]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/namespace.c
mnt: Fix fs_fully_visible to verify the root directory is visible
[mirror_ubuntu-zesty-kernel.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
29
30 static unsigned int m_hash_mask __read_mostly;
31 static unsigned int m_hash_shift __read_mostly;
32 static unsigned int mp_hash_mask __read_mostly;
33 static unsigned int mp_hash_shift __read_mostly;
34
35 static __initdata unsigned long mhash_entries;
36 static int __init set_mhash_entries(char *str)
37 {
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42 }
43 __setup("mhash_entries=", set_mhash_entries);
44
45 static __initdata unsigned long mphash_entries;
46 static int __init set_mphash_entries(char *str)
47 {
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52 }
53 __setup("mphash_entries=", set_mphash_entries);
54
55 static u64 event;
56 static DEFINE_IDA(mnt_id_ida);
57 static DEFINE_IDA(mnt_group_ida);
58 static DEFINE_SPINLOCK(mnt_id_lock);
59 static int mnt_id_start = 0;
60 static int mnt_group_start = 1;
61
62 static struct hlist_head *mount_hashtable __read_mostly;
63 static struct hlist_head *mountpoint_hashtable __read_mostly;
64 static struct kmem_cache *mnt_cache __read_mostly;
65 static DECLARE_RWSEM(namespace_sem);
66
67 /* /sys/fs */
68 struct kobject *fs_kobj;
69 EXPORT_SYMBOL_GPL(fs_kobj);
70
71 /*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
80
81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
82 {
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87 }
88
89 static inline struct hlist_head *mp_hash(struct dentry *dentry)
90 {
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
94 }
95
96 /*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
100 static int mnt_alloc_id(struct mount *mnt)
101 {
102 int res;
103
104 retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
106 spin_lock(&mnt_id_lock);
107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
108 if (!res)
109 mnt_id_start = mnt->mnt_id + 1;
110 spin_unlock(&mnt_id_lock);
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115 }
116
117 static void mnt_free_id(struct mount *mnt)
118 {
119 int id = mnt->mnt_id;
120 spin_lock(&mnt_id_lock);
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
124 spin_unlock(&mnt_id_lock);
125 }
126
127 /*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
132 static int mnt_alloc_group_id(struct mount *mnt)
133 {
134 int res;
135
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
141 &mnt->mnt_group_id);
142 if (!res)
143 mnt_group_start = mnt->mnt_group_id + 1;
144
145 return res;
146 }
147
148 /*
149 * Release a peer group ID
150 */
151 void mnt_release_group_id(struct mount *mnt)
152 {
153 int id = mnt->mnt_group_id;
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
157 mnt->mnt_group_id = 0;
158 }
159
160 /*
161 * vfsmount lock must be held for read
162 */
163 static inline void mnt_add_count(struct mount *mnt, int n)
164 {
165 #ifdef CONFIG_SMP
166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
167 #else
168 preempt_disable();
169 mnt->mnt_count += n;
170 preempt_enable();
171 #endif
172 }
173
174 /*
175 * vfsmount lock must be held for write
176 */
177 unsigned int mnt_get_count(struct mount *mnt)
178 {
179 #ifdef CONFIG_SMP
180 unsigned int count = 0;
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
185 }
186
187 return count;
188 #else
189 return mnt->mnt_count;
190 #endif
191 }
192
193 static void drop_mountpoint(struct fs_pin *p)
194 {
195 struct mount *m = container_of(p, struct mount, mnt_umount);
196 dput(m->mnt_ex_mountpoint);
197 pin_remove(p);
198 mntput(&m->mnt);
199 }
200
201 static struct mount *alloc_vfsmnt(const char *name)
202 {
203 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
204 if (mnt) {
205 int err;
206
207 err = mnt_alloc_id(mnt);
208 if (err)
209 goto out_free_cache;
210
211 if (name) {
212 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
213 if (!mnt->mnt_devname)
214 goto out_free_id;
215 }
216
217 #ifdef CONFIG_SMP
218 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
219 if (!mnt->mnt_pcp)
220 goto out_free_devname;
221
222 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
223 #else
224 mnt->mnt_count = 1;
225 mnt->mnt_writers = 0;
226 #endif
227
228 INIT_HLIST_NODE(&mnt->mnt_hash);
229 INIT_LIST_HEAD(&mnt->mnt_child);
230 INIT_LIST_HEAD(&mnt->mnt_mounts);
231 INIT_LIST_HEAD(&mnt->mnt_list);
232 INIT_LIST_HEAD(&mnt->mnt_expire);
233 INIT_LIST_HEAD(&mnt->mnt_share);
234 INIT_LIST_HEAD(&mnt->mnt_slave_list);
235 INIT_LIST_HEAD(&mnt->mnt_slave);
236 INIT_HLIST_NODE(&mnt->mnt_mp_list);
237 #ifdef CONFIG_FSNOTIFY
238 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
239 #endif
240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
241 }
242 return mnt;
243
244 #ifdef CONFIG_SMP
245 out_free_devname:
246 kfree_const(mnt->mnt_devname);
247 #endif
248 out_free_id:
249 mnt_free_id(mnt);
250 out_free_cache:
251 kmem_cache_free(mnt_cache, mnt);
252 return NULL;
253 }
254
255 /*
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
262 */
263 /*
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
266 *
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
273 */
274 int __mnt_is_readonly(struct vfsmount *mnt)
275 {
276 if (mnt->mnt_flags & MNT_READONLY)
277 return 1;
278 if (mnt->mnt_sb->s_flags & MS_RDONLY)
279 return 1;
280 return 0;
281 }
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283
284 static inline void mnt_inc_writers(struct mount *mnt)
285 {
286 #ifdef CONFIG_SMP
287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
288 #else
289 mnt->mnt_writers++;
290 #endif
291 }
292
293 static inline void mnt_dec_writers(struct mount *mnt)
294 {
295 #ifdef CONFIG_SMP
296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
297 #else
298 mnt->mnt_writers--;
299 #endif
300 }
301
302 static unsigned int mnt_get_writers(struct mount *mnt)
303 {
304 #ifdef CONFIG_SMP
305 unsigned int count = 0;
306 int cpu;
307
308 for_each_possible_cpu(cpu) {
309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
310 }
311
312 return count;
313 #else
314 return mnt->mnt_writers;
315 #endif
316 }
317
318 static int mnt_is_readonly(struct vfsmount *mnt)
319 {
320 if (mnt->mnt_sb->s_readonly_remount)
321 return 1;
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 smp_rmb();
324 return __mnt_is_readonly(mnt);
325 }
326
327 /*
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
332 */
333 /**
334 * __mnt_want_write - get write access to a mount without freeze protection
335 * @m: the mount on which to take a write
336 *
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
342 */
343 int __mnt_want_write(struct vfsmount *m)
344 {
345 struct mount *mnt = real_mount(m);
346 int ret = 0;
347
348 preempt_disable();
349 mnt_inc_writers(mnt);
350 /*
351 * The store to mnt_inc_writers must be visible before we pass
352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
354 */
355 smp_mb();
356 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
357 cpu_relax();
358 /*
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
362 */
363 smp_rmb();
364 if (mnt_is_readonly(m)) {
365 mnt_dec_writers(mnt);
366 ret = -EROFS;
367 }
368 preempt_enable();
369
370 return ret;
371 }
372
373 /**
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
376 *
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
381 */
382 int mnt_want_write(struct vfsmount *m)
383 {
384 int ret;
385
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
388 if (ret)
389 sb_end_write(m->mnt_sb);
390 return ret;
391 }
392 EXPORT_SYMBOL_GPL(mnt_want_write);
393
394 /**
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
397 *
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
402 *
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
405 */
406 int mnt_clone_write(struct vfsmount *mnt)
407 {
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
410 return -EROFS;
411 preempt_disable();
412 mnt_inc_writers(real_mount(mnt));
413 preempt_enable();
414 return 0;
415 }
416 EXPORT_SYMBOL_GPL(mnt_clone_write);
417
418 /**
419 * __mnt_want_write_file - get write access to a file's mount
420 * @file: the file who's mount on which to take a write
421 *
422 * This is like __mnt_want_write, but it takes a file and can
423 * do some optimisations if the file is open for write already
424 */
425 int __mnt_want_write_file(struct file *file)
426 {
427 if (!(file->f_mode & FMODE_WRITER))
428 return __mnt_want_write(file->f_path.mnt);
429 else
430 return mnt_clone_write(file->f_path.mnt);
431 }
432
433 /**
434 * mnt_want_write_file - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
436 *
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
439 */
440 int mnt_want_write_file(struct file *file)
441 {
442 int ret;
443
444 sb_start_write(file->f_path.mnt->mnt_sb);
445 ret = __mnt_want_write_file(file);
446 if (ret)
447 sb_end_write(file->f_path.mnt->mnt_sb);
448 return ret;
449 }
450 EXPORT_SYMBOL_GPL(mnt_want_write_file);
451
452 /**
453 * __mnt_drop_write - give up write access to a mount
454 * @mnt: the mount on which to give up write access
455 *
456 * Tells the low-level filesystem that we are done
457 * performing writes to it. Must be matched with
458 * __mnt_want_write() call above.
459 */
460 void __mnt_drop_write(struct vfsmount *mnt)
461 {
462 preempt_disable();
463 mnt_dec_writers(real_mount(mnt));
464 preempt_enable();
465 }
466
467 /**
468 * mnt_drop_write - give up write access to a mount
469 * @mnt: the mount on which to give up write access
470 *
471 * Tells the low-level filesystem that we are done performing writes to it and
472 * also allows filesystem to be frozen again. Must be matched with
473 * mnt_want_write() call above.
474 */
475 void mnt_drop_write(struct vfsmount *mnt)
476 {
477 __mnt_drop_write(mnt);
478 sb_end_write(mnt->mnt_sb);
479 }
480 EXPORT_SYMBOL_GPL(mnt_drop_write);
481
482 void __mnt_drop_write_file(struct file *file)
483 {
484 __mnt_drop_write(file->f_path.mnt);
485 }
486
487 void mnt_drop_write_file(struct file *file)
488 {
489 mnt_drop_write(file->f_path.mnt);
490 }
491 EXPORT_SYMBOL(mnt_drop_write_file);
492
493 static int mnt_make_readonly(struct mount *mnt)
494 {
495 int ret = 0;
496
497 lock_mount_hash();
498 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
499 /*
500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 * should be visible before we do.
502 */
503 smp_mb();
504
505 /*
506 * With writers on hold, if this value is zero, then there are
507 * definitely no active writers (although held writers may subsequently
508 * increment the count, they'll have to wait, and decrement it after
509 * seeing MNT_READONLY).
510 *
511 * It is OK to have counter incremented on one CPU and decremented on
512 * another: the sum will add up correctly. The danger would be when we
513 * sum up each counter, if we read a counter before it is incremented,
514 * but then read another CPU's count which it has been subsequently
515 * decremented from -- we would see more decrements than we should.
516 * MNT_WRITE_HOLD protects against this scenario, because
517 * mnt_want_write first increments count, then smp_mb, then spins on
518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 * we're counting up here.
520 */
521 if (mnt_get_writers(mnt) > 0)
522 ret = -EBUSY;
523 else
524 mnt->mnt.mnt_flags |= MNT_READONLY;
525 /*
526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 * that become unheld will see MNT_READONLY.
528 */
529 smp_wmb();
530 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
531 unlock_mount_hash();
532 return ret;
533 }
534
535 static void __mnt_unmake_readonly(struct mount *mnt)
536 {
537 lock_mount_hash();
538 mnt->mnt.mnt_flags &= ~MNT_READONLY;
539 unlock_mount_hash();
540 }
541
542 int sb_prepare_remount_readonly(struct super_block *sb)
543 {
544 struct mount *mnt;
545 int err = 0;
546
547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
548 if (atomic_long_read(&sb->s_remove_count))
549 return -EBUSY;
550
551 lock_mount_hash();
552 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
553 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
554 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
555 smp_mb();
556 if (mnt_get_writers(mnt) > 0) {
557 err = -EBUSY;
558 break;
559 }
560 }
561 }
562 if (!err && atomic_long_read(&sb->s_remove_count))
563 err = -EBUSY;
564
565 if (!err) {
566 sb->s_readonly_remount = 1;
567 smp_wmb();
568 }
569 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
570 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
571 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
572 }
573 unlock_mount_hash();
574
575 return err;
576 }
577
578 static void free_vfsmnt(struct mount *mnt)
579 {
580 kfree_const(mnt->mnt_devname);
581 #ifdef CONFIG_SMP
582 free_percpu(mnt->mnt_pcp);
583 #endif
584 kmem_cache_free(mnt_cache, mnt);
585 }
586
587 static void delayed_free_vfsmnt(struct rcu_head *head)
588 {
589 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
590 }
591
592 /* call under rcu_read_lock */
593 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
594 {
595 struct mount *mnt;
596 if (read_seqretry(&mount_lock, seq))
597 return false;
598 if (bastard == NULL)
599 return true;
600 mnt = real_mount(bastard);
601 mnt_add_count(mnt, 1);
602 if (likely(!read_seqretry(&mount_lock, seq)))
603 return true;
604 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
605 mnt_add_count(mnt, -1);
606 return false;
607 }
608 rcu_read_unlock();
609 mntput(bastard);
610 rcu_read_lock();
611 return false;
612 }
613
614 /*
615 * find the first mount at @dentry on vfsmount @mnt.
616 * call under rcu_read_lock()
617 */
618 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
619 {
620 struct hlist_head *head = m_hash(mnt, dentry);
621 struct mount *p;
622
623 hlist_for_each_entry_rcu(p, head, mnt_hash)
624 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
625 return p;
626 return NULL;
627 }
628
629 /*
630 * find the last mount at @dentry on vfsmount @mnt.
631 * mount_lock must be held.
632 */
633 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
634 {
635 struct mount *p, *res = NULL;
636 p = __lookup_mnt(mnt, dentry);
637 if (!p)
638 goto out;
639 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
640 res = p;
641 hlist_for_each_entry_continue(p, mnt_hash) {
642 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
643 break;
644 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
645 res = p;
646 }
647 out:
648 return res;
649 }
650
651 /*
652 * lookup_mnt - Return the first child mount mounted at path
653 *
654 * "First" means first mounted chronologically. If you create the
655 * following mounts:
656 *
657 * mount /dev/sda1 /mnt
658 * mount /dev/sda2 /mnt
659 * mount /dev/sda3 /mnt
660 *
661 * Then lookup_mnt() on the base /mnt dentry in the root mount will
662 * return successively the root dentry and vfsmount of /dev/sda1, then
663 * /dev/sda2, then /dev/sda3, then NULL.
664 *
665 * lookup_mnt takes a reference to the found vfsmount.
666 */
667 struct vfsmount *lookup_mnt(struct path *path)
668 {
669 struct mount *child_mnt;
670 struct vfsmount *m;
671 unsigned seq;
672
673 rcu_read_lock();
674 do {
675 seq = read_seqbegin(&mount_lock);
676 child_mnt = __lookup_mnt(path->mnt, path->dentry);
677 m = child_mnt ? &child_mnt->mnt : NULL;
678 } while (!legitimize_mnt(m, seq));
679 rcu_read_unlock();
680 return m;
681 }
682
683 /*
684 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
685 * current mount namespace.
686 *
687 * The common case is dentries are not mountpoints at all and that
688 * test is handled inline. For the slow case when we are actually
689 * dealing with a mountpoint of some kind, walk through all of the
690 * mounts in the current mount namespace and test to see if the dentry
691 * is a mountpoint.
692 *
693 * The mount_hashtable is not usable in the context because we
694 * need to identify all mounts that may be in the current mount
695 * namespace not just a mount that happens to have some specified
696 * parent mount.
697 */
698 bool __is_local_mountpoint(struct dentry *dentry)
699 {
700 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
701 struct mount *mnt;
702 bool is_covered = false;
703
704 if (!d_mountpoint(dentry))
705 goto out;
706
707 down_read(&namespace_sem);
708 list_for_each_entry(mnt, &ns->list, mnt_list) {
709 is_covered = (mnt->mnt_mountpoint == dentry);
710 if (is_covered)
711 break;
712 }
713 up_read(&namespace_sem);
714 out:
715 return is_covered;
716 }
717
718 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
719 {
720 struct hlist_head *chain = mp_hash(dentry);
721 struct mountpoint *mp;
722
723 hlist_for_each_entry(mp, chain, m_hash) {
724 if (mp->m_dentry == dentry) {
725 /* might be worth a WARN_ON() */
726 if (d_unlinked(dentry))
727 return ERR_PTR(-ENOENT);
728 mp->m_count++;
729 return mp;
730 }
731 }
732 return NULL;
733 }
734
735 static struct mountpoint *new_mountpoint(struct dentry *dentry)
736 {
737 struct hlist_head *chain = mp_hash(dentry);
738 struct mountpoint *mp;
739 int ret;
740
741 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
742 if (!mp)
743 return ERR_PTR(-ENOMEM);
744
745 ret = d_set_mounted(dentry);
746 if (ret) {
747 kfree(mp);
748 return ERR_PTR(ret);
749 }
750
751 mp->m_dentry = dentry;
752 mp->m_count = 1;
753 hlist_add_head(&mp->m_hash, chain);
754 INIT_HLIST_HEAD(&mp->m_list);
755 return mp;
756 }
757
758 static void put_mountpoint(struct mountpoint *mp)
759 {
760 if (!--mp->m_count) {
761 struct dentry *dentry = mp->m_dentry;
762 BUG_ON(!hlist_empty(&mp->m_list));
763 spin_lock(&dentry->d_lock);
764 dentry->d_flags &= ~DCACHE_MOUNTED;
765 spin_unlock(&dentry->d_lock);
766 hlist_del(&mp->m_hash);
767 kfree(mp);
768 }
769 }
770
771 static inline int check_mnt(struct mount *mnt)
772 {
773 return mnt->mnt_ns == current->nsproxy->mnt_ns;
774 }
775
776 /*
777 * vfsmount lock must be held for write
778 */
779 static void touch_mnt_namespace(struct mnt_namespace *ns)
780 {
781 if (ns) {
782 ns->event = ++event;
783 wake_up_interruptible(&ns->poll);
784 }
785 }
786
787 /*
788 * vfsmount lock must be held for write
789 */
790 static void __touch_mnt_namespace(struct mnt_namespace *ns)
791 {
792 if (ns && ns->event != event) {
793 ns->event = event;
794 wake_up_interruptible(&ns->poll);
795 }
796 }
797
798 /*
799 * vfsmount lock must be held for write
800 */
801 static void unhash_mnt(struct mount *mnt)
802 {
803 mnt->mnt_parent = mnt;
804 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
805 list_del_init(&mnt->mnt_child);
806 hlist_del_init_rcu(&mnt->mnt_hash);
807 hlist_del_init(&mnt->mnt_mp_list);
808 put_mountpoint(mnt->mnt_mp);
809 mnt->mnt_mp = NULL;
810 }
811
812 /*
813 * vfsmount lock must be held for write
814 */
815 static void detach_mnt(struct mount *mnt, struct path *old_path)
816 {
817 old_path->dentry = mnt->mnt_mountpoint;
818 old_path->mnt = &mnt->mnt_parent->mnt;
819 unhash_mnt(mnt);
820 }
821
822 /*
823 * vfsmount lock must be held for write
824 */
825 static void umount_mnt(struct mount *mnt)
826 {
827 /* old mountpoint will be dropped when we can do that */
828 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
829 unhash_mnt(mnt);
830 }
831
832 /*
833 * vfsmount lock must be held for write
834 */
835 void mnt_set_mountpoint(struct mount *mnt,
836 struct mountpoint *mp,
837 struct mount *child_mnt)
838 {
839 mp->m_count++;
840 mnt_add_count(mnt, 1); /* essentially, that's mntget */
841 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
842 child_mnt->mnt_parent = mnt;
843 child_mnt->mnt_mp = mp;
844 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
845 }
846
847 /*
848 * vfsmount lock must be held for write
849 */
850 static void attach_mnt(struct mount *mnt,
851 struct mount *parent,
852 struct mountpoint *mp)
853 {
854 mnt_set_mountpoint(parent, mp, mnt);
855 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
856 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
857 }
858
859 static void attach_shadowed(struct mount *mnt,
860 struct mount *parent,
861 struct mount *shadows)
862 {
863 if (shadows) {
864 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
865 list_add(&mnt->mnt_child, &shadows->mnt_child);
866 } else {
867 hlist_add_head_rcu(&mnt->mnt_hash,
868 m_hash(&parent->mnt, mnt->mnt_mountpoint));
869 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
870 }
871 }
872
873 /*
874 * vfsmount lock must be held for write
875 */
876 static void commit_tree(struct mount *mnt, struct mount *shadows)
877 {
878 struct mount *parent = mnt->mnt_parent;
879 struct mount *m;
880 LIST_HEAD(head);
881 struct mnt_namespace *n = parent->mnt_ns;
882
883 BUG_ON(parent == mnt);
884
885 list_add_tail(&head, &mnt->mnt_list);
886 list_for_each_entry(m, &head, mnt_list)
887 m->mnt_ns = n;
888
889 list_splice(&head, n->list.prev);
890
891 attach_shadowed(mnt, parent, shadows);
892 touch_mnt_namespace(n);
893 }
894
895 static struct mount *next_mnt(struct mount *p, struct mount *root)
896 {
897 struct list_head *next = p->mnt_mounts.next;
898 if (next == &p->mnt_mounts) {
899 while (1) {
900 if (p == root)
901 return NULL;
902 next = p->mnt_child.next;
903 if (next != &p->mnt_parent->mnt_mounts)
904 break;
905 p = p->mnt_parent;
906 }
907 }
908 return list_entry(next, struct mount, mnt_child);
909 }
910
911 static struct mount *skip_mnt_tree(struct mount *p)
912 {
913 struct list_head *prev = p->mnt_mounts.prev;
914 while (prev != &p->mnt_mounts) {
915 p = list_entry(prev, struct mount, mnt_child);
916 prev = p->mnt_mounts.prev;
917 }
918 return p;
919 }
920
921 struct vfsmount *
922 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
923 {
924 struct mount *mnt;
925 struct dentry *root;
926
927 if (!type)
928 return ERR_PTR(-ENODEV);
929
930 mnt = alloc_vfsmnt(name);
931 if (!mnt)
932 return ERR_PTR(-ENOMEM);
933
934 if (flags & MS_KERNMOUNT)
935 mnt->mnt.mnt_flags = MNT_INTERNAL;
936
937 root = mount_fs(type, flags, name, data);
938 if (IS_ERR(root)) {
939 mnt_free_id(mnt);
940 free_vfsmnt(mnt);
941 return ERR_CAST(root);
942 }
943
944 mnt->mnt.mnt_root = root;
945 mnt->mnt.mnt_sb = root->d_sb;
946 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
947 mnt->mnt_parent = mnt;
948 lock_mount_hash();
949 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
950 unlock_mount_hash();
951 return &mnt->mnt;
952 }
953 EXPORT_SYMBOL_GPL(vfs_kern_mount);
954
955 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
956 int flag)
957 {
958 struct super_block *sb = old->mnt.mnt_sb;
959 struct mount *mnt;
960 int err;
961
962 mnt = alloc_vfsmnt(old->mnt_devname);
963 if (!mnt)
964 return ERR_PTR(-ENOMEM);
965
966 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
967 mnt->mnt_group_id = 0; /* not a peer of original */
968 else
969 mnt->mnt_group_id = old->mnt_group_id;
970
971 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
972 err = mnt_alloc_group_id(mnt);
973 if (err)
974 goto out_free;
975 }
976
977 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
978 /* Don't allow unprivileged users to change mount flags */
979 if (flag & CL_UNPRIVILEGED) {
980 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
981
982 if (mnt->mnt.mnt_flags & MNT_READONLY)
983 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
984
985 if (mnt->mnt.mnt_flags & MNT_NODEV)
986 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
987
988 if (mnt->mnt.mnt_flags & MNT_NOSUID)
989 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
990
991 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
992 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
993 }
994
995 /* Don't allow unprivileged users to reveal what is under a mount */
996 if ((flag & CL_UNPRIVILEGED) &&
997 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
998 mnt->mnt.mnt_flags |= MNT_LOCKED;
999
1000 atomic_inc(&sb->s_active);
1001 mnt->mnt.mnt_sb = sb;
1002 mnt->mnt.mnt_root = dget(root);
1003 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1004 mnt->mnt_parent = mnt;
1005 lock_mount_hash();
1006 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1007 unlock_mount_hash();
1008
1009 if ((flag & CL_SLAVE) ||
1010 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1011 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1012 mnt->mnt_master = old;
1013 CLEAR_MNT_SHARED(mnt);
1014 } else if (!(flag & CL_PRIVATE)) {
1015 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1016 list_add(&mnt->mnt_share, &old->mnt_share);
1017 if (IS_MNT_SLAVE(old))
1018 list_add(&mnt->mnt_slave, &old->mnt_slave);
1019 mnt->mnt_master = old->mnt_master;
1020 }
1021 if (flag & CL_MAKE_SHARED)
1022 set_mnt_shared(mnt);
1023
1024 /* stick the duplicate mount on the same expiry list
1025 * as the original if that was on one */
1026 if (flag & CL_EXPIRE) {
1027 if (!list_empty(&old->mnt_expire))
1028 list_add(&mnt->mnt_expire, &old->mnt_expire);
1029 }
1030
1031 return mnt;
1032
1033 out_free:
1034 mnt_free_id(mnt);
1035 free_vfsmnt(mnt);
1036 return ERR_PTR(err);
1037 }
1038
1039 static void cleanup_mnt(struct mount *mnt)
1040 {
1041 /*
1042 * This probably indicates that somebody messed
1043 * up a mnt_want/drop_write() pair. If this
1044 * happens, the filesystem was probably unable
1045 * to make r/w->r/o transitions.
1046 */
1047 /*
1048 * The locking used to deal with mnt_count decrement provides barriers,
1049 * so mnt_get_writers() below is safe.
1050 */
1051 WARN_ON(mnt_get_writers(mnt));
1052 if (unlikely(mnt->mnt_pins.first))
1053 mnt_pin_kill(mnt);
1054 fsnotify_vfsmount_delete(&mnt->mnt);
1055 dput(mnt->mnt.mnt_root);
1056 deactivate_super(mnt->mnt.mnt_sb);
1057 mnt_free_id(mnt);
1058 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1059 }
1060
1061 static void __cleanup_mnt(struct rcu_head *head)
1062 {
1063 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1064 }
1065
1066 static LLIST_HEAD(delayed_mntput_list);
1067 static void delayed_mntput(struct work_struct *unused)
1068 {
1069 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1070 struct llist_node *next;
1071
1072 for (; node; node = next) {
1073 next = llist_next(node);
1074 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1075 }
1076 }
1077 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1078
1079 static void mntput_no_expire(struct mount *mnt)
1080 {
1081 rcu_read_lock();
1082 mnt_add_count(mnt, -1);
1083 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1084 rcu_read_unlock();
1085 return;
1086 }
1087 lock_mount_hash();
1088 if (mnt_get_count(mnt)) {
1089 rcu_read_unlock();
1090 unlock_mount_hash();
1091 return;
1092 }
1093 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1094 rcu_read_unlock();
1095 unlock_mount_hash();
1096 return;
1097 }
1098 mnt->mnt.mnt_flags |= MNT_DOOMED;
1099 rcu_read_unlock();
1100
1101 list_del(&mnt->mnt_instance);
1102
1103 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1104 struct mount *p, *tmp;
1105 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1106 umount_mnt(p);
1107 }
1108 }
1109 unlock_mount_hash();
1110
1111 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1112 struct task_struct *task = current;
1113 if (likely(!(task->flags & PF_KTHREAD))) {
1114 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1115 if (!task_work_add(task, &mnt->mnt_rcu, true))
1116 return;
1117 }
1118 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1119 schedule_delayed_work(&delayed_mntput_work, 1);
1120 return;
1121 }
1122 cleanup_mnt(mnt);
1123 }
1124
1125 void mntput(struct vfsmount *mnt)
1126 {
1127 if (mnt) {
1128 struct mount *m = real_mount(mnt);
1129 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1130 if (unlikely(m->mnt_expiry_mark))
1131 m->mnt_expiry_mark = 0;
1132 mntput_no_expire(m);
1133 }
1134 }
1135 EXPORT_SYMBOL(mntput);
1136
1137 struct vfsmount *mntget(struct vfsmount *mnt)
1138 {
1139 if (mnt)
1140 mnt_add_count(real_mount(mnt), 1);
1141 return mnt;
1142 }
1143 EXPORT_SYMBOL(mntget);
1144
1145 struct vfsmount *mnt_clone_internal(struct path *path)
1146 {
1147 struct mount *p;
1148 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1149 if (IS_ERR(p))
1150 return ERR_CAST(p);
1151 p->mnt.mnt_flags |= MNT_INTERNAL;
1152 return &p->mnt;
1153 }
1154
1155 static inline void mangle(struct seq_file *m, const char *s)
1156 {
1157 seq_escape(m, s, " \t\n\\");
1158 }
1159
1160 /*
1161 * Simple .show_options callback for filesystems which don't want to
1162 * implement more complex mount option showing.
1163 *
1164 * See also save_mount_options().
1165 */
1166 int generic_show_options(struct seq_file *m, struct dentry *root)
1167 {
1168 const char *options;
1169
1170 rcu_read_lock();
1171 options = rcu_dereference(root->d_sb->s_options);
1172
1173 if (options != NULL && options[0]) {
1174 seq_putc(m, ',');
1175 mangle(m, options);
1176 }
1177 rcu_read_unlock();
1178
1179 return 0;
1180 }
1181 EXPORT_SYMBOL(generic_show_options);
1182
1183 /*
1184 * If filesystem uses generic_show_options(), this function should be
1185 * called from the fill_super() callback.
1186 *
1187 * The .remount_fs callback usually needs to be handled in a special
1188 * way, to make sure, that previous options are not overwritten if the
1189 * remount fails.
1190 *
1191 * Also note, that if the filesystem's .remount_fs function doesn't
1192 * reset all options to their default value, but changes only newly
1193 * given options, then the displayed options will not reflect reality
1194 * any more.
1195 */
1196 void save_mount_options(struct super_block *sb, char *options)
1197 {
1198 BUG_ON(sb->s_options);
1199 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1200 }
1201 EXPORT_SYMBOL(save_mount_options);
1202
1203 void replace_mount_options(struct super_block *sb, char *options)
1204 {
1205 char *old = sb->s_options;
1206 rcu_assign_pointer(sb->s_options, options);
1207 if (old) {
1208 synchronize_rcu();
1209 kfree(old);
1210 }
1211 }
1212 EXPORT_SYMBOL(replace_mount_options);
1213
1214 #ifdef CONFIG_PROC_FS
1215 /* iterator; we want it to have access to namespace_sem, thus here... */
1216 static void *m_start(struct seq_file *m, loff_t *pos)
1217 {
1218 struct proc_mounts *p = proc_mounts(m);
1219
1220 down_read(&namespace_sem);
1221 if (p->cached_event == p->ns->event) {
1222 void *v = p->cached_mount;
1223 if (*pos == p->cached_index)
1224 return v;
1225 if (*pos == p->cached_index + 1) {
1226 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1227 return p->cached_mount = v;
1228 }
1229 }
1230
1231 p->cached_event = p->ns->event;
1232 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1233 p->cached_index = *pos;
1234 return p->cached_mount;
1235 }
1236
1237 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1238 {
1239 struct proc_mounts *p = proc_mounts(m);
1240
1241 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1242 p->cached_index = *pos;
1243 return p->cached_mount;
1244 }
1245
1246 static void m_stop(struct seq_file *m, void *v)
1247 {
1248 up_read(&namespace_sem);
1249 }
1250
1251 static int m_show(struct seq_file *m, void *v)
1252 {
1253 struct proc_mounts *p = proc_mounts(m);
1254 struct mount *r = list_entry(v, struct mount, mnt_list);
1255 return p->show(m, &r->mnt);
1256 }
1257
1258 const struct seq_operations mounts_op = {
1259 .start = m_start,
1260 .next = m_next,
1261 .stop = m_stop,
1262 .show = m_show,
1263 };
1264 #endif /* CONFIG_PROC_FS */
1265
1266 /**
1267 * may_umount_tree - check if a mount tree is busy
1268 * @mnt: root of mount tree
1269 *
1270 * This is called to check if a tree of mounts has any
1271 * open files, pwds, chroots or sub mounts that are
1272 * busy.
1273 */
1274 int may_umount_tree(struct vfsmount *m)
1275 {
1276 struct mount *mnt = real_mount(m);
1277 int actual_refs = 0;
1278 int minimum_refs = 0;
1279 struct mount *p;
1280 BUG_ON(!m);
1281
1282 /* write lock needed for mnt_get_count */
1283 lock_mount_hash();
1284 for (p = mnt; p; p = next_mnt(p, mnt)) {
1285 actual_refs += mnt_get_count(p);
1286 minimum_refs += 2;
1287 }
1288 unlock_mount_hash();
1289
1290 if (actual_refs > minimum_refs)
1291 return 0;
1292
1293 return 1;
1294 }
1295
1296 EXPORT_SYMBOL(may_umount_tree);
1297
1298 /**
1299 * may_umount - check if a mount point is busy
1300 * @mnt: root of mount
1301 *
1302 * This is called to check if a mount point has any
1303 * open files, pwds, chroots or sub mounts. If the
1304 * mount has sub mounts this will return busy
1305 * regardless of whether the sub mounts are busy.
1306 *
1307 * Doesn't take quota and stuff into account. IOW, in some cases it will
1308 * give false negatives. The main reason why it's here is that we need
1309 * a non-destructive way to look for easily umountable filesystems.
1310 */
1311 int may_umount(struct vfsmount *mnt)
1312 {
1313 int ret = 1;
1314 down_read(&namespace_sem);
1315 lock_mount_hash();
1316 if (propagate_mount_busy(real_mount(mnt), 2))
1317 ret = 0;
1318 unlock_mount_hash();
1319 up_read(&namespace_sem);
1320 return ret;
1321 }
1322
1323 EXPORT_SYMBOL(may_umount);
1324
1325 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1326
1327 static void namespace_unlock(void)
1328 {
1329 struct hlist_head head;
1330
1331 hlist_move_list(&unmounted, &head);
1332
1333 up_write(&namespace_sem);
1334
1335 if (likely(hlist_empty(&head)))
1336 return;
1337
1338 synchronize_rcu();
1339
1340 group_pin_kill(&head);
1341 }
1342
1343 static inline void namespace_lock(void)
1344 {
1345 down_write(&namespace_sem);
1346 }
1347
1348 enum umount_tree_flags {
1349 UMOUNT_SYNC = 1,
1350 UMOUNT_PROPAGATE = 2,
1351 UMOUNT_CONNECTED = 4,
1352 };
1353 /*
1354 * mount_lock must be held
1355 * namespace_sem must be held for write
1356 */
1357 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1358 {
1359 LIST_HEAD(tmp_list);
1360 struct mount *p;
1361
1362 if (how & UMOUNT_PROPAGATE)
1363 propagate_mount_unlock(mnt);
1364
1365 /* Gather the mounts to umount */
1366 for (p = mnt; p; p = next_mnt(p, mnt)) {
1367 p->mnt.mnt_flags |= MNT_UMOUNT;
1368 list_move(&p->mnt_list, &tmp_list);
1369 }
1370
1371 /* Hide the mounts from mnt_mounts */
1372 list_for_each_entry(p, &tmp_list, mnt_list) {
1373 list_del_init(&p->mnt_child);
1374 }
1375
1376 /* Add propogated mounts to the tmp_list */
1377 if (how & UMOUNT_PROPAGATE)
1378 propagate_umount(&tmp_list);
1379
1380 while (!list_empty(&tmp_list)) {
1381 bool disconnect;
1382 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1383 list_del_init(&p->mnt_expire);
1384 list_del_init(&p->mnt_list);
1385 __touch_mnt_namespace(p->mnt_ns);
1386 p->mnt_ns = NULL;
1387 if (how & UMOUNT_SYNC)
1388 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1389
1390 disconnect = !(((how & UMOUNT_CONNECTED) &&
1391 mnt_has_parent(p) &&
1392 (p->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) ||
1393 IS_MNT_LOCKED_AND_LAZY(p));
1394
1395 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1396 disconnect ? &unmounted : NULL);
1397 if (mnt_has_parent(p)) {
1398 mnt_add_count(p->mnt_parent, -1);
1399 if (!disconnect) {
1400 /* Don't forget about p */
1401 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1402 } else {
1403 umount_mnt(p);
1404 }
1405 }
1406 change_mnt_propagation(p, MS_PRIVATE);
1407 }
1408 }
1409
1410 static void shrink_submounts(struct mount *mnt);
1411
1412 static int do_umount(struct mount *mnt, int flags)
1413 {
1414 struct super_block *sb = mnt->mnt.mnt_sb;
1415 int retval;
1416
1417 retval = security_sb_umount(&mnt->mnt, flags);
1418 if (retval)
1419 return retval;
1420
1421 /*
1422 * Allow userspace to request a mountpoint be expired rather than
1423 * unmounting unconditionally. Unmount only happens if:
1424 * (1) the mark is already set (the mark is cleared by mntput())
1425 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1426 */
1427 if (flags & MNT_EXPIRE) {
1428 if (&mnt->mnt == current->fs->root.mnt ||
1429 flags & (MNT_FORCE | MNT_DETACH))
1430 return -EINVAL;
1431
1432 /*
1433 * probably don't strictly need the lock here if we examined
1434 * all race cases, but it's a slowpath.
1435 */
1436 lock_mount_hash();
1437 if (mnt_get_count(mnt) != 2) {
1438 unlock_mount_hash();
1439 return -EBUSY;
1440 }
1441 unlock_mount_hash();
1442
1443 if (!xchg(&mnt->mnt_expiry_mark, 1))
1444 return -EAGAIN;
1445 }
1446
1447 /*
1448 * If we may have to abort operations to get out of this
1449 * mount, and they will themselves hold resources we must
1450 * allow the fs to do things. In the Unix tradition of
1451 * 'Gee thats tricky lets do it in userspace' the umount_begin
1452 * might fail to complete on the first run through as other tasks
1453 * must return, and the like. Thats for the mount program to worry
1454 * about for the moment.
1455 */
1456
1457 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1458 sb->s_op->umount_begin(sb);
1459 }
1460
1461 /*
1462 * No sense to grab the lock for this test, but test itself looks
1463 * somewhat bogus. Suggestions for better replacement?
1464 * Ho-hum... In principle, we might treat that as umount + switch
1465 * to rootfs. GC would eventually take care of the old vfsmount.
1466 * Actually it makes sense, especially if rootfs would contain a
1467 * /reboot - static binary that would close all descriptors and
1468 * call reboot(9). Then init(8) could umount root and exec /reboot.
1469 */
1470 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1471 /*
1472 * Special case for "unmounting" root ...
1473 * we just try to remount it readonly.
1474 */
1475 if (!capable(CAP_SYS_ADMIN))
1476 return -EPERM;
1477 down_write(&sb->s_umount);
1478 if (!(sb->s_flags & MS_RDONLY))
1479 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1480 up_write(&sb->s_umount);
1481 return retval;
1482 }
1483
1484 namespace_lock();
1485 lock_mount_hash();
1486 event++;
1487
1488 if (flags & MNT_DETACH) {
1489 if (!list_empty(&mnt->mnt_list))
1490 umount_tree(mnt, UMOUNT_PROPAGATE);
1491 retval = 0;
1492 } else {
1493 shrink_submounts(mnt);
1494 retval = -EBUSY;
1495 if (!propagate_mount_busy(mnt, 2)) {
1496 if (!list_empty(&mnt->mnt_list))
1497 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1498 retval = 0;
1499 }
1500 }
1501 unlock_mount_hash();
1502 namespace_unlock();
1503 return retval;
1504 }
1505
1506 /*
1507 * __detach_mounts - lazily unmount all mounts on the specified dentry
1508 *
1509 * During unlink, rmdir, and d_drop it is possible to loose the path
1510 * to an existing mountpoint, and wind up leaking the mount.
1511 * detach_mounts allows lazily unmounting those mounts instead of
1512 * leaking them.
1513 *
1514 * The caller may hold dentry->d_inode->i_mutex.
1515 */
1516 void __detach_mounts(struct dentry *dentry)
1517 {
1518 struct mountpoint *mp;
1519 struct mount *mnt;
1520
1521 namespace_lock();
1522 mp = lookup_mountpoint(dentry);
1523 if (IS_ERR_OR_NULL(mp))
1524 goto out_unlock;
1525
1526 lock_mount_hash();
1527 while (!hlist_empty(&mp->m_list)) {
1528 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1529 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1530 struct mount *p, *tmp;
1531 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1532 hlist_add_head(&p->mnt_umount.s_list, &unmounted);
1533 umount_mnt(p);
1534 }
1535 }
1536 else umount_tree(mnt, UMOUNT_CONNECTED);
1537 }
1538 unlock_mount_hash();
1539 put_mountpoint(mp);
1540 out_unlock:
1541 namespace_unlock();
1542 }
1543
1544 /*
1545 * Is the caller allowed to modify his namespace?
1546 */
1547 static inline bool may_mount(void)
1548 {
1549 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1550 }
1551
1552 /*
1553 * Now umount can handle mount points as well as block devices.
1554 * This is important for filesystems which use unnamed block devices.
1555 *
1556 * We now support a flag for forced unmount like the other 'big iron'
1557 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1558 */
1559
1560 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1561 {
1562 struct path path;
1563 struct mount *mnt;
1564 int retval;
1565 int lookup_flags = 0;
1566
1567 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1568 return -EINVAL;
1569
1570 if (!may_mount())
1571 return -EPERM;
1572
1573 if (!(flags & UMOUNT_NOFOLLOW))
1574 lookup_flags |= LOOKUP_FOLLOW;
1575
1576 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1577 if (retval)
1578 goto out;
1579 mnt = real_mount(path.mnt);
1580 retval = -EINVAL;
1581 if (path.dentry != path.mnt->mnt_root)
1582 goto dput_and_out;
1583 if (!check_mnt(mnt))
1584 goto dput_and_out;
1585 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1586 goto dput_and_out;
1587 retval = -EPERM;
1588 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1589 goto dput_and_out;
1590
1591 retval = do_umount(mnt, flags);
1592 dput_and_out:
1593 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1594 dput(path.dentry);
1595 mntput_no_expire(mnt);
1596 out:
1597 return retval;
1598 }
1599
1600 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1601
1602 /*
1603 * The 2.0 compatible umount. No flags.
1604 */
1605 SYSCALL_DEFINE1(oldumount, char __user *, name)
1606 {
1607 return sys_umount(name, 0);
1608 }
1609
1610 #endif
1611
1612 static bool is_mnt_ns_file(struct dentry *dentry)
1613 {
1614 /* Is this a proxy for a mount namespace? */
1615 return dentry->d_op == &ns_dentry_operations &&
1616 dentry->d_fsdata == &mntns_operations;
1617 }
1618
1619 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1620 {
1621 return container_of(ns, struct mnt_namespace, ns);
1622 }
1623
1624 static bool mnt_ns_loop(struct dentry *dentry)
1625 {
1626 /* Could bind mounting the mount namespace inode cause a
1627 * mount namespace loop?
1628 */
1629 struct mnt_namespace *mnt_ns;
1630 if (!is_mnt_ns_file(dentry))
1631 return false;
1632
1633 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1634 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1635 }
1636
1637 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1638 int flag)
1639 {
1640 struct mount *res, *p, *q, *r, *parent;
1641
1642 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1643 return ERR_PTR(-EINVAL);
1644
1645 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1646 return ERR_PTR(-EINVAL);
1647
1648 res = q = clone_mnt(mnt, dentry, flag);
1649 if (IS_ERR(q))
1650 return q;
1651
1652 q->mnt_mountpoint = mnt->mnt_mountpoint;
1653
1654 p = mnt;
1655 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1656 struct mount *s;
1657 if (!is_subdir(r->mnt_mountpoint, dentry))
1658 continue;
1659
1660 for (s = r; s; s = next_mnt(s, r)) {
1661 struct mount *t = NULL;
1662 if (!(flag & CL_COPY_UNBINDABLE) &&
1663 IS_MNT_UNBINDABLE(s)) {
1664 s = skip_mnt_tree(s);
1665 continue;
1666 }
1667 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1668 is_mnt_ns_file(s->mnt.mnt_root)) {
1669 s = skip_mnt_tree(s);
1670 continue;
1671 }
1672 while (p != s->mnt_parent) {
1673 p = p->mnt_parent;
1674 q = q->mnt_parent;
1675 }
1676 p = s;
1677 parent = q;
1678 q = clone_mnt(p, p->mnt.mnt_root, flag);
1679 if (IS_ERR(q))
1680 goto out;
1681 lock_mount_hash();
1682 list_add_tail(&q->mnt_list, &res->mnt_list);
1683 mnt_set_mountpoint(parent, p->mnt_mp, q);
1684 if (!list_empty(&parent->mnt_mounts)) {
1685 t = list_last_entry(&parent->mnt_mounts,
1686 struct mount, mnt_child);
1687 if (t->mnt_mp != p->mnt_mp)
1688 t = NULL;
1689 }
1690 attach_shadowed(q, parent, t);
1691 unlock_mount_hash();
1692 }
1693 }
1694 return res;
1695 out:
1696 if (res) {
1697 lock_mount_hash();
1698 umount_tree(res, UMOUNT_SYNC);
1699 unlock_mount_hash();
1700 }
1701 return q;
1702 }
1703
1704 /* Caller should check returned pointer for errors */
1705
1706 struct vfsmount *collect_mounts(struct path *path)
1707 {
1708 struct mount *tree;
1709 namespace_lock();
1710 if (!check_mnt(real_mount(path->mnt)))
1711 tree = ERR_PTR(-EINVAL);
1712 else
1713 tree = copy_tree(real_mount(path->mnt), path->dentry,
1714 CL_COPY_ALL | CL_PRIVATE);
1715 namespace_unlock();
1716 if (IS_ERR(tree))
1717 return ERR_CAST(tree);
1718 return &tree->mnt;
1719 }
1720
1721 void drop_collected_mounts(struct vfsmount *mnt)
1722 {
1723 namespace_lock();
1724 lock_mount_hash();
1725 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1726 unlock_mount_hash();
1727 namespace_unlock();
1728 }
1729
1730 /**
1731 * clone_private_mount - create a private clone of a path
1732 *
1733 * This creates a new vfsmount, which will be the clone of @path. The new will
1734 * not be attached anywhere in the namespace and will be private (i.e. changes
1735 * to the originating mount won't be propagated into this).
1736 *
1737 * Release with mntput().
1738 */
1739 struct vfsmount *clone_private_mount(struct path *path)
1740 {
1741 struct mount *old_mnt = real_mount(path->mnt);
1742 struct mount *new_mnt;
1743
1744 if (IS_MNT_UNBINDABLE(old_mnt))
1745 return ERR_PTR(-EINVAL);
1746
1747 down_read(&namespace_sem);
1748 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1749 up_read(&namespace_sem);
1750 if (IS_ERR(new_mnt))
1751 return ERR_CAST(new_mnt);
1752
1753 return &new_mnt->mnt;
1754 }
1755 EXPORT_SYMBOL_GPL(clone_private_mount);
1756
1757 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1758 struct vfsmount *root)
1759 {
1760 struct mount *mnt;
1761 int res = f(root, arg);
1762 if (res)
1763 return res;
1764 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1765 res = f(&mnt->mnt, arg);
1766 if (res)
1767 return res;
1768 }
1769 return 0;
1770 }
1771
1772 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1773 {
1774 struct mount *p;
1775
1776 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1777 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1778 mnt_release_group_id(p);
1779 }
1780 }
1781
1782 static int invent_group_ids(struct mount *mnt, bool recurse)
1783 {
1784 struct mount *p;
1785
1786 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1787 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1788 int err = mnt_alloc_group_id(p);
1789 if (err) {
1790 cleanup_group_ids(mnt, p);
1791 return err;
1792 }
1793 }
1794 }
1795
1796 return 0;
1797 }
1798
1799 /*
1800 * @source_mnt : mount tree to be attached
1801 * @nd : place the mount tree @source_mnt is attached
1802 * @parent_nd : if non-null, detach the source_mnt from its parent and
1803 * store the parent mount and mountpoint dentry.
1804 * (done when source_mnt is moved)
1805 *
1806 * NOTE: in the table below explains the semantics when a source mount
1807 * of a given type is attached to a destination mount of a given type.
1808 * ---------------------------------------------------------------------------
1809 * | BIND MOUNT OPERATION |
1810 * |**************************************************************************
1811 * | source-->| shared | private | slave | unbindable |
1812 * | dest | | | | |
1813 * | | | | | | |
1814 * | v | | | | |
1815 * |**************************************************************************
1816 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1817 * | | | | | |
1818 * |non-shared| shared (+) | private | slave (*) | invalid |
1819 * ***************************************************************************
1820 * A bind operation clones the source mount and mounts the clone on the
1821 * destination mount.
1822 *
1823 * (++) the cloned mount is propagated to all the mounts in the propagation
1824 * tree of the destination mount and the cloned mount is added to
1825 * the peer group of the source mount.
1826 * (+) the cloned mount is created under the destination mount and is marked
1827 * as shared. The cloned mount is added to the peer group of the source
1828 * mount.
1829 * (+++) the mount is propagated to all the mounts in the propagation tree
1830 * of the destination mount and the cloned mount is made slave
1831 * of the same master as that of the source mount. The cloned mount
1832 * is marked as 'shared and slave'.
1833 * (*) the cloned mount is made a slave of the same master as that of the
1834 * source mount.
1835 *
1836 * ---------------------------------------------------------------------------
1837 * | MOVE MOUNT OPERATION |
1838 * |**************************************************************************
1839 * | source-->| shared | private | slave | unbindable |
1840 * | dest | | | | |
1841 * | | | | | | |
1842 * | v | | | | |
1843 * |**************************************************************************
1844 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1845 * | | | | | |
1846 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1847 * ***************************************************************************
1848 *
1849 * (+) the mount is moved to the destination. And is then propagated to
1850 * all the mounts in the propagation tree of the destination mount.
1851 * (+*) the mount is moved to the destination.
1852 * (+++) the mount is moved to the destination and is then propagated to
1853 * all the mounts belonging to the destination mount's propagation tree.
1854 * the mount is marked as 'shared and slave'.
1855 * (*) the mount continues to be a slave at the new location.
1856 *
1857 * if the source mount is a tree, the operations explained above is
1858 * applied to each mount in the tree.
1859 * Must be called without spinlocks held, since this function can sleep
1860 * in allocations.
1861 */
1862 static int attach_recursive_mnt(struct mount *source_mnt,
1863 struct mount *dest_mnt,
1864 struct mountpoint *dest_mp,
1865 struct path *parent_path)
1866 {
1867 HLIST_HEAD(tree_list);
1868 struct mount *child, *p;
1869 struct hlist_node *n;
1870 int err;
1871
1872 if (IS_MNT_SHARED(dest_mnt)) {
1873 err = invent_group_ids(source_mnt, true);
1874 if (err)
1875 goto out;
1876 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1877 lock_mount_hash();
1878 if (err)
1879 goto out_cleanup_ids;
1880 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1881 set_mnt_shared(p);
1882 } else {
1883 lock_mount_hash();
1884 }
1885 if (parent_path) {
1886 detach_mnt(source_mnt, parent_path);
1887 attach_mnt(source_mnt, dest_mnt, dest_mp);
1888 touch_mnt_namespace(source_mnt->mnt_ns);
1889 } else {
1890 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1891 commit_tree(source_mnt, NULL);
1892 }
1893
1894 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1895 struct mount *q;
1896 hlist_del_init(&child->mnt_hash);
1897 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1898 child->mnt_mountpoint);
1899 commit_tree(child, q);
1900 }
1901 unlock_mount_hash();
1902
1903 return 0;
1904
1905 out_cleanup_ids:
1906 while (!hlist_empty(&tree_list)) {
1907 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1908 umount_tree(child, UMOUNT_SYNC);
1909 }
1910 unlock_mount_hash();
1911 cleanup_group_ids(source_mnt, NULL);
1912 out:
1913 return err;
1914 }
1915
1916 static struct mountpoint *lock_mount(struct path *path)
1917 {
1918 struct vfsmount *mnt;
1919 struct dentry *dentry = path->dentry;
1920 retry:
1921 mutex_lock(&dentry->d_inode->i_mutex);
1922 if (unlikely(cant_mount(dentry))) {
1923 mutex_unlock(&dentry->d_inode->i_mutex);
1924 return ERR_PTR(-ENOENT);
1925 }
1926 namespace_lock();
1927 mnt = lookup_mnt(path);
1928 if (likely(!mnt)) {
1929 struct mountpoint *mp = lookup_mountpoint(dentry);
1930 if (!mp)
1931 mp = new_mountpoint(dentry);
1932 if (IS_ERR(mp)) {
1933 namespace_unlock();
1934 mutex_unlock(&dentry->d_inode->i_mutex);
1935 return mp;
1936 }
1937 return mp;
1938 }
1939 namespace_unlock();
1940 mutex_unlock(&path->dentry->d_inode->i_mutex);
1941 path_put(path);
1942 path->mnt = mnt;
1943 dentry = path->dentry = dget(mnt->mnt_root);
1944 goto retry;
1945 }
1946
1947 static void unlock_mount(struct mountpoint *where)
1948 {
1949 struct dentry *dentry = where->m_dentry;
1950 put_mountpoint(where);
1951 namespace_unlock();
1952 mutex_unlock(&dentry->d_inode->i_mutex);
1953 }
1954
1955 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1956 {
1957 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1958 return -EINVAL;
1959
1960 if (d_is_dir(mp->m_dentry) !=
1961 d_is_dir(mnt->mnt.mnt_root))
1962 return -ENOTDIR;
1963
1964 return attach_recursive_mnt(mnt, p, mp, NULL);
1965 }
1966
1967 /*
1968 * Sanity check the flags to change_mnt_propagation.
1969 */
1970
1971 static int flags_to_propagation_type(int flags)
1972 {
1973 int type = flags & ~(MS_REC | MS_SILENT);
1974
1975 /* Fail if any non-propagation flags are set */
1976 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1977 return 0;
1978 /* Only one propagation flag should be set */
1979 if (!is_power_of_2(type))
1980 return 0;
1981 return type;
1982 }
1983
1984 /*
1985 * recursively change the type of the mountpoint.
1986 */
1987 static int do_change_type(struct path *path, int flag)
1988 {
1989 struct mount *m;
1990 struct mount *mnt = real_mount(path->mnt);
1991 int recurse = flag & MS_REC;
1992 int type;
1993 int err = 0;
1994
1995 if (path->dentry != path->mnt->mnt_root)
1996 return -EINVAL;
1997
1998 type = flags_to_propagation_type(flag);
1999 if (!type)
2000 return -EINVAL;
2001
2002 namespace_lock();
2003 if (type == MS_SHARED) {
2004 err = invent_group_ids(mnt, recurse);
2005 if (err)
2006 goto out_unlock;
2007 }
2008
2009 lock_mount_hash();
2010 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2011 change_mnt_propagation(m, type);
2012 unlock_mount_hash();
2013
2014 out_unlock:
2015 namespace_unlock();
2016 return err;
2017 }
2018
2019 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2020 {
2021 struct mount *child;
2022 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2023 if (!is_subdir(child->mnt_mountpoint, dentry))
2024 continue;
2025
2026 if (child->mnt.mnt_flags & MNT_LOCKED)
2027 return true;
2028 }
2029 return false;
2030 }
2031
2032 /*
2033 * do loopback mount.
2034 */
2035 static int do_loopback(struct path *path, const char *old_name,
2036 int recurse)
2037 {
2038 struct path old_path;
2039 struct mount *mnt = NULL, *old, *parent;
2040 struct mountpoint *mp;
2041 int err;
2042 if (!old_name || !*old_name)
2043 return -EINVAL;
2044 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2045 if (err)
2046 return err;
2047
2048 err = -EINVAL;
2049 if (mnt_ns_loop(old_path.dentry))
2050 goto out;
2051
2052 mp = lock_mount(path);
2053 err = PTR_ERR(mp);
2054 if (IS_ERR(mp))
2055 goto out;
2056
2057 old = real_mount(old_path.mnt);
2058 parent = real_mount(path->mnt);
2059
2060 err = -EINVAL;
2061 if (IS_MNT_UNBINDABLE(old))
2062 goto out2;
2063
2064 if (!check_mnt(parent))
2065 goto out2;
2066
2067 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2068 goto out2;
2069
2070 if (!recurse && has_locked_children(old, old_path.dentry))
2071 goto out2;
2072
2073 if (recurse)
2074 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2075 else
2076 mnt = clone_mnt(old, old_path.dentry, 0);
2077
2078 if (IS_ERR(mnt)) {
2079 err = PTR_ERR(mnt);
2080 goto out2;
2081 }
2082
2083 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2084
2085 err = graft_tree(mnt, parent, mp);
2086 if (err) {
2087 lock_mount_hash();
2088 umount_tree(mnt, UMOUNT_SYNC);
2089 unlock_mount_hash();
2090 }
2091 out2:
2092 unlock_mount(mp);
2093 out:
2094 path_put(&old_path);
2095 return err;
2096 }
2097
2098 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2099 {
2100 int error = 0;
2101 int readonly_request = 0;
2102
2103 if (ms_flags & MS_RDONLY)
2104 readonly_request = 1;
2105 if (readonly_request == __mnt_is_readonly(mnt))
2106 return 0;
2107
2108 if (readonly_request)
2109 error = mnt_make_readonly(real_mount(mnt));
2110 else
2111 __mnt_unmake_readonly(real_mount(mnt));
2112 return error;
2113 }
2114
2115 /*
2116 * change filesystem flags. dir should be a physical root of filesystem.
2117 * If you've mounted a non-root directory somewhere and want to do remount
2118 * on it - tough luck.
2119 */
2120 static int do_remount(struct path *path, int flags, int mnt_flags,
2121 void *data)
2122 {
2123 int err;
2124 struct super_block *sb = path->mnt->mnt_sb;
2125 struct mount *mnt = real_mount(path->mnt);
2126
2127 if (!check_mnt(mnt))
2128 return -EINVAL;
2129
2130 if (path->dentry != path->mnt->mnt_root)
2131 return -EINVAL;
2132
2133 /* Don't allow changing of locked mnt flags.
2134 *
2135 * No locks need to be held here while testing the various
2136 * MNT_LOCK flags because those flags can never be cleared
2137 * once they are set.
2138 */
2139 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2140 !(mnt_flags & MNT_READONLY)) {
2141 return -EPERM;
2142 }
2143 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2144 !(mnt_flags & MNT_NODEV)) {
2145 /* Was the nodev implicitly added in mount? */
2146 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2147 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2148 mnt_flags |= MNT_NODEV;
2149 } else {
2150 return -EPERM;
2151 }
2152 }
2153 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2154 !(mnt_flags & MNT_NOSUID)) {
2155 return -EPERM;
2156 }
2157 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2158 !(mnt_flags & MNT_NOEXEC)) {
2159 return -EPERM;
2160 }
2161 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2162 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2163 return -EPERM;
2164 }
2165
2166 err = security_sb_remount(sb, data);
2167 if (err)
2168 return err;
2169
2170 down_write(&sb->s_umount);
2171 if (flags & MS_BIND)
2172 err = change_mount_flags(path->mnt, flags);
2173 else if (!capable(CAP_SYS_ADMIN))
2174 err = -EPERM;
2175 else
2176 err = do_remount_sb(sb, flags, data, 0);
2177 if (!err) {
2178 lock_mount_hash();
2179 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2180 mnt->mnt.mnt_flags = mnt_flags;
2181 touch_mnt_namespace(mnt->mnt_ns);
2182 unlock_mount_hash();
2183 }
2184 up_write(&sb->s_umount);
2185 return err;
2186 }
2187
2188 static inline int tree_contains_unbindable(struct mount *mnt)
2189 {
2190 struct mount *p;
2191 for (p = mnt; p; p = next_mnt(p, mnt)) {
2192 if (IS_MNT_UNBINDABLE(p))
2193 return 1;
2194 }
2195 return 0;
2196 }
2197
2198 static int do_move_mount(struct path *path, const char *old_name)
2199 {
2200 struct path old_path, parent_path;
2201 struct mount *p;
2202 struct mount *old;
2203 struct mountpoint *mp;
2204 int err;
2205 if (!old_name || !*old_name)
2206 return -EINVAL;
2207 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2208 if (err)
2209 return err;
2210
2211 mp = lock_mount(path);
2212 err = PTR_ERR(mp);
2213 if (IS_ERR(mp))
2214 goto out;
2215
2216 old = real_mount(old_path.mnt);
2217 p = real_mount(path->mnt);
2218
2219 err = -EINVAL;
2220 if (!check_mnt(p) || !check_mnt(old))
2221 goto out1;
2222
2223 if (old->mnt.mnt_flags & MNT_LOCKED)
2224 goto out1;
2225
2226 err = -EINVAL;
2227 if (old_path.dentry != old_path.mnt->mnt_root)
2228 goto out1;
2229
2230 if (!mnt_has_parent(old))
2231 goto out1;
2232
2233 if (d_is_dir(path->dentry) !=
2234 d_is_dir(old_path.dentry))
2235 goto out1;
2236 /*
2237 * Don't move a mount residing in a shared parent.
2238 */
2239 if (IS_MNT_SHARED(old->mnt_parent))
2240 goto out1;
2241 /*
2242 * Don't move a mount tree containing unbindable mounts to a destination
2243 * mount which is shared.
2244 */
2245 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2246 goto out1;
2247 err = -ELOOP;
2248 for (; mnt_has_parent(p); p = p->mnt_parent)
2249 if (p == old)
2250 goto out1;
2251
2252 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2253 if (err)
2254 goto out1;
2255
2256 /* if the mount is moved, it should no longer be expire
2257 * automatically */
2258 list_del_init(&old->mnt_expire);
2259 out1:
2260 unlock_mount(mp);
2261 out:
2262 if (!err)
2263 path_put(&parent_path);
2264 path_put(&old_path);
2265 return err;
2266 }
2267
2268 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2269 {
2270 int err;
2271 const char *subtype = strchr(fstype, '.');
2272 if (subtype) {
2273 subtype++;
2274 err = -EINVAL;
2275 if (!subtype[0])
2276 goto err;
2277 } else
2278 subtype = "";
2279
2280 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2281 err = -ENOMEM;
2282 if (!mnt->mnt_sb->s_subtype)
2283 goto err;
2284 return mnt;
2285
2286 err:
2287 mntput(mnt);
2288 return ERR_PTR(err);
2289 }
2290
2291 /*
2292 * add a mount into a namespace's mount tree
2293 */
2294 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2295 {
2296 struct mountpoint *mp;
2297 struct mount *parent;
2298 int err;
2299
2300 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2301
2302 mp = lock_mount(path);
2303 if (IS_ERR(mp))
2304 return PTR_ERR(mp);
2305
2306 parent = real_mount(path->mnt);
2307 err = -EINVAL;
2308 if (unlikely(!check_mnt(parent))) {
2309 /* that's acceptable only for automounts done in private ns */
2310 if (!(mnt_flags & MNT_SHRINKABLE))
2311 goto unlock;
2312 /* ... and for those we'd better have mountpoint still alive */
2313 if (!parent->mnt_ns)
2314 goto unlock;
2315 }
2316
2317 /* Refuse the same filesystem on the same mount point */
2318 err = -EBUSY;
2319 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2320 path->mnt->mnt_root == path->dentry)
2321 goto unlock;
2322
2323 err = -EINVAL;
2324 if (d_is_symlink(newmnt->mnt.mnt_root))
2325 goto unlock;
2326
2327 newmnt->mnt.mnt_flags = mnt_flags;
2328 err = graft_tree(newmnt, parent, mp);
2329
2330 unlock:
2331 unlock_mount(mp);
2332 return err;
2333 }
2334
2335 /*
2336 * create a new mount for userspace and request it to be added into the
2337 * namespace's tree
2338 */
2339 static int do_new_mount(struct path *path, const char *fstype, int flags,
2340 int mnt_flags, const char *name, void *data)
2341 {
2342 struct file_system_type *type;
2343 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2344 struct vfsmount *mnt;
2345 int err;
2346
2347 if (!fstype)
2348 return -EINVAL;
2349
2350 type = get_fs_type(fstype);
2351 if (!type)
2352 return -ENODEV;
2353
2354 if (user_ns != &init_user_ns) {
2355 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2356 put_filesystem(type);
2357 return -EPERM;
2358 }
2359 /* Only in special cases allow devices from mounts
2360 * created outside the initial user namespace.
2361 */
2362 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2363 flags |= MS_NODEV;
2364 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2365 }
2366 }
2367
2368 mnt = vfs_kern_mount(type, flags, name, data);
2369 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2370 !mnt->mnt_sb->s_subtype)
2371 mnt = fs_set_subtype(mnt, fstype);
2372
2373 put_filesystem(type);
2374 if (IS_ERR(mnt))
2375 return PTR_ERR(mnt);
2376
2377 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2378 if (err)
2379 mntput(mnt);
2380 return err;
2381 }
2382
2383 int finish_automount(struct vfsmount *m, struct path *path)
2384 {
2385 struct mount *mnt = real_mount(m);
2386 int err;
2387 /* The new mount record should have at least 2 refs to prevent it being
2388 * expired before we get a chance to add it
2389 */
2390 BUG_ON(mnt_get_count(mnt) < 2);
2391
2392 if (m->mnt_sb == path->mnt->mnt_sb &&
2393 m->mnt_root == path->dentry) {
2394 err = -ELOOP;
2395 goto fail;
2396 }
2397
2398 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2399 if (!err)
2400 return 0;
2401 fail:
2402 /* remove m from any expiration list it may be on */
2403 if (!list_empty(&mnt->mnt_expire)) {
2404 namespace_lock();
2405 list_del_init(&mnt->mnt_expire);
2406 namespace_unlock();
2407 }
2408 mntput(m);
2409 mntput(m);
2410 return err;
2411 }
2412
2413 /**
2414 * mnt_set_expiry - Put a mount on an expiration list
2415 * @mnt: The mount to list.
2416 * @expiry_list: The list to add the mount to.
2417 */
2418 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2419 {
2420 namespace_lock();
2421
2422 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2423
2424 namespace_unlock();
2425 }
2426 EXPORT_SYMBOL(mnt_set_expiry);
2427
2428 /*
2429 * process a list of expirable mountpoints with the intent of discarding any
2430 * mountpoints that aren't in use and haven't been touched since last we came
2431 * here
2432 */
2433 void mark_mounts_for_expiry(struct list_head *mounts)
2434 {
2435 struct mount *mnt, *next;
2436 LIST_HEAD(graveyard);
2437
2438 if (list_empty(mounts))
2439 return;
2440
2441 namespace_lock();
2442 lock_mount_hash();
2443
2444 /* extract from the expiration list every vfsmount that matches the
2445 * following criteria:
2446 * - only referenced by its parent vfsmount
2447 * - still marked for expiry (marked on the last call here; marks are
2448 * cleared by mntput())
2449 */
2450 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2451 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2452 propagate_mount_busy(mnt, 1))
2453 continue;
2454 list_move(&mnt->mnt_expire, &graveyard);
2455 }
2456 while (!list_empty(&graveyard)) {
2457 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2458 touch_mnt_namespace(mnt->mnt_ns);
2459 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2460 }
2461 unlock_mount_hash();
2462 namespace_unlock();
2463 }
2464
2465 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2466
2467 /*
2468 * Ripoff of 'select_parent()'
2469 *
2470 * search the list of submounts for a given mountpoint, and move any
2471 * shrinkable submounts to the 'graveyard' list.
2472 */
2473 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2474 {
2475 struct mount *this_parent = parent;
2476 struct list_head *next;
2477 int found = 0;
2478
2479 repeat:
2480 next = this_parent->mnt_mounts.next;
2481 resume:
2482 while (next != &this_parent->mnt_mounts) {
2483 struct list_head *tmp = next;
2484 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2485
2486 next = tmp->next;
2487 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2488 continue;
2489 /*
2490 * Descend a level if the d_mounts list is non-empty.
2491 */
2492 if (!list_empty(&mnt->mnt_mounts)) {
2493 this_parent = mnt;
2494 goto repeat;
2495 }
2496
2497 if (!propagate_mount_busy(mnt, 1)) {
2498 list_move_tail(&mnt->mnt_expire, graveyard);
2499 found++;
2500 }
2501 }
2502 /*
2503 * All done at this level ... ascend and resume the search
2504 */
2505 if (this_parent != parent) {
2506 next = this_parent->mnt_child.next;
2507 this_parent = this_parent->mnt_parent;
2508 goto resume;
2509 }
2510 return found;
2511 }
2512
2513 /*
2514 * process a list of expirable mountpoints with the intent of discarding any
2515 * submounts of a specific parent mountpoint
2516 *
2517 * mount_lock must be held for write
2518 */
2519 static void shrink_submounts(struct mount *mnt)
2520 {
2521 LIST_HEAD(graveyard);
2522 struct mount *m;
2523
2524 /* extract submounts of 'mountpoint' from the expiration list */
2525 while (select_submounts(mnt, &graveyard)) {
2526 while (!list_empty(&graveyard)) {
2527 m = list_first_entry(&graveyard, struct mount,
2528 mnt_expire);
2529 touch_mnt_namespace(m->mnt_ns);
2530 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2531 }
2532 }
2533 }
2534
2535 /*
2536 * Some copy_from_user() implementations do not return the exact number of
2537 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2538 * Note that this function differs from copy_from_user() in that it will oops
2539 * on bad values of `to', rather than returning a short copy.
2540 */
2541 static long exact_copy_from_user(void *to, const void __user * from,
2542 unsigned long n)
2543 {
2544 char *t = to;
2545 const char __user *f = from;
2546 char c;
2547
2548 if (!access_ok(VERIFY_READ, from, n))
2549 return n;
2550
2551 while (n) {
2552 if (__get_user(c, f)) {
2553 memset(t, 0, n);
2554 break;
2555 }
2556 *t++ = c;
2557 f++;
2558 n--;
2559 }
2560 return n;
2561 }
2562
2563 int copy_mount_options(const void __user * data, unsigned long *where)
2564 {
2565 int i;
2566 unsigned long page;
2567 unsigned long size;
2568
2569 *where = 0;
2570 if (!data)
2571 return 0;
2572
2573 if (!(page = __get_free_page(GFP_KERNEL)))
2574 return -ENOMEM;
2575
2576 /* We only care that *some* data at the address the user
2577 * gave us is valid. Just in case, we'll zero
2578 * the remainder of the page.
2579 */
2580 /* copy_from_user cannot cross TASK_SIZE ! */
2581 size = TASK_SIZE - (unsigned long)data;
2582 if (size > PAGE_SIZE)
2583 size = PAGE_SIZE;
2584
2585 i = size - exact_copy_from_user((void *)page, data, size);
2586 if (!i) {
2587 free_page(page);
2588 return -EFAULT;
2589 }
2590 if (i != PAGE_SIZE)
2591 memset((char *)page + i, 0, PAGE_SIZE - i);
2592 *where = page;
2593 return 0;
2594 }
2595
2596 char *copy_mount_string(const void __user *data)
2597 {
2598 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2599 }
2600
2601 /*
2602 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2603 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2604 *
2605 * data is a (void *) that can point to any structure up to
2606 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2607 * information (or be NULL).
2608 *
2609 * Pre-0.97 versions of mount() didn't have a flags word.
2610 * When the flags word was introduced its top half was required
2611 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2612 * Therefore, if this magic number is present, it carries no information
2613 * and must be discarded.
2614 */
2615 long do_mount(const char *dev_name, const char __user *dir_name,
2616 const char *type_page, unsigned long flags, void *data_page)
2617 {
2618 struct path path;
2619 int retval = 0;
2620 int mnt_flags = 0;
2621
2622 /* Discard magic */
2623 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2624 flags &= ~MS_MGC_MSK;
2625
2626 /* Basic sanity checks */
2627 if (data_page)
2628 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2629
2630 /* ... and get the mountpoint */
2631 retval = user_path(dir_name, &path);
2632 if (retval)
2633 return retval;
2634
2635 retval = security_sb_mount(dev_name, &path,
2636 type_page, flags, data_page);
2637 if (!retval && !may_mount())
2638 retval = -EPERM;
2639 if (retval)
2640 goto dput_out;
2641
2642 /* Default to relatime unless overriden */
2643 if (!(flags & MS_NOATIME))
2644 mnt_flags |= MNT_RELATIME;
2645
2646 /* Separate the per-mountpoint flags */
2647 if (flags & MS_NOSUID)
2648 mnt_flags |= MNT_NOSUID;
2649 if (flags & MS_NODEV)
2650 mnt_flags |= MNT_NODEV;
2651 if (flags & MS_NOEXEC)
2652 mnt_flags |= MNT_NOEXEC;
2653 if (flags & MS_NOATIME)
2654 mnt_flags |= MNT_NOATIME;
2655 if (flags & MS_NODIRATIME)
2656 mnt_flags |= MNT_NODIRATIME;
2657 if (flags & MS_STRICTATIME)
2658 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2659 if (flags & MS_RDONLY)
2660 mnt_flags |= MNT_READONLY;
2661
2662 /* The default atime for remount is preservation */
2663 if ((flags & MS_REMOUNT) &&
2664 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2665 MS_STRICTATIME)) == 0)) {
2666 mnt_flags &= ~MNT_ATIME_MASK;
2667 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2668 }
2669
2670 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2671 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2672 MS_STRICTATIME);
2673
2674 if (flags & MS_REMOUNT)
2675 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2676 data_page);
2677 else if (flags & MS_BIND)
2678 retval = do_loopback(&path, dev_name, flags & MS_REC);
2679 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2680 retval = do_change_type(&path, flags);
2681 else if (flags & MS_MOVE)
2682 retval = do_move_mount(&path, dev_name);
2683 else
2684 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2685 dev_name, data_page);
2686 dput_out:
2687 path_put(&path);
2688 return retval;
2689 }
2690
2691 static void free_mnt_ns(struct mnt_namespace *ns)
2692 {
2693 ns_free_inum(&ns->ns);
2694 put_user_ns(ns->user_ns);
2695 kfree(ns);
2696 }
2697
2698 /*
2699 * Assign a sequence number so we can detect when we attempt to bind
2700 * mount a reference to an older mount namespace into the current
2701 * mount namespace, preventing reference counting loops. A 64bit
2702 * number incrementing at 10Ghz will take 12,427 years to wrap which
2703 * is effectively never, so we can ignore the possibility.
2704 */
2705 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2706
2707 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2708 {
2709 struct mnt_namespace *new_ns;
2710 int ret;
2711
2712 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2713 if (!new_ns)
2714 return ERR_PTR(-ENOMEM);
2715 ret = ns_alloc_inum(&new_ns->ns);
2716 if (ret) {
2717 kfree(new_ns);
2718 return ERR_PTR(ret);
2719 }
2720 new_ns->ns.ops = &mntns_operations;
2721 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2722 atomic_set(&new_ns->count, 1);
2723 new_ns->root = NULL;
2724 INIT_LIST_HEAD(&new_ns->list);
2725 init_waitqueue_head(&new_ns->poll);
2726 new_ns->event = 0;
2727 new_ns->user_ns = get_user_ns(user_ns);
2728 return new_ns;
2729 }
2730
2731 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2732 struct user_namespace *user_ns, struct fs_struct *new_fs)
2733 {
2734 struct mnt_namespace *new_ns;
2735 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2736 struct mount *p, *q;
2737 struct mount *old;
2738 struct mount *new;
2739 int copy_flags;
2740
2741 BUG_ON(!ns);
2742
2743 if (likely(!(flags & CLONE_NEWNS))) {
2744 get_mnt_ns(ns);
2745 return ns;
2746 }
2747
2748 old = ns->root;
2749
2750 new_ns = alloc_mnt_ns(user_ns);
2751 if (IS_ERR(new_ns))
2752 return new_ns;
2753
2754 namespace_lock();
2755 /* First pass: copy the tree topology */
2756 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2757 if (user_ns != ns->user_ns)
2758 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2759 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2760 if (IS_ERR(new)) {
2761 namespace_unlock();
2762 free_mnt_ns(new_ns);
2763 return ERR_CAST(new);
2764 }
2765 new_ns->root = new;
2766 list_add_tail(&new_ns->list, &new->mnt_list);
2767
2768 /*
2769 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2770 * as belonging to new namespace. We have already acquired a private
2771 * fs_struct, so tsk->fs->lock is not needed.
2772 */
2773 p = old;
2774 q = new;
2775 while (p) {
2776 q->mnt_ns = new_ns;
2777 if (new_fs) {
2778 if (&p->mnt == new_fs->root.mnt) {
2779 new_fs->root.mnt = mntget(&q->mnt);
2780 rootmnt = &p->mnt;
2781 }
2782 if (&p->mnt == new_fs->pwd.mnt) {
2783 new_fs->pwd.mnt = mntget(&q->mnt);
2784 pwdmnt = &p->mnt;
2785 }
2786 }
2787 p = next_mnt(p, old);
2788 q = next_mnt(q, new);
2789 if (!q)
2790 break;
2791 while (p->mnt.mnt_root != q->mnt.mnt_root)
2792 p = next_mnt(p, old);
2793 }
2794 namespace_unlock();
2795
2796 if (rootmnt)
2797 mntput(rootmnt);
2798 if (pwdmnt)
2799 mntput(pwdmnt);
2800
2801 return new_ns;
2802 }
2803
2804 /**
2805 * create_mnt_ns - creates a private namespace and adds a root filesystem
2806 * @mnt: pointer to the new root filesystem mountpoint
2807 */
2808 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2809 {
2810 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2811 if (!IS_ERR(new_ns)) {
2812 struct mount *mnt = real_mount(m);
2813 mnt->mnt_ns = new_ns;
2814 new_ns->root = mnt;
2815 list_add(&mnt->mnt_list, &new_ns->list);
2816 } else {
2817 mntput(m);
2818 }
2819 return new_ns;
2820 }
2821
2822 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2823 {
2824 struct mnt_namespace *ns;
2825 struct super_block *s;
2826 struct path path;
2827 int err;
2828
2829 ns = create_mnt_ns(mnt);
2830 if (IS_ERR(ns))
2831 return ERR_CAST(ns);
2832
2833 err = vfs_path_lookup(mnt->mnt_root, mnt,
2834 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2835
2836 put_mnt_ns(ns);
2837
2838 if (err)
2839 return ERR_PTR(err);
2840
2841 /* trade a vfsmount reference for active sb one */
2842 s = path.mnt->mnt_sb;
2843 atomic_inc(&s->s_active);
2844 mntput(path.mnt);
2845 /* lock the sucker */
2846 down_write(&s->s_umount);
2847 /* ... and return the root of (sub)tree on it */
2848 return path.dentry;
2849 }
2850 EXPORT_SYMBOL(mount_subtree);
2851
2852 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2853 char __user *, type, unsigned long, flags, void __user *, data)
2854 {
2855 int ret;
2856 char *kernel_type;
2857 char *kernel_dev;
2858 unsigned long data_page;
2859
2860 kernel_type = copy_mount_string(type);
2861 ret = PTR_ERR(kernel_type);
2862 if (IS_ERR(kernel_type))
2863 goto out_type;
2864
2865 kernel_dev = copy_mount_string(dev_name);
2866 ret = PTR_ERR(kernel_dev);
2867 if (IS_ERR(kernel_dev))
2868 goto out_dev;
2869
2870 ret = copy_mount_options(data, &data_page);
2871 if (ret < 0)
2872 goto out_data;
2873
2874 ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
2875 (void *) data_page);
2876
2877 free_page(data_page);
2878 out_data:
2879 kfree(kernel_dev);
2880 out_dev:
2881 kfree(kernel_type);
2882 out_type:
2883 return ret;
2884 }
2885
2886 /*
2887 * Return true if path is reachable from root
2888 *
2889 * namespace_sem or mount_lock is held
2890 */
2891 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2892 const struct path *root)
2893 {
2894 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2895 dentry = mnt->mnt_mountpoint;
2896 mnt = mnt->mnt_parent;
2897 }
2898 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2899 }
2900
2901 int path_is_under(struct path *path1, struct path *path2)
2902 {
2903 int res;
2904 read_seqlock_excl(&mount_lock);
2905 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2906 read_sequnlock_excl(&mount_lock);
2907 return res;
2908 }
2909 EXPORT_SYMBOL(path_is_under);
2910
2911 /*
2912 * pivot_root Semantics:
2913 * Moves the root file system of the current process to the directory put_old,
2914 * makes new_root as the new root file system of the current process, and sets
2915 * root/cwd of all processes which had them on the current root to new_root.
2916 *
2917 * Restrictions:
2918 * The new_root and put_old must be directories, and must not be on the
2919 * same file system as the current process root. The put_old must be
2920 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2921 * pointed to by put_old must yield the same directory as new_root. No other
2922 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2923 *
2924 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2925 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2926 * in this situation.
2927 *
2928 * Notes:
2929 * - we don't move root/cwd if they are not at the root (reason: if something
2930 * cared enough to change them, it's probably wrong to force them elsewhere)
2931 * - it's okay to pick a root that isn't the root of a file system, e.g.
2932 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2933 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2934 * first.
2935 */
2936 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2937 const char __user *, put_old)
2938 {
2939 struct path new, old, parent_path, root_parent, root;
2940 struct mount *new_mnt, *root_mnt, *old_mnt;
2941 struct mountpoint *old_mp, *root_mp;
2942 int error;
2943
2944 if (!may_mount())
2945 return -EPERM;
2946
2947 error = user_path_dir(new_root, &new);
2948 if (error)
2949 goto out0;
2950
2951 error = user_path_dir(put_old, &old);
2952 if (error)
2953 goto out1;
2954
2955 error = security_sb_pivotroot(&old, &new);
2956 if (error)
2957 goto out2;
2958
2959 get_fs_root(current->fs, &root);
2960 old_mp = lock_mount(&old);
2961 error = PTR_ERR(old_mp);
2962 if (IS_ERR(old_mp))
2963 goto out3;
2964
2965 error = -EINVAL;
2966 new_mnt = real_mount(new.mnt);
2967 root_mnt = real_mount(root.mnt);
2968 old_mnt = real_mount(old.mnt);
2969 if (IS_MNT_SHARED(old_mnt) ||
2970 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2971 IS_MNT_SHARED(root_mnt->mnt_parent))
2972 goto out4;
2973 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2974 goto out4;
2975 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2976 goto out4;
2977 error = -ENOENT;
2978 if (d_unlinked(new.dentry))
2979 goto out4;
2980 error = -EBUSY;
2981 if (new_mnt == root_mnt || old_mnt == root_mnt)
2982 goto out4; /* loop, on the same file system */
2983 error = -EINVAL;
2984 if (root.mnt->mnt_root != root.dentry)
2985 goto out4; /* not a mountpoint */
2986 if (!mnt_has_parent(root_mnt))
2987 goto out4; /* not attached */
2988 root_mp = root_mnt->mnt_mp;
2989 if (new.mnt->mnt_root != new.dentry)
2990 goto out4; /* not a mountpoint */
2991 if (!mnt_has_parent(new_mnt))
2992 goto out4; /* not attached */
2993 /* make sure we can reach put_old from new_root */
2994 if (!is_path_reachable(old_mnt, old.dentry, &new))
2995 goto out4;
2996 /* make certain new is below the root */
2997 if (!is_path_reachable(new_mnt, new.dentry, &root))
2998 goto out4;
2999 root_mp->m_count++; /* pin it so it won't go away */
3000 lock_mount_hash();
3001 detach_mnt(new_mnt, &parent_path);
3002 detach_mnt(root_mnt, &root_parent);
3003 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3004 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3005 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3006 }
3007 /* mount old root on put_old */
3008 attach_mnt(root_mnt, old_mnt, old_mp);
3009 /* mount new_root on / */
3010 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3011 touch_mnt_namespace(current->nsproxy->mnt_ns);
3012 /* A moved mount should not expire automatically */
3013 list_del_init(&new_mnt->mnt_expire);
3014 unlock_mount_hash();
3015 chroot_fs_refs(&root, &new);
3016 put_mountpoint(root_mp);
3017 error = 0;
3018 out4:
3019 unlock_mount(old_mp);
3020 if (!error) {
3021 path_put(&root_parent);
3022 path_put(&parent_path);
3023 }
3024 out3:
3025 path_put(&root);
3026 out2:
3027 path_put(&old);
3028 out1:
3029 path_put(&new);
3030 out0:
3031 return error;
3032 }
3033
3034 static void __init init_mount_tree(void)
3035 {
3036 struct vfsmount *mnt;
3037 struct mnt_namespace *ns;
3038 struct path root;
3039 struct file_system_type *type;
3040
3041 type = get_fs_type("rootfs");
3042 if (!type)
3043 panic("Can't find rootfs type");
3044 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3045 put_filesystem(type);
3046 if (IS_ERR(mnt))
3047 panic("Can't create rootfs");
3048
3049 ns = create_mnt_ns(mnt);
3050 if (IS_ERR(ns))
3051 panic("Can't allocate initial namespace");
3052
3053 init_task.nsproxy->mnt_ns = ns;
3054 get_mnt_ns(ns);
3055
3056 root.mnt = mnt;
3057 root.dentry = mnt->mnt_root;
3058 mnt->mnt_flags |= MNT_LOCKED;
3059
3060 set_fs_pwd(current->fs, &root);
3061 set_fs_root(current->fs, &root);
3062 }
3063
3064 void __init mnt_init(void)
3065 {
3066 unsigned u;
3067 int err;
3068
3069 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3070 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3071
3072 mount_hashtable = alloc_large_system_hash("Mount-cache",
3073 sizeof(struct hlist_head),
3074 mhash_entries, 19,
3075 0,
3076 &m_hash_shift, &m_hash_mask, 0, 0);
3077 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3078 sizeof(struct hlist_head),
3079 mphash_entries, 19,
3080 0,
3081 &mp_hash_shift, &mp_hash_mask, 0, 0);
3082
3083 if (!mount_hashtable || !mountpoint_hashtable)
3084 panic("Failed to allocate mount hash table\n");
3085
3086 for (u = 0; u <= m_hash_mask; u++)
3087 INIT_HLIST_HEAD(&mount_hashtable[u]);
3088 for (u = 0; u <= mp_hash_mask; u++)
3089 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3090
3091 kernfs_init();
3092
3093 err = sysfs_init();
3094 if (err)
3095 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3096 __func__, err);
3097 fs_kobj = kobject_create_and_add("fs", NULL);
3098 if (!fs_kobj)
3099 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3100 init_rootfs();
3101 init_mount_tree();
3102 }
3103
3104 void put_mnt_ns(struct mnt_namespace *ns)
3105 {
3106 if (!atomic_dec_and_test(&ns->count))
3107 return;
3108 drop_collected_mounts(&ns->root->mnt);
3109 free_mnt_ns(ns);
3110 }
3111
3112 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3113 {
3114 struct vfsmount *mnt;
3115 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3116 if (!IS_ERR(mnt)) {
3117 /*
3118 * it is a longterm mount, don't release mnt until
3119 * we unmount before file sys is unregistered
3120 */
3121 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3122 }
3123 return mnt;
3124 }
3125 EXPORT_SYMBOL_GPL(kern_mount_data);
3126
3127 void kern_unmount(struct vfsmount *mnt)
3128 {
3129 /* release long term mount so mount point can be released */
3130 if (!IS_ERR_OR_NULL(mnt)) {
3131 real_mount(mnt)->mnt_ns = NULL;
3132 synchronize_rcu(); /* yecchhh... */
3133 mntput(mnt);
3134 }
3135 }
3136 EXPORT_SYMBOL(kern_unmount);
3137
3138 bool our_mnt(struct vfsmount *mnt)
3139 {
3140 return check_mnt(real_mount(mnt));
3141 }
3142
3143 bool current_chrooted(void)
3144 {
3145 /* Does the current process have a non-standard root */
3146 struct path ns_root;
3147 struct path fs_root;
3148 bool chrooted;
3149
3150 /* Find the namespace root */
3151 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3152 ns_root.dentry = ns_root.mnt->mnt_root;
3153 path_get(&ns_root);
3154 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3155 ;
3156
3157 get_fs_root(current->fs, &fs_root);
3158
3159 chrooted = !path_equal(&fs_root, &ns_root);
3160
3161 path_put(&fs_root);
3162 path_put(&ns_root);
3163
3164 return chrooted;
3165 }
3166
3167 bool fs_fully_visible(struct file_system_type *type)
3168 {
3169 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3170 struct mount *mnt;
3171 bool visible = false;
3172
3173 if (unlikely(!ns))
3174 return false;
3175
3176 down_read(&namespace_sem);
3177 list_for_each_entry(mnt, &ns->list, mnt_list) {
3178 struct mount *child;
3179 if (mnt->mnt.mnt_sb->s_type != type)
3180 continue;
3181
3182 /* This mount is not fully visible if it's root directory
3183 * is not the root directory of the filesystem.
3184 */
3185 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3186 continue;
3187
3188 /* This mount is not fully visible if there are any child mounts
3189 * that cover anything except for empty directories.
3190 */
3191 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3192 struct inode *inode = child->mnt_mountpoint->d_inode;
3193 if (!S_ISDIR(inode->i_mode))
3194 goto next;
3195 if (inode->i_nlink > 2)
3196 goto next;
3197 }
3198 visible = true;
3199 goto found;
3200 next: ;
3201 }
3202 found:
3203 up_read(&namespace_sem);
3204 return visible;
3205 }
3206
3207 static struct ns_common *mntns_get(struct task_struct *task)
3208 {
3209 struct ns_common *ns = NULL;
3210 struct nsproxy *nsproxy;
3211
3212 task_lock(task);
3213 nsproxy = task->nsproxy;
3214 if (nsproxy) {
3215 ns = &nsproxy->mnt_ns->ns;
3216 get_mnt_ns(to_mnt_ns(ns));
3217 }
3218 task_unlock(task);
3219
3220 return ns;
3221 }
3222
3223 static void mntns_put(struct ns_common *ns)
3224 {
3225 put_mnt_ns(to_mnt_ns(ns));
3226 }
3227
3228 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3229 {
3230 struct fs_struct *fs = current->fs;
3231 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3232 struct path root;
3233
3234 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3235 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3236 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3237 return -EPERM;
3238
3239 if (fs->users != 1)
3240 return -EINVAL;
3241
3242 get_mnt_ns(mnt_ns);
3243 put_mnt_ns(nsproxy->mnt_ns);
3244 nsproxy->mnt_ns = mnt_ns;
3245
3246 /* Find the root */
3247 root.mnt = &mnt_ns->root->mnt;
3248 root.dentry = mnt_ns->root->mnt.mnt_root;
3249 path_get(&root);
3250 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3251 ;
3252
3253 /* Update the pwd and root */
3254 set_fs_pwd(fs, &root);
3255 set_fs_root(fs, &root);
3256
3257 path_put(&root);
3258 return 0;
3259 }
3260
3261 const struct proc_ns_operations mntns_operations = {
3262 .name = "mnt",
3263 .type = CLONE_NEWNS,
3264 .get = mntns_get,
3265 .put = mntns_put,
3266 .install = mntns_install,
3267 };