]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/namespace.c
Merge tag 'ntfs3_for_5.15' of git://github.com/Paragon-Software-Group/linux-ntfs3
[mirror_ubuntu-jammy-kernel.git] / fs / namespace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34
35 #include "pnode.h"
36 #include "internal.h"
37
38 /* Maximum number of mounts in a mount namespace */
39 unsigned int sysctl_mount_max __read_mostly = 100000;
40
41 static unsigned int m_hash_mask __read_mostly;
42 static unsigned int m_hash_shift __read_mostly;
43 static unsigned int mp_hash_mask __read_mostly;
44 static unsigned int mp_hash_shift __read_mostly;
45
46 static __initdata unsigned long mhash_entries;
47 static int __init set_mhash_entries(char *str)
48 {
49 if (!str)
50 return 0;
51 mhash_entries = simple_strtoul(str, &str, 0);
52 return 1;
53 }
54 __setup("mhash_entries=", set_mhash_entries);
55
56 static __initdata unsigned long mphash_entries;
57 static int __init set_mphash_entries(char *str)
58 {
59 if (!str)
60 return 0;
61 mphash_entries = simple_strtoul(str, &str, 0);
62 return 1;
63 }
64 __setup("mphash_entries=", set_mphash_entries);
65
66 static u64 event;
67 static DEFINE_IDA(mnt_id_ida);
68 static DEFINE_IDA(mnt_group_ida);
69
70 static struct hlist_head *mount_hashtable __read_mostly;
71 static struct hlist_head *mountpoint_hashtable __read_mostly;
72 static struct kmem_cache *mnt_cache __read_mostly;
73 static DECLARE_RWSEM(namespace_sem);
74 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
75 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
76
77 struct mount_kattr {
78 unsigned int attr_set;
79 unsigned int attr_clr;
80 unsigned int propagation;
81 unsigned int lookup_flags;
82 bool recurse;
83 struct user_namespace *mnt_userns;
84 };
85
86 /* /sys/fs */
87 struct kobject *fs_kobj;
88 EXPORT_SYMBOL_GPL(fs_kobj);
89
90 /*
91 * vfsmount lock may be taken for read to prevent changes to the
92 * vfsmount hash, ie. during mountpoint lookups or walking back
93 * up the tree.
94 *
95 * It should be taken for write in all cases where the vfsmount
96 * tree or hash is modified or when a vfsmount structure is modified.
97 */
98 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99
100 static inline void lock_mount_hash(void)
101 {
102 write_seqlock(&mount_lock);
103 }
104
105 static inline void unlock_mount_hash(void)
106 {
107 write_sequnlock(&mount_lock);
108 }
109
110 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
111 {
112 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
113 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
114 tmp = tmp + (tmp >> m_hash_shift);
115 return &mount_hashtable[tmp & m_hash_mask];
116 }
117
118 static inline struct hlist_head *mp_hash(struct dentry *dentry)
119 {
120 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
121 tmp = tmp + (tmp >> mp_hash_shift);
122 return &mountpoint_hashtable[tmp & mp_hash_mask];
123 }
124
125 static int mnt_alloc_id(struct mount *mnt)
126 {
127 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
128
129 if (res < 0)
130 return res;
131 mnt->mnt_id = res;
132 return 0;
133 }
134
135 static void mnt_free_id(struct mount *mnt)
136 {
137 ida_free(&mnt_id_ida, mnt->mnt_id);
138 }
139
140 /*
141 * Allocate a new peer group ID
142 */
143 static int mnt_alloc_group_id(struct mount *mnt)
144 {
145 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
146
147 if (res < 0)
148 return res;
149 mnt->mnt_group_id = res;
150 return 0;
151 }
152
153 /*
154 * Release a peer group ID
155 */
156 void mnt_release_group_id(struct mount *mnt)
157 {
158 ida_free(&mnt_group_ida, mnt->mnt_group_id);
159 mnt->mnt_group_id = 0;
160 }
161
162 /*
163 * vfsmount lock must be held for read
164 */
165 static inline void mnt_add_count(struct mount *mnt, int n)
166 {
167 #ifdef CONFIG_SMP
168 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
169 #else
170 preempt_disable();
171 mnt->mnt_count += n;
172 preempt_enable();
173 #endif
174 }
175
176 /*
177 * vfsmount lock must be held for write
178 */
179 int mnt_get_count(struct mount *mnt)
180 {
181 #ifdef CONFIG_SMP
182 int count = 0;
183 int cpu;
184
185 for_each_possible_cpu(cpu) {
186 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
187 }
188
189 return count;
190 #else
191 return mnt->mnt_count;
192 #endif
193 }
194
195 static struct mount *alloc_vfsmnt(const char *name)
196 {
197 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
198 if (mnt) {
199 int err;
200
201 err = mnt_alloc_id(mnt);
202 if (err)
203 goto out_free_cache;
204
205 if (name) {
206 mnt->mnt_devname = kstrdup_const(name,
207 GFP_KERNEL_ACCOUNT);
208 if (!mnt->mnt_devname)
209 goto out_free_id;
210 }
211
212 #ifdef CONFIG_SMP
213 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
214 if (!mnt->mnt_pcp)
215 goto out_free_devname;
216
217 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
218 #else
219 mnt->mnt_count = 1;
220 mnt->mnt_writers = 0;
221 #endif
222
223 INIT_HLIST_NODE(&mnt->mnt_hash);
224 INIT_LIST_HEAD(&mnt->mnt_child);
225 INIT_LIST_HEAD(&mnt->mnt_mounts);
226 INIT_LIST_HEAD(&mnt->mnt_list);
227 INIT_LIST_HEAD(&mnt->mnt_expire);
228 INIT_LIST_HEAD(&mnt->mnt_share);
229 INIT_LIST_HEAD(&mnt->mnt_slave_list);
230 INIT_LIST_HEAD(&mnt->mnt_slave);
231 INIT_HLIST_NODE(&mnt->mnt_mp_list);
232 INIT_LIST_HEAD(&mnt->mnt_umounting);
233 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
234 mnt->mnt.mnt_userns = &init_user_ns;
235 }
236 return mnt;
237
238 #ifdef CONFIG_SMP
239 out_free_devname:
240 kfree_const(mnt->mnt_devname);
241 #endif
242 out_free_id:
243 mnt_free_id(mnt);
244 out_free_cache:
245 kmem_cache_free(mnt_cache, mnt);
246 return NULL;
247 }
248
249 /*
250 * Most r/o checks on a fs are for operations that take
251 * discrete amounts of time, like a write() or unlink().
252 * We must keep track of when those operations start
253 * (for permission checks) and when they end, so that
254 * we can determine when writes are able to occur to
255 * a filesystem.
256 */
257 /*
258 * __mnt_is_readonly: check whether a mount is read-only
259 * @mnt: the mount to check for its write status
260 *
261 * This shouldn't be used directly ouside of the VFS.
262 * It does not guarantee that the filesystem will stay
263 * r/w, just that it is right *now*. This can not and
264 * should not be used in place of IS_RDONLY(inode).
265 * mnt_want/drop_write() will _keep_ the filesystem
266 * r/w.
267 */
268 bool __mnt_is_readonly(struct vfsmount *mnt)
269 {
270 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
271 }
272 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
273
274 static inline void mnt_inc_writers(struct mount *mnt)
275 {
276 #ifdef CONFIG_SMP
277 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
278 #else
279 mnt->mnt_writers++;
280 #endif
281 }
282
283 static inline void mnt_dec_writers(struct mount *mnt)
284 {
285 #ifdef CONFIG_SMP
286 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
287 #else
288 mnt->mnt_writers--;
289 #endif
290 }
291
292 static unsigned int mnt_get_writers(struct mount *mnt)
293 {
294 #ifdef CONFIG_SMP
295 unsigned int count = 0;
296 int cpu;
297
298 for_each_possible_cpu(cpu) {
299 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
300 }
301
302 return count;
303 #else
304 return mnt->mnt_writers;
305 #endif
306 }
307
308 static int mnt_is_readonly(struct vfsmount *mnt)
309 {
310 if (mnt->mnt_sb->s_readonly_remount)
311 return 1;
312 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
313 smp_rmb();
314 return __mnt_is_readonly(mnt);
315 }
316
317 /*
318 * Most r/o & frozen checks on a fs are for operations that take discrete
319 * amounts of time, like a write() or unlink(). We must keep track of when
320 * those operations start (for permission checks) and when they end, so that we
321 * can determine when writes are able to occur to a filesystem.
322 */
323 /**
324 * __mnt_want_write - get write access to a mount without freeze protection
325 * @m: the mount on which to take a write
326 *
327 * This tells the low-level filesystem that a write is about to be performed to
328 * it, and makes sure that writes are allowed (mnt it read-write) before
329 * returning success. This operation does not protect against filesystem being
330 * frozen. When the write operation is finished, __mnt_drop_write() must be
331 * called. This is effectively a refcount.
332 */
333 int __mnt_want_write(struct vfsmount *m)
334 {
335 struct mount *mnt = real_mount(m);
336 int ret = 0;
337
338 preempt_disable();
339 mnt_inc_writers(mnt);
340 /*
341 * The store to mnt_inc_writers must be visible before we pass
342 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
343 * incremented count after it has set MNT_WRITE_HOLD.
344 */
345 smp_mb();
346 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
347 cpu_relax();
348 /*
349 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
350 * be set to match its requirements. So we must not load that until
351 * MNT_WRITE_HOLD is cleared.
352 */
353 smp_rmb();
354 if (mnt_is_readonly(m)) {
355 mnt_dec_writers(mnt);
356 ret = -EROFS;
357 }
358 preempt_enable();
359
360 return ret;
361 }
362
363 /**
364 * mnt_want_write - get write access to a mount
365 * @m: the mount on which to take a write
366 *
367 * This tells the low-level filesystem that a write is about to be performed to
368 * it, and makes sure that writes are allowed (mount is read-write, filesystem
369 * is not frozen) before returning success. When the write operation is
370 * finished, mnt_drop_write() must be called. This is effectively a refcount.
371 */
372 int mnt_want_write(struct vfsmount *m)
373 {
374 int ret;
375
376 sb_start_write(m->mnt_sb);
377 ret = __mnt_want_write(m);
378 if (ret)
379 sb_end_write(m->mnt_sb);
380 return ret;
381 }
382 EXPORT_SYMBOL_GPL(mnt_want_write);
383
384 /**
385 * __mnt_want_write_file - get write access to a file's mount
386 * @file: the file who's mount on which to take a write
387 *
388 * This is like __mnt_want_write, but if the file is already open for writing it
389 * skips incrementing mnt_writers (since the open file already has a reference)
390 * and instead only does the check for emergency r/o remounts. This must be
391 * paired with __mnt_drop_write_file.
392 */
393 int __mnt_want_write_file(struct file *file)
394 {
395 if (file->f_mode & FMODE_WRITER) {
396 /*
397 * Superblock may have become readonly while there are still
398 * writable fd's, e.g. due to a fs error with errors=remount-ro
399 */
400 if (__mnt_is_readonly(file->f_path.mnt))
401 return -EROFS;
402 return 0;
403 }
404 return __mnt_want_write(file->f_path.mnt);
405 }
406
407 /**
408 * mnt_want_write_file - get write access to a file's mount
409 * @file: the file who's mount on which to take a write
410 *
411 * This is like mnt_want_write, but if the file is already open for writing it
412 * skips incrementing mnt_writers (since the open file already has a reference)
413 * and instead only does the freeze protection and the check for emergency r/o
414 * remounts. This must be paired with mnt_drop_write_file.
415 */
416 int mnt_want_write_file(struct file *file)
417 {
418 int ret;
419
420 sb_start_write(file_inode(file)->i_sb);
421 ret = __mnt_want_write_file(file);
422 if (ret)
423 sb_end_write(file_inode(file)->i_sb);
424 return ret;
425 }
426 EXPORT_SYMBOL_GPL(mnt_want_write_file);
427
428 /**
429 * __mnt_drop_write - give up write access to a mount
430 * @mnt: the mount on which to give up write access
431 *
432 * Tells the low-level filesystem that we are done
433 * performing writes to it. Must be matched with
434 * __mnt_want_write() call above.
435 */
436 void __mnt_drop_write(struct vfsmount *mnt)
437 {
438 preempt_disable();
439 mnt_dec_writers(real_mount(mnt));
440 preempt_enable();
441 }
442
443 /**
444 * mnt_drop_write - give up write access to a mount
445 * @mnt: the mount on which to give up write access
446 *
447 * Tells the low-level filesystem that we are done performing writes to it and
448 * also allows filesystem to be frozen again. Must be matched with
449 * mnt_want_write() call above.
450 */
451 void mnt_drop_write(struct vfsmount *mnt)
452 {
453 __mnt_drop_write(mnt);
454 sb_end_write(mnt->mnt_sb);
455 }
456 EXPORT_SYMBOL_GPL(mnt_drop_write);
457
458 void __mnt_drop_write_file(struct file *file)
459 {
460 if (!(file->f_mode & FMODE_WRITER))
461 __mnt_drop_write(file->f_path.mnt);
462 }
463
464 void mnt_drop_write_file(struct file *file)
465 {
466 __mnt_drop_write_file(file);
467 sb_end_write(file_inode(file)->i_sb);
468 }
469 EXPORT_SYMBOL(mnt_drop_write_file);
470
471 static inline int mnt_hold_writers(struct mount *mnt)
472 {
473 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
474 /*
475 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
476 * should be visible before we do.
477 */
478 smp_mb();
479
480 /*
481 * With writers on hold, if this value is zero, then there are
482 * definitely no active writers (although held writers may subsequently
483 * increment the count, they'll have to wait, and decrement it after
484 * seeing MNT_READONLY).
485 *
486 * It is OK to have counter incremented on one CPU and decremented on
487 * another: the sum will add up correctly. The danger would be when we
488 * sum up each counter, if we read a counter before it is incremented,
489 * but then read another CPU's count which it has been subsequently
490 * decremented from -- we would see more decrements than we should.
491 * MNT_WRITE_HOLD protects against this scenario, because
492 * mnt_want_write first increments count, then smp_mb, then spins on
493 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
494 * we're counting up here.
495 */
496 if (mnt_get_writers(mnt) > 0)
497 return -EBUSY;
498
499 return 0;
500 }
501
502 static inline void mnt_unhold_writers(struct mount *mnt)
503 {
504 /*
505 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
506 * that become unheld will see MNT_READONLY.
507 */
508 smp_wmb();
509 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
510 }
511
512 static int mnt_make_readonly(struct mount *mnt)
513 {
514 int ret;
515
516 ret = mnt_hold_writers(mnt);
517 if (!ret)
518 mnt->mnt.mnt_flags |= MNT_READONLY;
519 mnt_unhold_writers(mnt);
520 return ret;
521 }
522
523 int sb_prepare_remount_readonly(struct super_block *sb)
524 {
525 struct mount *mnt;
526 int err = 0;
527
528 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
529 if (atomic_long_read(&sb->s_remove_count))
530 return -EBUSY;
531
532 lock_mount_hash();
533 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
534 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
535 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
536 smp_mb();
537 if (mnt_get_writers(mnt) > 0) {
538 err = -EBUSY;
539 break;
540 }
541 }
542 }
543 if (!err && atomic_long_read(&sb->s_remove_count))
544 err = -EBUSY;
545
546 if (!err) {
547 sb->s_readonly_remount = 1;
548 smp_wmb();
549 }
550 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
551 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
552 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
553 }
554 unlock_mount_hash();
555
556 return err;
557 }
558
559 static void free_vfsmnt(struct mount *mnt)
560 {
561 struct user_namespace *mnt_userns;
562
563 mnt_userns = mnt_user_ns(&mnt->mnt);
564 if (mnt_userns != &init_user_ns)
565 put_user_ns(mnt_userns);
566 kfree_const(mnt->mnt_devname);
567 #ifdef CONFIG_SMP
568 free_percpu(mnt->mnt_pcp);
569 #endif
570 kmem_cache_free(mnt_cache, mnt);
571 }
572
573 static void delayed_free_vfsmnt(struct rcu_head *head)
574 {
575 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
576 }
577
578 /* call under rcu_read_lock */
579 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
580 {
581 struct mount *mnt;
582 if (read_seqretry(&mount_lock, seq))
583 return 1;
584 if (bastard == NULL)
585 return 0;
586 mnt = real_mount(bastard);
587 mnt_add_count(mnt, 1);
588 smp_mb(); // see mntput_no_expire()
589 if (likely(!read_seqretry(&mount_lock, seq)))
590 return 0;
591 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
592 mnt_add_count(mnt, -1);
593 return 1;
594 }
595 lock_mount_hash();
596 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
597 mnt_add_count(mnt, -1);
598 unlock_mount_hash();
599 return 1;
600 }
601 unlock_mount_hash();
602 /* caller will mntput() */
603 return -1;
604 }
605
606 /* call under rcu_read_lock */
607 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
608 {
609 int res = __legitimize_mnt(bastard, seq);
610 if (likely(!res))
611 return true;
612 if (unlikely(res < 0)) {
613 rcu_read_unlock();
614 mntput(bastard);
615 rcu_read_lock();
616 }
617 return false;
618 }
619
620 /*
621 * find the first mount at @dentry on vfsmount @mnt.
622 * call under rcu_read_lock()
623 */
624 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
625 {
626 struct hlist_head *head = m_hash(mnt, dentry);
627 struct mount *p;
628
629 hlist_for_each_entry_rcu(p, head, mnt_hash)
630 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
631 return p;
632 return NULL;
633 }
634
635 /*
636 * lookup_mnt - Return the first child mount mounted at path
637 *
638 * "First" means first mounted chronologically. If you create the
639 * following mounts:
640 *
641 * mount /dev/sda1 /mnt
642 * mount /dev/sda2 /mnt
643 * mount /dev/sda3 /mnt
644 *
645 * Then lookup_mnt() on the base /mnt dentry in the root mount will
646 * return successively the root dentry and vfsmount of /dev/sda1, then
647 * /dev/sda2, then /dev/sda3, then NULL.
648 *
649 * lookup_mnt takes a reference to the found vfsmount.
650 */
651 struct vfsmount *lookup_mnt(const struct path *path)
652 {
653 struct mount *child_mnt;
654 struct vfsmount *m;
655 unsigned seq;
656
657 rcu_read_lock();
658 do {
659 seq = read_seqbegin(&mount_lock);
660 child_mnt = __lookup_mnt(path->mnt, path->dentry);
661 m = child_mnt ? &child_mnt->mnt : NULL;
662 } while (!legitimize_mnt(m, seq));
663 rcu_read_unlock();
664 return m;
665 }
666
667 static inline void lock_ns_list(struct mnt_namespace *ns)
668 {
669 spin_lock(&ns->ns_lock);
670 }
671
672 static inline void unlock_ns_list(struct mnt_namespace *ns)
673 {
674 spin_unlock(&ns->ns_lock);
675 }
676
677 static inline bool mnt_is_cursor(struct mount *mnt)
678 {
679 return mnt->mnt.mnt_flags & MNT_CURSOR;
680 }
681
682 /*
683 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
684 * current mount namespace.
685 *
686 * The common case is dentries are not mountpoints at all and that
687 * test is handled inline. For the slow case when we are actually
688 * dealing with a mountpoint of some kind, walk through all of the
689 * mounts in the current mount namespace and test to see if the dentry
690 * is a mountpoint.
691 *
692 * The mount_hashtable is not usable in the context because we
693 * need to identify all mounts that may be in the current mount
694 * namespace not just a mount that happens to have some specified
695 * parent mount.
696 */
697 bool __is_local_mountpoint(struct dentry *dentry)
698 {
699 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
700 struct mount *mnt;
701 bool is_covered = false;
702
703 down_read(&namespace_sem);
704 lock_ns_list(ns);
705 list_for_each_entry(mnt, &ns->list, mnt_list) {
706 if (mnt_is_cursor(mnt))
707 continue;
708 is_covered = (mnt->mnt_mountpoint == dentry);
709 if (is_covered)
710 break;
711 }
712 unlock_ns_list(ns);
713 up_read(&namespace_sem);
714
715 return is_covered;
716 }
717
718 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
719 {
720 struct hlist_head *chain = mp_hash(dentry);
721 struct mountpoint *mp;
722
723 hlist_for_each_entry(mp, chain, m_hash) {
724 if (mp->m_dentry == dentry) {
725 mp->m_count++;
726 return mp;
727 }
728 }
729 return NULL;
730 }
731
732 static struct mountpoint *get_mountpoint(struct dentry *dentry)
733 {
734 struct mountpoint *mp, *new = NULL;
735 int ret;
736
737 if (d_mountpoint(dentry)) {
738 /* might be worth a WARN_ON() */
739 if (d_unlinked(dentry))
740 return ERR_PTR(-ENOENT);
741 mountpoint:
742 read_seqlock_excl(&mount_lock);
743 mp = lookup_mountpoint(dentry);
744 read_sequnlock_excl(&mount_lock);
745 if (mp)
746 goto done;
747 }
748
749 if (!new)
750 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
751 if (!new)
752 return ERR_PTR(-ENOMEM);
753
754
755 /* Exactly one processes may set d_mounted */
756 ret = d_set_mounted(dentry);
757
758 /* Someone else set d_mounted? */
759 if (ret == -EBUSY)
760 goto mountpoint;
761
762 /* The dentry is not available as a mountpoint? */
763 mp = ERR_PTR(ret);
764 if (ret)
765 goto done;
766
767 /* Add the new mountpoint to the hash table */
768 read_seqlock_excl(&mount_lock);
769 new->m_dentry = dget(dentry);
770 new->m_count = 1;
771 hlist_add_head(&new->m_hash, mp_hash(dentry));
772 INIT_HLIST_HEAD(&new->m_list);
773 read_sequnlock_excl(&mount_lock);
774
775 mp = new;
776 new = NULL;
777 done:
778 kfree(new);
779 return mp;
780 }
781
782 /*
783 * vfsmount lock must be held. Additionally, the caller is responsible
784 * for serializing calls for given disposal list.
785 */
786 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
787 {
788 if (!--mp->m_count) {
789 struct dentry *dentry = mp->m_dentry;
790 BUG_ON(!hlist_empty(&mp->m_list));
791 spin_lock(&dentry->d_lock);
792 dentry->d_flags &= ~DCACHE_MOUNTED;
793 spin_unlock(&dentry->d_lock);
794 dput_to_list(dentry, list);
795 hlist_del(&mp->m_hash);
796 kfree(mp);
797 }
798 }
799
800 /* called with namespace_lock and vfsmount lock */
801 static void put_mountpoint(struct mountpoint *mp)
802 {
803 __put_mountpoint(mp, &ex_mountpoints);
804 }
805
806 static inline int check_mnt(struct mount *mnt)
807 {
808 return mnt->mnt_ns == current->nsproxy->mnt_ns;
809 }
810
811 /*
812 * vfsmount lock must be held for write
813 */
814 static void touch_mnt_namespace(struct mnt_namespace *ns)
815 {
816 if (ns) {
817 ns->event = ++event;
818 wake_up_interruptible(&ns->poll);
819 }
820 }
821
822 /*
823 * vfsmount lock must be held for write
824 */
825 static void __touch_mnt_namespace(struct mnt_namespace *ns)
826 {
827 if (ns && ns->event != event) {
828 ns->event = event;
829 wake_up_interruptible(&ns->poll);
830 }
831 }
832
833 /*
834 * vfsmount lock must be held for write
835 */
836 static struct mountpoint *unhash_mnt(struct mount *mnt)
837 {
838 struct mountpoint *mp;
839 mnt->mnt_parent = mnt;
840 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
841 list_del_init(&mnt->mnt_child);
842 hlist_del_init_rcu(&mnt->mnt_hash);
843 hlist_del_init(&mnt->mnt_mp_list);
844 mp = mnt->mnt_mp;
845 mnt->mnt_mp = NULL;
846 return mp;
847 }
848
849 /*
850 * vfsmount lock must be held for write
851 */
852 static void umount_mnt(struct mount *mnt)
853 {
854 put_mountpoint(unhash_mnt(mnt));
855 }
856
857 /*
858 * vfsmount lock must be held for write
859 */
860 void mnt_set_mountpoint(struct mount *mnt,
861 struct mountpoint *mp,
862 struct mount *child_mnt)
863 {
864 mp->m_count++;
865 mnt_add_count(mnt, 1); /* essentially, that's mntget */
866 child_mnt->mnt_mountpoint = mp->m_dentry;
867 child_mnt->mnt_parent = mnt;
868 child_mnt->mnt_mp = mp;
869 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
870 }
871
872 static void __attach_mnt(struct mount *mnt, struct mount *parent)
873 {
874 hlist_add_head_rcu(&mnt->mnt_hash,
875 m_hash(&parent->mnt, mnt->mnt_mountpoint));
876 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
877 }
878
879 /*
880 * vfsmount lock must be held for write
881 */
882 static void attach_mnt(struct mount *mnt,
883 struct mount *parent,
884 struct mountpoint *mp)
885 {
886 mnt_set_mountpoint(parent, mp, mnt);
887 __attach_mnt(mnt, parent);
888 }
889
890 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
891 {
892 struct mountpoint *old_mp = mnt->mnt_mp;
893 struct mount *old_parent = mnt->mnt_parent;
894
895 list_del_init(&mnt->mnt_child);
896 hlist_del_init(&mnt->mnt_mp_list);
897 hlist_del_init_rcu(&mnt->mnt_hash);
898
899 attach_mnt(mnt, parent, mp);
900
901 put_mountpoint(old_mp);
902 mnt_add_count(old_parent, -1);
903 }
904
905 /*
906 * vfsmount lock must be held for write
907 */
908 static void commit_tree(struct mount *mnt)
909 {
910 struct mount *parent = mnt->mnt_parent;
911 struct mount *m;
912 LIST_HEAD(head);
913 struct mnt_namespace *n = parent->mnt_ns;
914
915 BUG_ON(parent == mnt);
916
917 list_add_tail(&head, &mnt->mnt_list);
918 list_for_each_entry(m, &head, mnt_list)
919 m->mnt_ns = n;
920
921 list_splice(&head, n->list.prev);
922
923 n->mounts += n->pending_mounts;
924 n->pending_mounts = 0;
925
926 __attach_mnt(mnt, parent);
927 touch_mnt_namespace(n);
928 }
929
930 static struct mount *next_mnt(struct mount *p, struct mount *root)
931 {
932 struct list_head *next = p->mnt_mounts.next;
933 if (next == &p->mnt_mounts) {
934 while (1) {
935 if (p == root)
936 return NULL;
937 next = p->mnt_child.next;
938 if (next != &p->mnt_parent->mnt_mounts)
939 break;
940 p = p->mnt_parent;
941 }
942 }
943 return list_entry(next, struct mount, mnt_child);
944 }
945
946 static struct mount *skip_mnt_tree(struct mount *p)
947 {
948 struct list_head *prev = p->mnt_mounts.prev;
949 while (prev != &p->mnt_mounts) {
950 p = list_entry(prev, struct mount, mnt_child);
951 prev = p->mnt_mounts.prev;
952 }
953 return p;
954 }
955
956 /**
957 * vfs_create_mount - Create a mount for a configured superblock
958 * @fc: The configuration context with the superblock attached
959 *
960 * Create a mount to an already configured superblock. If necessary, the
961 * caller should invoke vfs_get_tree() before calling this.
962 *
963 * Note that this does not attach the mount to anything.
964 */
965 struct vfsmount *vfs_create_mount(struct fs_context *fc)
966 {
967 struct mount *mnt;
968
969 if (!fc->root)
970 return ERR_PTR(-EINVAL);
971
972 mnt = alloc_vfsmnt(fc->source ?: "none");
973 if (!mnt)
974 return ERR_PTR(-ENOMEM);
975
976 if (fc->sb_flags & SB_KERNMOUNT)
977 mnt->mnt.mnt_flags = MNT_INTERNAL;
978
979 atomic_inc(&fc->root->d_sb->s_active);
980 mnt->mnt.mnt_sb = fc->root->d_sb;
981 mnt->mnt.mnt_root = dget(fc->root);
982 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
983 mnt->mnt_parent = mnt;
984
985 lock_mount_hash();
986 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
987 unlock_mount_hash();
988 return &mnt->mnt;
989 }
990 EXPORT_SYMBOL(vfs_create_mount);
991
992 struct vfsmount *fc_mount(struct fs_context *fc)
993 {
994 int err = vfs_get_tree(fc);
995 if (!err) {
996 up_write(&fc->root->d_sb->s_umount);
997 return vfs_create_mount(fc);
998 }
999 return ERR_PTR(err);
1000 }
1001 EXPORT_SYMBOL(fc_mount);
1002
1003 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1004 int flags, const char *name,
1005 void *data)
1006 {
1007 struct fs_context *fc;
1008 struct vfsmount *mnt;
1009 int ret = 0;
1010
1011 if (!type)
1012 return ERR_PTR(-EINVAL);
1013
1014 fc = fs_context_for_mount(type, flags);
1015 if (IS_ERR(fc))
1016 return ERR_CAST(fc);
1017
1018 if (name)
1019 ret = vfs_parse_fs_string(fc, "source",
1020 name, strlen(name));
1021 if (!ret)
1022 ret = parse_monolithic_mount_data(fc, data);
1023 if (!ret)
1024 mnt = fc_mount(fc);
1025 else
1026 mnt = ERR_PTR(ret);
1027
1028 put_fs_context(fc);
1029 return mnt;
1030 }
1031 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1032
1033 struct vfsmount *
1034 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1035 const char *name, void *data)
1036 {
1037 /* Until it is worked out how to pass the user namespace
1038 * through from the parent mount to the submount don't support
1039 * unprivileged mounts with submounts.
1040 */
1041 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1042 return ERR_PTR(-EPERM);
1043
1044 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1045 }
1046 EXPORT_SYMBOL_GPL(vfs_submount);
1047
1048 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1049 int flag)
1050 {
1051 struct super_block *sb = old->mnt.mnt_sb;
1052 struct mount *mnt;
1053 int err;
1054
1055 mnt = alloc_vfsmnt(old->mnt_devname);
1056 if (!mnt)
1057 return ERR_PTR(-ENOMEM);
1058
1059 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1060 mnt->mnt_group_id = 0; /* not a peer of original */
1061 else
1062 mnt->mnt_group_id = old->mnt_group_id;
1063
1064 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1065 err = mnt_alloc_group_id(mnt);
1066 if (err)
1067 goto out_free;
1068 }
1069
1070 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1071 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1072
1073 atomic_inc(&sb->s_active);
1074 mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt);
1075 if (mnt->mnt.mnt_userns != &init_user_ns)
1076 mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns);
1077 mnt->mnt.mnt_sb = sb;
1078 mnt->mnt.mnt_root = dget(root);
1079 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1080 mnt->mnt_parent = mnt;
1081 lock_mount_hash();
1082 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1083 unlock_mount_hash();
1084
1085 if ((flag & CL_SLAVE) ||
1086 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1087 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1088 mnt->mnt_master = old;
1089 CLEAR_MNT_SHARED(mnt);
1090 } else if (!(flag & CL_PRIVATE)) {
1091 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1092 list_add(&mnt->mnt_share, &old->mnt_share);
1093 if (IS_MNT_SLAVE(old))
1094 list_add(&mnt->mnt_slave, &old->mnt_slave);
1095 mnt->mnt_master = old->mnt_master;
1096 } else {
1097 CLEAR_MNT_SHARED(mnt);
1098 }
1099 if (flag & CL_MAKE_SHARED)
1100 set_mnt_shared(mnt);
1101
1102 /* stick the duplicate mount on the same expiry list
1103 * as the original if that was on one */
1104 if (flag & CL_EXPIRE) {
1105 if (!list_empty(&old->mnt_expire))
1106 list_add(&mnt->mnt_expire, &old->mnt_expire);
1107 }
1108
1109 return mnt;
1110
1111 out_free:
1112 mnt_free_id(mnt);
1113 free_vfsmnt(mnt);
1114 return ERR_PTR(err);
1115 }
1116
1117 static void cleanup_mnt(struct mount *mnt)
1118 {
1119 struct hlist_node *p;
1120 struct mount *m;
1121 /*
1122 * The warning here probably indicates that somebody messed
1123 * up a mnt_want/drop_write() pair. If this happens, the
1124 * filesystem was probably unable to make r/w->r/o transitions.
1125 * The locking used to deal with mnt_count decrement provides barriers,
1126 * so mnt_get_writers() below is safe.
1127 */
1128 WARN_ON(mnt_get_writers(mnt));
1129 if (unlikely(mnt->mnt_pins.first))
1130 mnt_pin_kill(mnt);
1131 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1132 hlist_del(&m->mnt_umount);
1133 mntput(&m->mnt);
1134 }
1135 fsnotify_vfsmount_delete(&mnt->mnt);
1136 dput(mnt->mnt.mnt_root);
1137 deactivate_super(mnt->mnt.mnt_sb);
1138 mnt_free_id(mnt);
1139 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1140 }
1141
1142 static void __cleanup_mnt(struct rcu_head *head)
1143 {
1144 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1145 }
1146
1147 static LLIST_HEAD(delayed_mntput_list);
1148 static void delayed_mntput(struct work_struct *unused)
1149 {
1150 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1151 struct mount *m, *t;
1152
1153 llist_for_each_entry_safe(m, t, node, mnt_llist)
1154 cleanup_mnt(m);
1155 }
1156 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1157
1158 static void mntput_no_expire(struct mount *mnt)
1159 {
1160 LIST_HEAD(list);
1161 int count;
1162
1163 rcu_read_lock();
1164 if (likely(READ_ONCE(mnt->mnt_ns))) {
1165 /*
1166 * Since we don't do lock_mount_hash() here,
1167 * ->mnt_ns can change under us. However, if it's
1168 * non-NULL, then there's a reference that won't
1169 * be dropped until after an RCU delay done after
1170 * turning ->mnt_ns NULL. So if we observe it
1171 * non-NULL under rcu_read_lock(), the reference
1172 * we are dropping is not the final one.
1173 */
1174 mnt_add_count(mnt, -1);
1175 rcu_read_unlock();
1176 return;
1177 }
1178 lock_mount_hash();
1179 /*
1180 * make sure that if __legitimize_mnt() has not seen us grab
1181 * mount_lock, we'll see their refcount increment here.
1182 */
1183 smp_mb();
1184 mnt_add_count(mnt, -1);
1185 count = mnt_get_count(mnt);
1186 if (count != 0) {
1187 WARN_ON(count < 0);
1188 rcu_read_unlock();
1189 unlock_mount_hash();
1190 return;
1191 }
1192 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1193 rcu_read_unlock();
1194 unlock_mount_hash();
1195 return;
1196 }
1197 mnt->mnt.mnt_flags |= MNT_DOOMED;
1198 rcu_read_unlock();
1199
1200 list_del(&mnt->mnt_instance);
1201
1202 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1203 struct mount *p, *tmp;
1204 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1205 __put_mountpoint(unhash_mnt(p), &list);
1206 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1207 }
1208 }
1209 unlock_mount_hash();
1210 shrink_dentry_list(&list);
1211
1212 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1213 struct task_struct *task = current;
1214 if (likely(!(task->flags & PF_KTHREAD))) {
1215 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1216 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1217 return;
1218 }
1219 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1220 schedule_delayed_work(&delayed_mntput_work, 1);
1221 return;
1222 }
1223 cleanup_mnt(mnt);
1224 }
1225
1226 void mntput(struct vfsmount *mnt)
1227 {
1228 if (mnt) {
1229 struct mount *m = real_mount(mnt);
1230 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1231 if (unlikely(m->mnt_expiry_mark))
1232 m->mnt_expiry_mark = 0;
1233 mntput_no_expire(m);
1234 }
1235 }
1236 EXPORT_SYMBOL(mntput);
1237
1238 struct vfsmount *mntget(struct vfsmount *mnt)
1239 {
1240 if (mnt)
1241 mnt_add_count(real_mount(mnt), 1);
1242 return mnt;
1243 }
1244 EXPORT_SYMBOL(mntget);
1245
1246 /**
1247 * path_is_mountpoint() - Check if path is a mount in the current namespace.
1248 * @path: path to check
1249 *
1250 * d_mountpoint() can only be used reliably to establish if a dentry is
1251 * not mounted in any namespace and that common case is handled inline.
1252 * d_mountpoint() isn't aware of the possibility there may be multiple
1253 * mounts using a given dentry in a different namespace. This function
1254 * checks if the passed in path is a mountpoint rather than the dentry
1255 * alone.
1256 */
1257 bool path_is_mountpoint(const struct path *path)
1258 {
1259 unsigned seq;
1260 bool res;
1261
1262 if (!d_mountpoint(path->dentry))
1263 return false;
1264
1265 rcu_read_lock();
1266 do {
1267 seq = read_seqbegin(&mount_lock);
1268 res = __path_is_mountpoint(path);
1269 } while (read_seqretry(&mount_lock, seq));
1270 rcu_read_unlock();
1271
1272 return res;
1273 }
1274 EXPORT_SYMBOL(path_is_mountpoint);
1275
1276 struct vfsmount *mnt_clone_internal(const struct path *path)
1277 {
1278 struct mount *p;
1279 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1280 if (IS_ERR(p))
1281 return ERR_CAST(p);
1282 p->mnt.mnt_flags |= MNT_INTERNAL;
1283 return &p->mnt;
1284 }
1285
1286 #ifdef CONFIG_PROC_FS
1287 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1288 struct list_head *p)
1289 {
1290 struct mount *mnt, *ret = NULL;
1291
1292 lock_ns_list(ns);
1293 list_for_each_continue(p, &ns->list) {
1294 mnt = list_entry(p, typeof(*mnt), mnt_list);
1295 if (!mnt_is_cursor(mnt)) {
1296 ret = mnt;
1297 break;
1298 }
1299 }
1300 unlock_ns_list(ns);
1301
1302 return ret;
1303 }
1304
1305 /* iterator; we want it to have access to namespace_sem, thus here... */
1306 static void *m_start(struct seq_file *m, loff_t *pos)
1307 {
1308 struct proc_mounts *p = m->private;
1309 struct list_head *prev;
1310
1311 down_read(&namespace_sem);
1312 if (!*pos) {
1313 prev = &p->ns->list;
1314 } else {
1315 prev = &p->cursor.mnt_list;
1316
1317 /* Read after we'd reached the end? */
1318 if (list_empty(prev))
1319 return NULL;
1320 }
1321
1322 return mnt_list_next(p->ns, prev);
1323 }
1324
1325 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1326 {
1327 struct proc_mounts *p = m->private;
1328 struct mount *mnt = v;
1329
1330 ++*pos;
1331 return mnt_list_next(p->ns, &mnt->mnt_list);
1332 }
1333
1334 static void m_stop(struct seq_file *m, void *v)
1335 {
1336 struct proc_mounts *p = m->private;
1337 struct mount *mnt = v;
1338
1339 lock_ns_list(p->ns);
1340 if (mnt)
1341 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1342 else
1343 list_del_init(&p->cursor.mnt_list);
1344 unlock_ns_list(p->ns);
1345 up_read(&namespace_sem);
1346 }
1347
1348 static int m_show(struct seq_file *m, void *v)
1349 {
1350 struct proc_mounts *p = m->private;
1351 struct mount *r = v;
1352 return p->show(m, &r->mnt);
1353 }
1354
1355 const struct seq_operations mounts_op = {
1356 .start = m_start,
1357 .next = m_next,
1358 .stop = m_stop,
1359 .show = m_show,
1360 };
1361
1362 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1363 {
1364 down_read(&namespace_sem);
1365 lock_ns_list(ns);
1366 list_del(&cursor->mnt_list);
1367 unlock_ns_list(ns);
1368 up_read(&namespace_sem);
1369 }
1370 #endif /* CONFIG_PROC_FS */
1371
1372 /**
1373 * may_umount_tree - check if a mount tree is busy
1374 * @m: root of mount tree
1375 *
1376 * This is called to check if a tree of mounts has any
1377 * open files, pwds, chroots or sub mounts that are
1378 * busy.
1379 */
1380 int may_umount_tree(struct vfsmount *m)
1381 {
1382 struct mount *mnt = real_mount(m);
1383 int actual_refs = 0;
1384 int minimum_refs = 0;
1385 struct mount *p;
1386 BUG_ON(!m);
1387
1388 /* write lock needed for mnt_get_count */
1389 lock_mount_hash();
1390 for (p = mnt; p; p = next_mnt(p, mnt)) {
1391 actual_refs += mnt_get_count(p);
1392 minimum_refs += 2;
1393 }
1394 unlock_mount_hash();
1395
1396 if (actual_refs > minimum_refs)
1397 return 0;
1398
1399 return 1;
1400 }
1401
1402 EXPORT_SYMBOL(may_umount_tree);
1403
1404 /**
1405 * may_umount - check if a mount point is busy
1406 * @mnt: root of mount
1407 *
1408 * This is called to check if a mount point has any
1409 * open files, pwds, chroots or sub mounts. If the
1410 * mount has sub mounts this will return busy
1411 * regardless of whether the sub mounts are busy.
1412 *
1413 * Doesn't take quota and stuff into account. IOW, in some cases it will
1414 * give false negatives. The main reason why it's here is that we need
1415 * a non-destructive way to look for easily umountable filesystems.
1416 */
1417 int may_umount(struct vfsmount *mnt)
1418 {
1419 int ret = 1;
1420 down_read(&namespace_sem);
1421 lock_mount_hash();
1422 if (propagate_mount_busy(real_mount(mnt), 2))
1423 ret = 0;
1424 unlock_mount_hash();
1425 up_read(&namespace_sem);
1426 return ret;
1427 }
1428
1429 EXPORT_SYMBOL(may_umount);
1430
1431 static void namespace_unlock(void)
1432 {
1433 struct hlist_head head;
1434 struct hlist_node *p;
1435 struct mount *m;
1436 LIST_HEAD(list);
1437
1438 hlist_move_list(&unmounted, &head);
1439 list_splice_init(&ex_mountpoints, &list);
1440
1441 up_write(&namespace_sem);
1442
1443 shrink_dentry_list(&list);
1444
1445 if (likely(hlist_empty(&head)))
1446 return;
1447
1448 synchronize_rcu_expedited();
1449
1450 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1451 hlist_del(&m->mnt_umount);
1452 mntput(&m->mnt);
1453 }
1454 }
1455
1456 static inline void namespace_lock(void)
1457 {
1458 down_write(&namespace_sem);
1459 }
1460
1461 enum umount_tree_flags {
1462 UMOUNT_SYNC = 1,
1463 UMOUNT_PROPAGATE = 2,
1464 UMOUNT_CONNECTED = 4,
1465 };
1466
1467 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1468 {
1469 /* Leaving mounts connected is only valid for lazy umounts */
1470 if (how & UMOUNT_SYNC)
1471 return true;
1472
1473 /* A mount without a parent has nothing to be connected to */
1474 if (!mnt_has_parent(mnt))
1475 return true;
1476
1477 /* Because the reference counting rules change when mounts are
1478 * unmounted and connected, umounted mounts may not be
1479 * connected to mounted mounts.
1480 */
1481 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1482 return true;
1483
1484 /* Has it been requested that the mount remain connected? */
1485 if (how & UMOUNT_CONNECTED)
1486 return false;
1487
1488 /* Is the mount locked such that it needs to remain connected? */
1489 if (IS_MNT_LOCKED(mnt))
1490 return false;
1491
1492 /* By default disconnect the mount */
1493 return true;
1494 }
1495
1496 /*
1497 * mount_lock must be held
1498 * namespace_sem must be held for write
1499 */
1500 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1501 {
1502 LIST_HEAD(tmp_list);
1503 struct mount *p;
1504
1505 if (how & UMOUNT_PROPAGATE)
1506 propagate_mount_unlock(mnt);
1507
1508 /* Gather the mounts to umount */
1509 for (p = mnt; p; p = next_mnt(p, mnt)) {
1510 p->mnt.mnt_flags |= MNT_UMOUNT;
1511 list_move(&p->mnt_list, &tmp_list);
1512 }
1513
1514 /* Hide the mounts from mnt_mounts */
1515 list_for_each_entry(p, &tmp_list, mnt_list) {
1516 list_del_init(&p->mnt_child);
1517 }
1518
1519 /* Add propogated mounts to the tmp_list */
1520 if (how & UMOUNT_PROPAGATE)
1521 propagate_umount(&tmp_list);
1522
1523 while (!list_empty(&tmp_list)) {
1524 struct mnt_namespace *ns;
1525 bool disconnect;
1526 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1527 list_del_init(&p->mnt_expire);
1528 list_del_init(&p->mnt_list);
1529 ns = p->mnt_ns;
1530 if (ns) {
1531 ns->mounts--;
1532 __touch_mnt_namespace(ns);
1533 }
1534 p->mnt_ns = NULL;
1535 if (how & UMOUNT_SYNC)
1536 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1537
1538 disconnect = disconnect_mount(p, how);
1539 if (mnt_has_parent(p)) {
1540 mnt_add_count(p->mnt_parent, -1);
1541 if (!disconnect) {
1542 /* Don't forget about p */
1543 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1544 } else {
1545 umount_mnt(p);
1546 }
1547 }
1548 change_mnt_propagation(p, MS_PRIVATE);
1549 if (disconnect)
1550 hlist_add_head(&p->mnt_umount, &unmounted);
1551 }
1552 }
1553
1554 static void shrink_submounts(struct mount *mnt);
1555
1556 static int do_umount_root(struct super_block *sb)
1557 {
1558 int ret = 0;
1559
1560 down_write(&sb->s_umount);
1561 if (!sb_rdonly(sb)) {
1562 struct fs_context *fc;
1563
1564 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1565 SB_RDONLY);
1566 if (IS_ERR(fc)) {
1567 ret = PTR_ERR(fc);
1568 } else {
1569 ret = parse_monolithic_mount_data(fc, NULL);
1570 if (!ret)
1571 ret = reconfigure_super(fc);
1572 put_fs_context(fc);
1573 }
1574 }
1575 up_write(&sb->s_umount);
1576 return ret;
1577 }
1578
1579 static int do_umount(struct mount *mnt, int flags)
1580 {
1581 struct super_block *sb = mnt->mnt.mnt_sb;
1582 int retval;
1583
1584 retval = security_sb_umount(&mnt->mnt, flags);
1585 if (retval)
1586 return retval;
1587
1588 /*
1589 * Allow userspace to request a mountpoint be expired rather than
1590 * unmounting unconditionally. Unmount only happens if:
1591 * (1) the mark is already set (the mark is cleared by mntput())
1592 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1593 */
1594 if (flags & MNT_EXPIRE) {
1595 if (&mnt->mnt == current->fs->root.mnt ||
1596 flags & (MNT_FORCE | MNT_DETACH))
1597 return -EINVAL;
1598
1599 /*
1600 * probably don't strictly need the lock here if we examined
1601 * all race cases, but it's a slowpath.
1602 */
1603 lock_mount_hash();
1604 if (mnt_get_count(mnt) != 2) {
1605 unlock_mount_hash();
1606 return -EBUSY;
1607 }
1608 unlock_mount_hash();
1609
1610 if (!xchg(&mnt->mnt_expiry_mark, 1))
1611 return -EAGAIN;
1612 }
1613
1614 /*
1615 * If we may have to abort operations to get out of this
1616 * mount, and they will themselves hold resources we must
1617 * allow the fs to do things. In the Unix tradition of
1618 * 'Gee thats tricky lets do it in userspace' the umount_begin
1619 * might fail to complete on the first run through as other tasks
1620 * must return, and the like. Thats for the mount program to worry
1621 * about for the moment.
1622 */
1623
1624 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1625 sb->s_op->umount_begin(sb);
1626 }
1627
1628 /*
1629 * No sense to grab the lock for this test, but test itself looks
1630 * somewhat bogus. Suggestions for better replacement?
1631 * Ho-hum... In principle, we might treat that as umount + switch
1632 * to rootfs. GC would eventually take care of the old vfsmount.
1633 * Actually it makes sense, especially if rootfs would contain a
1634 * /reboot - static binary that would close all descriptors and
1635 * call reboot(9). Then init(8) could umount root and exec /reboot.
1636 */
1637 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1638 /*
1639 * Special case for "unmounting" root ...
1640 * we just try to remount it readonly.
1641 */
1642 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1643 return -EPERM;
1644 return do_umount_root(sb);
1645 }
1646
1647 namespace_lock();
1648 lock_mount_hash();
1649
1650 /* Recheck MNT_LOCKED with the locks held */
1651 retval = -EINVAL;
1652 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1653 goto out;
1654
1655 event++;
1656 if (flags & MNT_DETACH) {
1657 if (!list_empty(&mnt->mnt_list))
1658 umount_tree(mnt, UMOUNT_PROPAGATE);
1659 retval = 0;
1660 } else {
1661 shrink_submounts(mnt);
1662 retval = -EBUSY;
1663 if (!propagate_mount_busy(mnt, 2)) {
1664 if (!list_empty(&mnt->mnt_list))
1665 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1666 retval = 0;
1667 }
1668 }
1669 out:
1670 unlock_mount_hash();
1671 namespace_unlock();
1672 return retval;
1673 }
1674
1675 /*
1676 * __detach_mounts - lazily unmount all mounts on the specified dentry
1677 *
1678 * During unlink, rmdir, and d_drop it is possible to loose the path
1679 * to an existing mountpoint, and wind up leaking the mount.
1680 * detach_mounts allows lazily unmounting those mounts instead of
1681 * leaking them.
1682 *
1683 * The caller may hold dentry->d_inode->i_mutex.
1684 */
1685 void __detach_mounts(struct dentry *dentry)
1686 {
1687 struct mountpoint *mp;
1688 struct mount *mnt;
1689
1690 namespace_lock();
1691 lock_mount_hash();
1692 mp = lookup_mountpoint(dentry);
1693 if (!mp)
1694 goto out_unlock;
1695
1696 event++;
1697 while (!hlist_empty(&mp->m_list)) {
1698 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1699 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1700 umount_mnt(mnt);
1701 hlist_add_head(&mnt->mnt_umount, &unmounted);
1702 }
1703 else umount_tree(mnt, UMOUNT_CONNECTED);
1704 }
1705 put_mountpoint(mp);
1706 out_unlock:
1707 unlock_mount_hash();
1708 namespace_unlock();
1709 }
1710
1711 /*
1712 * Is the caller allowed to modify his namespace?
1713 */
1714 static inline bool may_mount(void)
1715 {
1716 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1717 }
1718
1719 static void warn_mandlock(void)
1720 {
1721 pr_warn_once("=======================================================\n"
1722 "WARNING: The mand mount option has been deprecated and\n"
1723 " and is ignored by this kernel. Remove the mand\n"
1724 " option from the mount to silence this warning.\n"
1725 "=======================================================\n");
1726 }
1727
1728 static int can_umount(const struct path *path, int flags)
1729 {
1730 struct mount *mnt = real_mount(path->mnt);
1731
1732 if (!may_mount())
1733 return -EPERM;
1734 if (path->dentry != path->mnt->mnt_root)
1735 return -EINVAL;
1736 if (!check_mnt(mnt))
1737 return -EINVAL;
1738 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1739 return -EINVAL;
1740 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1741 return -EPERM;
1742 return 0;
1743 }
1744
1745 // caller is responsible for flags being sane
1746 int path_umount(struct path *path, int flags)
1747 {
1748 struct mount *mnt = real_mount(path->mnt);
1749 int ret;
1750
1751 ret = can_umount(path, flags);
1752 if (!ret)
1753 ret = do_umount(mnt, flags);
1754
1755 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1756 dput(path->dentry);
1757 mntput_no_expire(mnt);
1758 return ret;
1759 }
1760
1761 static int ksys_umount(char __user *name, int flags)
1762 {
1763 int lookup_flags = LOOKUP_MOUNTPOINT;
1764 struct path path;
1765 int ret;
1766
1767 // basic validity checks done first
1768 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1769 return -EINVAL;
1770
1771 if (!(flags & UMOUNT_NOFOLLOW))
1772 lookup_flags |= LOOKUP_FOLLOW;
1773 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1774 if (ret)
1775 return ret;
1776 return path_umount(&path, flags);
1777 }
1778
1779 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1780 {
1781 return ksys_umount(name, flags);
1782 }
1783
1784 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1785
1786 /*
1787 * The 2.0 compatible umount. No flags.
1788 */
1789 SYSCALL_DEFINE1(oldumount, char __user *, name)
1790 {
1791 return ksys_umount(name, 0);
1792 }
1793
1794 #endif
1795
1796 static bool is_mnt_ns_file(struct dentry *dentry)
1797 {
1798 /* Is this a proxy for a mount namespace? */
1799 return dentry->d_op == &ns_dentry_operations &&
1800 dentry->d_fsdata == &mntns_operations;
1801 }
1802
1803 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1804 {
1805 return container_of(ns, struct mnt_namespace, ns);
1806 }
1807
1808 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1809 {
1810 return &mnt->ns;
1811 }
1812
1813 static bool mnt_ns_loop(struct dentry *dentry)
1814 {
1815 /* Could bind mounting the mount namespace inode cause a
1816 * mount namespace loop?
1817 */
1818 struct mnt_namespace *mnt_ns;
1819 if (!is_mnt_ns_file(dentry))
1820 return false;
1821
1822 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1823 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1824 }
1825
1826 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1827 int flag)
1828 {
1829 struct mount *res, *p, *q, *r, *parent;
1830
1831 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1832 return ERR_PTR(-EINVAL);
1833
1834 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1835 return ERR_PTR(-EINVAL);
1836
1837 res = q = clone_mnt(mnt, dentry, flag);
1838 if (IS_ERR(q))
1839 return q;
1840
1841 q->mnt_mountpoint = mnt->mnt_mountpoint;
1842
1843 p = mnt;
1844 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1845 struct mount *s;
1846 if (!is_subdir(r->mnt_mountpoint, dentry))
1847 continue;
1848
1849 for (s = r; s; s = next_mnt(s, r)) {
1850 if (!(flag & CL_COPY_UNBINDABLE) &&
1851 IS_MNT_UNBINDABLE(s)) {
1852 if (s->mnt.mnt_flags & MNT_LOCKED) {
1853 /* Both unbindable and locked. */
1854 q = ERR_PTR(-EPERM);
1855 goto out;
1856 } else {
1857 s = skip_mnt_tree(s);
1858 continue;
1859 }
1860 }
1861 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1862 is_mnt_ns_file(s->mnt.mnt_root)) {
1863 s = skip_mnt_tree(s);
1864 continue;
1865 }
1866 while (p != s->mnt_parent) {
1867 p = p->mnt_parent;
1868 q = q->mnt_parent;
1869 }
1870 p = s;
1871 parent = q;
1872 q = clone_mnt(p, p->mnt.mnt_root, flag);
1873 if (IS_ERR(q))
1874 goto out;
1875 lock_mount_hash();
1876 list_add_tail(&q->mnt_list, &res->mnt_list);
1877 attach_mnt(q, parent, p->mnt_mp);
1878 unlock_mount_hash();
1879 }
1880 }
1881 return res;
1882 out:
1883 if (res) {
1884 lock_mount_hash();
1885 umount_tree(res, UMOUNT_SYNC);
1886 unlock_mount_hash();
1887 }
1888 return q;
1889 }
1890
1891 /* Caller should check returned pointer for errors */
1892
1893 struct vfsmount *collect_mounts(const struct path *path)
1894 {
1895 struct mount *tree;
1896 namespace_lock();
1897 if (!check_mnt(real_mount(path->mnt)))
1898 tree = ERR_PTR(-EINVAL);
1899 else
1900 tree = copy_tree(real_mount(path->mnt), path->dentry,
1901 CL_COPY_ALL | CL_PRIVATE);
1902 namespace_unlock();
1903 if (IS_ERR(tree))
1904 return ERR_CAST(tree);
1905 return &tree->mnt;
1906 }
1907
1908 static void free_mnt_ns(struct mnt_namespace *);
1909 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1910
1911 void dissolve_on_fput(struct vfsmount *mnt)
1912 {
1913 struct mnt_namespace *ns;
1914 namespace_lock();
1915 lock_mount_hash();
1916 ns = real_mount(mnt)->mnt_ns;
1917 if (ns) {
1918 if (is_anon_ns(ns))
1919 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1920 else
1921 ns = NULL;
1922 }
1923 unlock_mount_hash();
1924 namespace_unlock();
1925 if (ns)
1926 free_mnt_ns(ns);
1927 }
1928
1929 void drop_collected_mounts(struct vfsmount *mnt)
1930 {
1931 namespace_lock();
1932 lock_mount_hash();
1933 umount_tree(real_mount(mnt), 0);
1934 unlock_mount_hash();
1935 namespace_unlock();
1936 }
1937
1938 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1939 {
1940 struct mount *child;
1941
1942 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1943 if (!is_subdir(child->mnt_mountpoint, dentry))
1944 continue;
1945
1946 if (child->mnt.mnt_flags & MNT_LOCKED)
1947 return true;
1948 }
1949 return false;
1950 }
1951
1952 /**
1953 * clone_private_mount - create a private clone of a path
1954 * @path: path to clone
1955 *
1956 * This creates a new vfsmount, which will be the clone of @path. The new mount
1957 * will not be attached anywhere in the namespace and will be private (i.e.
1958 * changes to the originating mount won't be propagated into this).
1959 *
1960 * Release with mntput().
1961 */
1962 struct vfsmount *clone_private_mount(const struct path *path)
1963 {
1964 struct mount *old_mnt = real_mount(path->mnt);
1965 struct mount *new_mnt;
1966
1967 down_read(&namespace_sem);
1968 if (IS_MNT_UNBINDABLE(old_mnt))
1969 goto invalid;
1970
1971 if (!check_mnt(old_mnt))
1972 goto invalid;
1973
1974 if (has_locked_children(old_mnt, path->dentry))
1975 goto invalid;
1976
1977 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1978 up_read(&namespace_sem);
1979
1980 if (IS_ERR(new_mnt))
1981 return ERR_CAST(new_mnt);
1982
1983 /* Longterm mount to be removed by kern_unmount*() */
1984 new_mnt->mnt_ns = MNT_NS_INTERNAL;
1985
1986 return &new_mnt->mnt;
1987
1988 invalid:
1989 up_read(&namespace_sem);
1990 return ERR_PTR(-EINVAL);
1991 }
1992 EXPORT_SYMBOL_GPL(clone_private_mount);
1993
1994 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1995 struct vfsmount *root)
1996 {
1997 struct mount *mnt;
1998 int res = f(root, arg);
1999 if (res)
2000 return res;
2001 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2002 res = f(&mnt->mnt, arg);
2003 if (res)
2004 return res;
2005 }
2006 return 0;
2007 }
2008
2009 static void lock_mnt_tree(struct mount *mnt)
2010 {
2011 struct mount *p;
2012
2013 for (p = mnt; p; p = next_mnt(p, mnt)) {
2014 int flags = p->mnt.mnt_flags;
2015 /* Don't allow unprivileged users to change mount flags */
2016 flags |= MNT_LOCK_ATIME;
2017
2018 if (flags & MNT_READONLY)
2019 flags |= MNT_LOCK_READONLY;
2020
2021 if (flags & MNT_NODEV)
2022 flags |= MNT_LOCK_NODEV;
2023
2024 if (flags & MNT_NOSUID)
2025 flags |= MNT_LOCK_NOSUID;
2026
2027 if (flags & MNT_NOEXEC)
2028 flags |= MNT_LOCK_NOEXEC;
2029 /* Don't allow unprivileged users to reveal what is under a mount */
2030 if (list_empty(&p->mnt_expire))
2031 flags |= MNT_LOCKED;
2032 p->mnt.mnt_flags = flags;
2033 }
2034 }
2035
2036 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2037 {
2038 struct mount *p;
2039
2040 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2041 if (p->mnt_group_id && !IS_MNT_SHARED(p))
2042 mnt_release_group_id(p);
2043 }
2044 }
2045
2046 static int invent_group_ids(struct mount *mnt, bool recurse)
2047 {
2048 struct mount *p;
2049
2050 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2051 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2052 int err = mnt_alloc_group_id(p);
2053 if (err) {
2054 cleanup_group_ids(mnt, p);
2055 return err;
2056 }
2057 }
2058 }
2059
2060 return 0;
2061 }
2062
2063 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2064 {
2065 unsigned int max = READ_ONCE(sysctl_mount_max);
2066 unsigned int mounts = 0, old, pending, sum;
2067 struct mount *p;
2068
2069 for (p = mnt; p; p = next_mnt(p, mnt))
2070 mounts++;
2071
2072 old = ns->mounts;
2073 pending = ns->pending_mounts;
2074 sum = old + pending;
2075 if ((old > sum) ||
2076 (pending > sum) ||
2077 (max < sum) ||
2078 (mounts > (max - sum)))
2079 return -ENOSPC;
2080
2081 ns->pending_mounts = pending + mounts;
2082 return 0;
2083 }
2084
2085 /*
2086 * @source_mnt : mount tree to be attached
2087 * @nd : place the mount tree @source_mnt is attached
2088 * @parent_nd : if non-null, detach the source_mnt from its parent and
2089 * store the parent mount and mountpoint dentry.
2090 * (done when source_mnt is moved)
2091 *
2092 * NOTE: in the table below explains the semantics when a source mount
2093 * of a given type is attached to a destination mount of a given type.
2094 * ---------------------------------------------------------------------------
2095 * | BIND MOUNT OPERATION |
2096 * |**************************************************************************
2097 * | source-->| shared | private | slave | unbindable |
2098 * | dest | | | | |
2099 * | | | | | | |
2100 * | v | | | | |
2101 * |**************************************************************************
2102 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2103 * | | | | | |
2104 * |non-shared| shared (+) | private | slave (*) | invalid |
2105 * ***************************************************************************
2106 * A bind operation clones the source mount and mounts the clone on the
2107 * destination mount.
2108 *
2109 * (++) the cloned mount is propagated to all the mounts in the propagation
2110 * tree of the destination mount and the cloned mount is added to
2111 * the peer group of the source mount.
2112 * (+) the cloned mount is created under the destination mount and is marked
2113 * as shared. The cloned mount is added to the peer group of the source
2114 * mount.
2115 * (+++) the mount is propagated to all the mounts in the propagation tree
2116 * of the destination mount and the cloned mount is made slave
2117 * of the same master as that of the source mount. The cloned mount
2118 * is marked as 'shared and slave'.
2119 * (*) the cloned mount is made a slave of the same master as that of the
2120 * source mount.
2121 *
2122 * ---------------------------------------------------------------------------
2123 * | MOVE MOUNT OPERATION |
2124 * |**************************************************************************
2125 * | source-->| shared | private | slave | unbindable |
2126 * | dest | | | | |
2127 * | | | | | | |
2128 * | v | | | | |
2129 * |**************************************************************************
2130 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2131 * | | | | | |
2132 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2133 * ***************************************************************************
2134 *
2135 * (+) the mount is moved to the destination. And is then propagated to
2136 * all the mounts in the propagation tree of the destination mount.
2137 * (+*) the mount is moved to the destination.
2138 * (+++) the mount is moved to the destination and is then propagated to
2139 * all the mounts belonging to the destination mount's propagation tree.
2140 * the mount is marked as 'shared and slave'.
2141 * (*) the mount continues to be a slave at the new location.
2142 *
2143 * if the source mount is a tree, the operations explained above is
2144 * applied to each mount in the tree.
2145 * Must be called without spinlocks held, since this function can sleep
2146 * in allocations.
2147 */
2148 static int attach_recursive_mnt(struct mount *source_mnt,
2149 struct mount *dest_mnt,
2150 struct mountpoint *dest_mp,
2151 bool moving)
2152 {
2153 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2154 HLIST_HEAD(tree_list);
2155 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2156 struct mountpoint *smp;
2157 struct mount *child, *p;
2158 struct hlist_node *n;
2159 int err;
2160
2161 /* Preallocate a mountpoint in case the new mounts need
2162 * to be tucked under other mounts.
2163 */
2164 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2165 if (IS_ERR(smp))
2166 return PTR_ERR(smp);
2167
2168 /* Is there space to add these mounts to the mount namespace? */
2169 if (!moving) {
2170 err = count_mounts(ns, source_mnt);
2171 if (err)
2172 goto out;
2173 }
2174
2175 if (IS_MNT_SHARED(dest_mnt)) {
2176 err = invent_group_ids(source_mnt, true);
2177 if (err)
2178 goto out;
2179 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2180 lock_mount_hash();
2181 if (err)
2182 goto out_cleanup_ids;
2183 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2184 set_mnt_shared(p);
2185 } else {
2186 lock_mount_hash();
2187 }
2188 if (moving) {
2189 unhash_mnt(source_mnt);
2190 attach_mnt(source_mnt, dest_mnt, dest_mp);
2191 touch_mnt_namespace(source_mnt->mnt_ns);
2192 } else {
2193 if (source_mnt->mnt_ns) {
2194 /* move from anon - the caller will destroy */
2195 list_del_init(&source_mnt->mnt_ns->list);
2196 }
2197 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2198 commit_tree(source_mnt);
2199 }
2200
2201 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2202 struct mount *q;
2203 hlist_del_init(&child->mnt_hash);
2204 q = __lookup_mnt(&child->mnt_parent->mnt,
2205 child->mnt_mountpoint);
2206 if (q)
2207 mnt_change_mountpoint(child, smp, q);
2208 /* Notice when we are propagating across user namespaces */
2209 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2210 lock_mnt_tree(child);
2211 child->mnt.mnt_flags &= ~MNT_LOCKED;
2212 commit_tree(child);
2213 }
2214 put_mountpoint(smp);
2215 unlock_mount_hash();
2216
2217 return 0;
2218
2219 out_cleanup_ids:
2220 while (!hlist_empty(&tree_list)) {
2221 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2222 child->mnt_parent->mnt_ns->pending_mounts = 0;
2223 umount_tree(child, UMOUNT_SYNC);
2224 }
2225 unlock_mount_hash();
2226 cleanup_group_ids(source_mnt, NULL);
2227 out:
2228 ns->pending_mounts = 0;
2229
2230 read_seqlock_excl(&mount_lock);
2231 put_mountpoint(smp);
2232 read_sequnlock_excl(&mount_lock);
2233
2234 return err;
2235 }
2236
2237 static struct mountpoint *lock_mount(struct path *path)
2238 {
2239 struct vfsmount *mnt;
2240 struct dentry *dentry = path->dentry;
2241 retry:
2242 inode_lock(dentry->d_inode);
2243 if (unlikely(cant_mount(dentry))) {
2244 inode_unlock(dentry->d_inode);
2245 return ERR_PTR(-ENOENT);
2246 }
2247 namespace_lock();
2248 mnt = lookup_mnt(path);
2249 if (likely(!mnt)) {
2250 struct mountpoint *mp = get_mountpoint(dentry);
2251 if (IS_ERR(mp)) {
2252 namespace_unlock();
2253 inode_unlock(dentry->d_inode);
2254 return mp;
2255 }
2256 return mp;
2257 }
2258 namespace_unlock();
2259 inode_unlock(path->dentry->d_inode);
2260 path_put(path);
2261 path->mnt = mnt;
2262 dentry = path->dentry = dget(mnt->mnt_root);
2263 goto retry;
2264 }
2265
2266 static void unlock_mount(struct mountpoint *where)
2267 {
2268 struct dentry *dentry = where->m_dentry;
2269
2270 read_seqlock_excl(&mount_lock);
2271 put_mountpoint(where);
2272 read_sequnlock_excl(&mount_lock);
2273
2274 namespace_unlock();
2275 inode_unlock(dentry->d_inode);
2276 }
2277
2278 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2279 {
2280 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2281 return -EINVAL;
2282
2283 if (d_is_dir(mp->m_dentry) !=
2284 d_is_dir(mnt->mnt.mnt_root))
2285 return -ENOTDIR;
2286
2287 return attach_recursive_mnt(mnt, p, mp, false);
2288 }
2289
2290 /*
2291 * Sanity check the flags to change_mnt_propagation.
2292 */
2293
2294 static int flags_to_propagation_type(int ms_flags)
2295 {
2296 int type = ms_flags & ~(MS_REC | MS_SILENT);
2297
2298 /* Fail if any non-propagation flags are set */
2299 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2300 return 0;
2301 /* Only one propagation flag should be set */
2302 if (!is_power_of_2(type))
2303 return 0;
2304 return type;
2305 }
2306
2307 /*
2308 * recursively change the type of the mountpoint.
2309 */
2310 static int do_change_type(struct path *path, int ms_flags)
2311 {
2312 struct mount *m;
2313 struct mount *mnt = real_mount(path->mnt);
2314 int recurse = ms_flags & MS_REC;
2315 int type;
2316 int err = 0;
2317
2318 if (path->dentry != path->mnt->mnt_root)
2319 return -EINVAL;
2320
2321 type = flags_to_propagation_type(ms_flags);
2322 if (!type)
2323 return -EINVAL;
2324
2325 namespace_lock();
2326 if (type == MS_SHARED) {
2327 err = invent_group_ids(mnt, recurse);
2328 if (err)
2329 goto out_unlock;
2330 }
2331
2332 lock_mount_hash();
2333 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2334 change_mnt_propagation(m, type);
2335 unlock_mount_hash();
2336
2337 out_unlock:
2338 namespace_unlock();
2339 return err;
2340 }
2341
2342 static struct mount *__do_loopback(struct path *old_path, int recurse)
2343 {
2344 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2345
2346 if (IS_MNT_UNBINDABLE(old))
2347 return mnt;
2348
2349 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2350 return mnt;
2351
2352 if (!recurse && has_locked_children(old, old_path->dentry))
2353 return mnt;
2354
2355 if (recurse)
2356 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2357 else
2358 mnt = clone_mnt(old, old_path->dentry, 0);
2359
2360 if (!IS_ERR(mnt))
2361 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2362
2363 return mnt;
2364 }
2365
2366 /*
2367 * do loopback mount.
2368 */
2369 static int do_loopback(struct path *path, const char *old_name,
2370 int recurse)
2371 {
2372 struct path old_path;
2373 struct mount *mnt = NULL, *parent;
2374 struct mountpoint *mp;
2375 int err;
2376 if (!old_name || !*old_name)
2377 return -EINVAL;
2378 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2379 if (err)
2380 return err;
2381
2382 err = -EINVAL;
2383 if (mnt_ns_loop(old_path.dentry))
2384 goto out;
2385
2386 mp = lock_mount(path);
2387 if (IS_ERR(mp)) {
2388 err = PTR_ERR(mp);
2389 goto out;
2390 }
2391
2392 parent = real_mount(path->mnt);
2393 if (!check_mnt(parent))
2394 goto out2;
2395
2396 mnt = __do_loopback(&old_path, recurse);
2397 if (IS_ERR(mnt)) {
2398 err = PTR_ERR(mnt);
2399 goto out2;
2400 }
2401
2402 err = graft_tree(mnt, parent, mp);
2403 if (err) {
2404 lock_mount_hash();
2405 umount_tree(mnt, UMOUNT_SYNC);
2406 unlock_mount_hash();
2407 }
2408 out2:
2409 unlock_mount(mp);
2410 out:
2411 path_put(&old_path);
2412 return err;
2413 }
2414
2415 static struct file *open_detached_copy(struct path *path, bool recursive)
2416 {
2417 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2418 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2419 struct mount *mnt, *p;
2420 struct file *file;
2421
2422 if (IS_ERR(ns))
2423 return ERR_CAST(ns);
2424
2425 namespace_lock();
2426 mnt = __do_loopback(path, recursive);
2427 if (IS_ERR(mnt)) {
2428 namespace_unlock();
2429 free_mnt_ns(ns);
2430 return ERR_CAST(mnt);
2431 }
2432
2433 lock_mount_hash();
2434 for (p = mnt; p; p = next_mnt(p, mnt)) {
2435 p->mnt_ns = ns;
2436 ns->mounts++;
2437 }
2438 ns->root = mnt;
2439 list_add_tail(&ns->list, &mnt->mnt_list);
2440 mntget(&mnt->mnt);
2441 unlock_mount_hash();
2442 namespace_unlock();
2443
2444 mntput(path->mnt);
2445 path->mnt = &mnt->mnt;
2446 file = dentry_open(path, O_PATH, current_cred());
2447 if (IS_ERR(file))
2448 dissolve_on_fput(path->mnt);
2449 else
2450 file->f_mode |= FMODE_NEED_UNMOUNT;
2451 return file;
2452 }
2453
2454 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2455 {
2456 struct file *file;
2457 struct path path;
2458 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2459 bool detached = flags & OPEN_TREE_CLONE;
2460 int error;
2461 int fd;
2462
2463 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2464
2465 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2466 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2467 OPEN_TREE_CLOEXEC))
2468 return -EINVAL;
2469
2470 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2471 return -EINVAL;
2472
2473 if (flags & AT_NO_AUTOMOUNT)
2474 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2475 if (flags & AT_SYMLINK_NOFOLLOW)
2476 lookup_flags &= ~LOOKUP_FOLLOW;
2477 if (flags & AT_EMPTY_PATH)
2478 lookup_flags |= LOOKUP_EMPTY;
2479
2480 if (detached && !may_mount())
2481 return -EPERM;
2482
2483 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2484 if (fd < 0)
2485 return fd;
2486
2487 error = user_path_at(dfd, filename, lookup_flags, &path);
2488 if (unlikely(error)) {
2489 file = ERR_PTR(error);
2490 } else {
2491 if (detached)
2492 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2493 else
2494 file = dentry_open(&path, O_PATH, current_cred());
2495 path_put(&path);
2496 }
2497 if (IS_ERR(file)) {
2498 put_unused_fd(fd);
2499 return PTR_ERR(file);
2500 }
2501 fd_install(fd, file);
2502 return fd;
2503 }
2504
2505 /*
2506 * Don't allow locked mount flags to be cleared.
2507 *
2508 * No locks need to be held here while testing the various MNT_LOCK
2509 * flags because those flags can never be cleared once they are set.
2510 */
2511 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2512 {
2513 unsigned int fl = mnt->mnt.mnt_flags;
2514
2515 if ((fl & MNT_LOCK_READONLY) &&
2516 !(mnt_flags & MNT_READONLY))
2517 return false;
2518
2519 if ((fl & MNT_LOCK_NODEV) &&
2520 !(mnt_flags & MNT_NODEV))
2521 return false;
2522
2523 if ((fl & MNT_LOCK_NOSUID) &&
2524 !(mnt_flags & MNT_NOSUID))
2525 return false;
2526
2527 if ((fl & MNT_LOCK_NOEXEC) &&
2528 !(mnt_flags & MNT_NOEXEC))
2529 return false;
2530
2531 if ((fl & MNT_LOCK_ATIME) &&
2532 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2533 return false;
2534
2535 return true;
2536 }
2537
2538 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2539 {
2540 bool readonly_request = (mnt_flags & MNT_READONLY);
2541
2542 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2543 return 0;
2544
2545 if (readonly_request)
2546 return mnt_make_readonly(mnt);
2547
2548 mnt->mnt.mnt_flags &= ~MNT_READONLY;
2549 return 0;
2550 }
2551
2552 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2553 {
2554 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2555 mnt->mnt.mnt_flags = mnt_flags;
2556 touch_mnt_namespace(mnt->mnt_ns);
2557 }
2558
2559 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2560 {
2561 struct super_block *sb = mnt->mnt_sb;
2562
2563 if (!__mnt_is_readonly(mnt) &&
2564 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2565 char *buf = (char *)__get_free_page(GFP_KERNEL);
2566 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2567 struct tm tm;
2568
2569 time64_to_tm(sb->s_time_max, 0, &tm);
2570
2571 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2572 sb->s_type->name,
2573 is_mounted(mnt) ? "remounted" : "mounted",
2574 mntpath,
2575 tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2576
2577 free_page((unsigned long)buf);
2578 }
2579 }
2580
2581 /*
2582 * Handle reconfiguration of the mountpoint only without alteration of the
2583 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2584 * to mount(2).
2585 */
2586 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2587 {
2588 struct super_block *sb = path->mnt->mnt_sb;
2589 struct mount *mnt = real_mount(path->mnt);
2590 int ret;
2591
2592 if (!check_mnt(mnt))
2593 return -EINVAL;
2594
2595 if (path->dentry != mnt->mnt.mnt_root)
2596 return -EINVAL;
2597
2598 if (!can_change_locked_flags(mnt, mnt_flags))
2599 return -EPERM;
2600
2601 /*
2602 * We're only checking whether the superblock is read-only not
2603 * changing it, so only take down_read(&sb->s_umount).
2604 */
2605 down_read(&sb->s_umount);
2606 lock_mount_hash();
2607 ret = change_mount_ro_state(mnt, mnt_flags);
2608 if (ret == 0)
2609 set_mount_attributes(mnt, mnt_flags);
2610 unlock_mount_hash();
2611 up_read(&sb->s_umount);
2612
2613 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2614
2615 return ret;
2616 }
2617
2618 /*
2619 * change filesystem flags. dir should be a physical root of filesystem.
2620 * If you've mounted a non-root directory somewhere and want to do remount
2621 * on it - tough luck.
2622 */
2623 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2624 int mnt_flags, void *data)
2625 {
2626 int err;
2627 struct super_block *sb = path->mnt->mnt_sb;
2628 struct mount *mnt = real_mount(path->mnt);
2629 struct fs_context *fc;
2630
2631 if (!check_mnt(mnt))
2632 return -EINVAL;
2633
2634 if (path->dentry != path->mnt->mnt_root)
2635 return -EINVAL;
2636
2637 if (!can_change_locked_flags(mnt, mnt_flags))
2638 return -EPERM;
2639
2640 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2641 if (IS_ERR(fc))
2642 return PTR_ERR(fc);
2643
2644 fc->oldapi = true;
2645 err = parse_monolithic_mount_data(fc, data);
2646 if (!err) {
2647 down_write(&sb->s_umount);
2648 err = -EPERM;
2649 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2650 err = reconfigure_super(fc);
2651 if (!err) {
2652 lock_mount_hash();
2653 set_mount_attributes(mnt, mnt_flags);
2654 unlock_mount_hash();
2655 }
2656 }
2657 up_write(&sb->s_umount);
2658 }
2659
2660 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2661
2662 put_fs_context(fc);
2663 return err;
2664 }
2665
2666 static inline int tree_contains_unbindable(struct mount *mnt)
2667 {
2668 struct mount *p;
2669 for (p = mnt; p; p = next_mnt(p, mnt)) {
2670 if (IS_MNT_UNBINDABLE(p))
2671 return 1;
2672 }
2673 return 0;
2674 }
2675
2676 /*
2677 * Check that there aren't references to earlier/same mount namespaces in the
2678 * specified subtree. Such references can act as pins for mount namespaces
2679 * that aren't checked by the mount-cycle checking code, thereby allowing
2680 * cycles to be made.
2681 */
2682 static bool check_for_nsfs_mounts(struct mount *subtree)
2683 {
2684 struct mount *p;
2685 bool ret = false;
2686
2687 lock_mount_hash();
2688 for (p = subtree; p; p = next_mnt(p, subtree))
2689 if (mnt_ns_loop(p->mnt.mnt_root))
2690 goto out;
2691
2692 ret = true;
2693 out:
2694 unlock_mount_hash();
2695 return ret;
2696 }
2697
2698 static int do_set_group(struct path *from_path, struct path *to_path)
2699 {
2700 struct mount *from, *to;
2701 int err;
2702
2703 from = real_mount(from_path->mnt);
2704 to = real_mount(to_path->mnt);
2705
2706 namespace_lock();
2707
2708 err = -EINVAL;
2709 /* To and From must be mounted */
2710 if (!is_mounted(&from->mnt))
2711 goto out;
2712 if (!is_mounted(&to->mnt))
2713 goto out;
2714
2715 err = -EPERM;
2716 /* We should be allowed to modify mount namespaces of both mounts */
2717 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2718 goto out;
2719 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2720 goto out;
2721
2722 err = -EINVAL;
2723 /* To and From paths should be mount roots */
2724 if (from_path->dentry != from_path->mnt->mnt_root)
2725 goto out;
2726 if (to_path->dentry != to_path->mnt->mnt_root)
2727 goto out;
2728
2729 /* Setting sharing groups is only allowed across same superblock */
2730 if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2731 goto out;
2732
2733 /* From mount root should be wider than To mount root */
2734 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2735 goto out;
2736
2737 /* From mount should not have locked children in place of To's root */
2738 if (has_locked_children(from, to->mnt.mnt_root))
2739 goto out;
2740
2741 /* Setting sharing groups is only allowed on private mounts */
2742 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2743 goto out;
2744
2745 /* From should not be private */
2746 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2747 goto out;
2748
2749 if (IS_MNT_SLAVE(from)) {
2750 struct mount *m = from->mnt_master;
2751
2752 list_add(&to->mnt_slave, &m->mnt_slave_list);
2753 to->mnt_master = m;
2754 }
2755
2756 if (IS_MNT_SHARED(from)) {
2757 to->mnt_group_id = from->mnt_group_id;
2758 list_add(&to->mnt_share, &from->mnt_share);
2759 lock_mount_hash();
2760 set_mnt_shared(to);
2761 unlock_mount_hash();
2762 }
2763
2764 err = 0;
2765 out:
2766 namespace_unlock();
2767 return err;
2768 }
2769
2770 static int do_move_mount(struct path *old_path, struct path *new_path)
2771 {
2772 struct mnt_namespace *ns;
2773 struct mount *p;
2774 struct mount *old;
2775 struct mount *parent;
2776 struct mountpoint *mp, *old_mp;
2777 int err;
2778 bool attached;
2779
2780 mp = lock_mount(new_path);
2781 if (IS_ERR(mp))
2782 return PTR_ERR(mp);
2783
2784 old = real_mount(old_path->mnt);
2785 p = real_mount(new_path->mnt);
2786 parent = old->mnt_parent;
2787 attached = mnt_has_parent(old);
2788 old_mp = old->mnt_mp;
2789 ns = old->mnt_ns;
2790
2791 err = -EINVAL;
2792 /* The mountpoint must be in our namespace. */
2793 if (!check_mnt(p))
2794 goto out;
2795
2796 /* The thing moved must be mounted... */
2797 if (!is_mounted(&old->mnt))
2798 goto out;
2799
2800 /* ... and either ours or the root of anon namespace */
2801 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2802 goto out;
2803
2804 if (old->mnt.mnt_flags & MNT_LOCKED)
2805 goto out;
2806
2807 if (old_path->dentry != old_path->mnt->mnt_root)
2808 goto out;
2809
2810 if (d_is_dir(new_path->dentry) !=
2811 d_is_dir(old_path->dentry))
2812 goto out;
2813 /*
2814 * Don't move a mount residing in a shared parent.
2815 */
2816 if (attached && IS_MNT_SHARED(parent))
2817 goto out;
2818 /*
2819 * Don't move a mount tree containing unbindable mounts to a destination
2820 * mount which is shared.
2821 */
2822 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2823 goto out;
2824 err = -ELOOP;
2825 if (!check_for_nsfs_mounts(old))
2826 goto out;
2827 for (; mnt_has_parent(p); p = p->mnt_parent)
2828 if (p == old)
2829 goto out;
2830
2831 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2832 attached);
2833 if (err)
2834 goto out;
2835
2836 /* if the mount is moved, it should no longer be expire
2837 * automatically */
2838 list_del_init(&old->mnt_expire);
2839 if (attached)
2840 put_mountpoint(old_mp);
2841 out:
2842 unlock_mount(mp);
2843 if (!err) {
2844 if (attached)
2845 mntput_no_expire(parent);
2846 else
2847 free_mnt_ns(ns);
2848 }
2849 return err;
2850 }
2851
2852 static int do_move_mount_old(struct path *path, const char *old_name)
2853 {
2854 struct path old_path;
2855 int err;
2856
2857 if (!old_name || !*old_name)
2858 return -EINVAL;
2859
2860 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2861 if (err)
2862 return err;
2863
2864 err = do_move_mount(&old_path, path);
2865 path_put(&old_path);
2866 return err;
2867 }
2868
2869 /*
2870 * add a mount into a namespace's mount tree
2871 */
2872 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2873 struct path *path, int mnt_flags)
2874 {
2875 struct mount *parent = real_mount(path->mnt);
2876
2877 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2878
2879 if (unlikely(!check_mnt(parent))) {
2880 /* that's acceptable only for automounts done in private ns */
2881 if (!(mnt_flags & MNT_SHRINKABLE))
2882 return -EINVAL;
2883 /* ... and for those we'd better have mountpoint still alive */
2884 if (!parent->mnt_ns)
2885 return -EINVAL;
2886 }
2887
2888 /* Refuse the same filesystem on the same mount point */
2889 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2890 path->mnt->mnt_root == path->dentry)
2891 return -EBUSY;
2892
2893 if (d_is_symlink(newmnt->mnt.mnt_root))
2894 return -EINVAL;
2895
2896 newmnt->mnt.mnt_flags = mnt_flags;
2897 return graft_tree(newmnt, parent, mp);
2898 }
2899
2900 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2901
2902 /*
2903 * Create a new mount using a superblock configuration and request it
2904 * be added to the namespace tree.
2905 */
2906 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2907 unsigned int mnt_flags)
2908 {
2909 struct vfsmount *mnt;
2910 struct mountpoint *mp;
2911 struct super_block *sb = fc->root->d_sb;
2912 int error;
2913
2914 error = security_sb_kern_mount(sb);
2915 if (!error && mount_too_revealing(sb, &mnt_flags))
2916 error = -EPERM;
2917
2918 if (unlikely(error)) {
2919 fc_drop_locked(fc);
2920 return error;
2921 }
2922
2923 up_write(&sb->s_umount);
2924
2925 mnt = vfs_create_mount(fc);
2926 if (IS_ERR(mnt))
2927 return PTR_ERR(mnt);
2928
2929 mnt_warn_timestamp_expiry(mountpoint, mnt);
2930
2931 mp = lock_mount(mountpoint);
2932 if (IS_ERR(mp)) {
2933 mntput(mnt);
2934 return PTR_ERR(mp);
2935 }
2936 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2937 unlock_mount(mp);
2938 if (error < 0)
2939 mntput(mnt);
2940 return error;
2941 }
2942
2943 /*
2944 * create a new mount for userspace and request it to be added into the
2945 * namespace's tree
2946 */
2947 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2948 int mnt_flags, const char *name, void *data)
2949 {
2950 struct file_system_type *type;
2951 struct fs_context *fc;
2952 const char *subtype = NULL;
2953 int err = 0;
2954
2955 if (!fstype)
2956 return -EINVAL;
2957
2958 type = get_fs_type(fstype);
2959 if (!type)
2960 return -ENODEV;
2961
2962 if (type->fs_flags & FS_HAS_SUBTYPE) {
2963 subtype = strchr(fstype, '.');
2964 if (subtype) {
2965 subtype++;
2966 if (!*subtype) {
2967 put_filesystem(type);
2968 return -EINVAL;
2969 }
2970 }
2971 }
2972
2973 fc = fs_context_for_mount(type, sb_flags);
2974 put_filesystem(type);
2975 if (IS_ERR(fc))
2976 return PTR_ERR(fc);
2977
2978 if (subtype)
2979 err = vfs_parse_fs_string(fc, "subtype",
2980 subtype, strlen(subtype));
2981 if (!err && name)
2982 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2983 if (!err)
2984 err = parse_monolithic_mount_data(fc, data);
2985 if (!err && !mount_capable(fc))
2986 err = -EPERM;
2987 if (!err)
2988 err = vfs_get_tree(fc);
2989 if (!err)
2990 err = do_new_mount_fc(fc, path, mnt_flags);
2991
2992 put_fs_context(fc);
2993 return err;
2994 }
2995
2996 int finish_automount(struct vfsmount *m, struct path *path)
2997 {
2998 struct dentry *dentry = path->dentry;
2999 struct mountpoint *mp;
3000 struct mount *mnt;
3001 int err;
3002
3003 if (!m)
3004 return 0;
3005 if (IS_ERR(m))
3006 return PTR_ERR(m);
3007
3008 mnt = real_mount(m);
3009 /* The new mount record should have at least 2 refs to prevent it being
3010 * expired before we get a chance to add it
3011 */
3012 BUG_ON(mnt_get_count(mnt) < 2);
3013
3014 if (m->mnt_sb == path->mnt->mnt_sb &&
3015 m->mnt_root == dentry) {
3016 err = -ELOOP;
3017 goto discard;
3018 }
3019
3020 /*
3021 * we don't want to use lock_mount() - in this case finding something
3022 * that overmounts our mountpoint to be means "quitely drop what we've
3023 * got", not "try to mount it on top".
3024 */
3025 inode_lock(dentry->d_inode);
3026 namespace_lock();
3027 if (unlikely(cant_mount(dentry))) {
3028 err = -ENOENT;
3029 goto discard_locked;
3030 }
3031 rcu_read_lock();
3032 if (unlikely(__lookup_mnt(path->mnt, dentry))) {
3033 rcu_read_unlock();
3034 err = 0;
3035 goto discard_locked;
3036 }
3037 rcu_read_unlock();
3038 mp = get_mountpoint(dentry);
3039 if (IS_ERR(mp)) {
3040 err = PTR_ERR(mp);
3041 goto discard_locked;
3042 }
3043
3044 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3045 unlock_mount(mp);
3046 if (unlikely(err))
3047 goto discard;
3048 mntput(m);
3049 return 0;
3050
3051 discard_locked:
3052 namespace_unlock();
3053 inode_unlock(dentry->d_inode);
3054 discard:
3055 /* remove m from any expiration list it may be on */
3056 if (!list_empty(&mnt->mnt_expire)) {
3057 namespace_lock();
3058 list_del_init(&mnt->mnt_expire);
3059 namespace_unlock();
3060 }
3061 mntput(m);
3062 mntput(m);
3063 return err;
3064 }
3065
3066 /**
3067 * mnt_set_expiry - Put a mount on an expiration list
3068 * @mnt: The mount to list.
3069 * @expiry_list: The list to add the mount to.
3070 */
3071 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3072 {
3073 namespace_lock();
3074
3075 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3076
3077 namespace_unlock();
3078 }
3079 EXPORT_SYMBOL(mnt_set_expiry);
3080
3081 /*
3082 * process a list of expirable mountpoints with the intent of discarding any
3083 * mountpoints that aren't in use and haven't been touched since last we came
3084 * here
3085 */
3086 void mark_mounts_for_expiry(struct list_head *mounts)
3087 {
3088 struct mount *mnt, *next;
3089 LIST_HEAD(graveyard);
3090
3091 if (list_empty(mounts))
3092 return;
3093
3094 namespace_lock();
3095 lock_mount_hash();
3096
3097 /* extract from the expiration list every vfsmount that matches the
3098 * following criteria:
3099 * - only referenced by its parent vfsmount
3100 * - still marked for expiry (marked on the last call here; marks are
3101 * cleared by mntput())
3102 */
3103 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3104 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3105 propagate_mount_busy(mnt, 1))
3106 continue;
3107 list_move(&mnt->mnt_expire, &graveyard);
3108 }
3109 while (!list_empty(&graveyard)) {
3110 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3111 touch_mnt_namespace(mnt->mnt_ns);
3112 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3113 }
3114 unlock_mount_hash();
3115 namespace_unlock();
3116 }
3117
3118 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3119
3120 /*
3121 * Ripoff of 'select_parent()'
3122 *
3123 * search the list of submounts for a given mountpoint, and move any
3124 * shrinkable submounts to the 'graveyard' list.
3125 */
3126 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3127 {
3128 struct mount *this_parent = parent;
3129 struct list_head *next;
3130 int found = 0;
3131
3132 repeat:
3133 next = this_parent->mnt_mounts.next;
3134 resume:
3135 while (next != &this_parent->mnt_mounts) {
3136 struct list_head *tmp = next;
3137 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3138
3139 next = tmp->next;
3140 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3141 continue;
3142 /*
3143 * Descend a level if the d_mounts list is non-empty.
3144 */
3145 if (!list_empty(&mnt->mnt_mounts)) {
3146 this_parent = mnt;
3147 goto repeat;
3148 }
3149
3150 if (!propagate_mount_busy(mnt, 1)) {
3151 list_move_tail(&mnt->mnt_expire, graveyard);
3152 found++;
3153 }
3154 }
3155 /*
3156 * All done at this level ... ascend and resume the search
3157 */
3158 if (this_parent != parent) {
3159 next = this_parent->mnt_child.next;
3160 this_parent = this_parent->mnt_parent;
3161 goto resume;
3162 }
3163 return found;
3164 }
3165
3166 /*
3167 * process a list of expirable mountpoints with the intent of discarding any
3168 * submounts of a specific parent mountpoint
3169 *
3170 * mount_lock must be held for write
3171 */
3172 static void shrink_submounts(struct mount *mnt)
3173 {
3174 LIST_HEAD(graveyard);
3175 struct mount *m;
3176
3177 /* extract submounts of 'mountpoint' from the expiration list */
3178 while (select_submounts(mnt, &graveyard)) {
3179 while (!list_empty(&graveyard)) {
3180 m = list_first_entry(&graveyard, struct mount,
3181 mnt_expire);
3182 touch_mnt_namespace(m->mnt_ns);
3183 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3184 }
3185 }
3186 }
3187
3188 static void *copy_mount_options(const void __user * data)
3189 {
3190 char *copy;
3191 unsigned left, offset;
3192
3193 if (!data)
3194 return NULL;
3195
3196 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3197 if (!copy)
3198 return ERR_PTR(-ENOMEM);
3199
3200 left = copy_from_user(copy, data, PAGE_SIZE);
3201
3202 /*
3203 * Not all architectures have an exact copy_from_user(). Resort to
3204 * byte at a time.
3205 */
3206 offset = PAGE_SIZE - left;
3207 while (left) {
3208 char c;
3209 if (get_user(c, (const char __user *)data + offset))
3210 break;
3211 copy[offset] = c;
3212 left--;
3213 offset++;
3214 }
3215
3216 if (left == PAGE_SIZE) {
3217 kfree(copy);
3218 return ERR_PTR(-EFAULT);
3219 }
3220
3221 return copy;
3222 }
3223
3224 static char *copy_mount_string(const void __user *data)
3225 {
3226 return data ? strndup_user(data, PATH_MAX) : NULL;
3227 }
3228
3229 /*
3230 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3231 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3232 *
3233 * data is a (void *) that can point to any structure up to
3234 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3235 * information (or be NULL).
3236 *
3237 * Pre-0.97 versions of mount() didn't have a flags word.
3238 * When the flags word was introduced its top half was required
3239 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3240 * Therefore, if this magic number is present, it carries no information
3241 * and must be discarded.
3242 */
3243 int path_mount(const char *dev_name, struct path *path,
3244 const char *type_page, unsigned long flags, void *data_page)
3245 {
3246 unsigned int mnt_flags = 0, sb_flags;
3247 int ret;
3248
3249 /* Discard magic */
3250 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3251 flags &= ~MS_MGC_MSK;
3252
3253 /* Basic sanity checks */
3254 if (data_page)
3255 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3256
3257 if (flags & MS_NOUSER)
3258 return -EINVAL;
3259
3260 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3261 if (ret)
3262 return ret;
3263 if (!may_mount())
3264 return -EPERM;
3265 if (flags & SB_MANDLOCK)
3266 warn_mandlock();
3267
3268 /* Default to relatime unless overriden */
3269 if (!(flags & MS_NOATIME))
3270 mnt_flags |= MNT_RELATIME;
3271
3272 /* Separate the per-mountpoint flags */
3273 if (flags & MS_NOSUID)
3274 mnt_flags |= MNT_NOSUID;
3275 if (flags & MS_NODEV)
3276 mnt_flags |= MNT_NODEV;
3277 if (flags & MS_NOEXEC)
3278 mnt_flags |= MNT_NOEXEC;
3279 if (flags & MS_NOATIME)
3280 mnt_flags |= MNT_NOATIME;
3281 if (flags & MS_NODIRATIME)
3282 mnt_flags |= MNT_NODIRATIME;
3283 if (flags & MS_STRICTATIME)
3284 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3285 if (flags & MS_RDONLY)
3286 mnt_flags |= MNT_READONLY;
3287 if (flags & MS_NOSYMFOLLOW)
3288 mnt_flags |= MNT_NOSYMFOLLOW;
3289
3290 /* The default atime for remount is preservation */
3291 if ((flags & MS_REMOUNT) &&
3292 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3293 MS_STRICTATIME)) == 0)) {
3294 mnt_flags &= ~MNT_ATIME_MASK;
3295 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3296 }
3297
3298 sb_flags = flags & (SB_RDONLY |
3299 SB_SYNCHRONOUS |
3300 SB_MANDLOCK |
3301 SB_DIRSYNC |
3302 SB_SILENT |
3303 SB_POSIXACL |
3304 SB_LAZYTIME |
3305 SB_I_VERSION);
3306
3307 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3308 return do_reconfigure_mnt(path, mnt_flags);
3309 if (flags & MS_REMOUNT)
3310 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3311 if (flags & MS_BIND)
3312 return do_loopback(path, dev_name, flags & MS_REC);
3313 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3314 return do_change_type(path, flags);
3315 if (flags & MS_MOVE)
3316 return do_move_mount_old(path, dev_name);
3317
3318 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3319 data_page);
3320 }
3321
3322 long do_mount(const char *dev_name, const char __user *dir_name,
3323 const char *type_page, unsigned long flags, void *data_page)
3324 {
3325 struct path path;
3326 int ret;
3327
3328 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3329 if (ret)
3330 return ret;
3331 ret = path_mount(dev_name, &path, type_page, flags, data_page);
3332 path_put(&path);
3333 return ret;
3334 }
3335
3336 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3337 {
3338 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3339 }
3340
3341 static void dec_mnt_namespaces(struct ucounts *ucounts)
3342 {
3343 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3344 }
3345
3346 static void free_mnt_ns(struct mnt_namespace *ns)
3347 {
3348 if (!is_anon_ns(ns))
3349 ns_free_inum(&ns->ns);
3350 dec_mnt_namespaces(ns->ucounts);
3351 put_user_ns(ns->user_ns);
3352 kfree(ns);
3353 }
3354
3355 /*
3356 * Assign a sequence number so we can detect when we attempt to bind
3357 * mount a reference to an older mount namespace into the current
3358 * mount namespace, preventing reference counting loops. A 64bit
3359 * number incrementing at 10Ghz will take 12,427 years to wrap which
3360 * is effectively never, so we can ignore the possibility.
3361 */
3362 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3363
3364 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3365 {
3366 struct mnt_namespace *new_ns;
3367 struct ucounts *ucounts;
3368 int ret;
3369
3370 ucounts = inc_mnt_namespaces(user_ns);
3371 if (!ucounts)
3372 return ERR_PTR(-ENOSPC);
3373
3374 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3375 if (!new_ns) {
3376 dec_mnt_namespaces(ucounts);
3377 return ERR_PTR(-ENOMEM);
3378 }
3379 if (!anon) {
3380 ret = ns_alloc_inum(&new_ns->ns);
3381 if (ret) {
3382 kfree(new_ns);
3383 dec_mnt_namespaces(ucounts);
3384 return ERR_PTR(ret);
3385 }
3386 }
3387 new_ns->ns.ops = &mntns_operations;
3388 if (!anon)
3389 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3390 refcount_set(&new_ns->ns.count, 1);
3391 INIT_LIST_HEAD(&new_ns->list);
3392 init_waitqueue_head(&new_ns->poll);
3393 spin_lock_init(&new_ns->ns_lock);
3394 new_ns->user_ns = get_user_ns(user_ns);
3395 new_ns->ucounts = ucounts;
3396 return new_ns;
3397 }
3398
3399 __latent_entropy
3400 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3401 struct user_namespace *user_ns, struct fs_struct *new_fs)
3402 {
3403 struct mnt_namespace *new_ns;
3404 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3405 struct mount *p, *q;
3406 struct mount *old;
3407 struct mount *new;
3408 int copy_flags;
3409
3410 BUG_ON(!ns);
3411
3412 if (likely(!(flags & CLONE_NEWNS))) {
3413 get_mnt_ns(ns);
3414 return ns;
3415 }
3416
3417 old = ns->root;
3418
3419 new_ns = alloc_mnt_ns(user_ns, false);
3420 if (IS_ERR(new_ns))
3421 return new_ns;
3422
3423 namespace_lock();
3424 /* First pass: copy the tree topology */
3425 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3426 if (user_ns != ns->user_ns)
3427 copy_flags |= CL_SHARED_TO_SLAVE;
3428 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3429 if (IS_ERR(new)) {
3430 namespace_unlock();
3431 free_mnt_ns(new_ns);
3432 return ERR_CAST(new);
3433 }
3434 if (user_ns != ns->user_ns) {
3435 lock_mount_hash();
3436 lock_mnt_tree(new);
3437 unlock_mount_hash();
3438 }
3439 new_ns->root = new;
3440 list_add_tail(&new_ns->list, &new->mnt_list);
3441
3442 /*
3443 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3444 * as belonging to new namespace. We have already acquired a private
3445 * fs_struct, so tsk->fs->lock is not needed.
3446 */
3447 p = old;
3448 q = new;
3449 while (p) {
3450 q->mnt_ns = new_ns;
3451 new_ns->mounts++;
3452 if (new_fs) {
3453 if (&p->mnt == new_fs->root.mnt) {
3454 new_fs->root.mnt = mntget(&q->mnt);
3455 rootmnt = &p->mnt;
3456 }
3457 if (&p->mnt == new_fs->pwd.mnt) {
3458 new_fs->pwd.mnt = mntget(&q->mnt);
3459 pwdmnt = &p->mnt;
3460 }
3461 }
3462 p = next_mnt(p, old);
3463 q = next_mnt(q, new);
3464 if (!q)
3465 break;
3466 while (p->mnt.mnt_root != q->mnt.mnt_root)
3467 p = next_mnt(p, old);
3468 }
3469 namespace_unlock();
3470
3471 if (rootmnt)
3472 mntput(rootmnt);
3473 if (pwdmnt)
3474 mntput(pwdmnt);
3475
3476 return new_ns;
3477 }
3478
3479 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3480 {
3481 struct mount *mnt = real_mount(m);
3482 struct mnt_namespace *ns;
3483 struct super_block *s;
3484 struct path path;
3485 int err;
3486
3487 ns = alloc_mnt_ns(&init_user_ns, true);
3488 if (IS_ERR(ns)) {
3489 mntput(m);
3490 return ERR_CAST(ns);
3491 }
3492 mnt->mnt_ns = ns;
3493 ns->root = mnt;
3494 ns->mounts++;
3495 list_add(&mnt->mnt_list, &ns->list);
3496
3497 err = vfs_path_lookup(m->mnt_root, m,
3498 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3499
3500 put_mnt_ns(ns);
3501
3502 if (err)
3503 return ERR_PTR(err);
3504
3505 /* trade a vfsmount reference for active sb one */
3506 s = path.mnt->mnt_sb;
3507 atomic_inc(&s->s_active);
3508 mntput(path.mnt);
3509 /* lock the sucker */
3510 down_write(&s->s_umount);
3511 /* ... and return the root of (sub)tree on it */
3512 return path.dentry;
3513 }
3514 EXPORT_SYMBOL(mount_subtree);
3515
3516 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3517 char __user *, type, unsigned long, flags, void __user *, data)
3518 {
3519 int ret;
3520 char *kernel_type;
3521 char *kernel_dev;
3522 void *options;
3523
3524 kernel_type = copy_mount_string(type);
3525 ret = PTR_ERR(kernel_type);
3526 if (IS_ERR(kernel_type))
3527 goto out_type;
3528
3529 kernel_dev = copy_mount_string(dev_name);
3530 ret = PTR_ERR(kernel_dev);
3531 if (IS_ERR(kernel_dev))
3532 goto out_dev;
3533
3534 options = copy_mount_options(data);
3535 ret = PTR_ERR(options);
3536 if (IS_ERR(options))
3537 goto out_data;
3538
3539 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3540
3541 kfree(options);
3542 out_data:
3543 kfree(kernel_dev);
3544 out_dev:
3545 kfree(kernel_type);
3546 out_type:
3547 return ret;
3548 }
3549
3550 #define FSMOUNT_VALID_FLAGS \
3551 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
3552 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \
3553 MOUNT_ATTR_NOSYMFOLLOW)
3554
3555 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3556
3557 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3558 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3559
3560 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3561 {
3562 unsigned int mnt_flags = 0;
3563
3564 if (attr_flags & MOUNT_ATTR_RDONLY)
3565 mnt_flags |= MNT_READONLY;
3566 if (attr_flags & MOUNT_ATTR_NOSUID)
3567 mnt_flags |= MNT_NOSUID;
3568 if (attr_flags & MOUNT_ATTR_NODEV)
3569 mnt_flags |= MNT_NODEV;
3570 if (attr_flags & MOUNT_ATTR_NOEXEC)
3571 mnt_flags |= MNT_NOEXEC;
3572 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3573 mnt_flags |= MNT_NODIRATIME;
3574 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3575 mnt_flags |= MNT_NOSYMFOLLOW;
3576
3577 return mnt_flags;
3578 }
3579
3580 /*
3581 * Create a kernel mount representation for a new, prepared superblock
3582 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3583 */
3584 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3585 unsigned int, attr_flags)
3586 {
3587 struct mnt_namespace *ns;
3588 struct fs_context *fc;
3589 struct file *file;
3590 struct path newmount;
3591 struct mount *mnt;
3592 struct fd f;
3593 unsigned int mnt_flags = 0;
3594 long ret;
3595
3596 if (!may_mount())
3597 return -EPERM;
3598
3599 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3600 return -EINVAL;
3601
3602 if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3603 return -EINVAL;
3604
3605 mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3606
3607 switch (attr_flags & MOUNT_ATTR__ATIME) {
3608 case MOUNT_ATTR_STRICTATIME:
3609 break;
3610 case MOUNT_ATTR_NOATIME:
3611 mnt_flags |= MNT_NOATIME;
3612 break;
3613 case MOUNT_ATTR_RELATIME:
3614 mnt_flags |= MNT_RELATIME;
3615 break;
3616 default:
3617 return -EINVAL;
3618 }
3619
3620 f = fdget(fs_fd);
3621 if (!f.file)
3622 return -EBADF;
3623
3624 ret = -EINVAL;
3625 if (f.file->f_op != &fscontext_fops)
3626 goto err_fsfd;
3627
3628 fc = f.file->private_data;
3629
3630 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3631 if (ret < 0)
3632 goto err_fsfd;
3633
3634 /* There must be a valid superblock or we can't mount it */
3635 ret = -EINVAL;
3636 if (!fc->root)
3637 goto err_unlock;
3638
3639 ret = -EPERM;
3640 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3641 pr_warn("VFS: Mount too revealing\n");
3642 goto err_unlock;
3643 }
3644
3645 ret = -EBUSY;
3646 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3647 goto err_unlock;
3648
3649 if (fc->sb_flags & SB_MANDLOCK)
3650 warn_mandlock();
3651
3652 newmount.mnt = vfs_create_mount(fc);
3653 if (IS_ERR(newmount.mnt)) {
3654 ret = PTR_ERR(newmount.mnt);
3655 goto err_unlock;
3656 }
3657 newmount.dentry = dget(fc->root);
3658 newmount.mnt->mnt_flags = mnt_flags;
3659
3660 /* We've done the mount bit - now move the file context into more or
3661 * less the same state as if we'd done an fspick(). We don't want to
3662 * do any memory allocation or anything like that at this point as we
3663 * don't want to have to handle any errors incurred.
3664 */
3665 vfs_clean_context(fc);
3666
3667 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3668 if (IS_ERR(ns)) {
3669 ret = PTR_ERR(ns);
3670 goto err_path;
3671 }
3672 mnt = real_mount(newmount.mnt);
3673 mnt->mnt_ns = ns;
3674 ns->root = mnt;
3675 ns->mounts = 1;
3676 list_add(&mnt->mnt_list, &ns->list);
3677 mntget(newmount.mnt);
3678
3679 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3680 * it, not just simply put it.
3681 */
3682 file = dentry_open(&newmount, O_PATH, fc->cred);
3683 if (IS_ERR(file)) {
3684 dissolve_on_fput(newmount.mnt);
3685 ret = PTR_ERR(file);
3686 goto err_path;
3687 }
3688 file->f_mode |= FMODE_NEED_UNMOUNT;
3689
3690 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3691 if (ret >= 0)
3692 fd_install(ret, file);
3693 else
3694 fput(file);
3695
3696 err_path:
3697 path_put(&newmount);
3698 err_unlock:
3699 mutex_unlock(&fc->uapi_mutex);
3700 err_fsfd:
3701 fdput(f);
3702 return ret;
3703 }
3704
3705 /*
3706 * Move a mount from one place to another. In combination with
3707 * fsopen()/fsmount() this is used to install a new mount and in combination
3708 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3709 * a mount subtree.
3710 *
3711 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3712 */
3713 SYSCALL_DEFINE5(move_mount,
3714 int, from_dfd, const char __user *, from_pathname,
3715 int, to_dfd, const char __user *, to_pathname,
3716 unsigned int, flags)
3717 {
3718 struct path from_path, to_path;
3719 unsigned int lflags;
3720 int ret = 0;
3721
3722 if (!may_mount())
3723 return -EPERM;
3724
3725 if (flags & ~MOVE_MOUNT__MASK)
3726 return -EINVAL;
3727
3728 /* If someone gives a pathname, they aren't permitted to move
3729 * from an fd that requires unmount as we can't get at the flag
3730 * to clear it afterwards.
3731 */
3732 lflags = 0;
3733 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3734 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3735 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3736
3737 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3738 if (ret < 0)
3739 return ret;
3740
3741 lflags = 0;
3742 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3743 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3744 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3745
3746 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3747 if (ret < 0)
3748 goto out_from;
3749
3750 ret = security_move_mount(&from_path, &to_path);
3751 if (ret < 0)
3752 goto out_to;
3753
3754 if (flags & MOVE_MOUNT_SET_GROUP)
3755 ret = do_set_group(&from_path, &to_path);
3756 else
3757 ret = do_move_mount(&from_path, &to_path);
3758
3759 out_to:
3760 path_put(&to_path);
3761 out_from:
3762 path_put(&from_path);
3763 return ret;
3764 }
3765
3766 /*
3767 * Return true if path is reachable from root
3768 *
3769 * namespace_sem or mount_lock is held
3770 */
3771 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3772 const struct path *root)
3773 {
3774 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3775 dentry = mnt->mnt_mountpoint;
3776 mnt = mnt->mnt_parent;
3777 }
3778 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3779 }
3780
3781 bool path_is_under(const struct path *path1, const struct path *path2)
3782 {
3783 bool res;
3784 read_seqlock_excl(&mount_lock);
3785 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3786 read_sequnlock_excl(&mount_lock);
3787 return res;
3788 }
3789 EXPORT_SYMBOL(path_is_under);
3790
3791 /*
3792 * pivot_root Semantics:
3793 * Moves the root file system of the current process to the directory put_old,
3794 * makes new_root as the new root file system of the current process, and sets
3795 * root/cwd of all processes which had them on the current root to new_root.
3796 *
3797 * Restrictions:
3798 * The new_root and put_old must be directories, and must not be on the
3799 * same file system as the current process root. The put_old must be
3800 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3801 * pointed to by put_old must yield the same directory as new_root. No other
3802 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3803 *
3804 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3805 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3806 * in this situation.
3807 *
3808 * Notes:
3809 * - we don't move root/cwd if they are not at the root (reason: if something
3810 * cared enough to change them, it's probably wrong to force them elsewhere)
3811 * - it's okay to pick a root that isn't the root of a file system, e.g.
3812 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3813 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3814 * first.
3815 */
3816 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3817 const char __user *, put_old)
3818 {
3819 struct path new, old, root;
3820 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3821 struct mountpoint *old_mp, *root_mp;
3822 int error;
3823
3824 if (!may_mount())
3825 return -EPERM;
3826
3827 error = user_path_at(AT_FDCWD, new_root,
3828 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3829 if (error)
3830 goto out0;
3831
3832 error = user_path_at(AT_FDCWD, put_old,
3833 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3834 if (error)
3835 goto out1;
3836
3837 error = security_sb_pivotroot(&old, &new);
3838 if (error)
3839 goto out2;
3840
3841 get_fs_root(current->fs, &root);
3842 old_mp = lock_mount(&old);
3843 error = PTR_ERR(old_mp);
3844 if (IS_ERR(old_mp))
3845 goto out3;
3846
3847 error = -EINVAL;
3848 new_mnt = real_mount(new.mnt);
3849 root_mnt = real_mount(root.mnt);
3850 old_mnt = real_mount(old.mnt);
3851 ex_parent = new_mnt->mnt_parent;
3852 root_parent = root_mnt->mnt_parent;
3853 if (IS_MNT_SHARED(old_mnt) ||
3854 IS_MNT_SHARED(ex_parent) ||
3855 IS_MNT_SHARED(root_parent))
3856 goto out4;
3857 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3858 goto out4;
3859 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3860 goto out4;
3861 error = -ENOENT;
3862 if (d_unlinked(new.dentry))
3863 goto out4;
3864 error = -EBUSY;
3865 if (new_mnt == root_mnt || old_mnt == root_mnt)
3866 goto out4; /* loop, on the same file system */
3867 error = -EINVAL;
3868 if (root.mnt->mnt_root != root.dentry)
3869 goto out4; /* not a mountpoint */
3870 if (!mnt_has_parent(root_mnt))
3871 goto out4; /* not attached */
3872 if (new.mnt->mnt_root != new.dentry)
3873 goto out4; /* not a mountpoint */
3874 if (!mnt_has_parent(new_mnt))
3875 goto out4; /* not attached */
3876 /* make sure we can reach put_old from new_root */
3877 if (!is_path_reachable(old_mnt, old.dentry, &new))
3878 goto out4;
3879 /* make certain new is below the root */
3880 if (!is_path_reachable(new_mnt, new.dentry, &root))
3881 goto out4;
3882 lock_mount_hash();
3883 umount_mnt(new_mnt);
3884 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
3885 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3886 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3887 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3888 }
3889 /* mount old root on put_old */
3890 attach_mnt(root_mnt, old_mnt, old_mp);
3891 /* mount new_root on / */
3892 attach_mnt(new_mnt, root_parent, root_mp);
3893 mnt_add_count(root_parent, -1);
3894 touch_mnt_namespace(current->nsproxy->mnt_ns);
3895 /* A moved mount should not expire automatically */
3896 list_del_init(&new_mnt->mnt_expire);
3897 put_mountpoint(root_mp);
3898 unlock_mount_hash();
3899 chroot_fs_refs(&root, &new);
3900 error = 0;
3901 out4:
3902 unlock_mount(old_mp);
3903 if (!error)
3904 mntput_no_expire(ex_parent);
3905 out3:
3906 path_put(&root);
3907 out2:
3908 path_put(&old);
3909 out1:
3910 path_put(&new);
3911 out0:
3912 return error;
3913 }
3914
3915 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3916 {
3917 unsigned int flags = mnt->mnt.mnt_flags;
3918
3919 /* flags to clear */
3920 flags &= ~kattr->attr_clr;
3921 /* flags to raise */
3922 flags |= kattr->attr_set;
3923
3924 return flags;
3925 }
3926
3927 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3928 {
3929 struct vfsmount *m = &mnt->mnt;
3930
3931 if (!kattr->mnt_userns)
3932 return 0;
3933
3934 /*
3935 * Once a mount has been idmapped we don't allow it to change its
3936 * mapping. It makes things simpler and callers can just create
3937 * another bind-mount they can idmap if they want to.
3938 */
3939 if (mnt_user_ns(m) != &init_user_ns)
3940 return -EPERM;
3941
3942 /* The underlying filesystem doesn't support idmapped mounts yet. */
3943 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
3944 return -EINVAL;
3945
3946 /* Don't yet support filesystem mountable in user namespaces. */
3947 if (m->mnt_sb->s_user_ns != &init_user_ns)
3948 return -EINVAL;
3949
3950 /* We're not controlling the superblock. */
3951 if (!capable(CAP_SYS_ADMIN))
3952 return -EPERM;
3953
3954 /* Mount has already been visible in the filesystem hierarchy. */
3955 if (!is_anon_ns(mnt->mnt_ns))
3956 return -EINVAL;
3957
3958 return 0;
3959 }
3960
3961 static struct mount *mount_setattr_prepare(struct mount_kattr *kattr,
3962 struct mount *mnt, int *err)
3963 {
3964 struct mount *m = mnt, *last = NULL;
3965
3966 if (!is_mounted(&m->mnt)) {
3967 *err = -EINVAL;
3968 goto out;
3969 }
3970
3971 if (!(mnt_has_parent(m) ? check_mnt(m) : is_anon_ns(m->mnt_ns))) {
3972 *err = -EINVAL;
3973 goto out;
3974 }
3975
3976 do {
3977 unsigned int flags;
3978
3979 flags = recalc_flags(kattr, m);
3980 if (!can_change_locked_flags(m, flags)) {
3981 *err = -EPERM;
3982 goto out;
3983 }
3984
3985 *err = can_idmap_mount(kattr, m);
3986 if (*err)
3987 goto out;
3988
3989 last = m;
3990
3991 if ((kattr->attr_set & MNT_READONLY) &&
3992 !(m->mnt.mnt_flags & MNT_READONLY)) {
3993 *err = mnt_hold_writers(m);
3994 if (*err)
3995 goto out;
3996 }
3997 } while (kattr->recurse && (m = next_mnt(m, mnt)));
3998
3999 out:
4000 return last;
4001 }
4002
4003 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4004 {
4005 struct user_namespace *mnt_userns;
4006
4007 if (!kattr->mnt_userns)
4008 return;
4009
4010 mnt_userns = get_user_ns(kattr->mnt_userns);
4011 /* Pairs with smp_load_acquire() in mnt_user_ns(). */
4012 smp_store_release(&mnt->mnt.mnt_userns, mnt_userns);
4013 }
4014
4015 static void mount_setattr_commit(struct mount_kattr *kattr,
4016 struct mount *mnt, struct mount *last,
4017 int err)
4018 {
4019 struct mount *m = mnt;
4020
4021 do {
4022 if (!err) {
4023 unsigned int flags;
4024
4025 do_idmap_mount(kattr, m);
4026 flags = recalc_flags(kattr, m);
4027 WRITE_ONCE(m->mnt.mnt_flags, flags);
4028 }
4029
4030 /*
4031 * We either set MNT_READONLY above so make it visible
4032 * before ~MNT_WRITE_HOLD or we failed to recursively
4033 * apply mount options.
4034 */
4035 if ((kattr->attr_set & MNT_READONLY) &&
4036 (m->mnt.mnt_flags & MNT_WRITE_HOLD))
4037 mnt_unhold_writers(m);
4038
4039 if (!err && kattr->propagation)
4040 change_mnt_propagation(m, kattr->propagation);
4041
4042 /*
4043 * On failure, only cleanup until we found the first mount
4044 * we failed to handle.
4045 */
4046 if (err && m == last)
4047 break;
4048 } while (kattr->recurse && (m = next_mnt(m, mnt)));
4049
4050 if (!err)
4051 touch_mnt_namespace(mnt->mnt_ns);
4052 }
4053
4054 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4055 {
4056 struct mount *mnt = real_mount(path->mnt), *last = NULL;
4057 int err = 0;
4058
4059 if (path->dentry != mnt->mnt.mnt_root)
4060 return -EINVAL;
4061
4062 if (kattr->propagation) {
4063 /*
4064 * Only take namespace_lock() if we're actually changing
4065 * propagation.
4066 */
4067 namespace_lock();
4068 if (kattr->propagation == MS_SHARED) {
4069 err = invent_group_ids(mnt, kattr->recurse);
4070 if (err) {
4071 namespace_unlock();
4072 return err;
4073 }
4074 }
4075 }
4076
4077 lock_mount_hash();
4078
4079 /*
4080 * Get the mount tree in a shape where we can change mount
4081 * properties without failure.
4082 */
4083 last = mount_setattr_prepare(kattr, mnt, &err);
4084 if (last) /* Commit all changes or revert to the old state. */
4085 mount_setattr_commit(kattr, mnt, last, err);
4086
4087 unlock_mount_hash();
4088
4089 if (kattr->propagation) {
4090 namespace_unlock();
4091 if (err)
4092 cleanup_group_ids(mnt, NULL);
4093 }
4094
4095 return err;
4096 }
4097
4098 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4099 struct mount_kattr *kattr, unsigned int flags)
4100 {
4101 int err = 0;
4102 struct ns_common *ns;
4103 struct user_namespace *mnt_userns;
4104 struct file *file;
4105
4106 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4107 return 0;
4108
4109 /*
4110 * We currently do not support clearing an idmapped mount. If this ever
4111 * is a use-case we can revisit this but for now let's keep it simple
4112 * and not allow it.
4113 */
4114 if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4115 return -EINVAL;
4116
4117 if (attr->userns_fd > INT_MAX)
4118 return -EINVAL;
4119
4120 file = fget(attr->userns_fd);
4121 if (!file)
4122 return -EBADF;
4123
4124 if (!proc_ns_file(file)) {
4125 err = -EINVAL;
4126 goto out_fput;
4127 }
4128
4129 ns = get_proc_ns(file_inode(file));
4130 if (ns->ops->type != CLONE_NEWUSER) {
4131 err = -EINVAL;
4132 goto out_fput;
4133 }
4134
4135 /*
4136 * The init_user_ns is used to indicate that a vfsmount is not idmapped.
4137 * This is simpler than just having to treat NULL as unmapped. Users
4138 * wanting to idmap a mount to init_user_ns can just use a namespace
4139 * with an identity mapping.
4140 */
4141 mnt_userns = container_of(ns, struct user_namespace, ns);
4142 if (mnt_userns == &init_user_ns) {
4143 err = -EPERM;
4144 goto out_fput;
4145 }
4146 kattr->mnt_userns = get_user_ns(mnt_userns);
4147
4148 out_fput:
4149 fput(file);
4150 return err;
4151 }
4152
4153 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4154 struct mount_kattr *kattr, unsigned int flags)
4155 {
4156 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4157
4158 if (flags & AT_NO_AUTOMOUNT)
4159 lookup_flags &= ~LOOKUP_AUTOMOUNT;
4160 if (flags & AT_SYMLINK_NOFOLLOW)
4161 lookup_flags &= ~LOOKUP_FOLLOW;
4162 if (flags & AT_EMPTY_PATH)
4163 lookup_flags |= LOOKUP_EMPTY;
4164
4165 *kattr = (struct mount_kattr) {
4166 .lookup_flags = lookup_flags,
4167 .recurse = !!(flags & AT_RECURSIVE),
4168 };
4169
4170 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4171 return -EINVAL;
4172 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4173 return -EINVAL;
4174 kattr->propagation = attr->propagation;
4175
4176 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4177 return -EINVAL;
4178
4179 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4180 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4181
4182 /*
4183 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4184 * users wanting to transition to a different atime setting cannot
4185 * simply specify the atime setting in @attr_set, but must also
4186 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4187 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4188 * @attr_clr and that @attr_set can't have any atime bits set if
4189 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4190 */
4191 if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4192 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4193 return -EINVAL;
4194
4195 /*
4196 * Clear all previous time settings as they are mutually
4197 * exclusive.
4198 */
4199 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4200 switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4201 case MOUNT_ATTR_RELATIME:
4202 kattr->attr_set |= MNT_RELATIME;
4203 break;
4204 case MOUNT_ATTR_NOATIME:
4205 kattr->attr_set |= MNT_NOATIME;
4206 break;
4207 case MOUNT_ATTR_STRICTATIME:
4208 break;
4209 default:
4210 return -EINVAL;
4211 }
4212 } else {
4213 if (attr->attr_set & MOUNT_ATTR__ATIME)
4214 return -EINVAL;
4215 }
4216
4217 return build_mount_idmapped(attr, usize, kattr, flags);
4218 }
4219
4220 static void finish_mount_kattr(struct mount_kattr *kattr)
4221 {
4222 put_user_ns(kattr->mnt_userns);
4223 kattr->mnt_userns = NULL;
4224 }
4225
4226 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4227 unsigned int, flags, struct mount_attr __user *, uattr,
4228 size_t, usize)
4229 {
4230 int err;
4231 struct path target;
4232 struct mount_attr attr;
4233 struct mount_kattr kattr;
4234
4235 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4236
4237 if (flags & ~(AT_EMPTY_PATH |
4238 AT_RECURSIVE |
4239 AT_SYMLINK_NOFOLLOW |
4240 AT_NO_AUTOMOUNT))
4241 return -EINVAL;
4242
4243 if (unlikely(usize > PAGE_SIZE))
4244 return -E2BIG;
4245 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4246 return -EINVAL;
4247
4248 if (!may_mount())
4249 return -EPERM;
4250
4251 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4252 if (err)
4253 return err;
4254
4255 /* Don't bother walking through the mounts if this is a nop. */
4256 if (attr.attr_set == 0 &&
4257 attr.attr_clr == 0 &&
4258 attr.propagation == 0)
4259 return 0;
4260
4261 err = build_mount_kattr(&attr, usize, &kattr, flags);
4262 if (err)
4263 return err;
4264
4265 err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4266 if (err)
4267 return err;
4268
4269 err = do_mount_setattr(&target, &kattr);
4270 finish_mount_kattr(&kattr);
4271 path_put(&target);
4272 return err;
4273 }
4274
4275 static void __init init_mount_tree(void)
4276 {
4277 struct vfsmount *mnt;
4278 struct mount *m;
4279 struct mnt_namespace *ns;
4280 struct path root;
4281
4282 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4283 if (IS_ERR(mnt))
4284 panic("Can't create rootfs");
4285
4286 ns = alloc_mnt_ns(&init_user_ns, false);
4287 if (IS_ERR(ns))
4288 panic("Can't allocate initial namespace");
4289 m = real_mount(mnt);
4290 m->mnt_ns = ns;
4291 ns->root = m;
4292 ns->mounts = 1;
4293 list_add(&m->mnt_list, &ns->list);
4294 init_task.nsproxy->mnt_ns = ns;
4295 get_mnt_ns(ns);
4296
4297 root.mnt = mnt;
4298 root.dentry = mnt->mnt_root;
4299 mnt->mnt_flags |= MNT_LOCKED;
4300
4301 set_fs_pwd(current->fs, &root);
4302 set_fs_root(current->fs, &root);
4303 }
4304
4305 void __init mnt_init(void)
4306 {
4307 int err;
4308
4309 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4310 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
4311
4312 mount_hashtable = alloc_large_system_hash("Mount-cache",
4313 sizeof(struct hlist_head),
4314 mhash_entries, 19,
4315 HASH_ZERO,
4316 &m_hash_shift, &m_hash_mask, 0, 0);
4317 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4318 sizeof(struct hlist_head),
4319 mphash_entries, 19,
4320 HASH_ZERO,
4321 &mp_hash_shift, &mp_hash_mask, 0, 0);
4322
4323 if (!mount_hashtable || !mountpoint_hashtable)
4324 panic("Failed to allocate mount hash table\n");
4325
4326 kernfs_init();
4327
4328 err = sysfs_init();
4329 if (err)
4330 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4331 __func__, err);
4332 fs_kobj = kobject_create_and_add("fs", NULL);
4333 if (!fs_kobj)
4334 printk(KERN_WARNING "%s: kobj create error\n", __func__);
4335 shmem_init();
4336 init_rootfs();
4337 init_mount_tree();
4338 }
4339
4340 void put_mnt_ns(struct mnt_namespace *ns)
4341 {
4342 if (!refcount_dec_and_test(&ns->ns.count))
4343 return;
4344 drop_collected_mounts(&ns->root->mnt);
4345 free_mnt_ns(ns);
4346 }
4347
4348 struct vfsmount *kern_mount(struct file_system_type *type)
4349 {
4350 struct vfsmount *mnt;
4351 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4352 if (!IS_ERR(mnt)) {
4353 /*
4354 * it is a longterm mount, don't release mnt until
4355 * we unmount before file sys is unregistered
4356 */
4357 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4358 }
4359 return mnt;
4360 }
4361 EXPORT_SYMBOL_GPL(kern_mount);
4362
4363 void kern_unmount(struct vfsmount *mnt)
4364 {
4365 /* release long term mount so mount point can be released */
4366 if (!IS_ERR_OR_NULL(mnt)) {
4367 real_mount(mnt)->mnt_ns = NULL;
4368 synchronize_rcu(); /* yecchhh... */
4369 mntput(mnt);
4370 }
4371 }
4372 EXPORT_SYMBOL(kern_unmount);
4373
4374 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4375 {
4376 unsigned int i;
4377
4378 for (i = 0; i < num; i++)
4379 if (mnt[i])
4380 real_mount(mnt[i])->mnt_ns = NULL;
4381 synchronize_rcu_expedited();
4382 for (i = 0; i < num; i++)
4383 mntput(mnt[i]);
4384 }
4385 EXPORT_SYMBOL(kern_unmount_array);
4386
4387 bool our_mnt(struct vfsmount *mnt)
4388 {
4389 return check_mnt(real_mount(mnt));
4390 }
4391
4392 bool current_chrooted(void)
4393 {
4394 /* Does the current process have a non-standard root */
4395 struct path ns_root;
4396 struct path fs_root;
4397 bool chrooted;
4398
4399 /* Find the namespace root */
4400 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
4401 ns_root.dentry = ns_root.mnt->mnt_root;
4402 path_get(&ns_root);
4403 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4404 ;
4405
4406 get_fs_root(current->fs, &fs_root);
4407
4408 chrooted = !path_equal(&fs_root, &ns_root);
4409
4410 path_put(&fs_root);
4411 path_put(&ns_root);
4412
4413 return chrooted;
4414 }
4415
4416 static bool mnt_already_visible(struct mnt_namespace *ns,
4417 const struct super_block *sb,
4418 int *new_mnt_flags)
4419 {
4420 int new_flags = *new_mnt_flags;
4421 struct mount *mnt;
4422 bool visible = false;
4423
4424 down_read(&namespace_sem);
4425 lock_ns_list(ns);
4426 list_for_each_entry(mnt, &ns->list, mnt_list) {
4427 struct mount *child;
4428 int mnt_flags;
4429
4430 if (mnt_is_cursor(mnt))
4431 continue;
4432
4433 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4434 continue;
4435
4436 /* This mount is not fully visible if it's root directory
4437 * is not the root directory of the filesystem.
4438 */
4439 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4440 continue;
4441
4442 /* A local view of the mount flags */
4443 mnt_flags = mnt->mnt.mnt_flags;
4444
4445 /* Don't miss readonly hidden in the superblock flags */
4446 if (sb_rdonly(mnt->mnt.mnt_sb))
4447 mnt_flags |= MNT_LOCK_READONLY;
4448
4449 /* Verify the mount flags are equal to or more permissive
4450 * than the proposed new mount.
4451 */
4452 if ((mnt_flags & MNT_LOCK_READONLY) &&
4453 !(new_flags & MNT_READONLY))
4454 continue;
4455 if ((mnt_flags & MNT_LOCK_ATIME) &&
4456 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4457 continue;
4458
4459 /* This mount is not fully visible if there are any
4460 * locked child mounts that cover anything except for
4461 * empty directories.
4462 */
4463 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4464 struct inode *inode = child->mnt_mountpoint->d_inode;
4465 /* Only worry about locked mounts */
4466 if (!(child->mnt.mnt_flags & MNT_LOCKED))
4467 continue;
4468 /* Is the directory permanetly empty? */
4469 if (!is_empty_dir_inode(inode))
4470 goto next;
4471 }
4472 /* Preserve the locked attributes */
4473 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4474 MNT_LOCK_ATIME);
4475 visible = true;
4476 goto found;
4477 next: ;
4478 }
4479 found:
4480 unlock_ns_list(ns);
4481 up_read(&namespace_sem);
4482 return visible;
4483 }
4484
4485 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4486 {
4487 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4488 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4489 unsigned long s_iflags;
4490
4491 if (ns->user_ns == &init_user_ns)
4492 return false;
4493
4494 /* Can this filesystem be too revealing? */
4495 s_iflags = sb->s_iflags;
4496 if (!(s_iflags & SB_I_USERNS_VISIBLE))
4497 return false;
4498
4499 if ((s_iflags & required_iflags) != required_iflags) {
4500 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4501 required_iflags);
4502 return true;
4503 }
4504
4505 return !mnt_already_visible(ns, sb, new_mnt_flags);
4506 }
4507
4508 bool mnt_may_suid(struct vfsmount *mnt)
4509 {
4510 /*
4511 * Foreign mounts (accessed via fchdir or through /proc
4512 * symlinks) are always treated as if they are nosuid. This
4513 * prevents namespaces from trusting potentially unsafe
4514 * suid/sgid bits, file caps, or security labels that originate
4515 * in other namespaces.
4516 */
4517 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4518 current_in_userns(mnt->mnt_sb->s_user_ns);
4519 }
4520
4521 static struct ns_common *mntns_get(struct task_struct *task)
4522 {
4523 struct ns_common *ns = NULL;
4524 struct nsproxy *nsproxy;
4525
4526 task_lock(task);
4527 nsproxy = task->nsproxy;
4528 if (nsproxy) {
4529 ns = &nsproxy->mnt_ns->ns;
4530 get_mnt_ns(to_mnt_ns(ns));
4531 }
4532 task_unlock(task);
4533
4534 return ns;
4535 }
4536
4537 static void mntns_put(struct ns_common *ns)
4538 {
4539 put_mnt_ns(to_mnt_ns(ns));
4540 }
4541
4542 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4543 {
4544 struct nsproxy *nsproxy = nsset->nsproxy;
4545 struct fs_struct *fs = nsset->fs;
4546 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4547 struct user_namespace *user_ns = nsset->cred->user_ns;
4548 struct path root;
4549 int err;
4550
4551 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4552 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4553 !ns_capable(user_ns, CAP_SYS_ADMIN))
4554 return -EPERM;
4555
4556 if (is_anon_ns(mnt_ns))
4557 return -EINVAL;
4558
4559 if (fs->users != 1)
4560 return -EINVAL;
4561
4562 get_mnt_ns(mnt_ns);
4563 old_mnt_ns = nsproxy->mnt_ns;
4564 nsproxy->mnt_ns = mnt_ns;
4565
4566 /* Find the root */
4567 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4568 "/", LOOKUP_DOWN, &root);
4569 if (err) {
4570 /* revert to old namespace */
4571 nsproxy->mnt_ns = old_mnt_ns;
4572 put_mnt_ns(mnt_ns);
4573 return err;
4574 }
4575
4576 put_mnt_ns(old_mnt_ns);
4577
4578 /* Update the pwd and root */
4579 set_fs_pwd(fs, &root);
4580 set_fs_root(fs, &root);
4581
4582 path_put(&root);
4583 return 0;
4584 }
4585
4586 static struct user_namespace *mntns_owner(struct ns_common *ns)
4587 {
4588 return to_mnt_ns(ns)->user_ns;
4589 }
4590
4591 const struct proc_ns_operations mntns_operations = {
4592 .name = "mnt",
4593 .type = CLONE_NEWNS,
4594 .get = mntns_get,
4595 .put = mntns_put,
4596 .install = mntns_install,
4597 .owner = mntns_owner,
4598 };