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2905 continue;
2906 /*
2907 * Descend a level if the d_mounts list is non-empty.
2908 */
2909 if (!list_empty(&mnt->mnt_mounts)) {
2910 this_parent = mnt;
2911 goto repeat;
2912 }
2913
2914 if (!propagate_mount_busy(mnt, 1)) {
2915 list_move_tail(&mnt->mnt_expire, graveyard);
2916 found++;
2917 }
2918 }
2919 /*
2920 * All done at this level ... ascend and resume the search
2921 */
2922 if (this_parent != parent) {
2923 next = this_parent->mnt_child.next;
2924 this_parent = this_parent->mnt_parent;
2925 goto resume;
2926 }
2927 return found;
2928 }
2929
2930 /*
2931 * process a list of expirable mountpoints with the intent of discarding any
2932 * submounts of a specific parent mountpoint
2933 *
2934 * mount_lock must be held for write
2935 */
2936 static void shrink_submounts(struct mount *mnt)
2937 {
2938 LIST_HEAD(graveyard);
2939 struct mount *m;
2940
2941 /* extract submounts of 'mountpoint' from the expiration list */
2942 while (select_submounts(mnt, &graveyard)) {
2943 while (!list_empty(&graveyard)) {
2944 m = list_first_entry(&graveyard, struct mount,
2945 mnt_expire);
2946 touch_mnt_namespace(m->mnt_ns);
2947 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2948 }
2949 }
2950 }
2951
2952 /*
2953 * Some copy_from_user() implementations do not return the exact number of
2954 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2955 * Note that this function differs from copy_from_user() in that it will oops
2956 * on bad values of `to', rather than returning a short copy.
2957 */
2958 static long exact_copy_from_user(void *to, const void __user * from,
2959 unsigned long n)
2960 {
2961 char *t = to;
2962 const char __user *f = from;
2963 char c;
2964
2965 if (!access_ok(from, n))
2966 return n;
2967
2968 while (n) {
2969 if (__get_user(c, f)) {
2970 memset(t, 0, n);
2971 break;
2972 }
2973 *t++ = c;
2974 f++;
2975 n--;
2976 }
2977 return n;
2978 }
2979
2980 void *copy_mount_options(const void __user * data)
2981 {
2982 int i;
2983 unsigned long size;
2984 char *copy;
2985
2986 if (!data)
2987 return NULL;
2988
2989 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2990 if (!copy)
2991 return ERR_PTR(-ENOMEM);
2992
2993 /* We only care that *some* data at the address the user
2994 * gave us is valid. Just in case, we'll zero
2995 * the remainder of the page.
2996 */
2997 /* copy_from_user cannot cross TASK_SIZE ! */
2998 size = TASK_SIZE - (unsigned long)data;
2999 if (size > PAGE_SIZE)
3000 size = PAGE_SIZE;
3001
3002 i = size - exact_copy_from_user(copy, data, size);
3003 if (!i) {
3004 kfree(copy);
3005 return ERR_PTR(-EFAULT);
3006 }
3007 if (i != PAGE_SIZE)
3008 memset(copy + i, 0, PAGE_SIZE - i);
3009 return copy;
3010 }
3011
3012 char *copy_mount_string(const void __user *data)
3013 {
3014 return data ? strndup_user(data, PATH_MAX) : NULL;
3015 }
3016
3017 /*
3018 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3019 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3020 *
3021 * data is a (void *) that can point to any structure up to
3022 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3023 * information (or be NULL).
3024 *
3025 * Pre-0.97 versions of mount() didn't have a flags word.
3026 * When the flags word was introduced its top half was required
3027 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3028 * Therefore, if this magic number is present, it carries no information
3029 * and must be discarded.
3030 */
3031 long do_mount(const char *dev_name, const char __user *dir_name,
3032 const char *type_page, unsigned long flags, void *data_page)
3033 {
3034 struct path path;
3035 unsigned int mnt_flags = 0, sb_flags;
3036 int retval = 0;
3037
3038 /* Discard magic */
3039 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3040 flags &= ~MS_MGC_MSK;
3041
3042 /* Basic sanity checks */
3043 if (data_page)
3044 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3045
3046 if (flags & MS_NOUSER)
3047 return -EINVAL;
3048
3049 /* ... and get the mountpoint */
3050 retval = user_path(dir_name, &path);
3051 if (retval)
3052 return retval;
3053
3054 retval = security_sb_mount(dev_name, &path,
3055 type_page, flags, data_page);
3056 if (!retval && !may_mount())
3057 retval = -EPERM;
3058 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
3059 retval = -EPERM;
3060 if (retval)
3061 goto dput_out;
3062
3063 /* Default to relatime unless overriden */
3064 if (!(flags & MS_NOATIME))
3065 mnt_flags |= MNT_RELATIME;
3066
3067 /* Separate the per-mountpoint flags */
3068 if (flags & MS_NOSUID)
3069 mnt_flags |= MNT_NOSUID;
3070 if (flags & MS_NODEV)
3071 mnt_flags |= MNT_NODEV;
3072 if (flags & MS_NOEXEC)
3073 mnt_flags |= MNT_NOEXEC;
3074 if (flags & MS_NOATIME)
3075 mnt_flags |= MNT_NOATIME;
3076 if (flags & MS_NODIRATIME)
3077 mnt_flags |= MNT_NODIRATIME;
3078 if (flags & MS_STRICTATIME)
3079 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3080 if (flags & MS_RDONLY)
3081 mnt_flags |= MNT_READONLY;
3082
3083 /* The default atime for remount is preservation */
3084 if ((flags & MS_REMOUNT) &&
3085 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3086 MS_STRICTATIME)) == 0)) {
3087 mnt_flags &= ~MNT_ATIME_MASK;
3088 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
3089 }
3090
3091 sb_flags = flags & (SB_RDONLY |
3092 SB_SYNCHRONOUS |
3093 SB_MANDLOCK |
3094 SB_DIRSYNC |
3095 SB_SILENT |
3096 SB_POSIXACL |
3097 SB_LAZYTIME |
3098 SB_I_VERSION);
3099
3100 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3101 retval = do_reconfigure_mnt(&path, mnt_flags);
3102 else if (flags & MS_REMOUNT)
3103 retval = do_remount(&path, flags, sb_flags, mnt_flags,
3104 data_page);
3105 else if (flags & MS_BIND)
3106 retval = do_loopback(&path, dev_name, flags & MS_REC);
3107 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3108 retval = do_change_type(&path, flags);
3109 else if (flags & MS_MOVE)
3110 retval = do_move_mount_old(&path, dev_name);
3111 else
3112 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
3113 dev_name, data_page);
3114 dput_out:
3115 path_put(&path);
3116 return retval;
3117 }
3118
3119 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3120 {
3121 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3122 }
3123
3124 static void dec_mnt_namespaces(struct ucounts *ucounts)
3125 {
3126 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3127 }
3128
3129 static void free_mnt_ns(struct mnt_namespace *ns)
3130 {
3131 if (!is_anon_ns(ns))
3132 ns_free_inum(&ns->ns);
3133 dec_mnt_namespaces(ns->ucounts);
3134 put_user_ns(ns->user_ns);
3135 kfree(ns);
3136 }
3137
3138 /*
3139 * Assign a sequence number so we can detect when we attempt to bind
3140 * mount a reference to an older mount namespace into the current
3141 * mount namespace, preventing reference counting loops. A 64bit
3142 * number incrementing at 10Ghz will take 12,427 years to wrap which
3143 * is effectively never, so we can ignore the possibility.
3144 */
3145 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3146
3147 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3148 {
3149 struct mnt_namespace *new_ns;
3150 struct ucounts *ucounts;
3151 int ret;
3152
3153 ucounts = inc_mnt_namespaces(user_ns);
3154 if (!ucounts)
3155 return ERR_PTR(-ENOSPC);
3156
3157 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3158 if (!new_ns) {
3159 dec_mnt_namespaces(ucounts);
3160 return ERR_PTR(-ENOMEM);
3161 }
3162 if (!anon) {
3163 ret = ns_alloc_inum(&new_ns->ns);
3164 if (ret) {
3165 kfree(new_ns);
3166 dec_mnt_namespaces(ucounts);
3167 return ERR_PTR(ret);
3168 }
3169 }
3170 new_ns->ns.ops = &mntns_operations;
3171 if (!anon)
3172 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3173 atomic_set(&new_ns->count, 1);
3174 INIT_LIST_HEAD(&new_ns->list);
3175 init_waitqueue_head(&new_ns->poll);
3176 new_ns->user_ns = get_user_ns(user_ns);
3177 new_ns->ucounts = ucounts;
3178 return new_ns;
3179 }
3180
3181 __latent_entropy
3182 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3183 struct user_namespace *user_ns, struct fs_struct *new_fs)
3184 {
3185 struct mnt_namespace *new_ns;
3186 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3187 struct mount *p, *q;
3188 struct mount *old;
3189 struct mount *new;
3190 int copy_flags;
3191
3192 BUG_ON(!ns);
3193
3194 if (likely(!(flags & CLONE_NEWNS))) {
3195 get_mnt_ns(ns);
3196 return ns;
3197 }
3198
3199 old = ns->root;
3200
3201 new_ns = alloc_mnt_ns(user_ns, false);
3202 if (IS_ERR(new_ns))
3203 return new_ns;
3204
3205 namespace_lock();
3206 /* First pass: copy the tree topology */
3207 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3208 if (user_ns != ns->user_ns)
3209 copy_flags |= CL_SHARED_TO_SLAVE;
3210 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3211 if (IS_ERR(new)) {
3212 namespace_unlock();
3213 free_mnt_ns(new_ns);
3214 return ERR_CAST(new);
3215 }
3216 if (user_ns != ns->user_ns) {
3217 lock_mount_hash();
3218 lock_mnt_tree(new);
3219 unlock_mount_hash();
3220 }
3221 new_ns->root = new;
3222 list_add_tail(&new_ns->list, &new->mnt_list);
3223
3224 /*
3225 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3226 * as belonging to new namespace. We have already acquired a private
3227 * fs_struct, so tsk->fs->lock is not needed.
3228 */
3229 p = old;
3230 q = new;
3231 while (p) {
3232 q->mnt_ns = new_ns;
3233 new_ns->mounts++;
3234 if (new_fs) {
3235 if (&p->mnt == new_fs->root.mnt) {
3236 new_fs->root.mnt = mntget(&q->mnt);
3237 rootmnt = &p->mnt;
3238 }
3239 if (&p->mnt == new_fs->pwd.mnt) {
3240 new_fs->pwd.mnt = mntget(&q->mnt);
3241 pwdmnt = &p->mnt;
3242 }
3243 }
3244 p = next_mnt(p, old);
3245 q = next_mnt(q, new);
3246 if (!q)
3247 break;
3248 while (p->mnt.mnt_root != q->mnt.mnt_root)
3249 p = next_mnt(p, old);
3250 }
3251 namespace_unlock();
3252
3253 if (rootmnt)
3254 mntput(rootmnt);
3255 if (pwdmnt)
3256 mntput(pwdmnt);
3257
3258 return new_ns;
3259 }
3260
3261 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3262 {
3263 struct mount *mnt = real_mount(m);
3264 struct mnt_namespace *ns;
3265 struct super_block *s;
3266 struct path path;
3267 int err;
3268
3269 ns = alloc_mnt_ns(&init_user_ns, true);
3270 if (IS_ERR(ns)) {
3271 mntput(m);
3272 return ERR_CAST(ns);
3273 }
3274 mnt->mnt_ns = ns;
3275 ns->root = mnt;
3276 ns->mounts++;
3277 list_add(&mnt->mnt_list, &ns->list);
3278
3279 err = vfs_path_lookup(m->mnt_root, m,
3280 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3281
3282 put_mnt_ns(ns);
3283
3284 if (err)
3285 return ERR_PTR(err);
3286
3287 /* trade a vfsmount reference for active sb one */
3288 s = path.mnt->mnt_sb;
3289 atomic_inc(&s->s_active);
3290 mntput(path.mnt);
3291 /* lock the sucker */
3292 down_write(&s->s_umount);
3293 /* ... and return the root of (sub)tree on it */
3294 return path.dentry;
3295 }
3296 EXPORT_SYMBOL(mount_subtree);
3297
3298 int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
3299 unsigned long flags, void __user *data)
3300 {
3301 int ret;
3302 char *kernel_type;
3303 char *kernel_dev;
3304 void *options;
3305
3306 kernel_type = copy_mount_string(type);
3307 ret = PTR_ERR(kernel_type);
3308 if (IS_ERR(kernel_type))
3309 goto out_type;
3310
3311 kernel_dev = copy_mount_string(dev_name);
3312 ret = PTR_ERR(kernel_dev);
3313 if (IS_ERR(kernel_dev))
3314 goto out_dev;
3315
3316 options = copy_mount_options(data);
3317 ret = PTR_ERR(options);
3318 if (IS_ERR(options))
3319 goto out_data;
3320
3321 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3322
3323 kfree(options);
3324 out_data:
3325 kfree(kernel_dev);
3326 out_dev:
3327 kfree(kernel_type);
3328 out_type:
3329 return ret;
3330 }
3331
3332 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3333 char __user *, type, unsigned long, flags, void __user *, data)
3334 {
3335 return ksys_mount(dev_name, dir_name, type, flags, data);
3336 }
3337
3338 /*
3339 * Create a kernel mount representation for a new, prepared superblock
3340 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3341 */
3342 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3343 unsigned int, attr_flags)
3344 {
3345 struct mnt_namespace *ns;
3346 struct fs_context *fc;
3347 struct file *file;
3348 struct path newmount;
3349 struct mount *mnt;
3350 struct fd f;
3351 unsigned int mnt_flags = 0;
3352 long ret;
3353
3354 if (!may_mount())
3355 return -EPERM;
3356
3357 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3358 return -EINVAL;
3359
3360 if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3361 MOUNT_ATTR_NOSUID |
3362 MOUNT_ATTR_NODEV |
3363 MOUNT_ATTR_NOEXEC |
3364 MOUNT_ATTR__ATIME |
3365 MOUNT_ATTR_NODIRATIME))
3366 return -EINVAL;
3367
3368 if (attr_flags & MOUNT_ATTR_RDONLY)
3369 mnt_flags |= MNT_READONLY;
3370 if (attr_flags & MOUNT_ATTR_NOSUID)
3371 mnt_flags |= MNT_NOSUID;
3372 if (attr_flags & MOUNT_ATTR_NODEV)
3373 mnt_flags |= MNT_NODEV;
3374 if (attr_flags & MOUNT_ATTR_NOEXEC)
3375 mnt_flags |= MNT_NOEXEC;
3376 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3377 mnt_flags |= MNT_NODIRATIME;
3378
3379 switch (attr_flags & MOUNT_ATTR__ATIME) {
3380 case MOUNT_ATTR_STRICTATIME:
3381 break;
3382 case MOUNT_ATTR_NOATIME:
3383 mnt_flags |= MNT_NOATIME;
3384 break;
3385 case MOUNT_ATTR_RELATIME:
3386 mnt_flags |= MNT_RELATIME;
3387 break;
3388 default:
3389 return -EINVAL;
3390 }
3391
3392 f = fdget(fs_fd);
3393 if (!f.file)
3394 return -EBADF;
3395
3396 ret = -EINVAL;
3397 if (f.file->f_op != &fscontext_fops)
3398 goto err_fsfd;
3399
3400 fc = f.file->private_data;
3401
3402 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3403 if (ret < 0)
3404 goto err_fsfd;
3405
3406 /* There must be a valid superblock or we can't mount it */
3407 ret = -EINVAL;
3408 if (!fc->root)
3409 goto err_unlock;
3410
3411 ret = -EPERM;
3412 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3413 pr_warn("VFS: Mount too revealing\n");
3414 goto err_unlock;
3415 }
3416
3417 ret = -EBUSY;
3418 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3419 goto err_unlock;
3420
3421 ret = -EPERM;
3422 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3423 goto err_unlock;
3424
3425 newmount.mnt = vfs_create_mount(fc);
3426 if (IS_ERR(newmount.mnt)) {
3427 ret = PTR_ERR(newmount.mnt);
3428 goto err_unlock;
3429 }
3430 newmount.dentry = dget(fc->root);
3431 newmount.mnt->mnt_flags = mnt_flags;
3432
3433 /* We've done the mount bit - now move the file context into more or
3434 * less the same state as if we'd done an fspick(). We don't want to
3435 * do any memory allocation or anything like that at this point as we
3436 * don't want to have to handle any errors incurred.
3437 */
3438 vfs_clean_context(fc);
3439
3440 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3441 if (IS_ERR(ns)) {
3442 ret = PTR_ERR(ns);
3443 goto err_path;
3444 }
3445 mnt = real_mount(newmount.mnt);
3446 mnt->mnt_ns = ns;
3447 ns->root = mnt;
3448 ns->mounts = 1;
3449 list_add(&mnt->mnt_list, &ns->list);
3450 mntget(newmount.mnt);
3451
3452 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3453 * it, not just simply put it.
3454 */
3455 file = dentry_open(&newmount, O_PATH, fc->cred);
3456 if (IS_ERR(file)) {
3457 dissolve_on_fput(newmount.mnt);
3458 ret = PTR_ERR(file);
3459 goto err_path;
3460 }
3461 file->f_mode |= FMODE_NEED_UNMOUNT;
3462
3463 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3464 if (ret >= 0)
3465 fd_install(ret, file);
3466 else
3467 fput(file);
3468
3469 err_path:
3470 path_put(&newmount);
3471 err_unlock:
3472 mutex_unlock(&fc->uapi_mutex);
3473 err_fsfd:
3474 fdput(f);
3475 return ret;
3476 }
3477
3478 /*
3479 * Move a mount from one place to another. In combination with
3480 * fsopen()/fsmount() this is used to install a new mount and in combination
3481 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3482 * a mount subtree.
3483 *
3484 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3485 */
3486 SYSCALL_DEFINE5(move_mount,
3487 int, from_dfd, const char *, from_pathname,
3488 int, to_dfd, const char *, to_pathname,
3489 unsigned int, flags)
3490 {
3491 struct path from_path, to_path;
3492 unsigned int lflags;
3493 int ret = 0;
3494
3495 if (!may_mount())
3496 return -EPERM;
3497
3498 if (flags & ~MOVE_MOUNT__MASK)
3499 return -EINVAL;
3500
3501 /* If someone gives a pathname, they aren't permitted to move
3502 * from an fd that requires unmount as we can't get at the flag
3503 * to clear it afterwards.
3504 */
3505 lflags = 0;
3506 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3507 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3508 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3509
3510 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3511 if (ret < 0)
3512 return ret;
3513
3514 lflags = 0;
3515 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3516 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3517 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3518
3519 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3520 if (ret < 0)
3521 goto out_from;
3522
3523 ret = security_move_mount(&from_path, &to_path);
3524 if (ret < 0)
3525 goto out_to;
3526
3527 ret = do_move_mount(&from_path, &to_path);
3528
3529 out_to:
3530 path_put(&to_path);
3531 out_from:
3532 path_put(&from_path);
3533 return ret;
3534 }
3535
3536 /*
3537 * Return true if path is reachable from root
3538 *
3539 * namespace_sem or mount_lock is held
3540 */
3541 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3542 const struct path *root)
3543 {
3544 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3545 dentry = mnt->mnt_mountpoint;
3546 mnt = mnt->mnt_parent;
3547 }
3548 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3549 }
3550
3551 bool path_is_under(const struct path *path1, const struct path *path2)
3552 {
3553 bool res;
3554 read_seqlock_excl(&mount_lock);
3555 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3556 read_sequnlock_excl(&mount_lock);
3557 return res;
3558 }
3559 EXPORT_SYMBOL(path_is_under);
3560
3561 /*
3562 * pivot_root Semantics:
3563 * Moves the root file system of the current process to the directory put_old,
3564 * makes new_root as the new root file system of the current process, and sets
3565 * root/cwd of all processes which had them on the current root to new_root.
3566 *
3567 * Restrictions:
3568 * The new_root and put_old must be directories, and must not be on the
3569 * same file system as the current process root. The put_old must be
3570 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3571 * pointed to by put_old must yield the same directory as new_root. No other
3572 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3573 *
3574 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3575 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3576 * in this situation.
3577 *
3578 * Notes:
3579 * - we don't move root/cwd if they are not at the root (reason: if something
3580 * cared enough to change them, it's probably wrong to force them elsewhere)
3581 * - it's okay to pick a root that isn't the root of a file system, e.g.
3582 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3583 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3584 * first.
3585 */
3586 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3587 const char __user *, put_old)
3588 {
3589 struct path new, old, parent_path, root_parent, root;
3590 struct mount *new_mnt, *root_mnt, *old_mnt;
3591 struct mountpoint *old_mp, *root_mp;
3592 int error;
3593
3594 if (!may_mount())
3595 return -EPERM;
3596
3597 error = user_path_dir(new_root, &new);
3598 if (error)
3599 goto out0;
3600
3601 error = user_path_dir(put_old, &old);
3602 if (error)
3603 goto out1;
3604
3605 error = security_sb_pivotroot(&old, &new);
3606 if (error)
3607 goto out2;
3608
3609 get_fs_root(current->fs, &root);
3610 old_mp = lock_mount(&old);
3611 error = PTR_ERR(old_mp);
3612 if (IS_ERR(old_mp))
3613 goto out3;
3614
3615 error = -EINVAL;
3616 new_mnt = real_mount(new.mnt);
3617 root_mnt = real_mount(root.mnt);
3618 old_mnt = real_mount(old.mnt);
3619 if (IS_MNT_SHARED(old_mnt) ||
3620 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3621 IS_MNT_SHARED(root_mnt->mnt_parent))
3622 goto out4;
3623 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3624 goto out4;
3625 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3626 goto out4;
3627 error = -ENOENT;
3628 if (d_unlinked(new.dentry))
3629 goto out4;
3630 error = -EBUSY;
3631 if (new_mnt == root_mnt || old_mnt == root_mnt)
3632 goto out4; /* loop, on the same file system */
3633 error = -EINVAL;
3634 if (root.mnt->mnt_root != root.dentry)
3635 goto out4; /* not a mountpoint */
3636 if (!mnt_has_parent(root_mnt))
3637 goto out4; /* not attached */
3638 root_mp = root_mnt->mnt_mp;
3639 if (new.mnt->mnt_root != new.dentry)
3640 goto out4; /* not a mountpoint */
3641 if (!mnt_has_parent(new_mnt))
3642 goto out4; /* not attached */
3643 /* make sure we can reach put_old from new_root */
3644 if (!is_path_reachable(old_mnt, old.dentry, &new))
3645 goto out4;
3646 /* make certain new is below the root */
3647 if (!is_path_reachable(new_mnt, new.dentry, &root))
3648 goto out4;
3649 root_mp->m_count++; /* pin it so it won't go away */
3650 lock_mount_hash();
3651 detach_mnt(new_mnt, &parent_path);
3652 detach_mnt(root_mnt, &root_parent);
3653 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3654 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3655 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3656 }
3657 /* mount old root on put_old */
3658 attach_mnt(root_mnt, old_mnt, old_mp);
3659 /* mount new_root on / */
3660 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3661 touch_mnt_namespace(current->nsproxy->mnt_ns);
3662 /* A moved mount should not expire automatically */
3663 list_del_init(&new_mnt->mnt_expire);
3664 put_mountpoint(root_mp);
3665 unlock_mount_hash();
3666 chroot_fs_refs(&root, &new);
3667 error = 0;
3668 out4:
3669 unlock_mount(old_mp);
3670 if (!error) {
3671 path_put(&root_parent);
3672 path_put(&parent_path);
3673 }
3674 out3:
3675 path_put(&root);
3676 out2:
3677 path_put(&old);
3678 out1:
3679 path_put(&new);
3680 out0:
3681 return error;
3682 }
3683
3684 static void __init init_mount_tree(void)
3685 {
3686 struct vfsmount *mnt;
3687 struct mount *m;
3688 struct mnt_namespace *ns;
3689 struct path root;
3690 struct file_system_type *type;
3691
3692 type = get_fs_type("rootfs");
3693 if (!type)
3694 panic("Can't find rootfs type");
3695 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3696 put_filesystem(type);
3697 if (IS_ERR(mnt))
3698 panic("Can't create rootfs");
3699
3700 ns = alloc_mnt_ns(&init_user_ns, false);
3701 if (IS_ERR(ns))
3702 panic("Can't allocate initial namespace");
3703 m = real_mount(mnt);
3704 m->mnt_ns = ns;
3705 ns->root = m;
3706 ns->mounts = 1;
3707 list_add(&m->mnt_list, &ns->list);
3708 init_task.nsproxy->mnt_ns = ns;
3709 get_mnt_ns(ns);
3710
3711 root.mnt = mnt;
3712 root.dentry = mnt->mnt_root;
3713 mnt->mnt_flags |= MNT_LOCKED;
3714
3715 set_fs_pwd(current->fs, &root);
3716 set_fs_root(current->fs, &root);
3717 }
3718
3719 void __init mnt_init(void)
3720 {
3721 int err;
3722
3723 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3724 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3725
3726 mount_hashtable = alloc_large_system_hash("Mount-cache",
3727 sizeof(struct hlist_head),
3728 mhash_entries, 19,
3729 HASH_ZERO,
3730 &m_hash_shift, &m_hash_mask, 0, 0);
3731 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3732 sizeof(struct hlist_head),
3733 mphash_entries, 19,
3734 HASH_ZERO,
3735 &mp_hash_shift, &mp_hash_mask, 0, 0);
3736
3737 if (!mount_hashtable || !mountpoint_hashtable)
3738 panic("Failed to allocate mount hash table\n");
3739
3740 kernfs_init();
3741
3742 err = sysfs_init();
3743 if (err)
3744 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3745 __func__, err);
3746 fs_kobj = kobject_create_and_add("fs", NULL);
3747 if (!fs_kobj)
3748 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3749 init_rootfs();
3750 init_mount_tree();
3751 }
3752
3753 void put_mnt_ns(struct mnt_namespace *ns)
3754 {
3755 if (!atomic_dec_and_test(&ns->count))
3756 return;
3757 drop_collected_mounts(&ns->root->mnt);
3758 free_mnt_ns(ns);
3759 }
3760
3761 struct vfsmount *kern_mount(struct file_system_type *type)
3762 {
3763 struct vfsmount *mnt;
3764 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
3765 if (!IS_ERR(mnt)) {
3766 /*
3767 * it is a longterm mount, don't release mnt until
3768 * we unmount before file sys is unregistered
3769 */
3770 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3771 }
3772 return mnt;
3773 }
3774 EXPORT_SYMBOL_GPL(kern_mount);
3775
3776 void kern_unmount(struct vfsmount *mnt)
3777 {
3778 /* release long term mount so mount point can be released */
3779 if (!IS_ERR_OR_NULL(mnt)) {
3780 real_mount(mnt)->mnt_ns = NULL;
3781 synchronize_rcu(); /* yecchhh... */
3782 mntput(mnt);
3783 }
3784 }
3785 EXPORT_SYMBOL(kern_unmount);
3786
3787 bool our_mnt(struct vfsmount *mnt)
3788 {
3789 return check_mnt(real_mount(mnt));
3790 }
3791
3792 bool current_chrooted(void)
3793 {
3794 /* Does the current process have a non-standard root */
3795 struct path ns_root;
3796 struct path fs_root;
3797 bool chrooted;
3798
3799 /* Find the namespace root */
3800 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3801 ns_root.dentry = ns_root.mnt->mnt_root;
3802 path_get(&ns_root);
3803 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3804 ;
3805
3806 get_fs_root(current->fs, &fs_root);
3807
3808 chrooted = !path_equal(&fs_root, &ns_root);
3809
3810 path_put(&fs_root);
3811 path_put(&ns_root);
3812
3813 return chrooted;
3814 }
3815
3816 static bool mnt_already_visible(struct mnt_namespace *ns,
3817 const struct super_block *sb,
3818 int *new_mnt_flags)
3819 {
3820 int new_flags = *new_mnt_flags;
3821 struct mount *mnt;
3822 bool visible = false;
3823
3824 down_read(&namespace_sem);
3825 list_for_each_entry(mnt, &ns->list, mnt_list) {
3826 struct mount *child;
3827 int mnt_flags;
3828
3829 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
3830 continue;
3831
3832 /* This mount is not fully visible if it's root directory
3833 * is not the root directory of the filesystem.
3834 */
3835 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3836 continue;
3837
3838 /* A local view of the mount flags */
3839 mnt_flags = mnt->mnt.mnt_flags;
3840
3841 /* Don't miss readonly hidden in the superblock flags */
3842 if (sb_rdonly(mnt->mnt.mnt_sb))
3843 mnt_flags |= MNT_LOCK_READONLY;
3844
3845 /* Verify the mount flags are equal to or more permissive
3846 * than the proposed new mount.
3847 */
3848 if ((mnt_flags & MNT_LOCK_READONLY) &&
3849 !(new_flags & MNT_READONLY))
3850 continue;
3851 if ((mnt_flags & MNT_LOCK_ATIME) &&
3852 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3853 continue;
3854
3855 /* This mount is not fully visible if there are any
3856 * locked child mounts that cover anything except for
3857 * empty directories.
3858 */
3859 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3860 struct inode *inode = child->mnt_mountpoint->d_inode;
3861 /* Only worry about locked mounts */
3862 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3863 continue;
3864 /* Is the directory permanetly empty? */
3865 if (!is_empty_dir_inode(inode))
3866 goto next;
3867 }
3868 /* Preserve the locked attributes */
3869 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3870 MNT_LOCK_ATIME);
3871 visible = true;
3872 goto found;
3873 next: ;
3874 }
3875 found:
3876 up_read(&namespace_sem);
3877 return visible;
3878 }
3879
3880 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
3881 {
3882 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3883 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3884 unsigned long s_iflags;
3885
3886 if (ns->user_ns == &init_user_ns)
3887 return false;
3888
3889 /* Can this filesystem be too revealing? */
3890 s_iflags = sb->s_iflags;
3891 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3892 return false;
3893
3894 if ((s_iflags & required_iflags) != required_iflags) {
3895 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3896 required_iflags);
3897 return true;
3898 }
3899
3900 return !mnt_already_visible(ns, sb, new_mnt_flags);
3901 }
3902
3903 bool mnt_may_suid(struct vfsmount *mnt)
3904 {
3905 /*
3906 * Foreign mounts (accessed via fchdir or through /proc
3907 * symlinks) are always treated as if they are nosuid. This
3908 * prevents namespaces from trusting potentially unsafe
3909 * suid/sgid bits, file caps, or security labels that originate
3910 * in other namespaces.
3911 */
3912 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3913 current_in_userns(mnt->mnt_sb->s_user_ns);
3914 }
3915
3916 static struct ns_common *mntns_get(struct task_struct *task)
3917 {
3918 struct ns_common *ns = NULL;
3919 struct nsproxy *nsproxy;
3920
3921 task_lock(task);
3922 nsproxy = task->nsproxy;
3923 if (nsproxy) {
3924 ns = &nsproxy->mnt_ns->ns;
3925 get_mnt_ns(to_mnt_ns(ns));
3926 }
3927 task_unlock(task);
3928
3929 return ns;
3930 }
3931
3932 static void mntns_put(struct ns_common *ns)
3933 {
3934 put_mnt_ns(to_mnt_ns(ns));
3935 }
3936
3937 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3938 {
3939 struct fs_struct *fs = current->fs;
3940 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3941 struct path root;
3942 int err;
3943
3944 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3945 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3946 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3947 return -EPERM;
3948
3949 if (is_anon_ns(mnt_ns))
3950 return -EINVAL;
3951
3952 if (fs->users != 1)
3953 return -EINVAL;
3954
3955 get_mnt_ns(mnt_ns);
3956 old_mnt_ns = nsproxy->mnt_ns;
3957 nsproxy->mnt_ns = mnt_ns;
3958
3959 /* Find the root */
3960 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3961 "/", LOOKUP_DOWN, &root);
3962 if (err) {
3963 /* revert to old namespace */
3964 nsproxy->mnt_ns = old_mnt_ns;
3965 put_mnt_ns(mnt_ns);
3966 return err;
3967 }
3968
3969 put_mnt_ns(old_mnt_ns);
3970
3971 /* Update the pwd and root */
3972 set_fs_pwd(fs, &root);
3973 set_fs_root(fs, &root);
3974
3975 path_put(&root);
3976 return 0;
3977 }
3978
3979 static struct user_namespace *mntns_owner(struct ns_common *ns)
3980 {
3981 return to_mnt_ns(ns)->user_ns;
3982 }
3983
3984 const struct proc_ns_operations mntns_operations = {
3985 .name = "mnt",
3986 .type = CLONE_NEWNS,
3987 .get = mntns_get,
3988 .put = mntns_put,
3989 .install = mntns_install,
3990 .owner = mntns_owner,
3991 };