]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/namespace.c
UBUNTU: SAUCE: Import aufs driver
[mirror_ubuntu-zesty-kernel.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
29
30 /* Maximum number of mounts in a mount namespace */
31 unsigned int sysctl_mount_max __read_mostly = 100000;
32
33 static unsigned int m_hash_mask __read_mostly;
34 static unsigned int m_hash_shift __read_mostly;
35 static unsigned int mp_hash_mask __read_mostly;
36 static unsigned int mp_hash_shift __read_mostly;
37
38 static __initdata unsigned long mhash_entries;
39 static int __init set_mhash_entries(char *str)
40 {
41 if (!str)
42 return 0;
43 mhash_entries = simple_strtoul(str, &str, 0);
44 return 1;
45 }
46 __setup("mhash_entries=", set_mhash_entries);
47
48 static __initdata unsigned long mphash_entries;
49 static int __init set_mphash_entries(char *str)
50 {
51 if (!str)
52 return 0;
53 mphash_entries = simple_strtoul(str, &str, 0);
54 return 1;
55 }
56 __setup("mphash_entries=", set_mphash_entries);
57
58 static u64 event;
59 static DEFINE_IDA(mnt_id_ida);
60 static DEFINE_IDA(mnt_group_ida);
61 static DEFINE_SPINLOCK(mnt_id_lock);
62 static int mnt_id_start = 0;
63 static int mnt_group_start = 1;
64
65 static struct hlist_head *mount_hashtable __read_mostly;
66 static struct hlist_head *mountpoint_hashtable __read_mostly;
67 static struct kmem_cache *mnt_cache __read_mostly;
68 static DECLARE_RWSEM(namespace_sem);
69
70 /* /sys/fs */
71 struct kobject *fs_kobj;
72 EXPORT_SYMBOL_GPL(fs_kobj);
73
74 /*
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
77 * up the tree.
78 *
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
81 */
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
83
84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
85 {
86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
88 tmp = tmp + (tmp >> m_hash_shift);
89 return &mount_hashtable[tmp & m_hash_mask];
90 }
91
92 static inline struct hlist_head *mp_hash(struct dentry *dentry)
93 {
94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 tmp = tmp + (tmp >> mp_hash_shift);
96 return &mountpoint_hashtable[tmp & mp_hash_mask];
97 }
98
99 static int mnt_alloc_id(struct mount *mnt)
100 {
101 int res;
102
103 retry:
104 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
105 spin_lock(&mnt_id_lock);
106 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
107 if (!res)
108 mnt_id_start = mnt->mnt_id + 1;
109 spin_unlock(&mnt_id_lock);
110 if (res == -EAGAIN)
111 goto retry;
112
113 return res;
114 }
115
116 static void mnt_free_id(struct mount *mnt)
117 {
118 int id = mnt->mnt_id;
119 spin_lock(&mnt_id_lock);
120 ida_remove(&mnt_id_ida, id);
121 if (mnt_id_start > id)
122 mnt_id_start = id;
123 spin_unlock(&mnt_id_lock);
124 }
125
126 /*
127 * Allocate a new peer group ID
128 *
129 * mnt_group_ida is protected by namespace_sem
130 */
131 static int mnt_alloc_group_id(struct mount *mnt)
132 {
133 int res;
134
135 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
136 return -ENOMEM;
137
138 res = ida_get_new_above(&mnt_group_ida,
139 mnt_group_start,
140 &mnt->mnt_group_id);
141 if (!res)
142 mnt_group_start = mnt->mnt_group_id + 1;
143
144 return res;
145 }
146
147 /*
148 * Release a peer group ID
149 */
150 void mnt_release_group_id(struct mount *mnt)
151 {
152 int id = mnt->mnt_group_id;
153 ida_remove(&mnt_group_ida, id);
154 if (mnt_group_start > id)
155 mnt_group_start = id;
156 mnt->mnt_group_id = 0;
157 }
158
159 /*
160 * vfsmount lock must be held for read
161 */
162 static inline void mnt_add_count(struct mount *mnt, int n)
163 {
164 #ifdef CONFIG_SMP
165 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
166 #else
167 preempt_disable();
168 mnt->mnt_count += n;
169 preempt_enable();
170 #endif
171 }
172
173 /*
174 * vfsmount lock must be held for write
175 */
176 unsigned int mnt_get_count(struct mount *mnt)
177 {
178 #ifdef CONFIG_SMP
179 unsigned int count = 0;
180 int cpu;
181
182 for_each_possible_cpu(cpu) {
183 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
184 }
185
186 return count;
187 #else
188 return mnt->mnt_count;
189 #endif
190 }
191
192 static void drop_mountpoint(struct fs_pin *p)
193 {
194 struct mount *m = container_of(p, struct mount, mnt_umount);
195 dput(m->mnt_ex_mountpoint);
196 pin_remove(p);
197 mntput(&m->mnt);
198 }
199
200 static struct mount *alloc_vfsmnt(const char *name)
201 {
202 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
203 if (mnt) {
204 int err;
205
206 err = mnt_alloc_id(mnt);
207 if (err)
208 goto out_free_cache;
209
210 if (name) {
211 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
212 if (!mnt->mnt_devname)
213 goto out_free_id;
214 }
215
216 #ifdef CONFIG_SMP
217 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
218 if (!mnt->mnt_pcp)
219 goto out_free_devname;
220
221 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
222 #else
223 mnt->mnt_count = 1;
224 mnt->mnt_writers = 0;
225 #endif
226
227 INIT_HLIST_NODE(&mnt->mnt_hash);
228 INIT_LIST_HEAD(&mnt->mnt_child);
229 INIT_LIST_HEAD(&mnt->mnt_mounts);
230 INIT_LIST_HEAD(&mnt->mnt_list);
231 INIT_LIST_HEAD(&mnt->mnt_expire);
232 INIT_LIST_HEAD(&mnt->mnt_share);
233 INIT_LIST_HEAD(&mnt->mnt_slave_list);
234 INIT_LIST_HEAD(&mnt->mnt_slave);
235 INIT_HLIST_NODE(&mnt->mnt_mp_list);
236 #ifdef CONFIG_FSNOTIFY
237 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
238 #endif
239 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
240 }
241 return mnt;
242
243 #ifdef CONFIG_SMP
244 out_free_devname:
245 kfree_const(mnt->mnt_devname);
246 #endif
247 out_free_id:
248 mnt_free_id(mnt);
249 out_free_cache:
250 kmem_cache_free(mnt_cache, mnt);
251 return NULL;
252 }
253
254 /*
255 * Most r/o checks on a fs are for operations that take
256 * discrete amounts of time, like a write() or unlink().
257 * We must keep track of when those operations start
258 * (for permission checks) and when they end, so that
259 * we can determine when writes are able to occur to
260 * a filesystem.
261 */
262 /*
263 * __mnt_is_readonly: check whether a mount is read-only
264 * @mnt: the mount to check for its write status
265 *
266 * This shouldn't be used directly ouside of the VFS.
267 * It does not guarantee that the filesystem will stay
268 * r/w, just that it is right *now*. This can not and
269 * should not be used in place of IS_RDONLY(inode).
270 * mnt_want/drop_write() will _keep_ the filesystem
271 * r/w.
272 */
273 int __mnt_is_readonly(struct vfsmount *mnt)
274 {
275 if (mnt->mnt_flags & MNT_READONLY)
276 return 1;
277 if (mnt->mnt_sb->s_flags & MS_RDONLY)
278 return 1;
279 return 0;
280 }
281 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
282
283 static inline void mnt_inc_writers(struct mount *mnt)
284 {
285 #ifdef CONFIG_SMP
286 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
287 #else
288 mnt->mnt_writers++;
289 #endif
290 }
291
292 static inline void mnt_dec_writers(struct mount *mnt)
293 {
294 #ifdef CONFIG_SMP
295 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
296 #else
297 mnt->mnt_writers--;
298 #endif
299 }
300
301 static unsigned int mnt_get_writers(struct mount *mnt)
302 {
303 #ifdef CONFIG_SMP
304 unsigned int count = 0;
305 int cpu;
306
307 for_each_possible_cpu(cpu) {
308 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
309 }
310
311 return count;
312 #else
313 return mnt->mnt_writers;
314 #endif
315 }
316
317 static int mnt_is_readonly(struct vfsmount *mnt)
318 {
319 if (mnt->mnt_sb->s_readonly_remount)
320 return 1;
321 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
322 smp_rmb();
323 return __mnt_is_readonly(mnt);
324 }
325
326 /*
327 * Most r/o & frozen checks on a fs are for operations that take discrete
328 * amounts of time, like a write() or unlink(). We must keep track of when
329 * those operations start (for permission checks) and when they end, so that we
330 * can determine when writes are able to occur to a filesystem.
331 */
332 /**
333 * __mnt_want_write - get write access to a mount without freeze protection
334 * @m: the mount on which to take a write
335 *
336 * This tells the low-level filesystem that a write is about to be performed to
337 * it, and makes sure that writes are allowed (mnt it read-write) before
338 * returning success. This operation does not protect against filesystem being
339 * frozen. When the write operation is finished, __mnt_drop_write() must be
340 * called. This is effectively a refcount.
341 */
342 int __mnt_want_write(struct vfsmount *m)
343 {
344 struct mount *mnt = real_mount(m);
345 int ret = 0;
346
347 preempt_disable();
348 mnt_inc_writers(mnt);
349 /*
350 * The store to mnt_inc_writers must be visible before we pass
351 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
352 * incremented count after it has set MNT_WRITE_HOLD.
353 */
354 smp_mb();
355 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
356 cpu_relax();
357 /*
358 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
359 * be set to match its requirements. So we must not load that until
360 * MNT_WRITE_HOLD is cleared.
361 */
362 smp_rmb();
363 if (mnt_is_readonly(m)) {
364 mnt_dec_writers(mnt);
365 ret = -EROFS;
366 }
367 preempt_enable();
368
369 return ret;
370 }
371
372 /**
373 * mnt_want_write - get write access to a mount
374 * @m: the mount on which to take a write
375 *
376 * This tells the low-level filesystem that a write is about to be performed to
377 * it, and makes sure that writes are allowed (mount is read-write, filesystem
378 * is not frozen) before returning success. When the write operation is
379 * finished, mnt_drop_write() must be called. This is effectively a refcount.
380 */
381 int mnt_want_write(struct vfsmount *m)
382 {
383 int ret;
384
385 sb_start_write(m->mnt_sb);
386 ret = __mnt_want_write(m);
387 if (ret)
388 sb_end_write(m->mnt_sb);
389 return ret;
390 }
391 EXPORT_SYMBOL_GPL(mnt_want_write);
392
393 /**
394 * mnt_clone_write - get write access to a mount
395 * @mnt: the mount on which to take a write
396 *
397 * This is effectively like mnt_want_write, except
398 * it must only be used to take an extra write reference
399 * on a mountpoint that we already know has a write reference
400 * on it. This allows some optimisation.
401 *
402 * After finished, mnt_drop_write must be called as usual to
403 * drop the reference.
404 */
405 int mnt_clone_write(struct vfsmount *mnt)
406 {
407 /* superblock may be r/o */
408 if (__mnt_is_readonly(mnt))
409 return -EROFS;
410 preempt_disable();
411 mnt_inc_writers(real_mount(mnt));
412 preempt_enable();
413 return 0;
414 }
415 EXPORT_SYMBOL_GPL(mnt_clone_write);
416
417 /**
418 * __mnt_want_write_file - get write access to a file's mount
419 * @file: the file who's mount on which to take a write
420 *
421 * This is like __mnt_want_write, but it takes a file and can
422 * do some optimisations if the file is open for write already
423 */
424 int __mnt_want_write_file(struct file *file)
425 {
426 if (!(file->f_mode & FMODE_WRITER))
427 return __mnt_want_write(file->f_path.mnt);
428 else
429 return mnt_clone_write(file->f_path.mnt);
430 }
431
432 /**
433 * mnt_want_write_file - get write access to a file's mount
434 * @file: the file who's mount on which to take a write
435 *
436 * This is like mnt_want_write, but it takes a file and can
437 * do some optimisations if the file is open for write already
438 */
439 int mnt_want_write_file(struct file *file)
440 {
441 int ret;
442
443 sb_start_write(file->f_path.mnt->mnt_sb);
444 ret = __mnt_want_write_file(file);
445 if (ret)
446 sb_end_write(file->f_path.mnt->mnt_sb);
447 return ret;
448 }
449 EXPORT_SYMBOL_GPL(mnt_want_write_file);
450
451 /**
452 * __mnt_drop_write - give up write access to a mount
453 * @mnt: the mount on which to give up write access
454 *
455 * Tells the low-level filesystem that we are done
456 * performing writes to it. Must be matched with
457 * __mnt_want_write() call above.
458 */
459 void __mnt_drop_write(struct vfsmount *mnt)
460 {
461 preempt_disable();
462 mnt_dec_writers(real_mount(mnt));
463 preempt_enable();
464 }
465 EXPORT_SYMBOL_GPL(__mnt_drop_write);
466
467 /**
468 * mnt_drop_write - give up write access to a mount
469 * @mnt: the mount on which to give up write access
470 *
471 * Tells the low-level filesystem that we are done performing writes to it and
472 * also allows filesystem to be frozen again. Must be matched with
473 * mnt_want_write() call above.
474 */
475 void mnt_drop_write(struct vfsmount *mnt)
476 {
477 __mnt_drop_write(mnt);
478 sb_end_write(mnt->mnt_sb);
479 }
480 EXPORT_SYMBOL_GPL(mnt_drop_write);
481
482 void __mnt_drop_write_file(struct file *file)
483 {
484 __mnt_drop_write(file->f_path.mnt);
485 }
486
487 void mnt_drop_write_file(struct file *file)
488 {
489 mnt_drop_write(file->f_path.mnt);
490 }
491 EXPORT_SYMBOL(mnt_drop_write_file);
492
493 static int mnt_make_readonly(struct mount *mnt)
494 {
495 int ret = 0;
496
497 lock_mount_hash();
498 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
499 /*
500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 * should be visible before we do.
502 */
503 smp_mb();
504
505 /*
506 * With writers on hold, if this value is zero, then there are
507 * definitely no active writers (although held writers may subsequently
508 * increment the count, they'll have to wait, and decrement it after
509 * seeing MNT_READONLY).
510 *
511 * It is OK to have counter incremented on one CPU and decremented on
512 * another: the sum will add up correctly. The danger would be when we
513 * sum up each counter, if we read a counter before it is incremented,
514 * but then read another CPU's count which it has been subsequently
515 * decremented from -- we would see more decrements than we should.
516 * MNT_WRITE_HOLD protects against this scenario, because
517 * mnt_want_write first increments count, then smp_mb, then spins on
518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 * we're counting up here.
520 */
521 if (mnt_get_writers(mnt) > 0)
522 ret = -EBUSY;
523 else
524 mnt->mnt.mnt_flags |= MNT_READONLY;
525 /*
526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 * that become unheld will see MNT_READONLY.
528 */
529 smp_wmb();
530 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
531 unlock_mount_hash();
532 return ret;
533 }
534
535 static void __mnt_unmake_readonly(struct mount *mnt)
536 {
537 lock_mount_hash();
538 mnt->mnt.mnt_flags &= ~MNT_READONLY;
539 unlock_mount_hash();
540 }
541
542 int sb_prepare_remount_readonly(struct super_block *sb)
543 {
544 struct mount *mnt;
545 int err = 0;
546
547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
548 if (atomic_long_read(&sb->s_remove_count))
549 return -EBUSY;
550
551 lock_mount_hash();
552 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
553 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
554 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
555 smp_mb();
556 if (mnt_get_writers(mnt) > 0) {
557 err = -EBUSY;
558 break;
559 }
560 }
561 }
562 if (!err && atomic_long_read(&sb->s_remove_count))
563 err = -EBUSY;
564
565 if (!err) {
566 sb->s_readonly_remount = 1;
567 smp_wmb();
568 }
569 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
570 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
571 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
572 }
573 unlock_mount_hash();
574
575 return err;
576 }
577
578 static void free_vfsmnt(struct mount *mnt)
579 {
580 kfree_const(mnt->mnt_devname);
581 #ifdef CONFIG_SMP
582 free_percpu(mnt->mnt_pcp);
583 #endif
584 kmem_cache_free(mnt_cache, mnt);
585 }
586
587 static void delayed_free_vfsmnt(struct rcu_head *head)
588 {
589 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
590 }
591
592 /* call under rcu_read_lock */
593 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
594 {
595 struct mount *mnt;
596 if (read_seqretry(&mount_lock, seq))
597 return 1;
598 if (bastard == NULL)
599 return 0;
600 mnt = real_mount(bastard);
601 mnt_add_count(mnt, 1);
602 if (likely(!read_seqretry(&mount_lock, seq)))
603 return 0;
604 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
605 mnt_add_count(mnt, -1);
606 return 1;
607 }
608 return -1;
609 }
610
611 /* call under rcu_read_lock */
612 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
613 {
614 int res = __legitimize_mnt(bastard, seq);
615 if (likely(!res))
616 return true;
617 if (unlikely(res < 0)) {
618 rcu_read_unlock();
619 mntput(bastard);
620 rcu_read_lock();
621 }
622 return false;
623 }
624
625 /*
626 * find the first mount at @dentry on vfsmount @mnt.
627 * call under rcu_read_lock()
628 */
629 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
630 {
631 struct hlist_head *head = m_hash(mnt, dentry);
632 struct mount *p;
633
634 hlist_for_each_entry_rcu(p, head, mnt_hash)
635 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
636 return p;
637 return NULL;
638 }
639
640 /*
641 * find the last mount at @dentry on vfsmount @mnt.
642 * mount_lock must be held.
643 */
644 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
645 {
646 struct mount *p, *res = NULL;
647 p = __lookup_mnt(mnt, dentry);
648 if (!p)
649 goto out;
650 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
651 res = p;
652 hlist_for_each_entry_continue(p, mnt_hash) {
653 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
654 break;
655 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
656 res = p;
657 }
658 out:
659 return res;
660 }
661
662 /*
663 * lookup_mnt - Return the first child mount mounted at path
664 *
665 * "First" means first mounted chronologically. If you create the
666 * following mounts:
667 *
668 * mount /dev/sda1 /mnt
669 * mount /dev/sda2 /mnt
670 * mount /dev/sda3 /mnt
671 *
672 * Then lookup_mnt() on the base /mnt dentry in the root mount will
673 * return successively the root dentry and vfsmount of /dev/sda1, then
674 * /dev/sda2, then /dev/sda3, then NULL.
675 *
676 * lookup_mnt takes a reference to the found vfsmount.
677 */
678 struct vfsmount *lookup_mnt(const struct path *path)
679 {
680 struct mount *child_mnt;
681 struct vfsmount *m;
682 unsigned seq;
683
684 rcu_read_lock();
685 do {
686 seq = read_seqbegin(&mount_lock);
687 child_mnt = __lookup_mnt(path->mnt, path->dentry);
688 m = child_mnt ? &child_mnt->mnt : NULL;
689 } while (!legitimize_mnt(m, seq));
690 rcu_read_unlock();
691 return m;
692 }
693
694 /*
695 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
696 * current mount namespace.
697 *
698 * The common case is dentries are not mountpoints at all and that
699 * test is handled inline. For the slow case when we are actually
700 * dealing with a mountpoint of some kind, walk through all of the
701 * mounts in the current mount namespace and test to see if the dentry
702 * is a mountpoint.
703 *
704 * The mount_hashtable is not usable in the context because we
705 * need to identify all mounts that may be in the current mount
706 * namespace not just a mount that happens to have some specified
707 * parent mount.
708 */
709 bool __is_local_mountpoint(struct dentry *dentry)
710 {
711 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
712 struct mount *mnt;
713 bool is_covered = false;
714
715 if (!d_mountpoint(dentry))
716 goto out;
717
718 down_read(&namespace_sem);
719 list_for_each_entry(mnt, &ns->list, mnt_list) {
720 is_covered = (mnt->mnt_mountpoint == dentry);
721 if (is_covered)
722 break;
723 }
724 up_read(&namespace_sem);
725 out:
726 return is_covered;
727 }
728
729 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
730 {
731 struct hlist_head *chain = mp_hash(dentry);
732 struct mountpoint *mp;
733
734 hlist_for_each_entry(mp, chain, m_hash) {
735 if (mp->m_dentry == dentry) {
736 /* might be worth a WARN_ON() */
737 if (d_unlinked(dentry))
738 return ERR_PTR(-ENOENT);
739 mp->m_count++;
740 return mp;
741 }
742 }
743 return NULL;
744 }
745
746 static struct mountpoint *get_mountpoint(struct dentry *dentry)
747 {
748 struct mountpoint *mp, *new = NULL;
749 int ret;
750
751 if (d_mountpoint(dentry)) {
752 mountpoint:
753 read_seqlock_excl(&mount_lock);
754 mp = lookup_mountpoint(dentry);
755 read_sequnlock_excl(&mount_lock);
756 if (mp)
757 goto done;
758 }
759
760 if (!new)
761 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
762 if (!new)
763 return ERR_PTR(-ENOMEM);
764
765
766 /* Exactly one processes may set d_mounted */
767 ret = d_set_mounted(dentry);
768
769 /* Someone else set d_mounted? */
770 if (ret == -EBUSY)
771 goto mountpoint;
772
773 /* The dentry is not available as a mountpoint? */
774 mp = ERR_PTR(ret);
775 if (ret)
776 goto done;
777
778 /* Add the new mountpoint to the hash table */
779 read_seqlock_excl(&mount_lock);
780 new->m_dentry = dentry;
781 new->m_count = 1;
782 hlist_add_head(&new->m_hash, mp_hash(dentry));
783 INIT_HLIST_HEAD(&new->m_list);
784 read_sequnlock_excl(&mount_lock);
785
786 mp = new;
787 new = NULL;
788 done:
789 kfree(new);
790 return mp;
791 }
792
793 static void put_mountpoint(struct mountpoint *mp)
794 {
795 if (!--mp->m_count) {
796 struct dentry *dentry = mp->m_dentry;
797 BUG_ON(!hlist_empty(&mp->m_list));
798 spin_lock(&dentry->d_lock);
799 dentry->d_flags &= ~DCACHE_MOUNTED;
800 spin_unlock(&dentry->d_lock);
801 hlist_del(&mp->m_hash);
802 kfree(mp);
803 }
804 }
805
806 static inline int check_mnt(struct mount *mnt)
807 {
808 return mnt->mnt_ns == current->nsproxy->mnt_ns;
809 }
810
811 /*
812 * vfsmount lock must be held for write
813 */
814 static void touch_mnt_namespace(struct mnt_namespace *ns)
815 {
816 if (ns) {
817 ns->event = ++event;
818 wake_up_interruptible(&ns->poll);
819 }
820 }
821
822 /*
823 * vfsmount lock must be held for write
824 */
825 static void __touch_mnt_namespace(struct mnt_namespace *ns)
826 {
827 if (ns && ns->event != event) {
828 ns->event = event;
829 wake_up_interruptible(&ns->poll);
830 }
831 }
832
833 /*
834 * vfsmount lock must be held for write
835 */
836 static void unhash_mnt(struct mount *mnt)
837 {
838 mnt->mnt_parent = mnt;
839 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
840 list_del_init(&mnt->mnt_child);
841 hlist_del_init_rcu(&mnt->mnt_hash);
842 hlist_del_init(&mnt->mnt_mp_list);
843 put_mountpoint(mnt->mnt_mp);
844 mnt->mnt_mp = NULL;
845 }
846
847 /*
848 * vfsmount lock must be held for write
849 */
850 static void detach_mnt(struct mount *mnt, struct path *old_path)
851 {
852 old_path->dentry = mnt->mnt_mountpoint;
853 old_path->mnt = &mnt->mnt_parent->mnt;
854 unhash_mnt(mnt);
855 }
856
857 /*
858 * vfsmount lock must be held for write
859 */
860 static void umount_mnt(struct mount *mnt)
861 {
862 /* old mountpoint will be dropped when we can do that */
863 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
864 unhash_mnt(mnt);
865 }
866
867 /*
868 * vfsmount lock must be held for write
869 */
870 void mnt_set_mountpoint(struct mount *mnt,
871 struct mountpoint *mp,
872 struct mount *child_mnt)
873 {
874 mp->m_count++;
875 mnt_add_count(mnt, 1); /* essentially, that's mntget */
876 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
877 child_mnt->mnt_parent = mnt;
878 child_mnt->mnt_mp = mp;
879 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
880 }
881
882 /*
883 * vfsmount lock must be held for write
884 */
885 static void attach_mnt(struct mount *mnt,
886 struct mount *parent,
887 struct mountpoint *mp)
888 {
889 mnt_set_mountpoint(parent, mp, mnt);
890 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
891 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
892 }
893
894 static void attach_shadowed(struct mount *mnt,
895 struct mount *parent,
896 struct mount *shadows)
897 {
898 if (shadows) {
899 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
900 list_add(&mnt->mnt_child, &shadows->mnt_child);
901 } else {
902 hlist_add_head_rcu(&mnt->mnt_hash,
903 m_hash(&parent->mnt, mnt->mnt_mountpoint));
904 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
905 }
906 }
907
908 /*
909 * vfsmount lock must be held for write
910 */
911 static void commit_tree(struct mount *mnt, struct mount *shadows)
912 {
913 struct mount *parent = mnt->mnt_parent;
914 struct mount *m;
915 LIST_HEAD(head);
916 struct mnt_namespace *n = parent->mnt_ns;
917
918 BUG_ON(parent == mnt);
919
920 list_add_tail(&head, &mnt->mnt_list);
921 list_for_each_entry(m, &head, mnt_list)
922 m->mnt_ns = n;
923
924 list_splice(&head, n->list.prev);
925
926 n->mounts += n->pending_mounts;
927 n->pending_mounts = 0;
928
929 attach_shadowed(mnt, parent, shadows);
930 touch_mnt_namespace(n);
931 }
932
933 static struct mount *next_mnt(struct mount *p, struct mount *root)
934 {
935 struct list_head *next = p->mnt_mounts.next;
936 if (next == &p->mnt_mounts) {
937 while (1) {
938 if (p == root)
939 return NULL;
940 next = p->mnt_child.next;
941 if (next != &p->mnt_parent->mnt_mounts)
942 break;
943 p = p->mnt_parent;
944 }
945 }
946 return list_entry(next, struct mount, mnt_child);
947 }
948
949 static struct mount *skip_mnt_tree(struct mount *p)
950 {
951 struct list_head *prev = p->mnt_mounts.prev;
952 while (prev != &p->mnt_mounts) {
953 p = list_entry(prev, struct mount, mnt_child);
954 prev = p->mnt_mounts.prev;
955 }
956 return p;
957 }
958
959 struct vfsmount *
960 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
961 {
962 struct mount *mnt;
963 struct dentry *root;
964
965 if (!type)
966 return ERR_PTR(-ENODEV);
967
968 mnt = alloc_vfsmnt(name);
969 if (!mnt)
970 return ERR_PTR(-ENOMEM);
971
972 if (flags & MS_KERNMOUNT)
973 mnt->mnt.mnt_flags = MNT_INTERNAL;
974
975 root = mount_fs(type, flags, name, data);
976 if (IS_ERR(root)) {
977 mnt_free_id(mnt);
978 free_vfsmnt(mnt);
979 return ERR_CAST(root);
980 }
981
982 mnt->mnt.mnt_root = root;
983 mnt->mnt.mnt_sb = root->d_sb;
984 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
985 mnt->mnt_parent = mnt;
986 lock_mount_hash();
987 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
988 unlock_mount_hash();
989 return &mnt->mnt;
990 }
991 EXPORT_SYMBOL_GPL(vfs_kern_mount);
992
993 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
994 int flag)
995 {
996 struct super_block *sb = old->mnt.mnt_sb;
997 struct mount *mnt;
998 int err;
999
1000 mnt = alloc_vfsmnt(old->mnt_devname);
1001 if (!mnt)
1002 return ERR_PTR(-ENOMEM);
1003
1004 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1005 mnt->mnt_group_id = 0; /* not a peer of original */
1006 else
1007 mnt->mnt_group_id = old->mnt_group_id;
1008
1009 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1010 err = mnt_alloc_group_id(mnt);
1011 if (err)
1012 goto out_free;
1013 }
1014
1015 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
1016 /* Don't allow unprivileged users to change mount flags */
1017 if (flag & CL_UNPRIVILEGED) {
1018 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1019
1020 if (mnt->mnt.mnt_flags & MNT_READONLY)
1021 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1022
1023 if (mnt->mnt.mnt_flags & MNT_NODEV)
1024 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1025
1026 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1027 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1028
1029 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1030 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1031 }
1032
1033 /* Don't allow unprivileged users to reveal what is under a mount */
1034 if ((flag & CL_UNPRIVILEGED) &&
1035 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1036 mnt->mnt.mnt_flags |= MNT_LOCKED;
1037
1038 atomic_inc(&sb->s_active);
1039 mnt->mnt.mnt_sb = sb;
1040 mnt->mnt.mnt_root = dget(root);
1041 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1042 mnt->mnt_parent = mnt;
1043 lock_mount_hash();
1044 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1045 unlock_mount_hash();
1046
1047 if ((flag & CL_SLAVE) ||
1048 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1049 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1050 mnt->mnt_master = old;
1051 CLEAR_MNT_SHARED(mnt);
1052 } else if (!(flag & CL_PRIVATE)) {
1053 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1054 list_add(&mnt->mnt_share, &old->mnt_share);
1055 if (IS_MNT_SLAVE(old))
1056 list_add(&mnt->mnt_slave, &old->mnt_slave);
1057 mnt->mnt_master = old->mnt_master;
1058 } else {
1059 CLEAR_MNT_SHARED(mnt);
1060 }
1061 if (flag & CL_MAKE_SHARED)
1062 set_mnt_shared(mnt);
1063
1064 /* stick the duplicate mount on the same expiry list
1065 * as the original if that was on one */
1066 if (flag & CL_EXPIRE) {
1067 if (!list_empty(&old->mnt_expire))
1068 list_add(&mnt->mnt_expire, &old->mnt_expire);
1069 }
1070
1071 return mnt;
1072
1073 out_free:
1074 mnt_free_id(mnt);
1075 free_vfsmnt(mnt);
1076 return ERR_PTR(err);
1077 }
1078
1079 static void cleanup_mnt(struct mount *mnt)
1080 {
1081 /*
1082 * This probably indicates that somebody messed
1083 * up a mnt_want/drop_write() pair. If this
1084 * happens, the filesystem was probably unable
1085 * to make r/w->r/o transitions.
1086 */
1087 /*
1088 * The locking used to deal with mnt_count decrement provides barriers,
1089 * so mnt_get_writers() below is safe.
1090 */
1091 WARN_ON(mnt_get_writers(mnt));
1092 if (unlikely(mnt->mnt_pins.first))
1093 mnt_pin_kill(mnt);
1094 fsnotify_vfsmount_delete(&mnt->mnt);
1095 dput(mnt->mnt.mnt_root);
1096 deactivate_super(mnt->mnt.mnt_sb);
1097 mnt_free_id(mnt);
1098 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1099 }
1100
1101 static void __cleanup_mnt(struct rcu_head *head)
1102 {
1103 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1104 }
1105
1106 static LLIST_HEAD(delayed_mntput_list);
1107 static void delayed_mntput(struct work_struct *unused)
1108 {
1109 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1110 struct llist_node *next;
1111
1112 for (; node; node = next) {
1113 next = llist_next(node);
1114 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1115 }
1116 }
1117 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1118
1119 static void mntput_no_expire(struct mount *mnt)
1120 {
1121 rcu_read_lock();
1122 mnt_add_count(mnt, -1);
1123 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1124 rcu_read_unlock();
1125 return;
1126 }
1127 lock_mount_hash();
1128 if (mnt_get_count(mnt)) {
1129 rcu_read_unlock();
1130 unlock_mount_hash();
1131 return;
1132 }
1133 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1134 rcu_read_unlock();
1135 unlock_mount_hash();
1136 return;
1137 }
1138 mnt->mnt.mnt_flags |= MNT_DOOMED;
1139 rcu_read_unlock();
1140
1141 list_del(&mnt->mnt_instance);
1142
1143 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1144 struct mount *p, *tmp;
1145 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1146 umount_mnt(p);
1147 }
1148 }
1149 unlock_mount_hash();
1150
1151 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1152 struct task_struct *task = current;
1153 if (likely(!(task->flags & PF_KTHREAD))) {
1154 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1155 if (!task_work_add(task, &mnt->mnt_rcu, true))
1156 return;
1157 }
1158 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1159 schedule_delayed_work(&delayed_mntput_work, 1);
1160 return;
1161 }
1162 cleanup_mnt(mnt);
1163 }
1164
1165 void mntput(struct vfsmount *mnt)
1166 {
1167 if (mnt) {
1168 struct mount *m = real_mount(mnt);
1169 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1170 if (unlikely(m->mnt_expiry_mark))
1171 m->mnt_expiry_mark = 0;
1172 mntput_no_expire(m);
1173 }
1174 }
1175 EXPORT_SYMBOL(mntput);
1176
1177 struct vfsmount *mntget(struct vfsmount *mnt)
1178 {
1179 if (mnt)
1180 mnt_add_count(real_mount(mnt), 1);
1181 return mnt;
1182 }
1183 EXPORT_SYMBOL(mntget);
1184
1185 /* path_is_mountpoint() - Check if path is a mount in the current
1186 * namespace.
1187 *
1188 * d_mountpoint() can only be used reliably to establish if a dentry is
1189 * not mounted in any namespace and that common case is handled inline.
1190 * d_mountpoint() isn't aware of the possibility there may be multiple
1191 * mounts using a given dentry in a different namespace. This function
1192 * checks if the passed in path is a mountpoint rather than the dentry
1193 * alone.
1194 */
1195 bool path_is_mountpoint(const struct path *path)
1196 {
1197 unsigned seq;
1198 bool res;
1199
1200 if (!d_mountpoint(path->dentry))
1201 return false;
1202
1203 rcu_read_lock();
1204 do {
1205 seq = read_seqbegin(&mount_lock);
1206 res = __path_is_mountpoint(path);
1207 } while (read_seqretry(&mount_lock, seq));
1208 rcu_read_unlock();
1209
1210 return res;
1211 }
1212 EXPORT_SYMBOL(path_is_mountpoint);
1213
1214 struct vfsmount *mnt_clone_internal(const struct path *path)
1215 {
1216 struct mount *p;
1217 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1218 if (IS_ERR(p))
1219 return ERR_CAST(p);
1220 p->mnt.mnt_flags |= MNT_INTERNAL;
1221 return &p->mnt;
1222 }
1223
1224 static inline void mangle(struct seq_file *m, const char *s)
1225 {
1226 seq_escape(m, s, " \t\n\\");
1227 }
1228
1229 /*
1230 * Simple .show_options callback for filesystems which don't want to
1231 * implement more complex mount option showing.
1232 *
1233 * See also save_mount_options().
1234 */
1235 int generic_show_options(struct seq_file *m, struct dentry *root)
1236 {
1237 const char *options;
1238
1239 rcu_read_lock();
1240 options = rcu_dereference(root->d_sb->s_options);
1241
1242 if (options != NULL && options[0]) {
1243 seq_putc(m, ',');
1244 mangle(m, options);
1245 }
1246 rcu_read_unlock();
1247
1248 return 0;
1249 }
1250 EXPORT_SYMBOL(generic_show_options);
1251
1252 /*
1253 * If filesystem uses generic_show_options(), this function should be
1254 * called from the fill_super() callback.
1255 *
1256 * The .remount_fs callback usually needs to be handled in a special
1257 * way, to make sure, that previous options are not overwritten if the
1258 * remount fails.
1259 *
1260 * Also note, that if the filesystem's .remount_fs function doesn't
1261 * reset all options to their default value, but changes only newly
1262 * given options, then the displayed options will not reflect reality
1263 * any more.
1264 */
1265 void save_mount_options(struct super_block *sb, char *options)
1266 {
1267 BUG_ON(sb->s_options);
1268 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1269 }
1270 EXPORT_SYMBOL(save_mount_options);
1271
1272 void replace_mount_options(struct super_block *sb, char *options)
1273 {
1274 char *old = sb->s_options;
1275 rcu_assign_pointer(sb->s_options, options);
1276 if (old) {
1277 synchronize_rcu();
1278 kfree(old);
1279 }
1280 }
1281 EXPORT_SYMBOL(replace_mount_options);
1282
1283 #ifdef CONFIG_PROC_FS
1284 /* iterator; we want it to have access to namespace_sem, thus here... */
1285 static void *m_start(struct seq_file *m, loff_t *pos)
1286 {
1287 struct proc_mounts *p = m->private;
1288
1289 down_read(&namespace_sem);
1290 if (p->cached_event == p->ns->event) {
1291 void *v = p->cached_mount;
1292 if (*pos == p->cached_index)
1293 return v;
1294 if (*pos == p->cached_index + 1) {
1295 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1296 return p->cached_mount = v;
1297 }
1298 }
1299
1300 p->cached_event = p->ns->event;
1301 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1302 p->cached_index = *pos;
1303 return p->cached_mount;
1304 }
1305
1306 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1307 {
1308 struct proc_mounts *p = m->private;
1309
1310 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1311 p->cached_index = *pos;
1312 return p->cached_mount;
1313 }
1314
1315 static void m_stop(struct seq_file *m, void *v)
1316 {
1317 up_read(&namespace_sem);
1318 }
1319
1320 static int m_show(struct seq_file *m, void *v)
1321 {
1322 struct proc_mounts *p = m->private;
1323 struct mount *r = list_entry(v, struct mount, mnt_list);
1324 return p->show(m, &r->mnt);
1325 }
1326
1327 const struct seq_operations mounts_op = {
1328 .start = m_start,
1329 .next = m_next,
1330 .stop = m_stop,
1331 .show = m_show,
1332 };
1333 #endif /* CONFIG_PROC_FS */
1334
1335 /**
1336 * may_umount_tree - check if a mount tree is busy
1337 * @mnt: root of mount tree
1338 *
1339 * This is called to check if a tree of mounts has any
1340 * open files, pwds, chroots or sub mounts that are
1341 * busy.
1342 */
1343 int may_umount_tree(struct vfsmount *m)
1344 {
1345 struct mount *mnt = real_mount(m);
1346 int actual_refs = 0;
1347 int minimum_refs = 0;
1348 struct mount *p;
1349 BUG_ON(!m);
1350
1351 /* write lock needed for mnt_get_count */
1352 lock_mount_hash();
1353 for (p = mnt; p; p = next_mnt(p, mnt)) {
1354 actual_refs += mnt_get_count(p);
1355 minimum_refs += 2;
1356 }
1357 unlock_mount_hash();
1358
1359 if (actual_refs > minimum_refs)
1360 return 0;
1361
1362 return 1;
1363 }
1364
1365 EXPORT_SYMBOL(may_umount_tree);
1366
1367 /**
1368 * may_umount - check if a mount point is busy
1369 * @mnt: root of mount
1370 *
1371 * This is called to check if a mount point has any
1372 * open files, pwds, chroots or sub mounts. If the
1373 * mount has sub mounts this will return busy
1374 * regardless of whether the sub mounts are busy.
1375 *
1376 * Doesn't take quota and stuff into account. IOW, in some cases it will
1377 * give false negatives. The main reason why it's here is that we need
1378 * a non-destructive way to look for easily umountable filesystems.
1379 */
1380 int may_umount(struct vfsmount *mnt)
1381 {
1382 int ret = 1;
1383 down_read(&namespace_sem);
1384 lock_mount_hash();
1385 if (propagate_mount_busy(real_mount(mnt), 2))
1386 ret = 0;
1387 unlock_mount_hash();
1388 up_read(&namespace_sem);
1389 return ret;
1390 }
1391
1392 EXPORT_SYMBOL(may_umount);
1393
1394 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1395
1396 static void namespace_unlock(void)
1397 {
1398 struct hlist_head head;
1399
1400 hlist_move_list(&unmounted, &head);
1401
1402 up_write(&namespace_sem);
1403
1404 if (likely(hlist_empty(&head)))
1405 return;
1406
1407 synchronize_rcu();
1408
1409 group_pin_kill(&head);
1410 }
1411
1412 static inline void namespace_lock(void)
1413 {
1414 down_write(&namespace_sem);
1415 }
1416
1417 enum umount_tree_flags {
1418 UMOUNT_SYNC = 1,
1419 UMOUNT_PROPAGATE = 2,
1420 UMOUNT_CONNECTED = 4,
1421 };
1422
1423 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1424 {
1425 /* Leaving mounts connected is only valid for lazy umounts */
1426 if (how & UMOUNT_SYNC)
1427 return true;
1428
1429 /* A mount without a parent has nothing to be connected to */
1430 if (!mnt_has_parent(mnt))
1431 return true;
1432
1433 /* Because the reference counting rules change when mounts are
1434 * unmounted and connected, umounted mounts may not be
1435 * connected to mounted mounts.
1436 */
1437 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1438 return true;
1439
1440 /* Has it been requested that the mount remain connected? */
1441 if (how & UMOUNT_CONNECTED)
1442 return false;
1443
1444 /* Is the mount locked such that it needs to remain connected? */
1445 if (IS_MNT_LOCKED(mnt))
1446 return false;
1447
1448 /* By default disconnect the mount */
1449 return true;
1450 }
1451
1452 /*
1453 * mount_lock must be held
1454 * namespace_sem must be held for write
1455 */
1456 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1457 {
1458 LIST_HEAD(tmp_list);
1459 struct mount *p;
1460
1461 if (how & UMOUNT_PROPAGATE)
1462 propagate_mount_unlock(mnt);
1463
1464 /* Gather the mounts to umount */
1465 for (p = mnt; p; p = next_mnt(p, mnt)) {
1466 p->mnt.mnt_flags |= MNT_UMOUNT;
1467 list_move(&p->mnt_list, &tmp_list);
1468 }
1469
1470 /* Hide the mounts from mnt_mounts */
1471 list_for_each_entry(p, &tmp_list, mnt_list) {
1472 list_del_init(&p->mnt_child);
1473 }
1474
1475 /* Add propogated mounts to the tmp_list */
1476 if (how & UMOUNT_PROPAGATE)
1477 propagate_umount(&tmp_list);
1478
1479 while (!list_empty(&tmp_list)) {
1480 struct mnt_namespace *ns;
1481 bool disconnect;
1482 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1483 list_del_init(&p->mnt_expire);
1484 list_del_init(&p->mnt_list);
1485 ns = p->mnt_ns;
1486 if (ns) {
1487 ns->mounts--;
1488 __touch_mnt_namespace(ns);
1489 }
1490 p->mnt_ns = NULL;
1491 if (how & UMOUNT_SYNC)
1492 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1493
1494 disconnect = disconnect_mount(p, how);
1495
1496 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1497 disconnect ? &unmounted : NULL);
1498 if (mnt_has_parent(p)) {
1499 mnt_add_count(p->mnt_parent, -1);
1500 if (!disconnect) {
1501 /* Don't forget about p */
1502 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1503 } else {
1504 umount_mnt(p);
1505 }
1506 }
1507 change_mnt_propagation(p, MS_PRIVATE);
1508 }
1509 }
1510
1511 static void shrink_submounts(struct mount *mnt);
1512
1513 static int do_umount(struct mount *mnt, int flags)
1514 {
1515 struct super_block *sb = mnt->mnt.mnt_sb;
1516 int retval;
1517
1518 retval = security_sb_umount(&mnt->mnt, flags);
1519 if (retval)
1520 return retval;
1521
1522 /*
1523 * Allow userspace to request a mountpoint be expired rather than
1524 * unmounting unconditionally. Unmount only happens if:
1525 * (1) the mark is already set (the mark is cleared by mntput())
1526 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1527 */
1528 if (flags & MNT_EXPIRE) {
1529 if (&mnt->mnt == current->fs->root.mnt ||
1530 flags & (MNT_FORCE | MNT_DETACH))
1531 return -EINVAL;
1532
1533 /*
1534 * probably don't strictly need the lock here if we examined
1535 * all race cases, but it's a slowpath.
1536 */
1537 lock_mount_hash();
1538 if (mnt_get_count(mnt) != 2) {
1539 unlock_mount_hash();
1540 return -EBUSY;
1541 }
1542 unlock_mount_hash();
1543
1544 if (!xchg(&mnt->mnt_expiry_mark, 1))
1545 return -EAGAIN;
1546 }
1547
1548 /*
1549 * If we may have to abort operations to get out of this
1550 * mount, and they will themselves hold resources we must
1551 * allow the fs to do things. In the Unix tradition of
1552 * 'Gee thats tricky lets do it in userspace' the umount_begin
1553 * might fail to complete on the first run through as other tasks
1554 * must return, and the like. Thats for the mount program to worry
1555 * about for the moment.
1556 */
1557
1558 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1559 sb->s_op->umount_begin(sb);
1560 }
1561
1562 /*
1563 * No sense to grab the lock for this test, but test itself looks
1564 * somewhat bogus. Suggestions for better replacement?
1565 * Ho-hum... In principle, we might treat that as umount + switch
1566 * to rootfs. GC would eventually take care of the old vfsmount.
1567 * Actually it makes sense, especially if rootfs would contain a
1568 * /reboot - static binary that would close all descriptors and
1569 * call reboot(9). Then init(8) could umount root and exec /reboot.
1570 */
1571 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1572 /*
1573 * Special case for "unmounting" root ...
1574 * we just try to remount it readonly.
1575 */
1576 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1577 return -EPERM;
1578 down_write(&sb->s_umount);
1579 if (!(sb->s_flags & MS_RDONLY))
1580 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1581 up_write(&sb->s_umount);
1582 return retval;
1583 }
1584
1585 namespace_lock();
1586 lock_mount_hash();
1587 event++;
1588
1589 if (flags & MNT_DETACH) {
1590 if (!list_empty(&mnt->mnt_list))
1591 umount_tree(mnt, UMOUNT_PROPAGATE);
1592 retval = 0;
1593 } else {
1594 shrink_submounts(mnt);
1595 retval = -EBUSY;
1596 if (!propagate_mount_busy(mnt, 2)) {
1597 if (!list_empty(&mnt->mnt_list))
1598 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1599 retval = 0;
1600 }
1601 }
1602 unlock_mount_hash();
1603 namespace_unlock();
1604 return retval;
1605 }
1606
1607 /*
1608 * __detach_mounts - lazily unmount all mounts on the specified dentry
1609 *
1610 * During unlink, rmdir, and d_drop it is possible to loose the path
1611 * to an existing mountpoint, and wind up leaking the mount.
1612 * detach_mounts allows lazily unmounting those mounts instead of
1613 * leaking them.
1614 *
1615 * The caller may hold dentry->d_inode->i_mutex.
1616 */
1617 void __detach_mounts(struct dentry *dentry)
1618 {
1619 struct mountpoint *mp;
1620 struct mount *mnt;
1621
1622 namespace_lock();
1623 lock_mount_hash();
1624 mp = lookup_mountpoint(dentry);
1625 if (IS_ERR_OR_NULL(mp))
1626 goto out_unlock;
1627
1628 event++;
1629 while (!hlist_empty(&mp->m_list)) {
1630 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1631 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1632 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1633 umount_mnt(mnt);
1634 }
1635 else umount_tree(mnt, UMOUNT_CONNECTED);
1636 }
1637 put_mountpoint(mp);
1638 out_unlock:
1639 unlock_mount_hash();
1640 namespace_unlock();
1641 }
1642
1643 /*
1644 * Is the caller allowed to modify his namespace?
1645 */
1646 static inline bool may_mount(void)
1647 {
1648 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1649 }
1650
1651 static inline bool may_mandlock(void)
1652 {
1653 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1654 return false;
1655 #endif
1656 return capable(CAP_SYS_ADMIN);
1657 }
1658
1659 /*
1660 * Now umount can handle mount points as well as block devices.
1661 * This is important for filesystems which use unnamed block devices.
1662 *
1663 * We now support a flag for forced unmount like the other 'big iron'
1664 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1665 */
1666
1667 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1668 {
1669 struct path path;
1670 struct mount *mnt;
1671 int retval;
1672 int lookup_flags = 0;
1673
1674 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1675 return -EINVAL;
1676
1677 if (!may_mount())
1678 return -EPERM;
1679
1680 if (!(flags & UMOUNT_NOFOLLOW))
1681 lookup_flags |= LOOKUP_FOLLOW;
1682
1683 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1684 if (retval)
1685 goto out;
1686 mnt = real_mount(path.mnt);
1687 retval = -EINVAL;
1688 if (path.dentry != path.mnt->mnt_root)
1689 goto dput_and_out;
1690 if (!check_mnt(mnt))
1691 goto dput_and_out;
1692 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1693 goto dput_and_out;
1694 retval = -EPERM;
1695 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1696 goto dput_and_out;
1697
1698 retval = do_umount(mnt, flags);
1699 dput_and_out:
1700 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1701 dput(path.dentry);
1702 mntput_no_expire(mnt);
1703 out:
1704 return retval;
1705 }
1706
1707 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1708
1709 /*
1710 * The 2.0 compatible umount. No flags.
1711 */
1712 SYSCALL_DEFINE1(oldumount, char __user *, name)
1713 {
1714 return sys_umount(name, 0);
1715 }
1716
1717 #endif
1718
1719 static bool is_mnt_ns_file(struct dentry *dentry)
1720 {
1721 /* Is this a proxy for a mount namespace? */
1722 return dentry->d_op == &ns_dentry_operations &&
1723 dentry->d_fsdata == &mntns_operations;
1724 }
1725
1726 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1727 {
1728 return container_of(ns, struct mnt_namespace, ns);
1729 }
1730
1731 static bool mnt_ns_loop(struct dentry *dentry)
1732 {
1733 /* Could bind mounting the mount namespace inode cause a
1734 * mount namespace loop?
1735 */
1736 struct mnt_namespace *mnt_ns;
1737 if (!is_mnt_ns_file(dentry))
1738 return false;
1739
1740 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1741 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1742 }
1743
1744 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1745 int flag)
1746 {
1747 struct mount *res, *p, *q, *r, *parent;
1748
1749 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1750 return ERR_PTR(-EINVAL);
1751
1752 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1753 return ERR_PTR(-EINVAL);
1754
1755 res = q = clone_mnt(mnt, dentry, flag);
1756 if (IS_ERR(q))
1757 return q;
1758
1759 q->mnt_mountpoint = mnt->mnt_mountpoint;
1760
1761 p = mnt;
1762 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1763 struct mount *s;
1764 if (!is_subdir(r->mnt_mountpoint, dentry))
1765 continue;
1766
1767 for (s = r; s; s = next_mnt(s, r)) {
1768 struct mount *t = NULL;
1769 if (!(flag & CL_COPY_UNBINDABLE) &&
1770 IS_MNT_UNBINDABLE(s)) {
1771 s = skip_mnt_tree(s);
1772 continue;
1773 }
1774 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1775 is_mnt_ns_file(s->mnt.mnt_root)) {
1776 s = skip_mnt_tree(s);
1777 continue;
1778 }
1779 while (p != s->mnt_parent) {
1780 p = p->mnt_parent;
1781 q = q->mnt_parent;
1782 }
1783 p = s;
1784 parent = q;
1785 q = clone_mnt(p, p->mnt.mnt_root, flag);
1786 if (IS_ERR(q))
1787 goto out;
1788 lock_mount_hash();
1789 list_add_tail(&q->mnt_list, &res->mnt_list);
1790 mnt_set_mountpoint(parent, p->mnt_mp, q);
1791 if (!list_empty(&parent->mnt_mounts)) {
1792 t = list_last_entry(&parent->mnt_mounts,
1793 struct mount, mnt_child);
1794 if (t->mnt_mp != p->mnt_mp)
1795 t = NULL;
1796 }
1797 attach_shadowed(q, parent, t);
1798 unlock_mount_hash();
1799 }
1800 }
1801 return res;
1802 out:
1803 if (res) {
1804 lock_mount_hash();
1805 umount_tree(res, UMOUNT_SYNC);
1806 unlock_mount_hash();
1807 }
1808 return q;
1809 }
1810
1811 /* Caller should check returned pointer for errors */
1812
1813 struct vfsmount *collect_mounts(const struct path *path)
1814 {
1815 struct mount *tree;
1816 namespace_lock();
1817 if (!check_mnt(real_mount(path->mnt)))
1818 tree = ERR_PTR(-EINVAL);
1819 else
1820 tree = copy_tree(real_mount(path->mnt), path->dentry,
1821 CL_COPY_ALL | CL_PRIVATE);
1822 namespace_unlock();
1823 if (IS_ERR(tree))
1824 return ERR_CAST(tree);
1825 return &tree->mnt;
1826 }
1827
1828 void drop_collected_mounts(struct vfsmount *mnt)
1829 {
1830 namespace_lock();
1831 lock_mount_hash();
1832 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1833 unlock_mount_hash();
1834 namespace_unlock();
1835 }
1836
1837 /**
1838 * clone_private_mount - create a private clone of a path
1839 *
1840 * This creates a new vfsmount, which will be the clone of @path. The new will
1841 * not be attached anywhere in the namespace and will be private (i.e. changes
1842 * to the originating mount won't be propagated into this).
1843 *
1844 * Release with mntput().
1845 */
1846 struct vfsmount *clone_private_mount(const struct path *path)
1847 {
1848 struct mount *old_mnt = real_mount(path->mnt);
1849 struct mount *new_mnt;
1850
1851 if (IS_MNT_UNBINDABLE(old_mnt))
1852 return ERR_PTR(-EINVAL);
1853
1854 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1855 if (IS_ERR(new_mnt))
1856 return ERR_CAST(new_mnt);
1857
1858 return &new_mnt->mnt;
1859 }
1860 EXPORT_SYMBOL_GPL(clone_private_mount);
1861
1862 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1863 struct vfsmount *root)
1864 {
1865 struct mount *mnt;
1866 int res = f(root, arg);
1867 if (res)
1868 return res;
1869 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1870 res = f(&mnt->mnt, arg);
1871 if (res)
1872 return res;
1873 }
1874 return 0;
1875 }
1876 EXPORT_SYMBOL_GPL(iterate_mounts);
1877
1878 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1879 {
1880 struct mount *p;
1881
1882 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1883 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1884 mnt_release_group_id(p);
1885 }
1886 }
1887
1888 static int invent_group_ids(struct mount *mnt, bool recurse)
1889 {
1890 struct mount *p;
1891
1892 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1893 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1894 int err = mnt_alloc_group_id(p);
1895 if (err) {
1896 cleanup_group_ids(mnt, p);
1897 return err;
1898 }
1899 }
1900 }
1901
1902 return 0;
1903 }
1904
1905 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1906 {
1907 unsigned int max = READ_ONCE(sysctl_mount_max);
1908 unsigned int mounts = 0, old, pending, sum;
1909 struct mount *p;
1910
1911 for (p = mnt; p; p = next_mnt(p, mnt))
1912 mounts++;
1913
1914 old = ns->mounts;
1915 pending = ns->pending_mounts;
1916 sum = old + pending;
1917 if ((old > sum) ||
1918 (pending > sum) ||
1919 (max < sum) ||
1920 (mounts > (max - sum)))
1921 return -ENOSPC;
1922
1923 ns->pending_mounts = pending + mounts;
1924 return 0;
1925 }
1926
1927 /*
1928 * @source_mnt : mount tree to be attached
1929 * @nd : place the mount tree @source_mnt is attached
1930 * @parent_nd : if non-null, detach the source_mnt from its parent and
1931 * store the parent mount and mountpoint dentry.
1932 * (done when source_mnt is moved)
1933 *
1934 * NOTE: in the table below explains the semantics when a source mount
1935 * of a given type is attached to a destination mount of a given type.
1936 * ---------------------------------------------------------------------------
1937 * | BIND MOUNT OPERATION |
1938 * |**************************************************************************
1939 * | source-->| shared | private | slave | unbindable |
1940 * | dest | | | | |
1941 * | | | | | | |
1942 * | v | | | | |
1943 * |**************************************************************************
1944 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1945 * | | | | | |
1946 * |non-shared| shared (+) | private | slave (*) | invalid |
1947 * ***************************************************************************
1948 * A bind operation clones the source mount and mounts the clone on the
1949 * destination mount.
1950 *
1951 * (++) the cloned mount is propagated to all the mounts in the propagation
1952 * tree of the destination mount and the cloned mount is added to
1953 * the peer group of the source mount.
1954 * (+) the cloned mount is created under the destination mount and is marked
1955 * as shared. The cloned mount is added to the peer group of the source
1956 * mount.
1957 * (+++) the mount is propagated to all the mounts in the propagation tree
1958 * of the destination mount and the cloned mount is made slave
1959 * of the same master as that of the source mount. The cloned mount
1960 * is marked as 'shared and slave'.
1961 * (*) the cloned mount is made a slave of the same master as that of the
1962 * source mount.
1963 *
1964 * ---------------------------------------------------------------------------
1965 * | MOVE MOUNT OPERATION |
1966 * |**************************************************************************
1967 * | source-->| shared | private | slave | unbindable |
1968 * | dest | | | | |
1969 * | | | | | | |
1970 * | v | | | | |
1971 * |**************************************************************************
1972 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1973 * | | | | | |
1974 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1975 * ***************************************************************************
1976 *
1977 * (+) the mount is moved to the destination. And is then propagated to
1978 * all the mounts in the propagation tree of the destination mount.
1979 * (+*) the mount is moved to the destination.
1980 * (+++) the mount is moved to the destination and is then propagated to
1981 * all the mounts belonging to the destination mount's propagation tree.
1982 * the mount is marked as 'shared and slave'.
1983 * (*) the mount continues to be a slave at the new location.
1984 *
1985 * if the source mount is a tree, the operations explained above is
1986 * applied to each mount in the tree.
1987 * Must be called without spinlocks held, since this function can sleep
1988 * in allocations.
1989 */
1990 static int attach_recursive_mnt(struct mount *source_mnt,
1991 struct mount *dest_mnt,
1992 struct mountpoint *dest_mp,
1993 struct path *parent_path)
1994 {
1995 HLIST_HEAD(tree_list);
1996 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1997 struct mount *child, *p;
1998 struct hlist_node *n;
1999 int err;
2000
2001 /* Is there space to add these mounts to the mount namespace? */
2002 if (!parent_path) {
2003 err = count_mounts(ns, source_mnt);
2004 if (err)
2005 goto out;
2006 }
2007
2008 if (IS_MNT_SHARED(dest_mnt)) {
2009 err = invent_group_ids(source_mnt, true);
2010 if (err)
2011 goto out;
2012 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2013 lock_mount_hash();
2014 if (err)
2015 goto out_cleanup_ids;
2016 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2017 set_mnt_shared(p);
2018 } else {
2019 lock_mount_hash();
2020 }
2021 if (parent_path) {
2022 detach_mnt(source_mnt, parent_path);
2023 attach_mnt(source_mnt, dest_mnt, dest_mp);
2024 touch_mnt_namespace(source_mnt->mnt_ns);
2025 } else {
2026 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2027 commit_tree(source_mnt, NULL);
2028 }
2029
2030 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2031 struct mount *q;
2032 hlist_del_init(&child->mnt_hash);
2033 q = __lookup_mnt_last(&child->mnt_parent->mnt,
2034 child->mnt_mountpoint);
2035 commit_tree(child, q);
2036 }
2037 unlock_mount_hash();
2038
2039 return 0;
2040
2041 out_cleanup_ids:
2042 while (!hlist_empty(&tree_list)) {
2043 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2044 child->mnt_parent->mnt_ns->pending_mounts = 0;
2045 umount_tree(child, UMOUNT_SYNC);
2046 }
2047 unlock_mount_hash();
2048 cleanup_group_ids(source_mnt, NULL);
2049 out:
2050 ns->pending_mounts = 0;
2051 return err;
2052 }
2053
2054 static struct mountpoint *lock_mount(struct path *path)
2055 {
2056 struct vfsmount *mnt;
2057 struct dentry *dentry = path->dentry;
2058 retry:
2059 inode_lock(dentry->d_inode);
2060 if (unlikely(cant_mount(dentry))) {
2061 inode_unlock(dentry->d_inode);
2062 return ERR_PTR(-ENOENT);
2063 }
2064 namespace_lock();
2065 mnt = lookup_mnt(path);
2066 if (likely(!mnt)) {
2067 struct mountpoint *mp = get_mountpoint(dentry);
2068 if (IS_ERR(mp)) {
2069 namespace_unlock();
2070 inode_unlock(dentry->d_inode);
2071 return mp;
2072 }
2073 return mp;
2074 }
2075 namespace_unlock();
2076 inode_unlock(path->dentry->d_inode);
2077 path_put(path);
2078 path->mnt = mnt;
2079 dentry = path->dentry = dget(mnt->mnt_root);
2080 goto retry;
2081 }
2082
2083 static void unlock_mount(struct mountpoint *where)
2084 {
2085 struct dentry *dentry = where->m_dentry;
2086
2087 read_seqlock_excl(&mount_lock);
2088 put_mountpoint(where);
2089 read_sequnlock_excl(&mount_lock);
2090
2091 namespace_unlock();
2092 inode_unlock(dentry->d_inode);
2093 }
2094
2095 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2096 {
2097 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2098 return -EINVAL;
2099
2100 if (d_is_dir(mp->m_dentry) !=
2101 d_is_dir(mnt->mnt.mnt_root))
2102 return -ENOTDIR;
2103
2104 return attach_recursive_mnt(mnt, p, mp, NULL);
2105 }
2106
2107 /*
2108 * Sanity check the flags to change_mnt_propagation.
2109 */
2110
2111 static int flags_to_propagation_type(int flags)
2112 {
2113 int type = flags & ~(MS_REC | MS_SILENT);
2114
2115 /* Fail if any non-propagation flags are set */
2116 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2117 return 0;
2118 /* Only one propagation flag should be set */
2119 if (!is_power_of_2(type))
2120 return 0;
2121 return type;
2122 }
2123
2124 /*
2125 * recursively change the type of the mountpoint.
2126 */
2127 static int do_change_type(struct path *path, int flag)
2128 {
2129 struct mount *m;
2130 struct mount *mnt = real_mount(path->mnt);
2131 int recurse = flag & MS_REC;
2132 int type;
2133 int err = 0;
2134
2135 if (path->dentry != path->mnt->mnt_root)
2136 return -EINVAL;
2137
2138 type = flags_to_propagation_type(flag);
2139 if (!type)
2140 return -EINVAL;
2141
2142 namespace_lock();
2143 if (type == MS_SHARED) {
2144 err = invent_group_ids(mnt, recurse);
2145 if (err)
2146 goto out_unlock;
2147 }
2148
2149 lock_mount_hash();
2150 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2151 change_mnt_propagation(m, type);
2152 unlock_mount_hash();
2153
2154 out_unlock:
2155 namespace_unlock();
2156 return err;
2157 }
2158
2159 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2160 {
2161 struct mount *child;
2162 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2163 if (!is_subdir(child->mnt_mountpoint, dentry))
2164 continue;
2165
2166 if (child->mnt.mnt_flags & MNT_LOCKED)
2167 return true;
2168 }
2169 return false;
2170 }
2171
2172 /*
2173 * do loopback mount.
2174 */
2175 static int do_loopback(struct path *path, const char *old_name,
2176 int recurse)
2177 {
2178 struct path old_path;
2179 struct mount *mnt = NULL, *old, *parent;
2180 struct mountpoint *mp;
2181 int err;
2182 if (!old_name || !*old_name)
2183 return -EINVAL;
2184 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2185 if (err)
2186 return err;
2187
2188 err = -EINVAL;
2189 if (mnt_ns_loop(old_path.dentry))
2190 goto out;
2191
2192 mp = lock_mount(path);
2193 err = PTR_ERR(mp);
2194 if (IS_ERR(mp))
2195 goto out;
2196
2197 old = real_mount(old_path.mnt);
2198 parent = real_mount(path->mnt);
2199
2200 err = -EINVAL;
2201 if (IS_MNT_UNBINDABLE(old))
2202 goto out2;
2203
2204 if (!check_mnt(parent))
2205 goto out2;
2206
2207 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2208 goto out2;
2209
2210 if (!recurse && has_locked_children(old, old_path.dentry))
2211 goto out2;
2212
2213 if (recurse)
2214 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2215 else
2216 mnt = clone_mnt(old, old_path.dentry, 0);
2217
2218 if (IS_ERR(mnt)) {
2219 err = PTR_ERR(mnt);
2220 goto out2;
2221 }
2222
2223 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2224
2225 err = graft_tree(mnt, parent, mp);
2226 if (err) {
2227 lock_mount_hash();
2228 umount_tree(mnt, UMOUNT_SYNC);
2229 unlock_mount_hash();
2230 }
2231 out2:
2232 unlock_mount(mp);
2233 out:
2234 path_put(&old_path);
2235 return err;
2236 }
2237
2238 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2239 {
2240 int error = 0;
2241 int readonly_request = 0;
2242
2243 if (ms_flags & MS_RDONLY)
2244 readonly_request = 1;
2245 if (readonly_request == __mnt_is_readonly(mnt))
2246 return 0;
2247
2248 if (readonly_request)
2249 error = mnt_make_readonly(real_mount(mnt));
2250 else
2251 __mnt_unmake_readonly(real_mount(mnt));
2252 return error;
2253 }
2254
2255 /*
2256 * change filesystem flags. dir should be a physical root of filesystem.
2257 * If you've mounted a non-root directory somewhere and want to do remount
2258 * on it - tough luck.
2259 */
2260 static int do_remount(struct path *path, int flags, int mnt_flags,
2261 void *data)
2262 {
2263 int err;
2264 struct super_block *sb = path->mnt->mnt_sb;
2265 struct mount *mnt = real_mount(path->mnt);
2266
2267 if (!check_mnt(mnt))
2268 return -EINVAL;
2269
2270 if (path->dentry != path->mnt->mnt_root)
2271 return -EINVAL;
2272
2273 /* Don't allow changing of locked mnt flags.
2274 *
2275 * No locks need to be held here while testing the various
2276 * MNT_LOCK flags because those flags can never be cleared
2277 * once they are set.
2278 */
2279 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2280 !(mnt_flags & MNT_READONLY)) {
2281 return -EPERM;
2282 }
2283 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2284 !(mnt_flags & MNT_NODEV)) {
2285 return -EPERM;
2286 }
2287 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2288 !(mnt_flags & MNT_NOSUID)) {
2289 return -EPERM;
2290 }
2291 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2292 !(mnt_flags & MNT_NOEXEC)) {
2293 return -EPERM;
2294 }
2295 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2296 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2297 return -EPERM;
2298 }
2299
2300 err = security_sb_remount(sb, data);
2301 if (err)
2302 return err;
2303
2304 down_write(&sb->s_umount);
2305 if (flags & MS_BIND)
2306 err = change_mount_flags(path->mnt, flags);
2307 else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2308 err = -EPERM;
2309 else
2310 err = do_remount_sb(sb, flags, data, 0);
2311 if (!err) {
2312 lock_mount_hash();
2313 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2314 mnt->mnt.mnt_flags = mnt_flags;
2315 touch_mnt_namespace(mnt->mnt_ns);
2316 unlock_mount_hash();
2317 }
2318 up_write(&sb->s_umount);
2319 return err;
2320 }
2321
2322 static inline int tree_contains_unbindable(struct mount *mnt)
2323 {
2324 struct mount *p;
2325 for (p = mnt; p; p = next_mnt(p, mnt)) {
2326 if (IS_MNT_UNBINDABLE(p))
2327 return 1;
2328 }
2329 return 0;
2330 }
2331
2332 static int do_move_mount(struct path *path, const char *old_name)
2333 {
2334 struct path old_path, parent_path;
2335 struct mount *p;
2336 struct mount *old;
2337 struct mountpoint *mp;
2338 int err;
2339 if (!old_name || !*old_name)
2340 return -EINVAL;
2341 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2342 if (err)
2343 return err;
2344
2345 mp = lock_mount(path);
2346 err = PTR_ERR(mp);
2347 if (IS_ERR(mp))
2348 goto out;
2349
2350 old = real_mount(old_path.mnt);
2351 p = real_mount(path->mnt);
2352
2353 err = -EINVAL;
2354 if (!check_mnt(p) || !check_mnt(old))
2355 goto out1;
2356
2357 if (old->mnt.mnt_flags & MNT_LOCKED)
2358 goto out1;
2359
2360 err = -EINVAL;
2361 if (old_path.dentry != old_path.mnt->mnt_root)
2362 goto out1;
2363
2364 if (!mnt_has_parent(old))
2365 goto out1;
2366
2367 if (d_is_dir(path->dentry) !=
2368 d_is_dir(old_path.dentry))
2369 goto out1;
2370 /*
2371 * Don't move a mount residing in a shared parent.
2372 */
2373 if (IS_MNT_SHARED(old->mnt_parent))
2374 goto out1;
2375 /*
2376 * Don't move a mount tree containing unbindable mounts to a destination
2377 * mount which is shared.
2378 */
2379 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2380 goto out1;
2381 err = -ELOOP;
2382 for (; mnt_has_parent(p); p = p->mnt_parent)
2383 if (p == old)
2384 goto out1;
2385
2386 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2387 if (err)
2388 goto out1;
2389
2390 /* if the mount is moved, it should no longer be expire
2391 * automatically */
2392 list_del_init(&old->mnt_expire);
2393 out1:
2394 unlock_mount(mp);
2395 out:
2396 if (!err)
2397 path_put(&parent_path);
2398 path_put(&old_path);
2399 return err;
2400 }
2401
2402 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2403 {
2404 int err;
2405 const char *subtype = strchr(fstype, '.');
2406 if (subtype) {
2407 subtype++;
2408 err = -EINVAL;
2409 if (!subtype[0])
2410 goto err;
2411 } else
2412 subtype = "";
2413
2414 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2415 err = -ENOMEM;
2416 if (!mnt->mnt_sb->s_subtype)
2417 goto err;
2418 return mnt;
2419
2420 err:
2421 mntput(mnt);
2422 return ERR_PTR(err);
2423 }
2424
2425 /*
2426 * add a mount into a namespace's mount tree
2427 */
2428 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2429 {
2430 struct mountpoint *mp;
2431 struct mount *parent;
2432 int err;
2433
2434 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2435
2436 mp = lock_mount(path);
2437 if (IS_ERR(mp))
2438 return PTR_ERR(mp);
2439
2440 parent = real_mount(path->mnt);
2441 err = -EINVAL;
2442 if (unlikely(!check_mnt(parent))) {
2443 /* that's acceptable only for automounts done in private ns */
2444 if (!(mnt_flags & MNT_SHRINKABLE))
2445 goto unlock;
2446 /* ... and for those we'd better have mountpoint still alive */
2447 if (!parent->mnt_ns)
2448 goto unlock;
2449 }
2450
2451 /* Refuse the same filesystem on the same mount point */
2452 err = -EBUSY;
2453 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2454 path->mnt->mnt_root == path->dentry)
2455 goto unlock;
2456
2457 err = -EINVAL;
2458 if (d_is_symlink(newmnt->mnt.mnt_root))
2459 goto unlock;
2460
2461 newmnt->mnt.mnt_flags = mnt_flags;
2462 err = graft_tree(newmnt, parent, mp);
2463
2464 unlock:
2465 unlock_mount(mp);
2466 return err;
2467 }
2468
2469 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2470
2471 /*
2472 * create a new mount for userspace and request it to be added into the
2473 * namespace's tree
2474 */
2475 static int do_new_mount(struct path *path, const char *fstype, int flags,
2476 int mnt_flags, const char *name, void *data)
2477 {
2478 struct file_system_type *type;
2479 struct vfsmount *mnt;
2480 int err;
2481
2482 if (!fstype)
2483 return -EINVAL;
2484
2485 type = get_fs_type(fstype);
2486 if (!type)
2487 return -ENODEV;
2488
2489 mnt = vfs_kern_mount(type, flags, name, data);
2490 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2491 !mnt->mnt_sb->s_subtype)
2492 mnt = fs_set_subtype(mnt, fstype);
2493
2494 put_filesystem(type);
2495 if (IS_ERR(mnt))
2496 return PTR_ERR(mnt);
2497
2498 if (mount_too_revealing(mnt, &mnt_flags)) {
2499 mntput(mnt);
2500 return -EPERM;
2501 }
2502
2503 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2504 if (err)
2505 mntput(mnt);
2506 return err;
2507 }
2508
2509 int finish_automount(struct vfsmount *m, struct path *path)
2510 {
2511 struct mount *mnt = real_mount(m);
2512 int err;
2513 /* The new mount record should have at least 2 refs to prevent it being
2514 * expired before we get a chance to add it
2515 */
2516 BUG_ON(mnt_get_count(mnt) < 2);
2517
2518 if (m->mnt_sb == path->mnt->mnt_sb &&
2519 m->mnt_root == path->dentry) {
2520 err = -ELOOP;
2521 goto fail;
2522 }
2523
2524 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2525 if (!err)
2526 return 0;
2527 fail:
2528 /* remove m from any expiration list it may be on */
2529 if (!list_empty(&mnt->mnt_expire)) {
2530 namespace_lock();
2531 list_del_init(&mnt->mnt_expire);
2532 namespace_unlock();
2533 }
2534 mntput(m);
2535 mntput(m);
2536 return err;
2537 }
2538
2539 /**
2540 * mnt_set_expiry - Put a mount on an expiration list
2541 * @mnt: The mount to list.
2542 * @expiry_list: The list to add the mount to.
2543 */
2544 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2545 {
2546 namespace_lock();
2547
2548 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2549
2550 namespace_unlock();
2551 }
2552 EXPORT_SYMBOL(mnt_set_expiry);
2553
2554 /*
2555 * process a list of expirable mountpoints with the intent of discarding any
2556 * mountpoints that aren't in use and haven't been touched since last we came
2557 * here
2558 */
2559 void mark_mounts_for_expiry(struct list_head *mounts)
2560 {
2561 struct mount *mnt, *next;
2562 LIST_HEAD(graveyard);
2563
2564 if (list_empty(mounts))
2565 return;
2566
2567 namespace_lock();
2568 lock_mount_hash();
2569
2570 /* extract from the expiration list every vfsmount that matches the
2571 * following criteria:
2572 * - only referenced by its parent vfsmount
2573 * - still marked for expiry (marked on the last call here; marks are
2574 * cleared by mntput())
2575 */
2576 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2577 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2578 propagate_mount_busy(mnt, 1))
2579 continue;
2580 list_move(&mnt->mnt_expire, &graveyard);
2581 }
2582 while (!list_empty(&graveyard)) {
2583 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2584 touch_mnt_namespace(mnt->mnt_ns);
2585 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2586 }
2587 unlock_mount_hash();
2588 namespace_unlock();
2589 }
2590
2591 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2592
2593 /*
2594 * Ripoff of 'select_parent()'
2595 *
2596 * search the list of submounts for a given mountpoint, and move any
2597 * shrinkable submounts to the 'graveyard' list.
2598 */
2599 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2600 {
2601 struct mount *this_parent = parent;
2602 struct list_head *next;
2603 int found = 0;
2604
2605 repeat:
2606 next = this_parent->mnt_mounts.next;
2607 resume:
2608 while (next != &this_parent->mnt_mounts) {
2609 struct list_head *tmp = next;
2610 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2611
2612 next = tmp->next;
2613 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2614 continue;
2615 /*
2616 * Descend a level if the d_mounts list is non-empty.
2617 */
2618 if (!list_empty(&mnt->mnt_mounts)) {
2619 this_parent = mnt;
2620 goto repeat;
2621 }
2622
2623 if (!propagate_mount_busy(mnt, 1)) {
2624 list_move_tail(&mnt->mnt_expire, graveyard);
2625 found++;
2626 }
2627 }
2628 /*
2629 * All done at this level ... ascend and resume the search
2630 */
2631 if (this_parent != parent) {
2632 next = this_parent->mnt_child.next;
2633 this_parent = this_parent->mnt_parent;
2634 goto resume;
2635 }
2636 return found;
2637 }
2638
2639 /*
2640 * process a list of expirable mountpoints with the intent of discarding any
2641 * submounts of a specific parent mountpoint
2642 *
2643 * mount_lock must be held for write
2644 */
2645 static void shrink_submounts(struct mount *mnt)
2646 {
2647 LIST_HEAD(graveyard);
2648 struct mount *m;
2649
2650 /* extract submounts of 'mountpoint' from the expiration list */
2651 while (select_submounts(mnt, &graveyard)) {
2652 while (!list_empty(&graveyard)) {
2653 m = list_first_entry(&graveyard, struct mount,
2654 mnt_expire);
2655 touch_mnt_namespace(m->mnt_ns);
2656 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2657 }
2658 }
2659 }
2660
2661 /*
2662 * Some copy_from_user() implementations do not return the exact number of
2663 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2664 * Note that this function differs from copy_from_user() in that it will oops
2665 * on bad values of `to', rather than returning a short copy.
2666 */
2667 static long exact_copy_from_user(void *to, const void __user * from,
2668 unsigned long n)
2669 {
2670 char *t = to;
2671 const char __user *f = from;
2672 char c;
2673
2674 if (!access_ok(VERIFY_READ, from, n))
2675 return n;
2676
2677 while (n) {
2678 if (__get_user(c, f)) {
2679 memset(t, 0, n);
2680 break;
2681 }
2682 *t++ = c;
2683 f++;
2684 n--;
2685 }
2686 return n;
2687 }
2688
2689 void *copy_mount_options(const void __user * data)
2690 {
2691 int i;
2692 unsigned long size;
2693 char *copy;
2694
2695 if (!data)
2696 return NULL;
2697
2698 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2699 if (!copy)
2700 return ERR_PTR(-ENOMEM);
2701
2702 /* We only care that *some* data at the address the user
2703 * gave us is valid. Just in case, we'll zero
2704 * the remainder of the page.
2705 */
2706 /* copy_from_user cannot cross TASK_SIZE ! */
2707 size = TASK_SIZE - (unsigned long)data;
2708 if (size > PAGE_SIZE)
2709 size = PAGE_SIZE;
2710
2711 i = size - exact_copy_from_user(copy, data, size);
2712 if (!i) {
2713 kfree(copy);
2714 return ERR_PTR(-EFAULT);
2715 }
2716 if (i != PAGE_SIZE)
2717 memset(copy + i, 0, PAGE_SIZE - i);
2718 return copy;
2719 }
2720
2721 char *copy_mount_string(const void __user *data)
2722 {
2723 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2724 }
2725
2726 /*
2727 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2728 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2729 *
2730 * data is a (void *) that can point to any structure up to
2731 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2732 * information (or be NULL).
2733 *
2734 * Pre-0.97 versions of mount() didn't have a flags word.
2735 * When the flags word was introduced its top half was required
2736 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2737 * Therefore, if this magic number is present, it carries no information
2738 * and must be discarded.
2739 */
2740 long do_mount(const char *dev_name, const char __user *dir_name,
2741 const char *type_page, unsigned long flags, void *data_page)
2742 {
2743 struct path path;
2744 int retval = 0;
2745 int mnt_flags = 0;
2746
2747 /* Discard magic */
2748 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2749 flags &= ~MS_MGC_MSK;
2750
2751 /* Basic sanity checks */
2752 if (data_page)
2753 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2754
2755 /* ... and get the mountpoint */
2756 retval = user_path(dir_name, &path);
2757 if (retval)
2758 return retval;
2759
2760 retval = security_sb_mount(dev_name, &path,
2761 type_page, flags, data_page);
2762 if (!retval && !may_mount())
2763 retval = -EPERM;
2764 if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2765 retval = -EPERM;
2766 if (retval)
2767 goto dput_out;
2768
2769 /* Default to relatime unless overriden */
2770 if (!(flags & MS_NOATIME))
2771 mnt_flags |= MNT_RELATIME;
2772
2773 /* Separate the per-mountpoint flags */
2774 if (flags & MS_NOSUID)
2775 mnt_flags |= MNT_NOSUID;
2776 if (flags & MS_NODEV)
2777 mnt_flags |= MNT_NODEV;
2778 if (flags & MS_NOEXEC)
2779 mnt_flags |= MNT_NOEXEC;
2780 if (flags & MS_NOATIME)
2781 mnt_flags |= MNT_NOATIME;
2782 if (flags & MS_NODIRATIME)
2783 mnt_flags |= MNT_NODIRATIME;
2784 if (flags & MS_STRICTATIME)
2785 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2786 if (flags & MS_RDONLY)
2787 mnt_flags |= MNT_READONLY;
2788
2789 /* The default atime for remount is preservation */
2790 if ((flags & MS_REMOUNT) &&
2791 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2792 MS_STRICTATIME)) == 0)) {
2793 mnt_flags &= ~MNT_ATIME_MASK;
2794 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2795 }
2796
2797 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2798 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2799 MS_STRICTATIME | MS_NOREMOTELOCK);
2800
2801 if (flags & MS_REMOUNT)
2802 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2803 data_page);
2804 else if (flags & MS_BIND)
2805 retval = do_loopback(&path, dev_name, flags & MS_REC);
2806 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2807 retval = do_change_type(&path, flags);
2808 else if (flags & MS_MOVE)
2809 retval = do_move_mount(&path, dev_name);
2810 else
2811 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2812 dev_name, data_page);
2813 dput_out:
2814 path_put(&path);
2815 return retval;
2816 }
2817
2818 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2819 {
2820 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2821 }
2822
2823 static void dec_mnt_namespaces(struct ucounts *ucounts)
2824 {
2825 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2826 }
2827
2828 static void free_mnt_ns(struct mnt_namespace *ns)
2829 {
2830 ns_free_inum(&ns->ns);
2831 dec_mnt_namespaces(ns->ucounts);
2832 put_user_ns(ns->user_ns);
2833 kfree(ns);
2834 }
2835
2836 /*
2837 * Assign a sequence number so we can detect when we attempt to bind
2838 * mount a reference to an older mount namespace into the current
2839 * mount namespace, preventing reference counting loops. A 64bit
2840 * number incrementing at 10Ghz will take 12,427 years to wrap which
2841 * is effectively never, so we can ignore the possibility.
2842 */
2843 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2844
2845 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2846 {
2847 struct mnt_namespace *new_ns;
2848 struct ucounts *ucounts;
2849 int ret;
2850
2851 ucounts = inc_mnt_namespaces(user_ns);
2852 if (!ucounts)
2853 return ERR_PTR(-ENOSPC);
2854
2855 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2856 if (!new_ns) {
2857 dec_mnt_namespaces(ucounts);
2858 return ERR_PTR(-ENOMEM);
2859 }
2860 ret = ns_alloc_inum(&new_ns->ns);
2861 if (ret) {
2862 kfree(new_ns);
2863 dec_mnt_namespaces(ucounts);
2864 return ERR_PTR(ret);
2865 }
2866 new_ns->ns.ops = &mntns_operations;
2867 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2868 atomic_set(&new_ns->count, 1);
2869 new_ns->root = NULL;
2870 INIT_LIST_HEAD(&new_ns->list);
2871 init_waitqueue_head(&new_ns->poll);
2872 new_ns->event = 0;
2873 new_ns->user_ns = get_user_ns(user_ns);
2874 new_ns->ucounts = ucounts;
2875 new_ns->mounts = 0;
2876 new_ns->pending_mounts = 0;
2877 return new_ns;
2878 }
2879
2880 __latent_entropy
2881 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2882 struct user_namespace *user_ns, struct fs_struct *new_fs)
2883 {
2884 struct mnt_namespace *new_ns;
2885 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2886 struct mount *p, *q;
2887 struct mount *old;
2888 struct mount *new;
2889 int copy_flags;
2890
2891 BUG_ON(!ns);
2892
2893 if (likely(!(flags & CLONE_NEWNS))) {
2894 get_mnt_ns(ns);
2895 return ns;
2896 }
2897
2898 old = ns->root;
2899
2900 new_ns = alloc_mnt_ns(user_ns);
2901 if (IS_ERR(new_ns))
2902 return new_ns;
2903
2904 namespace_lock();
2905 /* First pass: copy the tree topology */
2906 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2907 if (user_ns != ns->user_ns)
2908 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2909 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2910 if (IS_ERR(new)) {
2911 namespace_unlock();
2912 free_mnt_ns(new_ns);
2913 return ERR_CAST(new);
2914 }
2915 new_ns->root = new;
2916 list_add_tail(&new_ns->list, &new->mnt_list);
2917
2918 /*
2919 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2920 * as belonging to new namespace. We have already acquired a private
2921 * fs_struct, so tsk->fs->lock is not needed.
2922 */
2923 p = old;
2924 q = new;
2925 while (p) {
2926 q->mnt_ns = new_ns;
2927 new_ns->mounts++;
2928 if (new_fs) {
2929 if (&p->mnt == new_fs->root.mnt) {
2930 new_fs->root.mnt = mntget(&q->mnt);
2931 rootmnt = &p->mnt;
2932 }
2933 if (&p->mnt == new_fs->pwd.mnt) {
2934 new_fs->pwd.mnt = mntget(&q->mnt);
2935 pwdmnt = &p->mnt;
2936 }
2937 }
2938 p = next_mnt(p, old);
2939 q = next_mnt(q, new);
2940 if (!q)
2941 break;
2942 while (p->mnt.mnt_root != q->mnt.mnt_root)
2943 p = next_mnt(p, old);
2944 }
2945 namespace_unlock();
2946
2947 if (rootmnt)
2948 mntput(rootmnt);
2949 if (pwdmnt)
2950 mntput(pwdmnt);
2951
2952 return new_ns;
2953 }
2954
2955 /**
2956 * create_mnt_ns - creates a private namespace and adds a root filesystem
2957 * @mnt: pointer to the new root filesystem mountpoint
2958 */
2959 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2960 {
2961 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2962 if (!IS_ERR(new_ns)) {
2963 struct mount *mnt = real_mount(m);
2964 mnt->mnt_ns = new_ns;
2965 new_ns->root = mnt;
2966 new_ns->mounts++;
2967 list_add(&mnt->mnt_list, &new_ns->list);
2968 } else {
2969 mntput(m);
2970 }
2971 return new_ns;
2972 }
2973
2974 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2975 {
2976 struct mnt_namespace *ns;
2977 struct super_block *s;
2978 struct path path;
2979 int err;
2980
2981 ns = create_mnt_ns(mnt);
2982 if (IS_ERR(ns))
2983 return ERR_CAST(ns);
2984
2985 err = vfs_path_lookup(mnt->mnt_root, mnt,
2986 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2987
2988 put_mnt_ns(ns);
2989
2990 if (err)
2991 return ERR_PTR(err);
2992
2993 /* trade a vfsmount reference for active sb one */
2994 s = path.mnt->mnt_sb;
2995 atomic_inc(&s->s_active);
2996 mntput(path.mnt);
2997 /* lock the sucker */
2998 down_write(&s->s_umount);
2999 /* ... and return the root of (sub)tree on it */
3000 return path.dentry;
3001 }
3002 EXPORT_SYMBOL(mount_subtree);
3003
3004 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3005 char __user *, type, unsigned long, flags, void __user *, data)
3006 {
3007 int ret;
3008 char *kernel_type;
3009 char *kernel_dev;
3010 void *options;
3011
3012 kernel_type = copy_mount_string(type);
3013 ret = PTR_ERR(kernel_type);
3014 if (IS_ERR(kernel_type))
3015 goto out_type;
3016
3017 kernel_dev = copy_mount_string(dev_name);
3018 ret = PTR_ERR(kernel_dev);
3019 if (IS_ERR(kernel_dev))
3020 goto out_dev;
3021
3022 options = copy_mount_options(data);
3023 ret = PTR_ERR(options);
3024 if (IS_ERR(options))
3025 goto out_data;
3026
3027 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3028
3029 kfree(options);
3030 out_data:
3031 kfree(kernel_dev);
3032 out_dev:
3033 kfree(kernel_type);
3034 out_type:
3035 return ret;
3036 }
3037
3038 /*
3039 * Return true if path is reachable from root
3040 *
3041 * namespace_sem or mount_lock is held
3042 */
3043 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3044 const struct path *root)
3045 {
3046 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3047 dentry = mnt->mnt_mountpoint;
3048 mnt = mnt->mnt_parent;
3049 }
3050 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3051 }
3052
3053 bool path_is_under(const struct path *path1, const struct path *path2)
3054 {
3055 bool res;
3056 read_seqlock_excl(&mount_lock);
3057 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3058 read_sequnlock_excl(&mount_lock);
3059 return res;
3060 }
3061 EXPORT_SYMBOL(path_is_under);
3062
3063 /*
3064 * pivot_root Semantics:
3065 * Moves the root file system of the current process to the directory put_old,
3066 * makes new_root as the new root file system of the current process, and sets
3067 * root/cwd of all processes which had them on the current root to new_root.
3068 *
3069 * Restrictions:
3070 * The new_root and put_old must be directories, and must not be on the
3071 * same file system as the current process root. The put_old must be
3072 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3073 * pointed to by put_old must yield the same directory as new_root. No other
3074 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3075 *
3076 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3077 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3078 * in this situation.
3079 *
3080 * Notes:
3081 * - we don't move root/cwd if they are not at the root (reason: if something
3082 * cared enough to change them, it's probably wrong to force them elsewhere)
3083 * - it's okay to pick a root that isn't the root of a file system, e.g.
3084 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3085 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3086 * first.
3087 */
3088 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3089 const char __user *, put_old)
3090 {
3091 struct path new, old, parent_path, root_parent, root;
3092 struct mount *new_mnt, *root_mnt, *old_mnt;
3093 struct mountpoint *old_mp, *root_mp;
3094 int error;
3095
3096 if (!may_mount())
3097 return -EPERM;
3098
3099 error = user_path_dir(new_root, &new);
3100 if (error)
3101 goto out0;
3102
3103 error = user_path_dir(put_old, &old);
3104 if (error)
3105 goto out1;
3106
3107 error = security_sb_pivotroot(&old, &new);
3108 if (error)
3109 goto out2;
3110
3111 get_fs_root(current->fs, &root);
3112 old_mp = lock_mount(&old);
3113 error = PTR_ERR(old_mp);
3114 if (IS_ERR(old_mp))
3115 goto out3;
3116
3117 error = -EINVAL;
3118 new_mnt = real_mount(new.mnt);
3119 root_mnt = real_mount(root.mnt);
3120 old_mnt = real_mount(old.mnt);
3121 if (IS_MNT_SHARED(old_mnt) ||
3122 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3123 IS_MNT_SHARED(root_mnt->mnt_parent))
3124 goto out4;
3125 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3126 goto out4;
3127 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3128 goto out4;
3129 error = -ENOENT;
3130 if (d_unlinked(new.dentry))
3131 goto out4;
3132 error = -EBUSY;
3133 if (new_mnt == root_mnt || old_mnt == root_mnt)
3134 goto out4; /* loop, on the same file system */
3135 error = -EINVAL;
3136 if (root.mnt->mnt_root != root.dentry)
3137 goto out4; /* not a mountpoint */
3138 if (!mnt_has_parent(root_mnt))
3139 goto out4; /* not attached */
3140 root_mp = root_mnt->mnt_mp;
3141 if (new.mnt->mnt_root != new.dentry)
3142 goto out4; /* not a mountpoint */
3143 if (!mnt_has_parent(new_mnt))
3144 goto out4; /* not attached */
3145 /* make sure we can reach put_old from new_root */
3146 if (!is_path_reachable(old_mnt, old.dentry, &new))
3147 goto out4;
3148 /* make certain new is below the root */
3149 if (!is_path_reachable(new_mnt, new.dentry, &root))
3150 goto out4;
3151 root_mp->m_count++; /* pin it so it won't go away */
3152 lock_mount_hash();
3153 detach_mnt(new_mnt, &parent_path);
3154 detach_mnt(root_mnt, &root_parent);
3155 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3156 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3157 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3158 }
3159 /* mount old root on put_old */
3160 attach_mnt(root_mnt, old_mnt, old_mp);
3161 /* mount new_root on / */
3162 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3163 touch_mnt_namespace(current->nsproxy->mnt_ns);
3164 /* A moved mount should not expire automatically */
3165 list_del_init(&new_mnt->mnt_expire);
3166 put_mountpoint(root_mp);
3167 unlock_mount_hash();
3168 chroot_fs_refs(&root, &new);
3169 error = 0;
3170 out4:
3171 unlock_mount(old_mp);
3172 if (!error) {
3173 path_put(&root_parent);
3174 path_put(&parent_path);
3175 }
3176 out3:
3177 path_put(&root);
3178 out2:
3179 path_put(&old);
3180 out1:
3181 path_put(&new);
3182 out0:
3183 return error;
3184 }
3185
3186 static void __init init_mount_tree(void)
3187 {
3188 struct vfsmount *mnt;
3189 struct mnt_namespace *ns;
3190 struct path root;
3191 struct file_system_type *type;
3192
3193 type = get_fs_type("rootfs");
3194 if (!type)
3195 panic("Can't find rootfs type");
3196 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3197 put_filesystem(type);
3198 if (IS_ERR(mnt))
3199 panic("Can't create rootfs");
3200
3201 ns = create_mnt_ns(mnt);
3202 if (IS_ERR(ns))
3203 panic("Can't allocate initial namespace");
3204
3205 init_task.nsproxy->mnt_ns = ns;
3206 get_mnt_ns(ns);
3207
3208 root.mnt = mnt;
3209 root.dentry = mnt->mnt_root;
3210 mnt->mnt_flags |= MNT_LOCKED;
3211
3212 set_fs_pwd(current->fs, &root);
3213 set_fs_root(current->fs, &root);
3214 }
3215
3216 void __init mnt_init(void)
3217 {
3218 unsigned u;
3219 int err;
3220
3221 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3222 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3223
3224 mount_hashtable = alloc_large_system_hash("Mount-cache",
3225 sizeof(struct hlist_head),
3226 mhash_entries, 19,
3227 0,
3228 &m_hash_shift, &m_hash_mask, 0, 0);
3229 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3230 sizeof(struct hlist_head),
3231 mphash_entries, 19,
3232 0,
3233 &mp_hash_shift, &mp_hash_mask, 0, 0);
3234
3235 if (!mount_hashtable || !mountpoint_hashtable)
3236 panic("Failed to allocate mount hash table\n");
3237
3238 for (u = 0; u <= m_hash_mask; u++)
3239 INIT_HLIST_HEAD(&mount_hashtable[u]);
3240 for (u = 0; u <= mp_hash_mask; u++)
3241 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3242
3243 kernfs_init();
3244
3245 err = sysfs_init();
3246 if (err)
3247 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3248 __func__, err);
3249 fs_kobj = kobject_create_and_add("fs", NULL);
3250 if (!fs_kobj)
3251 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3252 init_rootfs();
3253 init_mount_tree();
3254 }
3255
3256 void put_mnt_ns(struct mnt_namespace *ns)
3257 {
3258 if (!atomic_dec_and_test(&ns->count))
3259 return;
3260 drop_collected_mounts(&ns->root->mnt);
3261 free_mnt_ns(ns);
3262 }
3263
3264 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3265 {
3266 struct vfsmount *mnt;
3267 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3268 if (!IS_ERR(mnt)) {
3269 /*
3270 * it is a longterm mount, don't release mnt until
3271 * we unmount before file sys is unregistered
3272 */
3273 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3274 }
3275 return mnt;
3276 }
3277 EXPORT_SYMBOL_GPL(kern_mount_data);
3278
3279 void kern_unmount(struct vfsmount *mnt)
3280 {
3281 /* release long term mount so mount point can be released */
3282 if (!IS_ERR_OR_NULL(mnt)) {
3283 real_mount(mnt)->mnt_ns = NULL;
3284 synchronize_rcu(); /* yecchhh... */
3285 mntput(mnt);
3286 }
3287 }
3288 EXPORT_SYMBOL(kern_unmount);
3289
3290 bool our_mnt(struct vfsmount *mnt)
3291 {
3292 return check_mnt(real_mount(mnt));
3293 }
3294
3295 bool current_chrooted(void)
3296 {
3297 /* Does the current process have a non-standard root */
3298 struct path ns_root;
3299 struct path fs_root;
3300 bool chrooted;
3301
3302 /* Find the namespace root */
3303 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3304 ns_root.dentry = ns_root.mnt->mnt_root;
3305 path_get(&ns_root);
3306 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3307 ;
3308
3309 get_fs_root(current->fs, &fs_root);
3310
3311 chrooted = !path_equal(&fs_root, &ns_root);
3312
3313 path_put(&fs_root);
3314 path_put(&ns_root);
3315
3316 return chrooted;
3317 }
3318
3319 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3320 int *new_mnt_flags)
3321 {
3322 int new_flags = *new_mnt_flags;
3323 struct mount *mnt;
3324 bool visible = false;
3325
3326 down_read(&namespace_sem);
3327 list_for_each_entry(mnt, &ns->list, mnt_list) {
3328 struct mount *child;
3329 int mnt_flags;
3330
3331 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3332 continue;
3333
3334 /* This mount is not fully visible if it's root directory
3335 * is not the root directory of the filesystem.
3336 */
3337 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3338 continue;
3339
3340 /* A local view of the mount flags */
3341 mnt_flags = mnt->mnt.mnt_flags;
3342
3343 /* Don't miss readonly hidden in the superblock flags */
3344 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3345 mnt_flags |= MNT_LOCK_READONLY;
3346
3347 /* Verify the mount flags are equal to or more permissive
3348 * than the proposed new mount.
3349 */
3350 if ((mnt_flags & MNT_LOCK_READONLY) &&
3351 !(new_flags & MNT_READONLY))
3352 continue;
3353 if ((mnt_flags & MNT_LOCK_ATIME) &&
3354 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3355 continue;
3356
3357 /* This mount is not fully visible if there are any
3358 * locked child mounts that cover anything except for
3359 * empty directories.
3360 */
3361 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3362 struct inode *inode = child->mnt_mountpoint->d_inode;
3363 /* Only worry about locked mounts */
3364 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3365 continue;
3366 /* Is the directory permanetly empty? */
3367 if (!is_empty_dir_inode(inode))
3368 goto next;
3369 }
3370 /* Preserve the locked attributes */
3371 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3372 MNT_LOCK_ATIME);
3373 visible = true;
3374 goto found;
3375 next: ;
3376 }
3377 found:
3378 up_read(&namespace_sem);
3379 return visible;
3380 }
3381
3382 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3383 {
3384 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3385 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3386 unsigned long s_iflags;
3387
3388 if (ns->user_ns == &init_user_ns)
3389 return false;
3390
3391 /* Can this filesystem be too revealing? */
3392 s_iflags = mnt->mnt_sb->s_iflags;
3393 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3394 return false;
3395
3396 if ((s_iflags & required_iflags) != required_iflags) {
3397 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3398 required_iflags);
3399 return true;
3400 }
3401
3402 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3403 }
3404
3405 bool mnt_may_suid(struct vfsmount *mnt)
3406 {
3407 /*
3408 * Foreign mounts (accessed via fchdir or through /proc
3409 * symlinks) are always treated as if they are nosuid. This
3410 * prevents namespaces from trusting potentially unsafe
3411 * suid/sgid bits, file caps, or security labels that originate
3412 * in other namespaces.
3413 */
3414 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3415 current_in_userns(mnt->mnt_sb->s_user_ns);
3416 }
3417
3418 static struct ns_common *mntns_get(struct task_struct *task)
3419 {
3420 struct ns_common *ns = NULL;
3421 struct nsproxy *nsproxy;
3422
3423 task_lock(task);
3424 nsproxy = task->nsproxy;
3425 if (nsproxy) {
3426 ns = &nsproxy->mnt_ns->ns;
3427 get_mnt_ns(to_mnt_ns(ns));
3428 }
3429 task_unlock(task);
3430
3431 return ns;
3432 }
3433
3434 static void mntns_put(struct ns_common *ns)
3435 {
3436 put_mnt_ns(to_mnt_ns(ns));
3437 }
3438
3439 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3440 {
3441 struct fs_struct *fs = current->fs;
3442 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3443 struct path root;
3444
3445 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3446 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3447 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3448 return -EPERM;
3449
3450 if (fs->users != 1)
3451 return -EINVAL;
3452
3453 get_mnt_ns(mnt_ns);
3454 put_mnt_ns(nsproxy->mnt_ns);
3455 nsproxy->mnt_ns = mnt_ns;
3456
3457 /* Find the root */
3458 root.mnt = &mnt_ns->root->mnt;
3459 root.dentry = mnt_ns->root->mnt.mnt_root;
3460 path_get(&root);
3461 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3462 ;
3463
3464 /* Update the pwd and root */
3465 set_fs_pwd(fs, &root);
3466 set_fs_root(fs, &root);
3467
3468 path_put(&root);
3469 return 0;
3470 }
3471
3472 static struct user_namespace *mntns_owner(struct ns_common *ns)
3473 {
3474 return to_mnt_ns(ns)->user_ns;
3475 }
3476
3477 const struct proc_ns_operations mntns_operations = {
3478 .name = "mnt",
3479 .type = CLONE_NEWNS,
3480 .get = mntns_get,
3481 .put = mntns_put,
3482 .install = mntns_install,
3483 .owner = mntns_owner,
3484 };