]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/namespace.c
Merge tag 'media/v4.10-4' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[mirror_ubuntu-zesty-kernel.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
29
30 /* Maximum number of mounts in a mount namespace */
31 unsigned int sysctl_mount_max __read_mostly = 100000;
32
33 static unsigned int m_hash_mask __read_mostly;
34 static unsigned int m_hash_shift __read_mostly;
35 static unsigned int mp_hash_mask __read_mostly;
36 static unsigned int mp_hash_shift __read_mostly;
37
38 static __initdata unsigned long mhash_entries;
39 static int __init set_mhash_entries(char *str)
40 {
41 if (!str)
42 return 0;
43 mhash_entries = simple_strtoul(str, &str, 0);
44 return 1;
45 }
46 __setup("mhash_entries=", set_mhash_entries);
47
48 static __initdata unsigned long mphash_entries;
49 static int __init set_mphash_entries(char *str)
50 {
51 if (!str)
52 return 0;
53 mphash_entries = simple_strtoul(str, &str, 0);
54 return 1;
55 }
56 __setup("mphash_entries=", set_mphash_entries);
57
58 static u64 event;
59 static DEFINE_IDA(mnt_id_ida);
60 static DEFINE_IDA(mnt_group_ida);
61 static DEFINE_SPINLOCK(mnt_id_lock);
62 static int mnt_id_start = 0;
63 static int mnt_group_start = 1;
64
65 static struct hlist_head *mount_hashtable __read_mostly;
66 static struct hlist_head *mountpoint_hashtable __read_mostly;
67 static struct kmem_cache *mnt_cache __read_mostly;
68 static DECLARE_RWSEM(namespace_sem);
69
70 /* /sys/fs */
71 struct kobject *fs_kobj;
72 EXPORT_SYMBOL_GPL(fs_kobj);
73
74 /*
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
77 * up the tree.
78 *
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
81 */
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
83
84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
85 {
86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
88 tmp = tmp + (tmp >> m_hash_shift);
89 return &mount_hashtable[tmp & m_hash_mask];
90 }
91
92 static inline struct hlist_head *mp_hash(struct dentry *dentry)
93 {
94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 tmp = tmp + (tmp >> mp_hash_shift);
96 return &mountpoint_hashtable[tmp & mp_hash_mask];
97 }
98
99 static int mnt_alloc_id(struct mount *mnt)
100 {
101 int res;
102
103 retry:
104 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
105 spin_lock(&mnt_id_lock);
106 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
107 if (!res)
108 mnt_id_start = mnt->mnt_id + 1;
109 spin_unlock(&mnt_id_lock);
110 if (res == -EAGAIN)
111 goto retry;
112
113 return res;
114 }
115
116 static void mnt_free_id(struct mount *mnt)
117 {
118 int id = mnt->mnt_id;
119 spin_lock(&mnt_id_lock);
120 ida_remove(&mnt_id_ida, id);
121 if (mnt_id_start > id)
122 mnt_id_start = id;
123 spin_unlock(&mnt_id_lock);
124 }
125
126 /*
127 * Allocate a new peer group ID
128 *
129 * mnt_group_ida is protected by namespace_sem
130 */
131 static int mnt_alloc_group_id(struct mount *mnt)
132 {
133 int res;
134
135 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
136 return -ENOMEM;
137
138 res = ida_get_new_above(&mnt_group_ida,
139 mnt_group_start,
140 &mnt->mnt_group_id);
141 if (!res)
142 mnt_group_start = mnt->mnt_group_id + 1;
143
144 return res;
145 }
146
147 /*
148 * Release a peer group ID
149 */
150 void mnt_release_group_id(struct mount *mnt)
151 {
152 int id = mnt->mnt_group_id;
153 ida_remove(&mnt_group_ida, id);
154 if (mnt_group_start > id)
155 mnt_group_start = id;
156 mnt->mnt_group_id = 0;
157 }
158
159 /*
160 * vfsmount lock must be held for read
161 */
162 static inline void mnt_add_count(struct mount *mnt, int n)
163 {
164 #ifdef CONFIG_SMP
165 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
166 #else
167 preempt_disable();
168 mnt->mnt_count += n;
169 preempt_enable();
170 #endif
171 }
172
173 /*
174 * vfsmount lock must be held for write
175 */
176 unsigned int mnt_get_count(struct mount *mnt)
177 {
178 #ifdef CONFIG_SMP
179 unsigned int count = 0;
180 int cpu;
181
182 for_each_possible_cpu(cpu) {
183 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
184 }
185
186 return count;
187 #else
188 return mnt->mnt_count;
189 #endif
190 }
191
192 static void drop_mountpoint(struct fs_pin *p)
193 {
194 struct mount *m = container_of(p, struct mount, mnt_umount);
195 dput(m->mnt_ex_mountpoint);
196 pin_remove(p);
197 mntput(&m->mnt);
198 }
199
200 static struct mount *alloc_vfsmnt(const char *name)
201 {
202 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
203 if (mnt) {
204 int err;
205
206 err = mnt_alloc_id(mnt);
207 if (err)
208 goto out_free_cache;
209
210 if (name) {
211 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
212 if (!mnt->mnt_devname)
213 goto out_free_id;
214 }
215
216 #ifdef CONFIG_SMP
217 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
218 if (!mnt->mnt_pcp)
219 goto out_free_devname;
220
221 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
222 #else
223 mnt->mnt_count = 1;
224 mnt->mnt_writers = 0;
225 #endif
226
227 INIT_HLIST_NODE(&mnt->mnt_hash);
228 INIT_LIST_HEAD(&mnt->mnt_child);
229 INIT_LIST_HEAD(&mnt->mnt_mounts);
230 INIT_LIST_HEAD(&mnt->mnt_list);
231 INIT_LIST_HEAD(&mnt->mnt_expire);
232 INIT_LIST_HEAD(&mnt->mnt_share);
233 INIT_LIST_HEAD(&mnt->mnt_slave_list);
234 INIT_LIST_HEAD(&mnt->mnt_slave);
235 INIT_HLIST_NODE(&mnt->mnt_mp_list);
236 #ifdef CONFIG_FSNOTIFY
237 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
238 #endif
239 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
240 }
241 return mnt;
242
243 #ifdef CONFIG_SMP
244 out_free_devname:
245 kfree_const(mnt->mnt_devname);
246 #endif
247 out_free_id:
248 mnt_free_id(mnt);
249 out_free_cache:
250 kmem_cache_free(mnt_cache, mnt);
251 return NULL;
252 }
253
254 /*
255 * Most r/o checks on a fs are for operations that take
256 * discrete amounts of time, like a write() or unlink().
257 * We must keep track of when those operations start
258 * (for permission checks) and when they end, so that
259 * we can determine when writes are able to occur to
260 * a filesystem.
261 */
262 /*
263 * __mnt_is_readonly: check whether a mount is read-only
264 * @mnt: the mount to check for its write status
265 *
266 * This shouldn't be used directly ouside of the VFS.
267 * It does not guarantee that the filesystem will stay
268 * r/w, just that it is right *now*. This can not and
269 * should not be used in place of IS_RDONLY(inode).
270 * mnt_want/drop_write() will _keep_ the filesystem
271 * r/w.
272 */
273 int __mnt_is_readonly(struct vfsmount *mnt)
274 {
275 if (mnt->mnt_flags & MNT_READONLY)
276 return 1;
277 if (mnt->mnt_sb->s_flags & MS_RDONLY)
278 return 1;
279 return 0;
280 }
281 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
282
283 static inline void mnt_inc_writers(struct mount *mnt)
284 {
285 #ifdef CONFIG_SMP
286 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
287 #else
288 mnt->mnt_writers++;
289 #endif
290 }
291
292 static inline void mnt_dec_writers(struct mount *mnt)
293 {
294 #ifdef CONFIG_SMP
295 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
296 #else
297 mnt->mnt_writers--;
298 #endif
299 }
300
301 static unsigned int mnt_get_writers(struct mount *mnt)
302 {
303 #ifdef CONFIG_SMP
304 unsigned int count = 0;
305 int cpu;
306
307 for_each_possible_cpu(cpu) {
308 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
309 }
310
311 return count;
312 #else
313 return mnt->mnt_writers;
314 #endif
315 }
316
317 static int mnt_is_readonly(struct vfsmount *mnt)
318 {
319 if (mnt->mnt_sb->s_readonly_remount)
320 return 1;
321 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
322 smp_rmb();
323 return __mnt_is_readonly(mnt);
324 }
325
326 /*
327 * Most r/o & frozen checks on a fs are for operations that take discrete
328 * amounts of time, like a write() or unlink(). We must keep track of when
329 * those operations start (for permission checks) and when they end, so that we
330 * can determine when writes are able to occur to a filesystem.
331 */
332 /**
333 * __mnt_want_write - get write access to a mount without freeze protection
334 * @m: the mount on which to take a write
335 *
336 * This tells the low-level filesystem that a write is about to be performed to
337 * it, and makes sure that writes are allowed (mnt it read-write) before
338 * returning success. This operation does not protect against filesystem being
339 * frozen. When the write operation is finished, __mnt_drop_write() must be
340 * called. This is effectively a refcount.
341 */
342 int __mnt_want_write(struct vfsmount *m)
343 {
344 struct mount *mnt = real_mount(m);
345 int ret = 0;
346
347 preempt_disable();
348 mnt_inc_writers(mnt);
349 /*
350 * The store to mnt_inc_writers must be visible before we pass
351 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
352 * incremented count after it has set MNT_WRITE_HOLD.
353 */
354 smp_mb();
355 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
356 cpu_relax();
357 /*
358 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
359 * be set to match its requirements. So we must not load that until
360 * MNT_WRITE_HOLD is cleared.
361 */
362 smp_rmb();
363 if (mnt_is_readonly(m)) {
364 mnt_dec_writers(mnt);
365 ret = -EROFS;
366 }
367 preempt_enable();
368
369 return ret;
370 }
371
372 /**
373 * mnt_want_write - get write access to a mount
374 * @m: the mount on which to take a write
375 *
376 * This tells the low-level filesystem that a write is about to be performed to
377 * it, and makes sure that writes are allowed (mount is read-write, filesystem
378 * is not frozen) before returning success. When the write operation is
379 * finished, mnt_drop_write() must be called. This is effectively a refcount.
380 */
381 int mnt_want_write(struct vfsmount *m)
382 {
383 int ret;
384
385 sb_start_write(m->mnt_sb);
386 ret = __mnt_want_write(m);
387 if (ret)
388 sb_end_write(m->mnt_sb);
389 return ret;
390 }
391 EXPORT_SYMBOL_GPL(mnt_want_write);
392
393 /**
394 * mnt_clone_write - get write access to a mount
395 * @mnt: the mount on which to take a write
396 *
397 * This is effectively like mnt_want_write, except
398 * it must only be used to take an extra write reference
399 * on a mountpoint that we already know has a write reference
400 * on it. This allows some optimisation.
401 *
402 * After finished, mnt_drop_write must be called as usual to
403 * drop the reference.
404 */
405 int mnt_clone_write(struct vfsmount *mnt)
406 {
407 /* superblock may be r/o */
408 if (__mnt_is_readonly(mnt))
409 return -EROFS;
410 preempt_disable();
411 mnt_inc_writers(real_mount(mnt));
412 preempt_enable();
413 return 0;
414 }
415 EXPORT_SYMBOL_GPL(mnt_clone_write);
416
417 /**
418 * __mnt_want_write_file - get write access to a file's mount
419 * @file: the file who's mount on which to take a write
420 *
421 * This is like __mnt_want_write, but it takes a file and can
422 * do some optimisations if the file is open for write already
423 */
424 int __mnt_want_write_file(struct file *file)
425 {
426 if (!(file->f_mode & FMODE_WRITER))
427 return __mnt_want_write(file->f_path.mnt);
428 else
429 return mnt_clone_write(file->f_path.mnt);
430 }
431
432 /**
433 * mnt_want_write_file - get write access to a file's mount
434 * @file: the file who's mount on which to take a write
435 *
436 * This is like mnt_want_write, but it takes a file and can
437 * do some optimisations if the file is open for write already
438 */
439 int mnt_want_write_file(struct file *file)
440 {
441 int ret;
442
443 sb_start_write(file->f_path.mnt->mnt_sb);
444 ret = __mnt_want_write_file(file);
445 if (ret)
446 sb_end_write(file->f_path.mnt->mnt_sb);
447 return ret;
448 }
449 EXPORT_SYMBOL_GPL(mnt_want_write_file);
450
451 /**
452 * __mnt_drop_write - give up write access to a mount
453 * @mnt: the mount on which to give up write access
454 *
455 * Tells the low-level filesystem that we are done
456 * performing writes to it. Must be matched with
457 * __mnt_want_write() call above.
458 */
459 void __mnt_drop_write(struct vfsmount *mnt)
460 {
461 preempt_disable();
462 mnt_dec_writers(real_mount(mnt));
463 preempt_enable();
464 }
465
466 /**
467 * mnt_drop_write - give up write access to a mount
468 * @mnt: the mount on which to give up write access
469 *
470 * Tells the low-level filesystem that we are done performing writes to it and
471 * also allows filesystem to be frozen again. Must be matched with
472 * mnt_want_write() call above.
473 */
474 void mnt_drop_write(struct vfsmount *mnt)
475 {
476 __mnt_drop_write(mnt);
477 sb_end_write(mnt->mnt_sb);
478 }
479 EXPORT_SYMBOL_GPL(mnt_drop_write);
480
481 void __mnt_drop_write_file(struct file *file)
482 {
483 __mnt_drop_write(file->f_path.mnt);
484 }
485
486 void mnt_drop_write_file(struct file *file)
487 {
488 mnt_drop_write(file->f_path.mnt);
489 }
490 EXPORT_SYMBOL(mnt_drop_write_file);
491
492 static int mnt_make_readonly(struct mount *mnt)
493 {
494 int ret = 0;
495
496 lock_mount_hash();
497 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
498 /*
499 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
500 * should be visible before we do.
501 */
502 smp_mb();
503
504 /*
505 * With writers on hold, if this value is zero, then there are
506 * definitely no active writers (although held writers may subsequently
507 * increment the count, they'll have to wait, and decrement it after
508 * seeing MNT_READONLY).
509 *
510 * It is OK to have counter incremented on one CPU and decremented on
511 * another: the sum will add up correctly. The danger would be when we
512 * sum up each counter, if we read a counter before it is incremented,
513 * but then read another CPU's count which it has been subsequently
514 * decremented from -- we would see more decrements than we should.
515 * MNT_WRITE_HOLD protects against this scenario, because
516 * mnt_want_write first increments count, then smp_mb, then spins on
517 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
518 * we're counting up here.
519 */
520 if (mnt_get_writers(mnt) > 0)
521 ret = -EBUSY;
522 else
523 mnt->mnt.mnt_flags |= MNT_READONLY;
524 /*
525 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
526 * that become unheld will see MNT_READONLY.
527 */
528 smp_wmb();
529 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
530 unlock_mount_hash();
531 return ret;
532 }
533
534 static void __mnt_unmake_readonly(struct mount *mnt)
535 {
536 lock_mount_hash();
537 mnt->mnt.mnt_flags &= ~MNT_READONLY;
538 unlock_mount_hash();
539 }
540
541 int sb_prepare_remount_readonly(struct super_block *sb)
542 {
543 struct mount *mnt;
544 int err = 0;
545
546 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
547 if (atomic_long_read(&sb->s_remove_count))
548 return -EBUSY;
549
550 lock_mount_hash();
551 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
552 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
553 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
554 smp_mb();
555 if (mnt_get_writers(mnt) > 0) {
556 err = -EBUSY;
557 break;
558 }
559 }
560 }
561 if (!err && atomic_long_read(&sb->s_remove_count))
562 err = -EBUSY;
563
564 if (!err) {
565 sb->s_readonly_remount = 1;
566 smp_wmb();
567 }
568 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
569 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
570 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
571 }
572 unlock_mount_hash();
573
574 return err;
575 }
576
577 static void free_vfsmnt(struct mount *mnt)
578 {
579 kfree_const(mnt->mnt_devname);
580 #ifdef CONFIG_SMP
581 free_percpu(mnt->mnt_pcp);
582 #endif
583 kmem_cache_free(mnt_cache, mnt);
584 }
585
586 static void delayed_free_vfsmnt(struct rcu_head *head)
587 {
588 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
589 }
590
591 /* call under rcu_read_lock */
592 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
593 {
594 struct mount *mnt;
595 if (read_seqretry(&mount_lock, seq))
596 return 1;
597 if (bastard == NULL)
598 return 0;
599 mnt = real_mount(bastard);
600 mnt_add_count(mnt, 1);
601 if (likely(!read_seqretry(&mount_lock, seq)))
602 return 0;
603 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
604 mnt_add_count(mnt, -1);
605 return 1;
606 }
607 return -1;
608 }
609
610 /* call under rcu_read_lock */
611 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
612 {
613 int res = __legitimize_mnt(bastard, seq);
614 if (likely(!res))
615 return true;
616 if (unlikely(res < 0)) {
617 rcu_read_unlock();
618 mntput(bastard);
619 rcu_read_lock();
620 }
621 return false;
622 }
623
624 /*
625 * find the first mount at @dentry on vfsmount @mnt.
626 * call under rcu_read_lock()
627 */
628 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
629 {
630 struct hlist_head *head = m_hash(mnt, dentry);
631 struct mount *p;
632
633 hlist_for_each_entry_rcu(p, head, mnt_hash)
634 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
635 return p;
636 return NULL;
637 }
638
639 /*
640 * find the last mount at @dentry on vfsmount @mnt.
641 * mount_lock must be held.
642 */
643 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
644 {
645 struct mount *p, *res = NULL;
646 p = __lookup_mnt(mnt, dentry);
647 if (!p)
648 goto out;
649 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
650 res = p;
651 hlist_for_each_entry_continue(p, mnt_hash) {
652 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
653 break;
654 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
655 res = p;
656 }
657 out:
658 return res;
659 }
660
661 /*
662 * lookup_mnt - Return the first child mount mounted at path
663 *
664 * "First" means first mounted chronologically. If you create the
665 * following mounts:
666 *
667 * mount /dev/sda1 /mnt
668 * mount /dev/sda2 /mnt
669 * mount /dev/sda3 /mnt
670 *
671 * Then lookup_mnt() on the base /mnt dentry in the root mount will
672 * return successively the root dentry and vfsmount of /dev/sda1, then
673 * /dev/sda2, then /dev/sda3, then NULL.
674 *
675 * lookup_mnt takes a reference to the found vfsmount.
676 */
677 struct vfsmount *lookup_mnt(const struct path *path)
678 {
679 struct mount *child_mnt;
680 struct vfsmount *m;
681 unsigned seq;
682
683 rcu_read_lock();
684 do {
685 seq = read_seqbegin(&mount_lock);
686 child_mnt = __lookup_mnt(path->mnt, path->dentry);
687 m = child_mnt ? &child_mnt->mnt : NULL;
688 } while (!legitimize_mnt(m, seq));
689 rcu_read_unlock();
690 return m;
691 }
692
693 /*
694 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
695 * current mount namespace.
696 *
697 * The common case is dentries are not mountpoints at all and that
698 * test is handled inline. For the slow case when we are actually
699 * dealing with a mountpoint of some kind, walk through all of the
700 * mounts in the current mount namespace and test to see if the dentry
701 * is a mountpoint.
702 *
703 * The mount_hashtable is not usable in the context because we
704 * need to identify all mounts that may be in the current mount
705 * namespace not just a mount that happens to have some specified
706 * parent mount.
707 */
708 bool __is_local_mountpoint(struct dentry *dentry)
709 {
710 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
711 struct mount *mnt;
712 bool is_covered = false;
713
714 if (!d_mountpoint(dentry))
715 goto out;
716
717 down_read(&namespace_sem);
718 list_for_each_entry(mnt, &ns->list, mnt_list) {
719 is_covered = (mnt->mnt_mountpoint == dentry);
720 if (is_covered)
721 break;
722 }
723 up_read(&namespace_sem);
724 out:
725 return is_covered;
726 }
727
728 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
729 {
730 struct hlist_head *chain = mp_hash(dentry);
731 struct mountpoint *mp;
732
733 hlist_for_each_entry(mp, chain, m_hash) {
734 if (mp->m_dentry == dentry) {
735 /* might be worth a WARN_ON() */
736 if (d_unlinked(dentry))
737 return ERR_PTR(-ENOENT);
738 mp->m_count++;
739 return mp;
740 }
741 }
742 return NULL;
743 }
744
745 static struct mountpoint *get_mountpoint(struct dentry *dentry)
746 {
747 struct mountpoint *mp, *new = NULL;
748 int ret;
749
750 if (d_mountpoint(dentry)) {
751 mountpoint:
752 read_seqlock_excl(&mount_lock);
753 mp = lookup_mountpoint(dentry);
754 read_sequnlock_excl(&mount_lock);
755 if (mp)
756 goto done;
757 }
758
759 if (!new)
760 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
761 if (!new)
762 return ERR_PTR(-ENOMEM);
763
764
765 /* Exactly one processes may set d_mounted */
766 ret = d_set_mounted(dentry);
767
768 /* Someone else set d_mounted? */
769 if (ret == -EBUSY)
770 goto mountpoint;
771
772 /* The dentry is not available as a mountpoint? */
773 mp = ERR_PTR(ret);
774 if (ret)
775 goto done;
776
777 /* Add the new mountpoint to the hash table */
778 read_seqlock_excl(&mount_lock);
779 new->m_dentry = dentry;
780 new->m_count = 1;
781 hlist_add_head(&new->m_hash, mp_hash(dentry));
782 INIT_HLIST_HEAD(&new->m_list);
783 read_sequnlock_excl(&mount_lock);
784
785 mp = new;
786 new = NULL;
787 done:
788 kfree(new);
789 return mp;
790 }
791
792 static void put_mountpoint(struct mountpoint *mp)
793 {
794 if (!--mp->m_count) {
795 struct dentry *dentry = mp->m_dentry;
796 BUG_ON(!hlist_empty(&mp->m_list));
797 spin_lock(&dentry->d_lock);
798 dentry->d_flags &= ~DCACHE_MOUNTED;
799 spin_unlock(&dentry->d_lock);
800 hlist_del(&mp->m_hash);
801 kfree(mp);
802 }
803 }
804
805 static inline int check_mnt(struct mount *mnt)
806 {
807 return mnt->mnt_ns == current->nsproxy->mnt_ns;
808 }
809
810 /*
811 * vfsmount lock must be held for write
812 */
813 static void touch_mnt_namespace(struct mnt_namespace *ns)
814 {
815 if (ns) {
816 ns->event = ++event;
817 wake_up_interruptible(&ns->poll);
818 }
819 }
820
821 /*
822 * vfsmount lock must be held for write
823 */
824 static void __touch_mnt_namespace(struct mnt_namespace *ns)
825 {
826 if (ns && ns->event != event) {
827 ns->event = event;
828 wake_up_interruptible(&ns->poll);
829 }
830 }
831
832 /*
833 * vfsmount lock must be held for write
834 */
835 static void unhash_mnt(struct mount *mnt)
836 {
837 mnt->mnt_parent = mnt;
838 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
839 list_del_init(&mnt->mnt_child);
840 hlist_del_init_rcu(&mnt->mnt_hash);
841 hlist_del_init(&mnt->mnt_mp_list);
842 put_mountpoint(mnt->mnt_mp);
843 mnt->mnt_mp = NULL;
844 }
845
846 /*
847 * vfsmount lock must be held for write
848 */
849 static void detach_mnt(struct mount *mnt, struct path *old_path)
850 {
851 old_path->dentry = mnt->mnt_mountpoint;
852 old_path->mnt = &mnt->mnt_parent->mnt;
853 unhash_mnt(mnt);
854 }
855
856 /*
857 * vfsmount lock must be held for write
858 */
859 static void umount_mnt(struct mount *mnt)
860 {
861 /* old mountpoint will be dropped when we can do that */
862 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
863 unhash_mnt(mnt);
864 }
865
866 /*
867 * vfsmount lock must be held for write
868 */
869 void mnt_set_mountpoint(struct mount *mnt,
870 struct mountpoint *mp,
871 struct mount *child_mnt)
872 {
873 mp->m_count++;
874 mnt_add_count(mnt, 1); /* essentially, that's mntget */
875 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
876 child_mnt->mnt_parent = mnt;
877 child_mnt->mnt_mp = mp;
878 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
879 }
880
881 /*
882 * vfsmount lock must be held for write
883 */
884 static void attach_mnt(struct mount *mnt,
885 struct mount *parent,
886 struct mountpoint *mp)
887 {
888 mnt_set_mountpoint(parent, mp, mnt);
889 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
890 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
891 }
892
893 static void attach_shadowed(struct mount *mnt,
894 struct mount *parent,
895 struct mount *shadows)
896 {
897 if (shadows) {
898 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
899 list_add(&mnt->mnt_child, &shadows->mnt_child);
900 } else {
901 hlist_add_head_rcu(&mnt->mnt_hash,
902 m_hash(&parent->mnt, mnt->mnt_mountpoint));
903 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
904 }
905 }
906
907 /*
908 * vfsmount lock must be held for write
909 */
910 static void commit_tree(struct mount *mnt, struct mount *shadows)
911 {
912 struct mount *parent = mnt->mnt_parent;
913 struct mount *m;
914 LIST_HEAD(head);
915 struct mnt_namespace *n = parent->mnt_ns;
916
917 BUG_ON(parent == mnt);
918
919 list_add_tail(&head, &mnt->mnt_list);
920 list_for_each_entry(m, &head, mnt_list)
921 m->mnt_ns = n;
922
923 list_splice(&head, n->list.prev);
924
925 n->mounts += n->pending_mounts;
926 n->pending_mounts = 0;
927
928 attach_shadowed(mnt, parent, shadows);
929 touch_mnt_namespace(n);
930 }
931
932 static struct mount *next_mnt(struct mount *p, struct mount *root)
933 {
934 struct list_head *next = p->mnt_mounts.next;
935 if (next == &p->mnt_mounts) {
936 while (1) {
937 if (p == root)
938 return NULL;
939 next = p->mnt_child.next;
940 if (next != &p->mnt_parent->mnt_mounts)
941 break;
942 p = p->mnt_parent;
943 }
944 }
945 return list_entry(next, struct mount, mnt_child);
946 }
947
948 static struct mount *skip_mnt_tree(struct mount *p)
949 {
950 struct list_head *prev = p->mnt_mounts.prev;
951 while (prev != &p->mnt_mounts) {
952 p = list_entry(prev, struct mount, mnt_child);
953 prev = p->mnt_mounts.prev;
954 }
955 return p;
956 }
957
958 struct vfsmount *
959 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
960 {
961 struct mount *mnt;
962 struct dentry *root;
963
964 if (!type)
965 return ERR_PTR(-ENODEV);
966
967 mnt = alloc_vfsmnt(name);
968 if (!mnt)
969 return ERR_PTR(-ENOMEM);
970
971 if (flags & MS_KERNMOUNT)
972 mnt->mnt.mnt_flags = MNT_INTERNAL;
973
974 root = mount_fs(type, flags, name, data);
975 if (IS_ERR(root)) {
976 mnt_free_id(mnt);
977 free_vfsmnt(mnt);
978 return ERR_CAST(root);
979 }
980
981 mnt->mnt.mnt_root = root;
982 mnt->mnt.mnt_sb = root->d_sb;
983 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
984 mnt->mnt_parent = mnt;
985 lock_mount_hash();
986 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
987 unlock_mount_hash();
988 return &mnt->mnt;
989 }
990 EXPORT_SYMBOL_GPL(vfs_kern_mount);
991
992 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
993 int flag)
994 {
995 struct super_block *sb = old->mnt.mnt_sb;
996 struct mount *mnt;
997 int err;
998
999 mnt = alloc_vfsmnt(old->mnt_devname);
1000 if (!mnt)
1001 return ERR_PTR(-ENOMEM);
1002
1003 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1004 mnt->mnt_group_id = 0; /* not a peer of original */
1005 else
1006 mnt->mnt_group_id = old->mnt_group_id;
1007
1008 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1009 err = mnt_alloc_group_id(mnt);
1010 if (err)
1011 goto out_free;
1012 }
1013
1014 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
1015 /* Don't allow unprivileged users to change mount flags */
1016 if (flag & CL_UNPRIVILEGED) {
1017 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1018
1019 if (mnt->mnt.mnt_flags & MNT_READONLY)
1020 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1021
1022 if (mnt->mnt.mnt_flags & MNT_NODEV)
1023 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1024
1025 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1026 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1027
1028 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1029 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1030 }
1031
1032 /* Don't allow unprivileged users to reveal what is under a mount */
1033 if ((flag & CL_UNPRIVILEGED) &&
1034 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1035 mnt->mnt.mnt_flags |= MNT_LOCKED;
1036
1037 atomic_inc(&sb->s_active);
1038 mnt->mnt.mnt_sb = sb;
1039 mnt->mnt.mnt_root = dget(root);
1040 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1041 mnt->mnt_parent = mnt;
1042 lock_mount_hash();
1043 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1044 unlock_mount_hash();
1045
1046 if ((flag & CL_SLAVE) ||
1047 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1048 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1049 mnt->mnt_master = old;
1050 CLEAR_MNT_SHARED(mnt);
1051 } else if (!(flag & CL_PRIVATE)) {
1052 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1053 list_add(&mnt->mnt_share, &old->mnt_share);
1054 if (IS_MNT_SLAVE(old))
1055 list_add(&mnt->mnt_slave, &old->mnt_slave);
1056 mnt->mnt_master = old->mnt_master;
1057 } else {
1058 CLEAR_MNT_SHARED(mnt);
1059 }
1060 if (flag & CL_MAKE_SHARED)
1061 set_mnt_shared(mnt);
1062
1063 /* stick the duplicate mount on the same expiry list
1064 * as the original if that was on one */
1065 if (flag & CL_EXPIRE) {
1066 if (!list_empty(&old->mnt_expire))
1067 list_add(&mnt->mnt_expire, &old->mnt_expire);
1068 }
1069
1070 return mnt;
1071
1072 out_free:
1073 mnt_free_id(mnt);
1074 free_vfsmnt(mnt);
1075 return ERR_PTR(err);
1076 }
1077
1078 static void cleanup_mnt(struct mount *mnt)
1079 {
1080 /*
1081 * This probably indicates that somebody messed
1082 * up a mnt_want/drop_write() pair. If this
1083 * happens, the filesystem was probably unable
1084 * to make r/w->r/o transitions.
1085 */
1086 /*
1087 * The locking used to deal with mnt_count decrement provides barriers,
1088 * so mnt_get_writers() below is safe.
1089 */
1090 WARN_ON(mnt_get_writers(mnt));
1091 if (unlikely(mnt->mnt_pins.first))
1092 mnt_pin_kill(mnt);
1093 fsnotify_vfsmount_delete(&mnt->mnt);
1094 dput(mnt->mnt.mnt_root);
1095 deactivate_super(mnt->mnt.mnt_sb);
1096 mnt_free_id(mnt);
1097 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1098 }
1099
1100 static void __cleanup_mnt(struct rcu_head *head)
1101 {
1102 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1103 }
1104
1105 static LLIST_HEAD(delayed_mntput_list);
1106 static void delayed_mntput(struct work_struct *unused)
1107 {
1108 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1109 struct llist_node *next;
1110
1111 for (; node; node = next) {
1112 next = llist_next(node);
1113 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1114 }
1115 }
1116 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1117
1118 static void mntput_no_expire(struct mount *mnt)
1119 {
1120 rcu_read_lock();
1121 mnt_add_count(mnt, -1);
1122 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1123 rcu_read_unlock();
1124 return;
1125 }
1126 lock_mount_hash();
1127 if (mnt_get_count(mnt)) {
1128 rcu_read_unlock();
1129 unlock_mount_hash();
1130 return;
1131 }
1132 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1133 rcu_read_unlock();
1134 unlock_mount_hash();
1135 return;
1136 }
1137 mnt->mnt.mnt_flags |= MNT_DOOMED;
1138 rcu_read_unlock();
1139
1140 list_del(&mnt->mnt_instance);
1141
1142 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1143 struct mount *p, *tmp;
1144 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1145 umount_mnt(p);
1146 }
1147 }
1148 unlock_mount_hash();
1149
1150 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1151 struct task_struct *task = current;
1152 if (likely(!(task->flags & PF_KTHREAD))) {
1153 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1154 if (!task_work_add(task, &mnt->mnt_rcu, true))
1155 return;
1156 }
1157 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1158 schedule_delayed_work(&delayed_mntput_work, 1);
1159 return;
1160 }
1161 cleanup_mnt(mnt);
1162 }
1163
1164 void mntput(struct vfsmount *mnt)
1165 {
1166 if (mnt) {
1167 struct mount *m = real_mount(mnt);
1168 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1169 if (unlikely(m->mnt_expiry_mark))
1170 m->mnt_expiry_mark = 0;
1171 mntput_no_expire(m);
1172 }
1173 }
1174 EXPORT_SYMBOL(mntput);
1175
1176 struct vfsmount *mntget(struct vfsmount *mnt)
1177 {
1178 if (mnt)
1179 mnt_add_count(real_mount(mnt), 1);
1180 return mnt;
1181 }
1182 EXPORT_SYMBOL(mntget);
1183
1184 /* path_is_mountpoint() - Check if path is a mount in the current
1185 * namespace.
1186 *
1187 * d_mountpoint() can only be used reliably to establish if a dentry is
1188 * not mounted in any namespace and that common case is handled inline.
1189 * d_mountpoint() isn't aware of the possibility there may be multiple
1190 * mounts using a given dentry in a different namespace. This function
1191 * checks if the passed in path is a mountpoint rather than the dentry
1192 * alone.
1193 */
1194 bool path_is_mountpoint(const struct path *path)
1195 {
1196 unsigned seq;
1197 bool res;
1198
1199 if (!d_mountpoint(path->dentry))
1200 return false;
1201
1202 rcu_read_lock();
1203 do {
1204 seq = read_seqbegin(&mount_lock);
1205 res = __path_is_mountpoint(path);
1206 } while (read_seqretry(&mount_lock, seq));
1207 rcu_read_unlock();
1208
1209 return res;
1210 }
1211 EXPORT_SYMBOL(path_is_mountpoint);
1212
1213 struct vfsmount *mnt_clone_internal(const struct path *path)
1214 {
1215 struct mount *p;
1216 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1217 if (IS_ERR(p))
1218 return ERR_CAST(p);
1219 p->mnt.mnt_flags |= MNT_INTERNAL;
1220 return &p->mnt;
1221 }
1222
1223 static inline void mangle(struct seq_file *m, const char *s)
1224 {
1225 seq_escape(m, s, " \t\n\\");
1226 }
1227
1228 /*
1229 * Simple .show_options callback for filesystems which don't want to
1230 * implement more complex mount option showing.
1231 *
1232 * See also save_mount_options().
1233 */
1234 int generic_show_options(struct seq_file *m, struct dentry *root)
1235 {
1236 const char *options;
1237
1238 rcu_read_lock();
1239 options = rcu_dereference(root->d_sb->s_options);
1240
1241 if (options != NULL && options[0]) {
1242 seq_putc(m, ',');
1243 mangle(m, options);
1244 }
1245 rcu_read_unlock();
1246
1247 return 0;
1248 }
1249 EXPORT_SYMBOL(generic_show_options);
1250
1251 /*
1252 * If filesystem uses generic_show_options(), this function should be
1253 * called from the fill_super() callback.
1254 *
1255 * The .remount_fs callback usually needs to be handled in a special
1256 * way, to make sure, that previous options are not overwritten if the
1257 * remount fails.
1258 *
1259 * Also note, that if the filesystem's .remount_fs function doesn't
1260 * reset all options to their default value, but changes only newly
1261 * given options, then the displayed options will not reflect reality
1262 * any more.
1263 */
1264 void save_mount_options(struct super_block *sb, char *options)
1265 {
1266 BUG_ON(sb->s_options);
1267 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1268 }
1269 EXPORT_SYMBOL(save_mount_options);
1270
1271 void replace_mount_options(struct super_block *sb, char *options)
1272 {
1273 char *old = sb->s_options;
1274 rcu_assign_pointer(sb->s_options, options);
1275 if (old) {
1276 synchronize_rcu();
1277 kfree(old);
1278 }
1279 }
1280 EXPORT_SYMBOL(replace_mount_options);
1281
1282 #ifdef CONFIG_PROC_FS
1283 /* iterator; we want it to have access to namespace_sem, thus here... */
1284 static void *m_start(struct seq_file *m, loff_t *pos)
1285 {
1286 struct proc_mounts *p = m->private;
1287
1288 down_read(&namespace_sem);
1289 if (p->cached_event == p->ns->event) {
1290 void *v = p->cached_mount;
1291 if (*pos == p->cached_index)
1292 return v;
1293 if (*pos == p->cached_index + 1) {
1294 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1295 return p->cached_mount = v;
1296 }
1297 }
1298
1299 p->cached_event = p->ns->event;
1300 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1301 p->cached_index = *pos;
1302 return p->cached_mount;
1303 }
1304
1305 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1306 {
1307 struct proc_mounts *p = m->private;
1308
1309 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1310 p->cached_index = *pos;
1311 return p->cached_mount;
1312 }
1313
1314 static void m_stop(struct seq_file *m, void *v)
1315 {
1316 up_read(&namespace_sem);
1317 }
1318
1319 static int m_show(struct seq_file *m, void *v)
1320 {
1321 struct proc_mounts *p = m->private;
1322 struct mount *r = list_entry(v, struct mount, mnt_list);
1323 return p->show(m, &r->mnt);
1324 }
1325
1326 const struct seq_operations mounts_op = {
1327 .start = m_start,
1328 .next = m_next,
1329 .stop = m_stop,
1330 .show = m_show,
1331 };
1332 #endif /* CONFIG_PROC_FS */
1333
1334 /**
1335 * may_umount_tree - check if a mount tree is busy
1336 * @mnt: root of mount tree
1337 *
1338 * This is called to check if a tree of mounts has any
1339 * open files, pwds, chroots or sub mounts that are
1340 * busy.
1341 */
1342 int may_umount_tree(struct vfsmount *m)
1343 {
1344 struct mount *mnt = real_mount(m);
1345 int actual_refs = 0;
1346 int minimum_refs = 0;
1347 struct mount *p;
1348 BUG_ON(!m);
1349
1350 /* write lock needed for mnt_get_count */
1351 lock_mount_hash();
1352 for (p = mnt; p; p = next_mnt(p, mnt)) {
1353 actual_refs += mnt_get_count(p);
1354 minimum_refs += 2;
1355 }
1356 unlock_mount_hash();
1357
1358 if (actual_refs > minimum_refs)
1359 return 0;
1360
1361 return 1;
1362 }
1363
1364 EXPORT_SYMBOL(may_umount_tree);
1365
1366 /**
1367 * may_umount - check if a mount point is busy
1368 * @mnt: root of mount
1369 *
1370 * This is called to check if a mount point has any
1371 * open files, pwds, chroots or sub mounts. If the
1372 * mount has sub mounts this will return busy
1373 * regardless of whether the sub mounts are busy.
1374 *
1375 * Doesn't take quota and stuff into account. IOW, in some cases it will
1376 * give false negatives. The main reason why it's here is that we need
1377 * a non-destructive way to look for easily umountable filesystems.
1378 */
1379 int may_umount(struct vfsmount *mnt)
1380 {
1381 int ret = 1;
1382 down_read(&namespace_sem);
1383 lock_mount_hash();
1384 if (propagate_mount_busy(real_mount(mnt), 2))
1385 ret = 0;
1386 unlock_mount_hash();
1387 up_read(&namespace_sem);
1388 return ret;
1389 }
1390
1391 EXPORT_SYMBOL(may_umount);
1392
1393 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1394
1395 static void namespace_unlock(void)
1396 {
1397 struct hlist_head head;
1398
1399 hlist_move_list(&unmounted, &head);
1400
1401 up_write(&namespace_sem);
1402
1403 if (likely(hlist_empty(&head)))
1404 return;
1405
1406 synchronize_rcu();
1407
1408 group_pin_kill(&head);
1409 }
1410
1411 static inline void namespace_lock(void)
1412 {
1413 down_write(&namespace_sem);
1414 }
1415
1416 enum umount_tree_flags {
1417 UMOUNT_SYNC = 1,
1418 UMOUNT_PROPAGATE = 2,
1419 UMOUNT_CONNECTED = 4,
1420 };
1421
1422 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1423 {
1424 /* Leaving mounts connected is only valid for lazy umounts */
1425 if (how & UMOUNT_SYNC)
1426 return true;
1427
1428 /* A mount without a parent has nothing to be connected to */
1429 if (!mnt_has_parent(mnt))
1430 return true;
1431
1432 /* Because the reference counting rules change when mounts are
1433 * unmounted and connected, umounted mounts may not be
1434 * connected to mounted mounts.
1435 */
1436 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1437 return true;
1438
1439 /* Has it been requested that the mount remain connected? */
1440 if (how & UMOUNT_CONNECTED)
1441 return false;
1442
1443 /* Is the mount locked such that it needs to remain connected? */
1444 if (IS_MNT_LOCKED(mnt))
1445 return false;
1446
1447 /* By default disconnect the mount */
1448 return true;
1449 }
1450
1451 /*
1452 * mount_lock must be held
1453 * namespace_sem must be held for write
1454 */
1455 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1456 {
1457 LIST_HEAD(tmp_list);
1458 struct mount *p;
1459
1460 if (how & UMOUNT_PROPAGATE)
1461 propagate_mount_unlock(mnt);
1462
1463 /* Gather the mounts to umount */
1464 for (p = mnt; p; p = next_mnt(p, mnt)) {
1465 p->mnt.mnt_flags |= MNT_UMOUNT;
1466 list_move(&p->mnt_list, &tmp_list);
1467 }
1468
1469 /* Hide the mounts from mnt_mounts */
1470 list_for_each_entry(p, &tmp_list, mnt_list) {
1471 list_del_init(&p->mnt_child);
1472 }
1473
1474 /* Add propogated mounts to the tmp_list */
1475 if (how & UMOUNT_PROPAGATE)
1476 propagate_umount(&tmp_list);
1477
1478 while (!list_empty(&tmp_list)) {
1479 struct mnt_namespace *ns;
1480 bool disconnect;
1481 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1482 list_del_init(&p->mnt_expire);
1483 list_del_init(&p->mnt_list);
1484 ns = p->mnt_ns;
1485 if (ns) {
1486 ns->mounts--;
1487 __touch_mnt_namespace(ns);
1488 }
1489 p->mnt_ns = NULL;
1490 if (how & UMOUNT_SYNC)
1491 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1492
1493 disconnect = disconnect_mount(p, how);
1494
1495 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1496 disconnect ? &unmounted : NULL);
1497 if (mnt_has_parent(p)) {
1498 mnt_add_count(p->mnt_parent, -1);
1499 if (!disconnect) {
1500 /* Don't forget about p */
1501 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1502 } else {
1503 umount_mnt(p);
1504 }
1505 }
1506 change_mnt_propagation(p, MS_PRIVATE);
1507 }
1508 }
1509
1510 static void shrink_submounts(struct mount *mnt);
1511
1512 static int do_umount(struct mount *mnt, int flags)
1513 {
1514 struct super_block *sb = mnt->mnt.mnt_sb;
1515 int retval;
1516
1517 retval = security_sb_umount(&mnt->mnt, flags);
1518 if (retval)
1519 return retval;
1520
1521 /*
1522 * Allow userspace to request a mountpoint be expired rather than
1523 * unmounting unconditionally. Unmount only happens if:
1524 * (1) the mark is already set (the mark is cleared by mntput())
1525 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1526 */
1527 if (flags & MNT_EXPIRE) {
1528 if (&mnt->mnt == current->fs->root.mnt ||
1529 flags & (MNT_FORCE | MNT_DETACH))
1530 return -EINVAL;
1531
1532 /*
1533 * probably don't strictly need the lock here if we examined
1534 * all race cases, but it's a slowpath.
1535 */
1536 lock_mount_hash();
1537 if (mnt_get_count(mnt) != 2) {
1538 unlock_mount_hash();
1539 return -EBUSY;
1540 }
1541 unlock_mount_hash();
1542
1543 if (!xchg(&mnt->mnt_expiry_mark, 1))
1544 return -EAGAIN;
1545 }
1546
1547 /*
1548 * If we may have to abort operations to get out of this
1549 * mount, and they will themselves hold resources we must
1550 * allow the fs to do things. In the Unix tradition of
1551 * 'Gee thats tricky lets do it in userspace' the umount_begin
1552 * might fail to complete on the first run through as other tasks
1553 * must return, and the like. Thats for the mount program to worry
1554 * about for the moment.
1555 */
1556
1557 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1558 sb->s_op->umount_begin(sb);
1559 }
1560
1561 /*
1562 * No sense to grab the lock for this test, but test itself looks
1563 * somewhat bogus. Suggestions for better replacement?
1564 * Ho-hum... In principle, we might treat that as umount + switch
1565 * to rootfs. GC would eventually take care of the old vfsmount.
1566 * Actually it makes sense, especially if rootfs would contain a
1567 * /reboot - static binary that would close all descriptors and
1568 * call reboot(9). Then init(8) could umount root and exec /reboot.
1569 */
1570 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1571 /*
1572 * Special case for "unmounting" root ...
1573 * we just try to remount it readonly.
1574 */
1575 if (!capable(CAP_SYS_ADMIN))
1576 return -EPERM;
1577 down_write(&sb->s_umount);
1578 if (!(sb->s_flags & MS_RDONLY))
1579 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1580 up_write(&sb->s_umount);
1581 return retval;
1582 }
1583
1584 namespace_lock();
1585 lock_mount_hash();
1586 event++;
1587
1588 if (flags & MNT_DETACH) {
1589 if (!list_empty(&mnt->mnt_list))
1590 umount_tree(mnt, UMOUNT_PROPAGATE);
1591 retval = 0;
1592 } else {
1593 shrink_submounts(mnt);
1594 retval = -EBUSY;
1595 if (!propagate_mount_busy(mnt, 2)) {
1596 if (!list_empty(&mnt->mnt_list))
1597 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1598 retval = 0;
1599 }
1600 }
1601 unlock_mount_hash();
1602 namespace_unlock();
1603 return retval;
1604 }
1605
1606 /*
1607 * __detach_mounts - lazily unmount all mounts on the specified dentry
1608 *
1609 * During unlink, rmdir, and d_drop it is possible to loose the path
1610 * to an existing mountpoint, and wind up leaking the mount.
1611 * detach_mounts allows lazily unmounting those mounts instead of
1612 * leaking them.
1613 *
1614 * The caller may hold dentry->d_inode->i_mutex.
1615 */
1616 void __detach_mounts(struct dentry *dentry)
1617 {
1618 struct mountpoint *mp;
1619 struct mount *mnt;
1620
1621 namespace_lock();
1622 lock_mount_hash();
1623 mp = lookup_mountpoint(dentry);
1624 if (IS_ERR_OR_NULL(mp))
1625 goto out_unlock;
1626
1627 event++;
1628 while (!hlist_empty(&mp->m_list)) {
1629 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1630 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1631 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1632 umount_mnt(mnt);
1633 }
1634 else umount_tree(mnt, UMOUNT_CONNECTED);
1635 }
1636 put_mountpoint(mp);
1637 out_unlock:
1638 unlock_mount_hash();
1639 namespace_unlock();
1640 }
1641
1642 /*
1643 * Is the caller allowed to modify his namespace?
1644 */
1645 static inline bool may_mount(void)
1646 {
1647 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1648 }
1649
1650 static inline bool may_mandlock(void)
1651 {
1652 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1653 return false;
1654 #endif
1655 return capable(CAP_SYS_ADMIN);
1656 }
1657
1658 /*
1659 * Now umount can handle mount points as well as block devices.
1660 * This is important for filesystems which use unnamed block devices.
1661 *
1662 * We now support a flag for forced unmount like the other 'big iron'
1663 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1664 */
1665
1666 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1667 {
1668 struct path path;
1669 struct mount *mnt;
1670 int retval;
1671 int lookup_flags = 0;
1672
1673 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1674 return -EINVAL;
1675
1676 if (!may_mount())
1677 return -EPERM;
1678
1679 if (!(flags & UMOUNT_NOFOLLOW))
1680 lookup_flags |= LOOKUP_FOLLOW;
1681
1682 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1683 if (retval)
1684 goto out;
1685 mnt = real_mount(path.mnt);
1686 retval = -EINVAL;
1687 if (path.dentry != path.mnt->mnt_root)
1688 goto dput_and_out;
1689 if (!check_mnt(mnt))
1690 goto dput_and_out;
1691 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1692 goto dput_and_out;
1693 retval = -EPERM;
1694 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1695 goto dput_and_out;
1696
1697 retval = do_umount(mnt, flags);
1698 dput_and_out:
1699 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1700 dput(path.dentry);
1701 mntput_no_expire(mnt);
1702 out:
1703 return retval;
1704 }
1705
1706 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1707
1708 /*
1709 * The 2.0 compatible umount. No flags.
1710 */
1711 SYSCALL_DEFINE1(oldumount, char __user *, name)
1712 {
1713 return sys_umount(name, 0);
1714 }
1715
1716 #endif
1717
1718 static bool is_mnt_ns_file(struct dentry *dentry)
1719 {
1720 /* Is this a proxy for a mount namespace? */
1721 return dentry->d_op == &ns_dentry_operations &&
1722 dentry->d_fsdata == &mntns_operations;
1723 }
1724
1725 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1726 {
1727 return container_of(ns, struct mnt_namespace, ns);
1728 }
1729
1730 static bool mnt_ns_loop(struct dentry *dentry)
1731 {
1732 /* Could bind mounting the mount namespace inode cause a
1733 * mount namespace loop?
1734 */
1735 struct mnt_namespace *mnt_ns;
1736 if (!is_mnt_ns_file(dentry))
1737 return false;
1738
1739 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1740 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1741 }
1742
1743 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1744 int flag)
1745 {
1746 struct mount *res, *p, *q, *r, *parent;
1747
1748 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1749 return ERR_PTR(-EINVAL);
1750
1751 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1752 return ERR_PTR(-EINVAL);
1753
1754 res = q = clone_mnt(mnt, dentry, flag);
1755 if (IS_ERR(q))
1756 return q;
1757
1758 q->mnt_mountpoint = mnt->mnt_mountpoint;
1759
1760 p = mnt;
1761 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1762 struct mount *s;
1763 if (!is_subdir(r->mnt_mountpoint, dentry))
1764 continue;
1765
1766 for (s = r; s; s = next_mnt(s, r)) {
1767 struct mount *t = NULL;
1768 if (!(flag & CL_COPY_UNBINDABLE) &&
1769 IS_MNT_UNBINDABLE(s)) {
1770 s = skip_mnt_tree(s);
1771 continue;
1772 }
1773 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1774 is_mnt_ns_file(s->mnt.mnt_root)) {
1775 s = skip_mnt_tree(s);
1776 continue;
1777 }
1778 while (p != s->mnt_parent) {
1779 p = p->mnt_parent;
1780 q = q->mnt_parent;
1781 }
1782 p = s;
1783 parent = q;
1784 q = clone_mnt(p, p->mnt.mnt_root, flag);
1785 if (IS_ERR(q))
1786 goto out;
1787 lock_mount_hash();
1788 list_add_tail(&q->mnt_list, &res->mnt_list);
1789 mnt_set_mountpoint(parent, p->mnt_mp, q);
1790 if (!list_empty(&parent->mnt_mounts)) {
1791 t = list_last_entry(&parent->mnt_mounts,
1792 struct mount, mnt_child);
1793 if (t->mnt_mp != p->mnt_mp)
1794 t = NULL;
1795 }
1796 attach_shadowed(q, parent, t);
1797 unlock_mount_hash();
1798 }
1799 }
1800 return res;
1801 out:
1802 if (res) {
1803 lock_mount_hash();
1804 umount_tree(res, UMOUNT_SYNC);
1805 unlock_mount_hash();
1806 }
1807 return q;
1808 }
1809
1810 /* Caller should check returned pointer for errors */
1811
1812 struct vfsmount *collect_mounts(const struct path *path)
1813 {
1814 struct mount *tree;
1815 namespace_lock();
1816 if (!check_mnt(real_mount(path->mnt)))
1817 tree = ERR_PTR(-EINVAL);
1818 else
1819 tree = copy_tree(real_mount(path->mnt), path->dentry,
1820 CL_COPY_ALL | CL_PRIVATE);
1821 namespace_unlock();
1822 if (IS_ERR(tree))
1823 return ERR_CAST(tree);
1824 return &tree->mnt;
1825 }
1826
1827 void drop_collected_mounts(struct vfsmount *mnt)
1828 {
1829 namespace_lock();
1830 lock_mount_hash();
1831 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1832 unlock_mount_hash();
1833 namespace_unlock();
1834 }
1835
1836 /**
1837 * clone_private_mount - create a private clone of a path
1838 *
1839 * This creates a new vfsmount, which will be the clone of @path. The new will
1840 * not be attached anywhere in the namespace and will be private (i.e. changes
1841 * to the originating mount won't be propagated into this).
1842 *
1843 * Release with mntput().
1844 */
1845 struct vfsmount *clone_private_mount(const struct path *path)
1846 {
1847 struct mount *old_mnt = real_mount(path->mnt);
1848 struct mount *new_mnt;
1849
1850 if (IS_MNT_UNBINDABLE(old_mnt))
1851 return ERR_PTR(-EINVAL);
1852
1853 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1854 if (IS_ERR(new_mnt))
1855 return ERR_CAST(new_mnt);
1856
1857 return &new_mnt->mnt;
1858 }
1859 EXPORT_SYMBOL_GPL(clone_private_mount);
1860
1861 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1862 struct vfsmount *root)
1863 {
1864 struct mount *mnt;
1865 int res = f(root, arg);
1866 if (res)
1867 return res;
1868 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1869 res = f(&mnt->mnt, arg);
1870 if (res)
1871 return res;
1872 }
1873 return 0;
1874 }
1875
1876 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1877 {
1878 struct mount *p;
1879
1880 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1881 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1882 mnt_release_group_id(p);
1883 }
1884 }
1885
1886 static int invent_group_ids(struct mount *mnt, bool recurse)
1887 {
1888 struct mount *p;
1889
1890 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1891 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1892 int err = mnt_alloc_group_id(p);
1893 if (err) {
1894 cleanup_group_ids(mnt, p);
1895 return err;
1896 }
1897 }
1898 }
1899
1900 return 0;
1901 }
1902
1903 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1904 {
1905 unsigned int max = READ_ONCE(sysctl_mount_max);
1906 unsigned int mounts = 0, old, pending, sum;
1907 struct mount *p;
1908
1909 for (p = mnt; p; p = next_mnt(p, mnt))
1910 mounts++;
1911
1912 old = ns->mounts;
1913 pending = ns->pending_mounts;
1914 sum = old + pending;
1915 if ((old > sum) ||
1916 (pending > sum) ||
1917 (max < sum) ||
1918 (mounts > (max - sum)))
1919 return -ENOSPC;
1920
1921 ns->pending_mounts = pending + mounts;
1922 return 0;
1923 }
1924
1925 /*
1926 * @source_mnt : mount tree to be attached
1927 * @nd : place the mount tree @source_mnt is attached
1928 * @parent_nd : if non-null, detach the source_mnt from its parent and
1929 * store the parent mount and mountpoint dentry.
1930 * (done when source_mnt is moved)
1931 *
1932 * NOTE: in the table below explains the semantics when a source mount
1933 * of a given type is attached to a destination mount of a given type.
1934 * ---------------------------------------------------------------------------
1935 * | BIND MOUNT OPERATION |
1936 * |**************************************************************************
1937 * | source-->| shared | private | slave | unbindable |
1938 * | dest | | | | |
1939 * | | | | | | |
1940 * | v | | | | |
1941 * |**************************************************************************
1942 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1943 * | | | | | |
1944 * |non-shared| shared (+) | private | slave (*) | invalid |
1945 * ***************************************************************************
1946 * A bind operation clones the source mount and mounts the clone on the
1947 * destination mount.
1948 *
1949 * (++) the cloned mount is propagated to all the mounts in the propagation
1950 * tree of the destination mount and the cloned mount is added to
1951 * the peer group of the source mount.
1952 * (+) the cloned mount is created under the destination mount and is marked
1953 * as shared. The cloned mount is added to the peer group of the source
1954 * mount.
1955 * (+++) the mount is propagated to all the mounts in the propagation tree
1956 * of the destination mount and the cloned mount is made slave
1957 * of the same master as that of the source mount. The cloned mount
1958 * is marked as 'shared and slave'.
1959 * (*) the cloned mount is made a slave of the same master as that of the
1960 * source mount.
1961 *
1962 * ---------------------------------------------------------------------------
1963 * | MOVE MOUNT OPERATION |
1964 * |**************************************************************************
1965 * | source-->| shared | private | slave | unbindable |
1966 * | dest | | | | |
1967 * | | | | | | |
1968 * | v | | | | |
1969 * |**************************************************************************
1970 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1971 * | | | | | |
1972 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1973 * ***************************************************************************
1974 *
1975 * (+) the mount is moved to the destination. And is then propagated to
1976 * all the mounts in the propagation tree of the destination mount.
1977 * (+*) the mount is moved to the destination.
1978 * (+++) the mount is moved to the destination and is then propagated to
1979 * all the mounts belonging to the destination mount's propagation tree.
1980 * the mount is marked as 'shared and slave'.
1981 * (*) the mount continues to be a slave at the new location.
1982 *
1983 * if the source mount is a tree, the operations explained above is
1984 * applied to each mount in the tree.
1985 * Must be called without spinlocks held, since this function can sleep
1986 * in allocations.
1987 */
1988 static int attach_recursive_mnt(struct mount *source_mnt,
1989 struct mount *dest_mnt,
1990 struct mountpoint *dest_mp,
1991 struct path *parent_path)
1992 {
1993 HLIST_HEAD(tree_list);
1994 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1995 struct mount *child, *p;
1996 struct hlist_node *n;
1997 int err;
1998
1999 /* Is there space to add these mounts to the mount namespace? */
2000 if (!parent_path) {
2001 err = count_mounts(ns, source_mnt);
2002 if (err)
2003 goto out;
2004 }
2005
2006 if (IS_MNT_SHARED(dest_mnt)) {
2007 err = invent_group_ids(source_mnt, true);
2008 if (err)
2009 goto out;
2010 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2011 lock_mount_hash();
2012 if (err)
2013 goto out_cleanup_ids;
2014 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2015 set_mnt_shared(p);
2016 } else {
2017 lock_mount_hash();
2018 }
2019 if (parent_path) {
2020 detach_mnt(source_mnt, parent_path);
2021 attach_mnt(source_mnt, dest_mnt, dest_mp);
2022 touch_mnt_namespace(source_mnt->mnt_ns);
2023 } else {
2024 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2025 commit_tree(source_mnt, NULL);
2026 }
2027
2028 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2029 struct mount *q;
2030 hlist_del_init(&child->mnt_hash);
2031 q = __lookup_mnt_last(&child->mnt_parent->mnt,
2032 child->mnt_mountpoint);
2033 commit_tree(child, q);
2034 }
2035 unlock_mount_hash();
2036
2037 return 0;
2038
2039 out_cleanup_ids:
2040 while (!hlist_empty(&tree_list)) {
2041 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2042 child->mnt_parent->mnt_ns->pending_mounts = 0;
2043 umount_tree(child, UMOUNT_SYNC);
2044 }
2045 unlock_mount_hash();
2046 cleanup_group_ids(source_mnt, NULL);
2047 out:
2048 ns->pending_mounts = 0;
2049 return err;
2050 }
2051
2052 static struct mountpoint *lock_mount(struct path *path)
2053 {
2054 struct vfsmount *mnt;
2055 struct dentry *dentry = path->dentry;
2056 retry:
2057 inode_lock(dentry->d_inode);
2058 if (unlikely(cant_mount(dentry))) {
2059 inode_unlock(dentry->d_inode);
2060 return ERR_PTR(-ENOENT);
2061 }
2062 namespace_lock();
2063 mnt = lookup_mnt(path);
2064 if (likely(!mnt)) {
2065 struct mountpoint *mp = get_mountpoint(dentry);
2066 if (IS_ERR(mp)) {
2067 namespace_unlock();
2068 inode_unlock(dentry->d_inode);
2069 return mp;
2070 }
2071 return mp;
2072 }
2073 namespace_unlock();
2074 inode_unlock(path->dentry->d_inode);
2075 path_put(path);
2076 path->mnt = mnt;
2077 dentry = path->dentry = dget(mnt->mnt_root);
2078 goto retry;
2079 }
2080
2081 static void unlock_mount(struct mountpoint *where)
2082 {
2083 struct dentry *dentry = where->m_dentry;
2084
2085 read_seqlock_excl(&mount_lock);
2086 put_mountpoint(where);
2087 read_sequnlock_excl(&mount_lock);
2088
2089 namespace_unlock();
2090 inode_unlock(dentry->d_inode);
2091 }
2092
2093 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2094 {
2095 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2096 return -EINVAL;
2097
2098 if (d_is_dir(mp->m_dentry) !=
2099 d_is_dir(mnt->mnt.mnt_root))
2100 return -ENOTDIR;
2101
2102 return attach_recursive_mnt(mnt, p, mp, NULL);
2103 }
2104
2105 /*
2106 * Sanity check the flags to change_mnt_propagation.
2107 */
2108
2109 static int flags_to_propagation_type(int flags)
2110 {
2111 int type = flags & ~(MS_REC | MS_SILENT);
2112
2113 /* Fail if any non-propagation flags are set */
2114 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2115 return 0;
2116 /* Only one propagation flag should be set */
2117 if (!is_power_of_2(type))
2118 return 0;
2119 return type;
2120 }
2121
2122 /*
2123 * recursively change the type of the mountpoint.
2124 */
2125 static int do_change_type(struct path *path, int flag)
2126 {
2127 struct mount *m;
2128 struct mount *mnt = real_mount(path->mnt);
2129 int recurse = flag & MS_REC;
2130 int type;
2131 int err = 0;
2132
2133 if (path->dentry != path->mnt->mnt_root)
2134 return -EINVAL;
2135
2136 type = flags_to_propagation_type(flag);
2137 if (!type)
2138 return -EINVAL;
2139
2140 namespace_lock();
2141 if (type == MS_SHARED) {
2142 err = invent_group_ids(mnt, recurse);
2143 if (err)
2144 goto out_unlock;
2145 }
2146
2147 lock_mount_hash();
2148 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2149 change_mnt_propagation(m, type);
2150 unlock_mount_hash();
2151
2152 out_unlock:
2153 namespace_unlock();
2154 return err;
2155 }
2156
2157 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2158 {
2159 struct mount *child;
2160 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2161 if (!is_subdir(child->mnt_mountpoint, dentry))
2162 continue;
2163
2164 if (child->mnt.mnt_flags & MNT_LOCKED)
2165 return true;
2166 }
2167 return false;
2168 }
2169
2170 /*
2171 * do loopback mount.
2172 */
2173 static int do_loopback(struct path *path, const char *old_name,
2174 int recurse)
2175 {
2176 struct path old_path;
2177 struct mount *mnt = NULL, *old, *parent;
2178 struct mountpoint *mp;
2179 int err;
2180 if (!old_name || !*old_name)
2181 return -EINVAL;
2182 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2183 if (err)
2184 return err;
2185
2186 err = -EINVAL;
2187 if (mnt_ns_loop(old_path.dentry))
2188 goto out;
2189
2190 mp = lock_mount(path);
2191 err = PTR_ERR(mp);
2192 if (IS_ERR(mp))
2193 goto out;
2194
2195 old = real_mount(old_path.mnt);
2196 parent = real_mount(path->mnt);
2197
2198 err = -EINVAL;
2199 if (IS_MNT_UNBINDABLE(old))
2200 goto out2;
2201
2202 if (!check_mnt(parent))
2203 goto out2;
2204
2205 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2206 goto out2;
2207
2208 if (!recurse && has_locked_children(old, old_path.dentry))
2209 goto out2;
2210
2211 if (recurse)
2212 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2213 else
2214 mnt = clone_mnt(old, old_path.dentry, 0);
2215
2216 if (IS_ERR(mnt)) {
2217 err = PTR_ERR(mnt);
2218 goto out2;
2219 }
2220
2221 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2222
2223 err = graft_tree(mnt, parent, mp);
2224 if (err) {
2225 lock_mount_hash();
2226 umount_tree(mnt, UMOUNT_SYNC);
2227 unlock_mount_hash();
2228 }
2229 out2:
2230 unlock_mount(mp);
2231 out:
2232 path_put(&old_path);
2233 return err;
2234 }
2235
2236 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2237 {
2238 int error = 0;
2239 int readonly_request = 0;
2240
2241 if (ms_flags & MS_RDONLY)
2242 readonly_request = 1;
2243 if (readonly_request == __mnt_is_readonly(mnt))
2244 return 0;
2245
2246 if (readonly_request)
2247 error = mnt_make_readonly(real_mount(mnt));
2248 else
2249 __mnt_unmake_readonly(real_mount(mnt));
2250 return error;
2251 }
2252
2253 /*
2254 * change filesystem flags. dir should be a physical root of filesystem.
2255 * If you've mounted a non-root directory somewhere and want to do remount
2256 * on it - tough luck.
2257 */
2258 static int do_remount(struct path *path, int flags, int mnt_flags,
2259 void *data)
2260 {
2261 int err;
2262 struct super_block *sb = path->mnt->mnt_sb;
2263 struct mount *mnt = real_mount(path->mnt);
2264
2265 if (!check_mnt(mnt))
2266 return -EINVAL;
2267
2268 if (path->dentry != path->mnt->mnt_root)
2269 return -EINVAL;
2270
2271 /* Don't allow changing of locked mnt flags.
2272 *
2273 * No locks need to be held here while testing the various
2274 * MNT_LOCK flags because those flags can never be cleared
2275 * once they are set.
2276 */
2277 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2278 !(mnt_flags & MNT_READONLY)) {
2279 return -EPERM;
2280 }
2281 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2282 !(mnt_flags & MNT_NODEV)) {
2283 return -EPERM;
2284 }
2285 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2286 !(mnt_flags & MNT_NOSUID)) {
2287 return -EPERM;
2288 }
2289 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2290 !(mnt_flags & MNT_NOEXEC)) {
2291 return -EPERM;
2292 }
2293 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2294 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2295 return -EPERM;
2296 }
2297
2298 err = security_sb_remount(sb, data);
2299 if (err)
2300 return err;
2301
2302 down_write(&sb->s_umount);
2303 if (flags & MS_BIND)
2304 err = change_mount_flags(path->mnt, flags);
2305 else if (!capable(CAP_SYS_ADMIN))
2306 err = -EPERM;
2307 else
2308 err = do_remount_sb(sb, flags, data, 0);
2309 if (!err) {
2310 lock_mount_hash();
2311 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2312 mnt->mnt.mnt_flags = mnt_flags;
2313 touch_mnt_namespace(mnt->mnt_ns);
2314 unlock_mount_hash();
2315 }
2316 up_write(&sb->s_umount);
2317 return err;
2318 }
2319
2320 static inline int tree_contains_unbindable(struct mount *mnt)
2321 {
2322 struct mount *p;
2323 for (p = mnt; p; p = next_mnt(p, mnt)) {
2324 if (IS_MNT_UNBINDABLE(p))
2325 return 1;
2326 }
2327 return 0;
2328 }
2329
2330 static int do_move_mount(struct path *path, const char *old_name)
2331 {
2332 struct path old_path, parent_path;
2333 struct mount *p;
2334 struct mount *old;
2335 struct mountpoint *mp;
2336 int err;
2337 if (!old_name || !*old_name)
2338 return -EINVAL;
2339 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2340 if (err)
2341 return err;
2342
2343 mp = lock_mount(path);
2344 err = PTR_ERR(mp);
2345 if (IS_ERR(mp))
2346 goto out;
2347
2348 old = real_mount(old_path.mnt);
2349 p = real_mount(path->mnt);
2350
2351 err = -EINVAL;
2352 if (!check_mnt(p) || !check_mnt(old))
2353 goto out1;
2354
2355 if (old->mnt.mnt_flags & MNT_LOCKED)
2356 goto out1;
2357
2358 err = -EINVAL;
2359 if (old_path.dentry != old_path.mnt->mnt_root)
2360 goto out1;
2361
2362 if (!mnt_has_parent(old))
2363 goto out1;
2364
2365 if (d_is_dir(path->dentry) !=
2366 d_is_dir(old_path.dentry))
2367 goto out1;
2368 /*
2369 * Don't move a mount residing in a shared parent.
2370 */
2371 if (IS_MNT_SHARED(old->mnt_parent))
2372 goto out1;
2373 /*
2374 * Don't move a mount tree containing unbindable mounts to a destination
2375 * mount which is shared.
2376 */
2377 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2378 goto out1;
2379 err = -ELOOP;
2380 for (; mnt_has_parent(p); p = p->mnt_parent)
2381 if (p == old)
2382 goto out1;
2383
2384 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2385 if (err)
2386 goto out1;
2387
2388 /* if the mount is moved, it should no longer be expire
2389 * automatically */
2390 list_del_init(&old->mnt_expire);
2391 out1:
2392 unlock_mount(mp);
2393 out:
2394 if (!err)
2395 path_put(&parent_path);
2396 path_put(&old_path);
2397 return err;
2398 }
2399
2400 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2401 {
2402 int err;
2403 const char *subtype = strchr(fstype, '.');
2404 if (subtype) {
2405 subtype++;
2406 err = -EINVAL;
2407 if (!subtype[0])
2408 goto err;
2409 } else
2410 subtype = "";
2411
2412 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2413 err = -ENOMEM;
2414 if (!mnt->mnt_sb->s_subtype)
2415 goto err;
2416 return mnt;
2417
2418 err:
2419 mntput(mnt);
2420 return ERR_PTR(err);
2421 }
2422
2423 /*
2424 * add a mount into a namespace's mount tree
2425 */
2426 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2427 {
2428 struct mountpoint *mp;
2429 struct mount *parent;
2430 int err;
2431
2432 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2433
2434 mp = lock_mount(path);
2435 if (IS_ERR(mp))
2436 return PTR_ERR(mp);
2437
2438 parent = real_mount(path->mnt);
2439 err = -EINVAL;
2440 if (unlikely(!check_mnt(parent))) {
2441 /* that's acceptable only for automounts done in private ns */
2442 if (!(mnt_flags & MNT_SHRINKABLE))
2443 goto unlock;
2444 /* ... and for those we'd better have mountpoint still alive */
2445 if (!parent->mnt_ns)
2446 goto unlock;
2447 }
2448
2449 /* Refuse the same filesystem on the same mount point */
2450 err = -EBUSY;
2451 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2452 path->mnt->mnt_root == path->dentry)
2453 goto unlock;
2454
2455 err = -EINVAL;
2456 if (d_is_symlink(newmnt->mnt.mnt_root))
2457 goto unlock;
2458
2459 newmnt->mnt.mnt_flags = mnt_flags;
2460 err = graft_tree(newmnt, parent, mp);
2461
2462 unlock:
2463 unlock_mount(mp);
2464 return err;
2465 }
2466
2467 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2468
2469 /*
2470 * create a new mount for userspace and request it to be added into the
2471 * namespace's tree
2472 */
2473 static int do_new_mount(struct path *path, const char *fstype, int flags,
2474 int mnt_flags, const char *name, void *data)
2475 {
2476 struct file_system_type *type;
2477 struct vfsmount *mnt;
2478 int err;
2479
2480 if (!fstype)
2481 return -EINVAL;
2482
2483 type = get_fs_type(fstype);
2484 if (!type)
2485 return -ENODEV;
2486
2487 mnt = vfs_kern_mount(type, flags, name, data);
2488 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2489 !mnt->mnt_sb->s_subtype)
2490 mnt = fs_set_subtype(mnt, fstype);
2491
2492 put_filesystem(type);
2493 if (IS_ERR(mnt))
2494 return PTR_ERR(mnt);
2495
2496 if (mount_too_revealing(mnt, &mnt_flags)) {
2497 mntput(mnt);
2498 return -EPERM;
2499 }
2500
2501 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2502 if (err)
2503 mntput(mnt);
2504 return err;
2505 }
2506
2507 int finish_automount(struct vfsmount *m, struct path *path)
2508 {
2509 struct mount *mnt = real_mount(m);
2510 int err;
2511 /* The new mount record should have at least 2 refs to prevent it being
2512 * expired before we get a chance to add it
2513 */
2514 BUG_ON(mnt_get_count(mnt) < 2);
2515
2516 if (m->mnt_sb == path->mnt->mnt_sb &&
2517 m->mnt_root == path->dentry) {
2518 err = -ELOOP;
2519 goto fail;
2520 }
2521
2522 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2523 if (!err)
2524 return 0;
2525 fail:
2526 /* remove m from any expiration list it may be on */
2527 if (!list_empty(&mnt->mnt_expire)) {
2528 namespace_lock();
2529 list_del_init(&mnt->mnt_expire);
2530 namespace_unlock();
2531 }
2532 mntput(m);
2533 mntput(m);
2534 return err;
2535 }
2536
2537 /**
2538 * mnt_set_expiry - Put a mount on an expiration list
2539 * @mnt: The mount to list.
2540 * @expiry_list: The list to add the mount to.
2541 */
2542 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2543 {
2544 namespace_lock();
2545
2546 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2547
2548 namespace_unlock();
2549 }
2550 EXPORT_SYMBOL(mnt_set_expiry);
2551
2552 /*
2553 * process a list of expirable mountpoints with the intent of discarding any
2554 * mountpoints that aren't in use and haven't been touched since last we came
2555 * here
2556 */
2557 void mark_mounts_for_expiry(struct list_head *mounts)
2558 {
2559 struct mount *mnt, *next;
2560 LIST_HEAD(graveyard);
2561
2562 if (list_empty(mounts))
2563 return;
2564
2565 namespace_lock();
2566 lock_mount_hash();
2567
2568 /* extract from the expiration list every vfsmount that matches the
2569 * following criteria:
2570 * - only referenced by its parent vfsmount
2571 * - still marked for expiry (marked on the last call here; marks are
2572 * cleared by mntput())
2573 */
2574 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2575 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2576 propagate_mount_busy(mnt, 1))
2577 continue;
2578 list_move(&mnt->mnt_expire, &graveyard);
2579 }
2580 while (!list_empty(&graveyard)) {
2581 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2582 touch_mnt_namespace(mnt->mnt_ns);
2583 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2584 }
2585 unlock_mount_hash();
2586 namespace_unlock();
2587 }
2588
2589 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2590
2591 /*
2592 * Ripoff of 'select_parent()'
2593 *
2594 * search the list of submounts for a given mountpoint, and move any
2595 * shrinkable submounts to the 'graveyard' list.
2596 */
2597 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2598 {
2599 struct mount *this_parent = parent;
2600 struct list_head *next;
2601 int found = 0;
2602
2603 repeat:
2604 next = this_parent->mnt_mounts.next;
2605 resume:
2606 while (next != &this_parent->mnt_mounts) {
2607 struct list_head *tmp = next;
2608 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2609
2610 next = tmp->next;
2611 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2612 continue;
2613 /*
2614 * Descend a level if the d_mounts list is non-empty.
2615 */
2616 if (!list_empty(&mnt->mnt_mounts)) {
2617 this_parent = mnt;
2618 goto repeat;
2619 }
2620
2621 if (!propagate_mount_busy(mnt, 1)) {
2622 list_move_tail(&mnt->mnt_expire, graveyard);
2623 found++;
2624 }
2625 }
2626 /*
2627 * All done at this level ... ascend and resume the search
2628 */
2629 if (this_parent != parent) {
2630 next = this_parent->mnt_child.next;
2631 this_parent = this_parent->mnt_parent;
2632 goto resume;
2633 }
2634 return found;
2635 }
2636
2637 /*
2638 * process a list of expirable mountpoints with the intent of discarding any
2639 * submounts of a specific parent mountpoint
2640 *
2641 * mount_lock must be held for write
2642 */
2643 static void shrink_submounts(struct mount *mnt)
2644 {
2645 LIST_HEAD(graveyard);
2646 struct mount *m;
2647
2648 /* extract submounts of 'mountpoint' from the expiration list */
2649 while (select_submounts(mnt, &graveyard)) {
2650 while (!list_empty(&graveyard)) {
2651 m = list_first_entry(&graveyard, struct mount,
2652 mnt_expire);
2653 touch_mnt_namespace(m->mnt_ns);
2654 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2655 }
2656 }
2657 }
2658
2659 /*
2660 * Some copy_from_user() implementations do not return the exact number of
2661 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2662 * Note that this function differs from copy_from_user() in that it will oops
2663 * on bad values of `to', rather than returning a short copy.
2664 */
2665 static long exact_copy_from_user(void *to, const void __user * from,
2666 unsigned long n)
2667 {
2668 char *t = to;
2669 const char __user *f = from;
2670 char c;
2671
2672 if (!access_ok(VERIFY_READ, from, n))
2673 return n;
2674
2675 while (n) {
2676 if (__get_user(c, f)) {
2677 memset(t, 0, n);
2678 break;
2679 }
2680 *t++ = c;
2681 f++;
2682 n--;
2683 }
2684 return n;
2685 }
2686
2687 void *copy_mount_options(const void __user * data)
2688 {
2689 int i;
2690 unsigned long size;
2691 char *copy;
2692
2693 if (!data)
2694 return NULL;
2695
2696 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2697 if (!copy)
2698 return ERR_PTR(-ENOMEM);
2699
2700 /* We only care that *some* data at the address the user
2701 * gave us is valid. Just in case, we'll zero
2702 * the remainder of the page.
2703 */
2704 /* copy_from_user cannot cross TASK_SIZE ! */
2705 size = TASK_SIZE - (unsigned long)data;
2706 if (size > PAGE_SIZE)
2707 size = PAGE_SIZE;
2708
2709 i = size - exact_copy_from_user(copy, data, size);
2710 if (!i) {
2711 kfree(copy);
2712 return ERR_PTR(-EFAULT);
2713 }
2714 if (i != PAGE_SIZE)
2715 memset(copy + i, 0, PAGE_SIZE - i);
2716 return copy;
2717 }
2718
2719 char *copy_mount_string(const void __user *data)
2720 {
2721 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2722 }
2723
2724 /*
2725 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2726 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2727 *
2728 * data is a (void *) that can point to any structure up to
2729 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2730 * information (or be NULL).
2731 *
2732 * Pre-0.97 versions of mount() didn't have a flags word.
2733 * When the flags word was introduced its top half was required
2734 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2735 * Therefore, if this magic number is present, it carries no information
2736 * and must be discarded.
2737 */
2738 long do_mount(const char *dev_name, const char __user *dir_name,
2739 const char *type_page, unsigned long flags, void *data_page)
2740 {
2741 struct path path;
2742 int retval = 0;
2743 int mnt_flags = 0;
2744
2745 /* Discard magic */
2746 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2747 flags &= ~MS_MGC_MSK;
2748
2749 /* Basic sanity checks */
2750 if (data_page)
2751 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2752
2753 /* ... and get the mountpoint */
2754 retval = user_path(dir_name, &path);
2755 if (retval)
2756 return retval;
2757
2758 retval = security_sb_mount(dev_name, &path,
2759 type_page, flags, data_page);
2760 if (!retval && !may_mount())
2761 retval = -EPERM;
2762 if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2763 retval = -EPERM;
2764 if (retval)
2765 goto dput_out;
2766
2767 /* Default to relatime unless overriden */
2768 if (!(flags & MS_NOATIME))
2769 mnt_flags |= MNT_RELATIME;
2770
2771 /* Separate the per-mountpoint flags */
2772 if (flags & MS_NOSUID)
2773 mnt_flags |= MNT_NOSUID;
2774 if (flags & MS_NODEV)
2775 mnt_flags |= MNT_NODEV;
2776 if (flags & MS_NOEXEC)
2777 mnt_flags |= MNT_NOEXEC;
2778 if (flags & MS_NOATIME)
2779 mnt_flags |= MNT_NOATIME;
2780 if (flags & MS_NODIRATIME)
2781 mnt_flags |= MNT_NODIRATIME;
2782 if (flags & MS_STRICTATIME)
2783 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2784 if (flags & MS_RDONLY)
2785 mnt_flags |= MNT_READONLY;
2786
2787 /* The default atime for remount is preservation */
2788 if ((flags & MS_REMOUNT) &&
2789 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2790 MS_STRICTATIME)) == 0)) {
2791 mnt_flags &= ~MNT_ATIME_MASK;
2792 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2793 }
2794
2795 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2796 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2797 MS_STRICTATIME | MS_NOREMOTELOCK);
2798
2799 if (flags & MS_REMOUNT)
2800 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2801 data_page);
2802 else if (flags & MS_BIND)
2803 retval = do_loopback(&path, dev_name, flags & MS_REC);
2804 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2805 retval = do_change_type(&path, flags);
2806 else if (flags & MS_MOVE)
2807 retval = do_move_mount(&path, dev_name);
2808 else
2809 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2810 dev_name, data_page);
2811 dput_out:
2812 path_put(&path);
2813 return retval;
2814 }
2815
2816 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2817 {
2818 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2819 }
2820
2821 static void dec_mnt_namespaces(struct ucounts *ucounts)
2822 {
2823 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2824 }
2825
2826 static void free_mnt_ns(struct mnt_namespace *ns)
2827 {
2828 ns_free_inum(&ns->ns);
2829 dec_mnt_namespaces(ns->ucounts);
2830 put_user_ns(ns->user_ns);
2831 kfree(ns);
2832 }
2833
2834 /*
2835 * Assign a sequence number so we can detect when we attempt to bind
2836 * mount a reference to an older mount namespace into the current
2837 * mount namespace, preventing reference counting loops. A 64bit
2838 * number incrementing at 10Ghz will take 12,427 years to wrap which
2839 * is effectively never, so we can ignore the possibility.
2840 */
2841 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2842
2843 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2844 {
2845 struct mnt_namespace *new_ns;
2846 struct ucounts *ucounts;
2847 int ret;
2848
2849 ucounts = inc_mnt_namespaces(user_ns);
2850 if (!ucounts)
2851 return ERR_PTR(-ENOSPC);
2852
2853 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2854 if (!new_ns) {
2855 dec_mnt_namespaces(ucounts);
2856 return ERR_PTR(-ENOMEM);
2857 }
2858 ret = ns_alloc_inum(&new_ns->ns);
2859 if (ret) {
2860 kfree(new_ns);
2861 dec_mnt_namespaces(ucounts);
2862 return ERR_PTR(ret);
2863 }
2864 new_ns->ns.ops = &mntns_operations;
2865 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2866 atomic_set(&new_ns->count, 1);
2867 new_ns->root = NULL;
2868 INIT_LIST_HEAD(&new_ns->list);
2869 init_waitqueue_head(&new_ns->poll);
2870 new_ns->event = 0;
2871 new_ns->user_ns = get_user_ns(user_ns);
2872 new_ns->ucounts = ucounts;
2873 new_ns->mounts = 0;
2874 new_ns->pending_mounts = 0;
2875 return new_ns;
2876 }
2877
2878 __latent_entropy
2879 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2880 struct user_namespace *user_ns, struct fs_struct *new_fs)
2881 {
2882 struct mnt_namespace *new_ns;
2883 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2884 struct mount *p, *q;
2885 struct mount *old;
2886 struct mount *new;
2887 int copy_flags;
2888
2889 BUG_ON(!ns);
2890
2891 if (likely(!(flags & CLONE_NEWNS))) {
2892 get_mnt_ns(ns);
2893 return ns;
2894 }
2895
2896 old = ns->root;
2897
2898 new_ns = alloc_mnt_ns(user_ns);
2899 if (IS_ERR(new_ns))
2900 return new_ns;
2901
2902 namespace_lock();
2903 /* First pass: copy the tree topology */
2904 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2905 if (user_ns != ns->user_ns)
2906 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2907 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2908 if (IS_ERR(new)) {
2909 namespace_unlock();
2910 free_mnt_ns(new_ns);
2911 return ERR_CAST(new);
2912 }
2913 new_ns->root = new;
2914 list_add_tail(&new_ns->list, &new->mnt_list);
2915
2916 /*
2917 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2918 * as belonging to new namespace. We have already acquired a private
2919 * fs_struct, so tsk->fs->lock is not needed.
2920 */
2921 p = old;
2922 q = new;
2923 while (p) {
2924 q->mnt_ns = new_ns;
2925 new_ns->mounts++;
2926 if (new_fs) {
2927 if (&p->mnt == new_fs->root.mnt) {
2928 new_fs->root.mnt = mntget(&q->mnt);
2929 rootmnt = &p->mnt;
2930 }
2931 if (&p->mnt == new_fs->pwd.mnt) {
2932 new_fs->pwd.mnt = mntget(&q->mnt);
2933 pwdmnt = &p->mnt;
2934 }
2935 }
2936 p = next_mnt(p, old);
2937 q = next_mnt(q, new);
2938 if (!q)
2939 break;
2940 while (p->mnt.mnt_root != q->mnt.mnt_root)
2941 p = next_mnt(p, old);
2942 }
2943 namespace_unlock();
2944
2945 if (rootmnt)
2946 mntput(rootmnt);
2947 if (pwdmnt)
2948 mntput(pwdmnt);
2949
2950 return new_ns;
2951 }
2952
2953 /**
2954 * create_mnt_ns - creates a private namespace and adds a root filesystem
2955 * @mnt: pointer to the new root filesystem mountpoint
2956 */
2957 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2958 {
2959 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2960 if (!IS_ERR(new_ns)) {
2961 struct mount *mnt = real_mount(m);
2962 mnt->mnt_ns = new_ns;
2963 new_ns->root = mnt;
2964 new_ns->mounts++;
2965 list_add(&mnt->mnt_list, &new_ns->list);
2966 } else {
2967 mntput(m);
2968 }
2969 return new_ns;
2970 }
2971
2972 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2973 {
2974 struct mnt_namespace *ns;
2975 struct super_block *s;
2976 struct path path;
2977 int err;
2978
2979 ns = create_mnt_ns(mnt);
2980 if (IS_ERR(ns))
2981 return ERR_CAST(ns);
2982
2983 err = vfs_path_lookup(mnt->mnt_root, mnt,
2984 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2985
2986 put_mnt_ns(ns);
2987
2988 if (err)
2989 return ERR_PTR(err);
2990
2991 /* trade a vfsmount reference for active sb one */
2992 s = path.mnt->mnt_sb;
2993 atomic_inc(&s->s_active);
2994 mntput(path.mnt);
2995 /* lock the sucker */
2996 down_write(&s->s_umount);
2997 /* ... and return the root of (sub)tree on it */
2998 return path.dentry;
2999 }
3000 EXPORT_SYMBOL(mount_subtree);
3001
3002 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3003 char __user *, type, unsigned long, flags, void __user *, data)
3004 {
3005 int ret;
3006 char *kernel_type;
3007 char *kernel_dev;
3008 void *options;
3009
3010 kernel_type = copy_mount_string(type);
3011 ret = PTR_ERR(kernel_type);
3012 if (IS_ERR(kernel_type))
3013 goto out_type;
3014
3015 kernel_dev = copy_mount_string(dev_name);
3016 ret = PTR_ERR(kernel_dev);
3017 if (IS_ERR(kernel_dev))
3018 goto out_dev;
3019
3020 options = copy_mount_options(data);
3021 ret = PTR_ERR(options);
3022 if (IS_ERR(options))
3023 goto out_data;
3024
3025 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3026
3027 kfree(options);
3028 out_data:
3029 kfree(kernel_dev);
3030 out_dev:
3031 kfree(kernel_type);
3032 out_type:
3033 return ret;
3034 }
3035
3036 /*
3037 * Return true if path is reachable from root
3038 *
3039 * namespace_sem or mount_lock is held
3040 */
3041 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3042 const struct path *root)
3043 {
3044 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3045 dentry = mnt->mnt_mountpoint;
3046 mnt = mnt->mnt_parent;
3047 }
3048 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3049 }
3050
3051 bool path_is_under(const struct path *path1, const struct path *path2)
3052 {
3053 bool res;
3054 read_seqlock_excl(&mount_lock);
3055 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3056 read_sequnlock_excl(&mount_lock);
3057 return res;
3058 }
3059 EXPORT_SYMBOL(path_is_under);
3060
3061 /*
3062 * pivot_root Semantics:
3063 * Moves the root file system of the current process to the directory put_old,
3064 * makes new_root as the new root file system of the current process, and sets
3065 * root/cwd of all processes which had them on the current root to new_root.
3066 *
3067 * Restrictions:
3068 * The new_root and put_old must be directories, and must not be on the
3069 * same file system as the current process root. The put_old must be
3070 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3071 * pointed to by put_old must yield the same directory as new_root. No other
3072 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3073 *
3074 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3075 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3076 * in this situation.
3077 *
3078 * Notes:
3079 * - we don't move root/cwd if they are not at the root (reason: if something
3080 * cared enough to change them, it's probably wrong to force them elsewhere)
3081 * - it's okay to pick a root that isn't the root of a file system, e.g.
3082 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3083 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3084 * first.
3085 */
3086 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3087 const char __user *, put_old)
3088 {
3089 struct path new, old, parent_path, root_parent, root;
3090 struct mount *new_mnt, *root_mnt, *old_mnt;
3091 struct mountpoint *old_mp, *root_mp;
3092 int error;
3093
3094 if (!may_mount())
3095 return -EPERM;
3096
3097 error = user_path_dir(new_root, &new);
3098 if (error)
3099 goto out0;
3100
3101 error = user_path_dir(put_old, &old);
3102 if (error)
3103 goto out1;
3104
3105 error = security_sb_pivotroot(&old, &new);
3106 if (error)
3107 goto out2;
3108
3109 get_fs_root(current->fs, &root);
3110 old_mp = lock_mount(&old);
3111 error = PTR_ERR(old_mp);
3112 if (IS_ERR(old_mp))
3113 goto out3;
3114
3115 error = -EINVAL;
3116 new_mnt = real_mount(new.mnt);
3117 root_mnt = real_mount(root.mnt);
3118 old_mnt = real_mount(old.mnt);
3119 if (IS_MNT_SHARED(old_mnt) ||
3120 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3121 IS_MNT_SHARED(root_mnt->mnt_parent))
3122 goto out4;
3123 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3124 goto out4;
3125 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3126 goto out4;
3127 error = -ENOENT;
3128 if (d_unlinked(new.dentry))
3129 goto out4;
3130 error = -EBUSY;
3131 if (new_mnt == root_mnt || old_mnt == root_mnt)
3132 goto out4; /* loop, on the same file system */
3133 error = -EINVAL;
3134 if (root.mnt->mnt_root != root.dentry)
3135 goto out4; /* not a mountpoint */
3136 if (!mnt_has_parent(root_mnt))
3137 goto out4; /* not attached */
3138 root_mp = root_mnt->mnt_mp;
3139 if (new.mnt->mnt_root != new.dentry)
3140 goto out4; /* not a mountpoint */
3141 if (!mnt_has_parent(new_mnt))
3142 goto out4; /* not attached */
3143 /* make sure we can reach put_old from new_root */
3144 if (!is_path_reachable(old_mnt, old.dentry, &new))
3145 goto out4;
3146 /* make certain new is below the root */
3147 if (!is_path_reachable(new_mnt, new.dentry, &root))
3148 goto out4;
3149 root_mp->m_count++; /* pin it so it won't go away */
3150 lock_mount_hash();
3151 detach_mnt(new_mnt, &parent_path);
3152 detach_mnt(root_mnt, &root_parent);
3153 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3154 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3155 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3156 }
3157 /* mount old root on put_old */
3158 attach_mnt(root_mnt, old_mnt, old_mp);
3159 /* mount new_root on / */
3160 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3161 touch_mnt_namespace(current->nsproxy->mnt_ns);
3162 /* A moved mount should not expire automatically */
3163 list_del_init(&new_mnt->mnt_expire);
3164 put_mountpoint(root_mp);
3165 unlock_mount_hash();
3166 chroot_fs_refs(&root, &new);
3167 error = 0;
3168 out4:
3169 unlock_mount(old_mp);
3170 if (!error) {
3171 path_put(&root_parent);
3172 path_put(&parent_path);
3173 }
3174 out3:
3175 path_put(&root);
3176 out2:
3177 path_put(&old);
3178 out1:
3179 path_put(&new);
3180 out0:
3181 return error;
3182 }
3183
3184 static void __init init_mount_tree(void)
3185 {
3186 struct vfsmount *mnt;
3187 struct mnt_namespace *ns;
3188 struct path root;
3189 struct file_system_type *type;
3190
3191 type = get_fs_type("rootfs");
3192 if (!type)
3193 panic("Can't find rootfs type");
3194 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3195 put_filesystem(type);
3196 if (IS_ERR(mnt))
3197 panic("Can't create rootfs");
3198
3199 ns = create_mnt_ns(mnt);
3200 if (IS_ERR(ns))
3201 panic("Can't allocate initial namespace");
3202
3203 init_task.nsproxy->mnt_ns = ns;
3204 get_mnt_ns(ns);
3205
3206 root.mnt = mnt;
3207 root.dentry = mnt->mnt_root;
3208 mnt->mnt_flags |= MNT_LOCKED;
3209
3210 set_fs_pwd(current->fs, &root);
3211 set_fs_root(current->fs, &root);
3212 }
3213
3214 void __init mnt_init(void)
3215 {
3216 unsigned u;
3217 int err;
3218
3219 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3220 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3221
3222 mount_hashtable = alloc_large_system_hash("Mount-cache",
3223 sizeof(struct hlist_head),
3224 mhash_entries, 19,
3225 0,
3226 &m_hash_shift, &m_hash_mask, 0, 0);
3227 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3228 sizeof(struct hlist_head),
3229 mphash_entries, 19,
3230 0,
3231 &mp_hash_shift, &mp_hash_mask, 0, 0);
3232
3233 if (!mount_hashtable || !mountpoint_hashtable)
3234 panic("Failed to allocate mount hash table\n");
3235
3236 for (u = 0; u <= m_hash_mask; u++)
3237 INIT_HLIST_HEAD(&mount_hashtable[u]);
3238 for (u = 0; u <= mp_hash_mask; u++)
3239 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3240
3241 kernfs_init();
3242
3243 err = sysfs_init();
3244 if (err)
3245 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3246 __func__, err);
3247 fs_kobj = kobject_create_and_add("fs", NULL);
3248 if (!fs_kobj)
3249 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3250 init_rootfs();
3251 init_mount_tree();
3252 }
3253
3254 void put_mnt_ns(struct mnt_namespace *ns)
3255 {
3256 if (!atomic_dec_and_test(&ns->count))
3257 return;
3258 drop_collected_mounts(&ns->root->mnt);
3259 free_mnt_ns(ns);
3260 }
3261
3262 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3263 {
3264 struct vfsmount *mnt;
3265 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3266 if (!IS_ERR(mnt)) {
3267 /*
3268 * it is a longterm mount, don't release mnt until
3269 * we unmount before file sys is unregistered
3270 */
3271 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3272 }
3273 return mnt;
3274 }
3275 EXPORT_SYMBOL_GPL(kern_mount_data);
3276
3277 void kern_unmount(struct vfsmount *mnt)
3278 {
3279 /* release long term mount so mount point can be released */
3280 if (!IS_ERR_OR_NULL(mnt)) {
3281 real_mount(mnt)->mnt_ns = NULL;
3282 synchronize_rcu(); /* yecchhh... */
3283 mntput(mnt);
3284 }
3285 }
3286 EXPORT_SYMBOL(kern_unmount);
3287
3288 bool our_mnt(struct vfsmount *mnt)
3289 {
3290 return check_mnt(real_mount(mnt));
3291 }
3292
3293 bool current_chrooted(void)
3294 {
3295 /* Does the current process have a non-standard root */
3296 struct path ns_root;
3297 struct path fs_root;
3298 bool chrooted;
3299
3300 /* Find the namespace root */
3301 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3302 ns_root.dentry = ns_root.mnt->mnt_root;
3303 path_get(&ns_root);
3304 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3305 ;
3306
3307 get_fs_root(current->fs, &fs_root);
3308
3309 chrooted = !path_equal(&fs_root, &ns_root);
3310
3311 path_put(&fs_root);
3312 path_put(&ns_root);
3313
3314 return chrooted;
3315 }
3316
3317 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3318 int *new_mnt_flags)
3319 {
3320 int new_flags = *new_mnt_flags;
3321 struct mount *mnt;
3322 bool visible = false;
3323
3324 down_read(&namespace_sem);
3325 list_for_each_entry(mnt, &ns->list, mnt_list) {
3326 struct mount *child;
3327 int mnt_flags;
3328
3329 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3330 continue;
3331
3332 /* This mount is not fully visible if it's root directory
3333 * is not the root directory of the filesystem.
3334 */
3335 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3336 continue;
3337
3338 /* A local view of the mount flags */
3339 mnt_flags = mnt->mnt.mnt_flags;
3340
3341 /* Don't miss readonly hidden in the superblock flags */
3342 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3343 mnt_flags |= MNT_LOCK_READONLY;
3344
3345 /* Verify the mount flags are equal to or more permissive
3346 * than the proposed new mount.
3347 */
3348 if ((mnt_flags & MNT_LOCK_READONLY) &&
3349 !(new_flags & MNT_READONLY))
3350 continue;
3351 if ((mnt_flags & MNT_LOCK_ATIME) &&
3352 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3353 continue;
3354
3355 /* This mount is not fully visible if there are any
3356 * locked child mounts that cover anything except for
3357 * empty directories.
3358 */
3359 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3360 struct inode *inode = child->mnt_mountpoint->d_inode;
3361 /* Only worry about locked mounts */
3362 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3363 continue;
3364 /* Is the directory permanetly empty? */
3365 if (!is_empty_dir_inode(inode))
3366 goto next;
3367 }
3368 /* Preserve the locked attributes */
3369 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3370 MNT_LOCK_ATIME);
3371 visible = true;
3372 goto found;
3373 next: ;
3374 }
3375 found:
3376 up_read(&namespace_sem);
3377 return visible;
3378 }
3379
3380 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3381 {
3382 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3383 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3384 unsigned long s_iflags;
3385
3386 if (ns->user_ns == &init_user_ns)
3387 return false;
3388
3389 /* Can this filesystem be too revealing? */
3390 s_iflags = mnt->mnt_sb->s_iflags;
3391 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3392 return false;
3393
3394 if ((s_iflags & required_iflags) != required_iflags) {
3395 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3396 required_iflags);
3397 return true;
3398 }
3399
3400 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3401 }
3402
3403 bool mnt_may_suid(struct vfsmount *mnt)
3404 {
3405 /*
3406 * Foreign mounts (accessed via fchdir or through /proc
3407 * symlinks) are always treated as if they are nosuid. This
3408 * prevents namespaces from trusting potentially unsafe
3409 * suid/sgid bits, file caps, or security labels that originate
3410 * in other namespaces.
3411 */
3412 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3413 current_in_userns(mnt->mnt_sb->s_user_ns);
3414 }
3415
3416 static struct ns_common *mntns_get(struct task_struct *task)
3417 {
3418 struct ns_common *ns = NULL;
3419 struct nsproxy *nsproxy;
3420
3421 task_lock(task);
3422 nsproxy = task->nsproxy;
3423 if (nsproxy) {
3424 ns = &nsproxy->mnt_ns->ns;
3425 get_mnt_ns(to_mnt_ns(ns));
3426 }
3427 task_unlock(task);
3428
3429 return ns;
3430 }
3431
3432 static void mntns_put(struct ns_common *ns)
3433 {
3434 put_mnt_ns(to_mnt_ns(ns));
3435 }
3436
3437 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3438 {
3439 struct fs_struct *fs = current->fs;
3440 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3441 struct path root;
3442
3443 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3444 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3445 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3446 return -EPERM;
3447
3448 if (fs->users != 1)
3449 return -EINVAL;
3450
3451 get_mnt_ns(mnt_ns);
3452 put_mnt_ns(nsproxy->mnt_ns);
3453 nsproxy->mnt_ns = mnt_ns;
3454
3455 /* Find the root */
3456 root.mnt = &mnt_ns->root->mnt;
3457 root.dentry = mnt_ns->root->mnt.mnt_root;
3458 path_get(&root);
3459 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3460 ;
3461
3462 /* Update the pwd and root */
3463 set_fs_pwd(fs, &root);
3464 set_fs_root(fs, &root);
3465
3466 path_put(&root);
3467 return 0;
3468 }
3469
3470 static struct user_namespace *mntns_owner(struct ns_common *ns)
3471 {
3472 return to_mnt_ns(ns)->user_ns;
3473 }
3474
3475 const struct proc_ns_operations mntns_operations = {
3476 .name = "mnt",
3477 .type = CLONE_NEWNS,
3478 .get = mntns_get,
3479 .put = mntns_put,
3480 .install = mntns_install,
3481 .owner = mntns_owner,
3482 };