]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/namespace.c
UBUNTU: Ubuntu-5.11.0-22.23
[mirror_ubuntu-hirsute-kernel.git] / fs / namespace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/task_work.h>
29 #include <linux/sched/task.h>
30 #include <uapi/linux/mount.h>
31 #include <linux/fs_context.h>
32 #include <linux/shmem_fs.h>
33
34 #include "pnode.h"
35 #include "internal.h"
36
37 /* Maximum number of mounts in a mount namespace */
38 unsigned int sysctl_mount_max __read_mostly = 100000;
39
40 static unsigned int m_hash_mask __read_mostly;
41 static unsigned int m_hash_shift __read_mostly;
42 static unsigned int mp_hash_mask __read_mostly;
43 static unsigned int mp_hash_shift __read_mostly;
44
45 static __initdata unsigned long mhash_entries;
46 static int __init set_mhash_entries(char *str)
47 {
48 if (!str)
49 return 0;
50 mhash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52 }
53 __setup("mhash_entries=", set_mhash_entries);
54
55 static __initdata unsigned long mphash_entries;
56 static int __init set_mphash_entries(char *str)
57 {
58 if (!str)
59 return 0;
60 mphash_entries = simple_strtoul(str, &str, 0);
61 return 1;
62 }
63 __setup("mphash_entries=", set_mphash_entries);
64
65 static u64 event;
66 static DEFINE_IDA(mnt_id_ida);
67 static DEFINE_IDA(mnt_group_ida);
68
69 static struct hlist_head *mount_hashtable __read_mostly;
70 static struct hlist_head *mountpoint_hashtable __read_mostly;
71 static struct kmem_cache *mnt_cache __read_mostly;
72 static DECLARE_RWSEM(namespace_sem);
73 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
74 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
75
76 /* /sys/fs */
77 struct kobject *fs_kobj;
78 EXPORT_SYMBOL_GPL(fs_kobj);
79
80 /*
81 * vfsmount lock may be taken for read to prevent changes to the
82 * vfsmount hash, ie. during mountpoint lookups or walking back
83 * up the tree.
84 *
85 * It should be taken for write in all cases where the vfsmount
86 * tree or hash is modified or when a vfsmount structure is modified.
87 */
88 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
89
90 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
91 {
92 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
93 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
94 tmp = tmp + (tmp >> m_hash_shift);
95 return &mount_hashtable[tmp & m_hash_mask];
96 }
97
98 static inline struct hlist_head *mp_hash(struct dentry *dentry)
99 {
100 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
101 tmp = tmp + (tmp >> mp_hash_shift);
102 return &mountpoint_hashtable[tmp & mp_hash_mask];
103 }
104
105 static int mnt_alloc_id(struct mount *mnt)
106 {
107 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
108
109 if (res < 0)
110 return res;
111 mnt->mnt_id = res;
112 return 0;
113 }
114
115 static void mnt_free_id(struct mount *mnt)
116 {
117 ida_free(&mnt_id_ida, mnt->mnt_id);
118 }
119
120 /*
121 * Allocate a new peer group ID
122 */
123 static int mnt_alloc_group_id(struct mount *mnt)
124 {
125 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
126
127 if (res < 0)
128 return res;
129 mnt->mnt_group_id = res;
130 return 0;
131 }
132
133 /*
134 * Release a peer group ID
135 */
136 void mnt_release_group_id(struct mount *mnt)
137 {
138 ida_free(&mnt_group_ida, mnt->mnt_group_id);
139 mnt->mnt_group_id = 0;
140 }
141
142 /*
143 * vfsmount lock must be held for read
144 */
145 static inline void mnt_add_count(struct mount *mnt, int n)
146 {
147 #ifdef CONFIG_SMP
148 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
149 #else
150 preempt_disable();
151 mnt->mnt_count += n;
152 preempt_enable();
153 #endif
154 }
155
156 /*
157 * vfsmount lock must be held for write
158 */
159 int mnt_get_count(struct mount *mnt)
160 {
161 #ifdef CONFIG_SMP
162 int count = 0;
163 int cpu;
164
165 for_each_possible_cpu(cpu) {
166 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
167 }
168
169 return count;
170 #else
171 return mnt->mnt_count;
172 #endif
173 }
174
175 static struct mount *alloc_vfsmnt(const char *name)
176 {
177 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
178 if (mnt) {
179 int err;
180
181 err = mnt_alloc_id(mnt);
182 if (err)
183 goto out_free_cache;
184
185 if (name) {
186 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
187 if (!mnt->mnt_devname)
188 goto out_free_id;
189 }
190
191 #ifdef CONFIG_SMP
192 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
193 if (!mnt->mnt_pcp)
194 goto out_free_devname;
195
196 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
197 #else
198 mnt->mnt_count = 1;
199 mnt->mnt_writers = 0;
200 #endif
201
202 INIT_HLIST_NODE(&mnt->mnt_hash);
203 INIT_LIST_HEAD(&mnt->mnt_child);
204 INIT_LIST_HEAD(&mnt->mnt_mounts);
205 INIT_LIST_HEAD(&mnt->mnt_list);
206 INIT_LIST_HEAD(&mnt->mnt_expire);
207 INIT_LIST_HEAD(&mnt->mnt_share);
208 INIT_LIST_HEAD(&mnt->mnt_slave_list);
209 INIT_LIST_HEAD(&mnt->mnt_slave);
210 INIT_HLIST_NODE(&mnt->mnt_mp_list);
211 INIT_LIST_HEAD(&mnt->mnt_umounting);
212 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
213 }
214 return mnt;
215
216 #ifdef CONFIG_SMP
217 out_free_devname:
218 kfree_const(mnt->mnt_devname);
219 #endif
220 out_free_id:
221 mnt_free_id(mnt);
222 out_free_cache:
223 kmem_cache_free(mnt_cache, mnt);
224 return NULL;
225 }
226
227 /*
228 * Most r/o checks on a fs are for operations that take
229 * discrete amounts of time, like a write() or unlink().
230 * We must keep track of when those operations start
231 * (for permission checks) and when they end, so that
232 * we can determine when writes are able to occur to
233 * a filesystem.
234 */
235 /*
236 * __mnt_is_readonly: check whether a mount is read-only
237 * @mnt: the mount to check for its write status
238 *
239 * This shouldn't be used directly ouside of the VFS.
240 * It does not guarantee that the filesystem will stay
241 * r/w, just that it is right *now*. This can not and
242 * should not be used in place of IS_RDONLY(inode).
243 * mnt_want/drop_write() will _keep_ the filesystem
244 * r/w.
245 */
246 bool __mnt_is_readonly(struct vfsmount *mnt)
247 {
248 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
249 }
250 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
251
252 static inline void mnt_inc_writers(struct mount *mnt)
253 {
254 #ifdef CONFIG_SMP
255 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
256 #else
257 mnt->mnt_writers++;
258 #endif
259 }
260
261 static inline void mnt_dec_writers(struct mount *mnt)
262 {
263 #ifdef CONFIG_SMP
264 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
265 #else
266 mnt->mnt_writers--;
267 #endif
268 }
269
270 static unsigned int mnt_get_writers(struct mount *mnt)
271 {
272 #ifdef CONFIG_SMP
273 unsigned int count = 0;
274 int cpu;
275
276 for_each_possible_cpu(cpu) {
277 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
278 }
279
280 return count;
281 #else
282 return mnt->mnt_writers;
283 #endif
284 }
285
286 static int mnt_is_readonly(struct vfsmount *mnt)
287 {
288 if (mnt->mnt_sb->s_readonly_remount)
289 return 1;
290 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
291 smp_rmb();
292 return __mnt_is_readonly(mnt);
293 }
294
295 /*
296 * Most r/o & frozen checks on a fs are for operations that take discrete
297 * amounts of time, like a write() or unlink(). We must keep track of when
298 * those operations start (for permission checks) and when they end, so that we
299 * can determine when writes are able to occur to a filesystem.
300 */
301 /**
302 * __mnt_want_write - get write access to a mount without freeze protection
303 * @m: the mount on which to take a write
304 *
305 * This tells the low-level filesystem that a write is about to be performed to
306 * it, and makes sure that writes are allowed (mnt it read-write) before
307 * returning success. This operation does not protect against filesystem being
308 * frozen. When the write operation is finished, __mnt_drop_write() must be
309 * called. This is effectively a refcount.
310 */
311 int __mnt_want_write(struct vfsmount *m)
312 {
313 struct mount *mnt = real_mount(m);
314 int ret = 0;
315
316 preempt_disable();
317 mnt_inc_writers(mnt);
318 /*
319 * The store to mnt_inc_writers must be visible before we pass
320 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
321 * incremented count after it has set MNT_WRITE_HOLD.
322 */
323 smp_mb();
324 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
325 cpu_relax();
326 /*
327 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
328 * be set to match its requirements. So we must not load that until
329 * MNT_WRITE_HOLD is cleared.
330 */
331 smp_rmb();
332 if (mnt_is_readonly(m)) {
333 mnt_dec_writers(mnt);
334 ret = -EROFS;
335 }
336 preempt_enable();
337
338 return ret;
339 }
340
341 /**
342 * mnt_want_write - get write access to a mount
343 * @m: the mount on which to take a write
344 *
345 * This tells the low-level filesystem that a write is about to be performed to
346 * it, and makes sure that writes are allowed (mount is read-write, filesystem
347 * is not frozen) before returning success. When the write operation is
348 * finished, mnt_drop_write() must be called. This is effectively a refcount.
349 */
350 int mnt_want_write(struct vfsmount *m)
351 {
352 int ret;
353
354 sb_start_write(m->mnt_sb);
355 ret = __mnt_want_write(m);
356 if (ret)
357 sb_end_write(m->mnt_sb);
358 return ret;
359 }
360 EXPORT_SYMBOL_GPL(mnt_want_write);
361
362 /**
363 * mnt_clone_write - get write access to a mount
364 * @mnt: the mount on which to take a write
365 *
366 * This is effectively like mnt_want_write, except
367 * it must only be used to take an extra write reference
368 * on a mountpoint that we already know has a write reference
369 * on it. This allows some optimisation.
370 *
371 * After finished, mnt_drop_write must be called as usual to
372 * drop the reference.
373 */
374 int mnt_clone_write(struct vfsmount *mnt)
375 {
376 /* superblock may be r/o */
377 if (__mnt_is_readonly(mnt))
378 return -EROFS;
379 preempt_disable();
380 mnt_inc_writers(real_mount(mnt));
381 preempt_enable();
382 return 0;
383 }
384 EXPORT_SYMBOL_GPL(mnt_clone_write);
385
386 /**
387 * __mnt_want_write_file - get write access to a file's mount
388 * @file: the file who's mount on which to take a write
389 *
390 * This is like __mnt_want_write, but it takes a file and can
391 * do some optimisations if the file is open for write already
392 */
393 int __mnt_want_write_file(struct file *file)
394 {
395 if (!(file->f_mode & FMODE_WRITER))
396 return __mnt_want_write(file->f_path.mnt);
397 else
398 return mnt_clone_write(file->f_path.mnt);
399 }
400
401 /**
402 * mnt_want_write_file - get write access to a file's mount
403 * @file: the file who's mount on which to take a write
404 *
405 * This is like mnt_want_write, but it takes a file and can
406 * do some optimisations if the file is open for write already
407 */
408 int mnt_want_write_file(struct file *file)
409 {
410 int ret;
411
412 sb_start_write(file_inode(file)->i_sb);
413 ret = __mnt_want_write_file(file);
414 if (ret)
415 sb_end_write(file_inode(file)->i_sb);
416 return ret;
417 }
418 EXPORT_SYMBOL_GPL(mnt_want_write_file);
419
420 /**
421 * __mnt_drop_write - give up write access to a mount
422 * @mnt: the mount on which to give up write access
423 *
424 * Tells the low-level filesystem that we are done
425 * performing writes to it. Must be matched with
426 * __mnt_want_write() call above.
427 */
428 void __mnt_drop_write(struct vfsmount *mnt)
429 {
430 preempt_disable();
431 mnt_dec_writers(real_mount(mnt));
432 preempt_enable();
433 }
434 EXPORT_SYMBOL_GPL(__mnt_drop_write);
435
436 /**
437 * mnt_drop_write - give up write access to a mount
438 * @mnt: the mount on which to give up write access
439 *
440 * Tells the low-level filesystem that we are done performing writes to it and
441 * also allows filesystem to be frozen again. Must be matched with
442 * mnt_want_write() call above.
443 */
444 void mnt_drop_write(struct vfsmount *mnt)
445 {
446 __mnt_drop_write(mnt);
447 sb_end_write(mnt->mnt_sb);
448 }
449 EXPORT_SYMBOL_GPL(mnt_drop_write);
450
451 void __mnt_drop_write_file(struct file *file)
452 {
453 __mnt_drop_write(file->f_path.mnt);
454 }
455
456 void mnt_drop_write_file(struct file *file)
457 {
458 __mnt_drop_write_file(file);
459 sb_end_write(file_inode(file)->i_sb);
460 }
461 EXPORT_SYMBOL(mnt_drop_write_file);
462
463 static int mnt_make_readonly(struct mount *mnt)
464 {
465 int ret = 0;
466
467 lock_mount_hash();
468 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
469 /*
470 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
471 * should be visible before we do.
472 */
473 smp_mb();
474
475 /*
476 * With writers on hold, if this value is zero, then there are
477 * definitely no active writers (although held writers may subsequently
478 * increment the count, they'll have to wait, and decrement it after
479 * seeing MNT_READONLY).
480 *
481 * It is OK to have counter incremented on one CPU and decremented on
482 * another: the sum will add up correctly. The danger would be when we
483 * sum up each counter, if we read a counter before it is incremented,
484 * but then read another CPU's count which it has been subsequently
485 * decremented from -- we would see more decrements than we should.
486 * MNT_WRITE_HOLD protects against this scenario, because
487 * mnt_want_write first increments count, then smp_mb, then spins on
488 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
489 * we're counting up here.
490 */
491 if (mnt_get_writers(mnt) > 0)
492 ret = -EBUSY;
493 else
494 mnt->mnt.mnt_flags |= MNT_READONLY;
495 /*
496 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
497 * that become unheld will see MNT_READONLY.
498 */
499 smp_wmb();
500 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
501 unlock_mount_hash();
502 return ret;
503 }
504
505 static int __mnt_unmake_readonly(struct mount *mnt)
506 {
507 lock_mount_hash();
508 mnt->mnt.mnt_flags &= ~MNT_READONLY;
509 unlock_mount_hash();
510 return 0;
511 }
512
513 int sb_prepare_remount_readonly(struct super_block *sb)
514 {
515 struct mount *mnt;
516 int err = 0;
517
518 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
519 if (atomic_long_read(&sb->s_remove_count))
520 return -EBUSY;
521
522 lock_mount_hash();
523 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
524 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
525 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
526 smp_mb();
527 if (mnt_get_writers(mnt) > 0) {
528 err = -EBUSY;
529 break;
530 }
531 }
532 }
533 if (!err && atomic_long_read(&sb->s_remove_count))
534 err = -EBUSY;
535
536 if (!err) {
537 sb->s_readonly_remount = 1;
538 smp_wmb();
539 }
540 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
541 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
542 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
543 }
544 unlock_mount_hash();
545
546 return err;
547 }
548
549 static void free_vfsmnt(struct mount *mnt)
550 {
551 kfree_const(mnt->mnt_devname);
552 #ifdef CONFIG_SMP
553 free_percpu(mnt->mnt_pcp);
554 #endif
555 kmem_cache_free(mnt_cache, mnt);
556 }
557
558 static void delayed_free_vfsmnt(struct rcu_head *head)
559 {
560 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
561 }
562
563 /* call under rcu_read_lock */
564 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
565 {
566 struct mount *mnt;
567 if (read_seqretry(&mount_lock, seq))
568 return 1;
569 if (bastard == NULL)
570 return 0;
571 mnt = real_mount(bastard);
572 mnt_add_count(mnt, 1);
573 smp_mb(); // see mntput_no_expire()
574 if (likely(!read_seqretry(&mount_lock, seq)))
575 return 0;
576 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
577 mnt_add_count(mnt, -1);
578 return 1;
579 }
580 lock_mount_hash();
581 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
582 mnt_add_count(mnt, -1);
583 unlock_mount_hash();
584 return 1;
585 }
586 unlock_mount_hash();
587 /* caller will mntput() */
588 return -1;
589 }
590
591 /* call under rcu_read_lock */
592 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
593 {
594 int res = __legitimize_mnt(bastard, seq);
595 if (likely(!res))
596 return true;
597 if (unlikely(res < 0)) {
598 rcu_read_unlock();
599 mntput(bastard);
600 rcu_read_lock();
601 }
602 return false;
603 }
604
605 /*
606 * find the first mount at @dentry on vfsmount @mnt.
607 * call under rcu_read_lock()
608 */
609 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
610 {
611 struct hlist_head *head = m_hash(mnt, dentry);
612 struct mount *p;
613
614 hlist_for_each_entry_rcu(p, head, mnt_hash)
615 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
616 return p;
617 return NULL;
618 }
619
620 /*
621 * lookup_mnt - Return the first child mount mounted at path
622 *
623 * "First" means first mounted chronologically. If you create the
624 * following mounts:
625 *
626 * mount /dev/sda1 /mnt
627 * mount /dev/sda2 /mnt
628 * mount /dev/sda3 /mnt
629 *
630 * Then lookup_mnt() on the base /mnt dentry in the root mount will
631 * return successively the root dentry and vfsmount of /dev/sda1, then
632 * /dev/sda2, then /dev/sda3, then NULL.
633 *
634 * lookup_mnt takes a reference to the found vfsmount.
635 */
636 struct vfsmount *lookup_mnt(const struct path *path)
637 {
638 struct mount *child_mnt;
639 struct vfsmount *m;
640 unsigned seq;
641
642 rcu_read_lock();
643 do {
644 seq = read_seqbegin(&mount_lock);
645 child_mnt = __lookup_mnt(path->mnt, path->dentry);
646 m = child_mnt ? &child_mnt->mnt : NULL;
647 } while (!legitimize_mnt(m, seq));
648 rcu_read_unlock();
649 return m;
650 }
651
652 static inline void lock_ns_list(struct mnt_namespace *ns)
653 {
654 spin_lock(&ns->ns_lock);
655 }
656
657 static inline void unlock_ns_list(struct mnt_namespace *ns)
658 {
659 spin_unlock(&ns->ns_lock);
660 }
661
662 static inline bool mnt_is_cursor(struct mount *mnt)
663 {
664 return mnt->mnt.mnt_flags & MNT_CURSOR;
665 }
666
667 /*
668 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
669 * current mount namespace.
670 *
671 * The common case is dentries are not mountpoints at all and that
672 * test is handled inline. For the slow case when we are actually
673 * dealing with a mountpoint of some kind, walk through all of the
674 * mounts in the current mount namespace and test to see if the dentry
675 * is a mountpoint.
676 *
677 * The mount_hashtable is not usable in the context because we
678 * need to identify all mounts that may be in the current mount
679 * namespace not just a mount that happens to have some specified
680 * parent mount.
681 */
682 bool __is_local_mountpoint(struct dentry *dentry)
683 {
684 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
685 struct mount *mnt;
686 bool is_covered = false;
687
688 down_read(&namespace_sem);
689 lock_ns_list(ns);
690 list_for_each_entry(mnt, &ns->list, mnt_list) {
691 if (mnt_is_cursor(mnt))
692 continue;
693 is_covered = (mnt->mnt_mountpoint == dentry);
694 if (is_covered)
695 break;
696 }
697 unlock_ns_list(ns);
698 up_read(&namespace_sem);
699
700 return is_covered;
701 }
702
703 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
704 {
705 struct hlist_head *chain = mp_hash(dentry);
706 struct mountpoint *mp;
707
708 hlist_for_each_entry(mp, chain, m_hash) {
709 if (mp->m_dentry == dentry) {
710 mp->m_count++;
711 return mp;
712 }
713 }
714 return NULL;
715 }
716
717 static struct mountpoint *get_mountpoint(struct dentry *dentry)
718 {
719 struct mountpoint *mp, *new = NULL;
720 int ret;
721
722 if (d_mountpoint(dentry)) {
723 /* might be worth a WARN_ON() */
724 if (d_unlinked(dentry))
725 return ERR_PTR(-ENOENT);
726 mountpoint:
727 read_seqlock_excl(&mount_lock);
728 mp = lookup_mountpoint(dentry);
729 read_sequnlock_excl(&mount_lock);
730 if (mp)
731 goto done;
732 }
733
734 if (!new)
735 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
736 if (!new)
737 return ERR_PTR(-ENOMEM);
738
739
740 /* Exactly one processes may set d_mounted */
741 ret = d_set_mounted(dentry);
742
743 /* Someone else set d_mounted? */
744 if (ret == -EBUSY)
745 goto mountpoint;
746
747 /* The dentry is not available as a mountpoint? */
748 mp = ERR_PTR(ret);
749 if (ret)
750 goto done;
751
752 /* Add the new mountpoint to the hash table */
753 read_seqlock_excl(&mount_lock);
754 new->m_dentry = dget(dentry);
755 new->m_count = 1;
756 hlist_add_head(&new->m_hash, mp_hash(dentry));
757 INIT_HLIST_HEAD(&new->m_list);
758 read_sequnlock_excl(&mount_lock);
759
760 mp = new;
761 new = NULL;
762 done:
763 kfree(new);
764 return mp;
765 }
766
767 /*
768 * vfsmount lock must be held. Additionally, the caller is responsible
769 * for serializing calls for given disposal list.
770 */
771 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
772 {
773 if (!--mp->m_count) {
774 struct dentry *dentry = mp->m_dentry;
775 BUG_ON(!hlist_empty(&mp->m_list));
776 spin_lock(&dentry->d_lock);
777 dentry->d_flags &= ~DCACHE_MOUNTED;
778 spin_unlock(&dentry->d_lock);
779 dput_to_list(dentry, list);
780 hlist_del(&mp->m_hash);
781 kfree(mp);
782 }
783 }
784
785 /* called with namespace_lock and vfsmount lock */
786 static void put_mountpoint(struct mountpoint *mp)
787 {
788 __put_mountpoint(mp, &ex_mountpoints);
789 }
790
791 static inline int check_mnt(struct mount *mnt)
792 {
793 return mnt->mnt_ns == current->nsproxy->mnt_ns;
794 }
795
796 /* for aufs, CONFIG_AUFS_BR_FUSE */
797 int is_current_mnt_ns(struct vfsmount *mnt)
798 {
799 return check_mnt(real_mount(mnt));
800 }
801 EXPORT_SYMBOL_GPL(is_current_mnt_ns);
802
803 /*
804 * vfsmount lock must be held for write
805 */
806 static void touch_mnt_namespace(struct mnt_namespace *ns)
807 {
808 if (ns) {
809 ns->event = ++event;
810 wake_up_interruptible(&ns->poll);
811 }
812 }
813
814 /*
815 * vfsmount lock must be held for write
816 */
817 static void __touch_mnt_namespace(struct mnt_namespace *ns)
818 {
819 if (ns && ns->event != event) {
820 ns->event = event;
821 wake_up_interruptible(&ns->poll);
822 }
823 }
824
825 /*
826 * vfsmount lock must be held for write
827 */
828 static struct mountpoint *unhash_mnt(struct mount *mnt)
829 {
830 struct mountpoint *mp;
831 mnt->mnt_parent = mnt;
832 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
833 list_del_init(&mnt->mnt_child);
834 hlist_del_init_rcu(&mnt->mnt_hash);
835 hlist_del_init(&mnt->mnt_mp_list);
836 mp = mnt->mnt_mp;
837 mnt->mnt_mp = NULL;
838 return mp;
839 }
840
841 /*
842 * vfsmount lock must be held for write
843 */
844 static void umount_mnt(struct mount *mnt)
845 {
846 put_mountpoint(unhash_mnt(mnt));
847 }
848
849 /*
850 * vfsmount lock must be held for write
851 */
852 void mnt_set_mountpoint(struct mount *mnt,
853 struct mountpoint *mp,
854 struct mount *child_mnt)
855 {
856 mp->m_count++;
857 mnt_add_count(mnt, 1); /* essentially, that's mntget */
858 child_mnt->mnt_mountpoint = mp->m_dentry;
859 child_mnt->mnt_parent = mnt;
860 child_mnt->mnt_mp = mp;
861 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
862 }
863
864 static void __attach_mnt(struct mount *mnt, struct mount *parent)
865 {
866 hlist_add_head_rcu(&mnt->mnt_hash,
867 m_hash(&parent->mnt, mnt->mnt_mountpoint));
868 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
869 }
870
871 /*
872 * vfsmount lock must be held for write
873 */
874 static void attach_mnt(struct mount *mnt,
875 struct mount *parent,
876 struct mountpoint *mp)
877 {
878 mnt_set_mountpoint(parent, mp, mnt);
879 __attach_mnt(mnt, parent);
880 }
881
882 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
883 {
884 struct mountpoint *old_mp = mnt->mnt_mp;
885 struct mount *old_parent = mnt->mnt_parent;
886
887 list_del_init(&mnt->mnt_child);
888 hlist_del_init(&mnt->mnt_mp_list);
889 hlist_del_init_rcu(&mnt->mnt_hash);
890
891 attach_mnt(mnt, parent, mp);
892
893 put_mountpoint(old_mp);
894 mnt_add_count(old_parent, -1);
895 }
896
897 /*
898 * vfsmount lock must be held for write
899 */
900 static void commit_tree(struct mount *mnt)
901 {
902 struct mount *parent = mnt->mnt_parent;
903 struct mount *m;
904 LIST_HEAD(head);
905 struct mnt_namespace *n = parent->mnt_ns;
906
907 BUG_ON(parent == mnt);
908
909 list_add_tail(&head, &mnt->mnt_list);
910 list_for_each_entry(m, &head, mnt_list)
911 m->mnt_ns = n;
912
913 list_splice(&head, n->list.prev);
914
915 n->mounts += n->pending_mounts;
916 n->pending_mounts = 0;
917
918 __attach_mnt(mnt, parent);
919 touch_mnt_namespace(n);
920 }
921
922 static struct mount *next_mnt(struct mount *p, struct mount *root)
923 {
924 struct list_head *next = p->mnt_mounts.next;
925 if (next == &p->mnt_mounts) {
926 while (1) {
927 if (p == root)
928 return NULL;
929 next = p->mnt_child.next;
930 if (next != &p->mnt_parent->mnt_mounts)
931 break;
932 p = p->mnt_parent;
933 }
934 }
935 return list_entry(next, struct mount, mnt_child);
936 }
937
938 static struct mount *skip_mnt_tree(struct mount *p)
939 {
940 struct list_head *prev = p->mnt_mounts.prev;
941 while (prev != &p->mnt_mounts) {
942 p = list_entry(prev, struct mount, mnt_child);
943 prev = p->mnt_mounts.prev;
944 }
945 return p;
946 }
947
948 /**
949 * vfs_create_mount - Create a mount for a configured superblock
950 * @fc: The configuration context with the superblock attached
951 *
952 * Create a mount to an already configured superblock. If necessary, the
953 * caller should invoke vfs_get_tree() before calling this.
954 *
955 * Note that this does not attach the mount to anything.
956 */
957 struct vfsmount *vfs_create_mount(struct fs_context *fc)
958 {
959 struct mount *mnt;
960
961 if (!fc->root)
962 return ERR_PTR(-EINVAL);
963
964 mnt = alloc_vfsmnt(fc->source ?: "none");
965 if (!mnt)
966 return ERR_PTR(-ENOMEM);
967
968 if (fc->sb_flags & SB_KERNMOUNT)
969 mnt->mnt.mnt_flags = MNT_INTERNAL;
970
971 atomic_inc(&fc->root->d_sb->s_active);
972 mnt->mnt.mnt_sb = fc->root->d_sb;
973 mnt->mnt.mnt_root = dget(fc->root);
974 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
975 mnt->mnt_parent = mnt;
976
977 lock_mount_hash();
978 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
979 unlock_mount_hash();
980 return &mnt->mnt;
981 }
982 EXPORT_SYMBOL(vfs_create_mount);
983
984 struct vfsmount *fc_mount(struct fs_context *fc)
985 {
986 int err = vfs_get_tree(fc);
987 if (!err) {
988 up_write(&fc->root->d_sb->s_umount);
989 return vfs_create_mount(fc);
990 }
991 return ERR_PTR(err);
992 }
993 EXPORT_SYMBOL(fc_mount);
994
995 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
996 int flags, const char *name,
997 void *data)
998 {
999 struct fs_context *fc;
1000 struct vfsmount *mnt;
1001 int ret = 0;
1002
1003 if (!type)
1004 return ERR_PTR(-EINVAL);
1005
1006 fc = fs_context_for_mount(type, flags);
1007 if (IS_ERR(fc))
1008 return ERR_CAST(fc);
1009
1010 if (name)
1011 ret = vfs_parse_fs_string(fc, "source",
1012 name, strlen(name));
1013 if (!ret)
1014 ret = parse_monolithic_mount_data(fc, data);
1015 if (!ret)
1016 mnt = fc_mount(fc);
1017 else
1018 mnt = ERR_PTR(ret);
1019
1020 put_fs_context(fc);
1021 return mnt;
1022 }
1023 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1024
1025 struct vfsmount *
1026 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1027 const char *name, void *data)
1028 {
1029 /* Until it is worked out how to pass the user namespace
1030 * through from the parent mount to the submount don't support
1031 * unprivileged mounts with submounts.
1032 */
1033 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1034 return ERR_PTR(-EPERM);
1035
1036 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1037 }
1038 EXPORT_SYMBOL_GPL(vfs_submount);
1039
1040 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1041 int flag)
1042 {
1043 struct super_block *sb = old->mnt.mnt_sb;
1044 struct mount *mnt;
1045 int err;
1046
1047 mnt = alloc_vfsmnt(old->mnt_devname);
1048 if (!mnt)
1049 return ERR_PTR(-ENOMEM);
1050
1051 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1052 mnt->mnt_group_id = 0; /* not a peer of original */
1053 else
1054 mnt->mnt_group_id = old->mnt_group_id;
1055
1056 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1057 err = mnt_alloc_group_id(mnt);
1058 if (err)
1059 goto out_free;
1060 }
1061
1062 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1063 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1064
1065 atomic_inc(&sb->s_active);
1066 mnt->mnt.mnt_sb = sb;
1067 mnt->mnt.mnt_root = dget(root);
1068 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1069 mnt->mnt_parent = mnt;
1070 lock_mount_hash();
1071 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1072 unlock_mount_hash();
1073
1074 if ((flag & CL_SLAVE) ||
1075 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1076 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1077 mnt->mnt_master = old;
1078 CLEAR_MNT_SHARED(mnt);
1079 } else if (!(flag & CL_PRIVATE)) {
1080 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1081 list_add(&mnt->mnt_share, &old->mnt_share);
1082 if (IS_MNT_SLAVE(old))
1083 list_add(&mnt->mnt_slave, &old->mnt_slave);
1084 mnt->mnt_master = old->mnt_master;
1085 } else {
1086 CLEAR_MNT_SHARED(mnt);
1087 }
1088 if (flag & CL_MAKE_SHARED)
1089 set_mnt_shared(mnt);
1090
1091 /* stick the duplicate mount on the same expiry list
1092 * as the original if that was on one */
1093 if (flag & CL_EXPIRE) {
1094 if (!list_empty(&old->mnt_expire))
1095 list_add(&mnt->mnt_expire, &old->mnt_expire);
1096 }
1097
1098 return mnt;
1099
1100 out_free:
1101 mnt_free_id(mnt);
1102 free_vfsmnt(mnt);
1103 return ERR_PTR(err);
1104 }
1105
1106 static void cleanup_mnt(struct mount *mnt)
1107 {
1108 struct hlist_node *p;
1109 struct mount *m;
1110 /*
1111 * The warning here probably indicates that somebody messed
1112 * up a mnt_want/drop_write() pair. If this happens, the
1113 * filesystem was probably unable to make r/w->r/o transitions.
1114 * The locking used to deal with mnt_count decrement provides barriers,
1115 * so mnt_get_writers() below is safe.
1116 */
1117 WARN_ON(mnt_get_writers(mnt));
1118 if (unlikely(mnt->mnt_pins.first))
1119 mnt_pin_kill(mnt);
1120 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1121 hlist_del(&m->mnt_umount);
1122 mntput(&m->mnt);
1123 }
1124 fsnotify_vfsmount_delete(&mnt->mnt);
1125 dput(mnt->mnt.mnt_root);
1126 deactivate_super(mnt->mnt.mnt_sb);
1127 mnt_free_id(mnt);
1128 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1129 }
1130
1131 static void __cleanup_mnt(struct rcu_head *head)
1132 {
1133 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1134 }
1135
1136 static LLIST_HEAD(delayed_mntput_list);
1137 static void delayed_mntput(struct work_struct *unused)
1138 {
1139 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1140 struct mount *m, *t;
1141
1142 llist_for_each_entry_safe(m, t, node, mnt_llist)
1143 cleanup_mnt(m);
1144 }
1145 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1146
1147 static void mntput_no_expire(struct mount *mnt)
1148 {
1149 LIST_HEAD(list);
1150 int count;
1151
1152 rcu_read_lock();
1153 if (likely(READ_ONCE(mnt->mnt_ns))) {
1154 /*
1155 * Since we don't do lock_mount_hash() here,
1156 * ->mnt_ns can change under us. However, if it's
1157 * non-NULL, then there's a reference that won't
1158 * be dropped until after an RCU delay done after
1159 * turning ->mnt_ns NULL. So if we observe it
1160 * non-NULL under rcu_read_lock(), the reference
1161 * we are dropping is not the final one.
1162 */
1163 mnt_add_count(mnt, -1);
1164 rcu_read_unlock();
1165 return;
1166 }
1167 lock_mount_hash();
1168 /*
1169 * make sure that if __legitimize_mnt() has not seen us grab
1170 * mount_lock, we'll see their refcount increment here.
1171 */
1172 smp_mb();
1173 mnt_add_count(mnt, -1);
1174 count = mnt_get_count(mnt);
1175 if (count != 0) {
1176 WARN_ON(count < 0);
1177 rcu_read_unlock();
1178 unlock_mount_hash();
1179 return;
1180 }
1181 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1182 rcu_read_unlock();
1183 unlock_mount_hash();
1184 return;
1185 }
1186 mnt->mnt.mnt_flags |= MNT_DOOMED;
1187 rcu_read_unlock();
1188
1189 list_del(&mnt->mnt_instance);
1190
1191 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1192 struct mount *p, *tmp;
1193 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1194 __put_mountpoint(unhash_mnt(p), &list);
1195 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1196 }
1197 }
1198 unlock_mount_hash();
1199 shrink_dentry_list(&list);
1200
1201 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1202 struct task_struct *task = current;
1203 if (likely(!(task->flags & PF_KTHREAD))) {
1204 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1205 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1206 return;
1207 }
1208 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1209 schedule_delayed_work(&delayed_mntput_work, 1);
1210 return;
1211 }
1212 cleanup_mnt(mnt);
1213 }
1214
1215 void mntput(struct vfsmount *mnt)
1216 {
1217 if (mnt) {
1218 struct mount *m = real_mount(mnt);
1219 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1220 if (unlikely(m->mnt_expiry_mark))
1221 m->mnt_expiry_mark = 0;
1222 mntput_no_expire(m);
1223 }
1224 }
1225 EXPORT_SYMBOL(mntput);
1226
1227 struct vfsmount *mntget(struct vfsmount *mnt)
1228 {
1229 if (mnt)
1230 mnt_add_count(real_mount(mnt), 1);
1231 return mnt;
1232 }
1233 EXPORT_SYMBOL(mntget);
1234
1235 /* path_is_mountpoint() - Check if path is a mount in the current
1236 * namespace.
1237 *
1238 * d_mountpoint() can only be used reliably to establish if a dentry is
1239 * not mounted in any namespace and that common case is handled inline.
1240 * d_mountpoint() isn't aware of the possibility there may be multiple
1241 * mounts using a given dentry in a different namespace. This function
1242 * checks if the passed in path is a mountpoint rather than the dentry
1243 * alone.
1244 */
1245 bool path_is_mountpoint(const struct path *path)
1246 {
1247 unsigned seq;
1248 bool res;
1249
1250 if (!d_mountpoint(path->dentry))
1251 return false;
1252
1253 rcu_read_lock();
1254 do {
1255 seq = read_seqbegin(&mount_lock);
1256 res = __path_is_mountpoint(path);
1257 } while (read_seqretry(&mount_lock, seq));
1258 rcu_read_unlock();
1259
1260 return res;
1261 }
1262 EXPORT_SYMBOL(path_is_mountpoint);
1263
1264 struct vfsmount *mnt_clone_internal(const struct path *path)
1265 {
1266 struct mount *p;
1267 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1268 if (IS_ERR(p))
1269 return ERR_CAST(p);
1270 p->mnt.mnt_flags |= MNT_INTERNAL;
1271 return &p->mnt;
1272 }
1273
1274 #ifdef CONFIG_PROC_FS
1275 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1276 struct list_head *p)
1277 {
1278 struct mount *mnt, *ret = NULL;
1279
1280 lock_ns_list(ns);
1281 list_for_each_continue(p, &ns->list) {
1282 mnt = list_entry(p, typeof(*mnt), mnt_list);
1283 if (!mnt_is_cursor(mnt)) {
1284 ret = mnt;
1285 break;
1286 }
1287 }
1288 unlock_ns_list(ns);
1289
1290 return ret;
1291 }
1292
1293 /* iterator; we want it to have access to namespace_sem, thus here... */
1294 static void *m_start(struct seq_file *m, loff_t *pos)
1295 {
1296 struct proc_mounts *p = m->private;
1297 struct list_head *prev;
1298
1299 down_read(&namespace_sem);
1300 if (!*pos) {
1301 prev = &p->ns->list;
1302 } else {
1303 prev = &p->cursor.mnt_list;
1304
1305 /* Read after we'd reached the end? */
1306 if (list_empty(prev))
1307 return NULL;
1308 }
1309
1310 return mnt_list_next(p->ns, prev);
1311 }
1312
1313 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1314 {
1315 struct proc_mounts *p = m->private;
1316 struct mount *mnt = v;
1317
1318 ++*pos;
1319 return mnt_list_next(p->ns, &mnt->mnt_list);
1320 }
1321
1322 static void m_stop(struct seq_file *m, void *v)
1323 {
1324 struct proc_mounts *p = m->private;
1325 struct mount *mnt = v;
1326
1327 lock_ns_list(p->ns);
1328 if (mnt)
1329 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1330 else
1331 list_del_init(&p->cursor.mnt_list);
1332 unlock_ns_list(p->ns);
1333 up_read(&namespace_sem);
1334 }
1335
1336 static int m_show(struct seq_file *m, void *v)
1337 {
1338 struct proc_mounts *p = m->private;
1339 struct mount *r = v;
1340 return p->show(m, &r->mnt);
1341 }
1342
1343 const struct seq_operations mounts_op = {
1344 .start = m_start,
1345 .next = m_next,
1346 .stop = m_stop,
1347 .show = m_show,
1348 };
1349
1350 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1351 {
1352 down_read(&namespace_sem);
1353 lock_ns_list(ns);
1354 list_del(&cursor->mnt_list);
1355 unlock_ns_list(ns);
1356 up_read(&namespace_sem);
1357 }
1358 #endif /* CONFIG_PROC_FS */
1359
1360 /**
1361 * may_umount_tree - check if a mount tree is busy
1362 * @mnt: root of mount tree
1363 *
1364 * This is called to check if a tree of mounts has any
1365 * open files, pwds, chroots or sub mounts that are
1366 * busy.
1367 */
1368 int may_umount_tree(struct vfsmount *m)
1369 {
1370 struct mount *mnt = real_mount(m);
1371 int actual_refs = 0;
1372 int minimum_refs = 0;
1373 struct mount *p;
1374 BUG_ON(!m);
1375
1376 /* write lock needed for mnt_get_count */
1377 lock_mount_hash();
1378 for (p = mnt; p; p = next_mnt(p, mnt)) {
1379 actual_refs += mnt_get_count(p);
1380 minimum_refs += 2;
1381 }
1382 unlock_mount_hash();
1383
1384 if (actual_refs > minimum_refs)
1385 return 0;
1386
1387 return 1;
1388 }
1389
1390 EXPORT_SYMBOL(may_umount_tree);
1391
1392 /**
1393 * may_umount - check if a mount point is busy
1394 * @mnt: root of mount
1395 *
1396 * This is called to check if a mount point has any
1397 * open files, pwds, chroots or sub mounts. If the
1398 * mount has sub mounts this will return busy
1399 * regardless of whether the sub mounts are busy.
1400 *
1401 * Doesn't take quota and stuff into account. IOW, in some cases it will
1402 * give false negatives. The main reason why it's here is that we need
1403 * a non-destructive way to look for easily umountable filesystems.
1404 */
1405 int may_umount(struct vfsmount *mnt)
1406 {
1407 int ret = 1;
1408 down_read(&namespace_sem);
1409 lock_mount_hash();
1410 if (propagate_mount_busy(real_mount(mnt), 2))
1411 ret = 0;
1412 unlock_mount_hash();
1413 up_read(&namespace_sem);
1414 return ret;
1415 }
1416
1417 EXPORT_SYMBOL(may_umount);
1418
1419 static void namespace_unlock(void)
1420 {
1421 struct hlist_head head;
1422 struct hlist_node *p;
1423 struct mount *m;
1424 LIST_HEAD(list);
1425
1426 hlist_move_list(&unmounted, &head);
1427 list_splice_init(&ex_mountpoints, &list);
1428
1429 up_write(&namespace_sem);
1430
1431 shrink_dentry_list(&list);
1432
1433 if (likely(hlist_empty(&head)))
1434 return;
1435
1436 synchronize_rcu_expedited();
1437
1438 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1439 hlist_del(&m->mnt_umount);
1440 mntput(&m->mnt);
1441 }
1442 }
1443
1444 static inline void namespace_lock(void)
1445 {
1446 down_write(&namespace_sem);
1447 }
1448
1449 enum umount_tree_flags {
1450 UMOUNT_SYNC = 1,
1451 UMOUNT_PROPAGATE = 2,
1452 UMOUNT_CONNECTED = 4,
1453 };
1454
1455 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1456 {
1457 /* Leaving mounts connected is only valid for lazy umounts */
1458 if (how & UMOUNT_SYNC)
1459 return true;
1460
1461 /* A mount without a parent has nothing to be connected to */
1462 if (!mnt_has_parent(mnt))
1463 return true;
1464
1465 /* Because the reference counting rules change when mounts are
1466 * unmounted and connected, umounted mounts may not be
1467 * connected to mounted mounts.
1468 */
1469 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1470 return true;
1471
1472 /* Has it been requested that the mount remain connected? */
1473 if (how & UMOUNT_CONNECTED)
1474 return false;
1475
1476 /* Is the mount locked such that it needs to remain connected? */
1477 if (IS_MNT_LOCKED(mnt))
1478 return false;
1479
1480 /* By default disconnect the mount */
1481 return true;
1482 }
1483
1484 /*
1485 * mount_lock must be held
1486 * namespace_sem must be held for write
1487 */
1488 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1489 {
1490 LIST_HEAD(tmp_list);
1491 struct mount *p;
1492
1493 if (how & UMOUNT_PROPAGATE)
1494 propagate_mount_unlock(mnt);
1495
1496 /* Gather the mounts to umount */
1497 for (p = mnt; p; p = next_mnt(p, mnt)) {
1498 p->mnt.mnt_flags |= MNT_UMOUNT;
1499 list_move(&p->mnt_list, &tmp_list);
1500 }
1501
1502 /* Hide the mounts from mnt_mounts */
1503 list_for_each_entry(p, &tmp_list, mnt_list) {
1504 list_del_init(&p->mnt_child);
1505 }
1506
1507 /* Add propogated mounts to the tmp_list */
1508 if (how & UMOUNT_PROPAGATE)
1509 propagate_umount(&tmp_list);
1510
1511 while (!list_empty(&tmp_list)) {
1512 struct mnt_namespace *ns;
1513 bool disconnect;
1514 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1515 list_del_init(&p->mnt_expire);
1516 list_del_init(&p->mnt_list);
1517 ns = p->mnt_ns;
1518 if (ns) {
1519 ns->mounts--;
1520 __touch_mnt_namespace(ns);
1521 }
1522 p->mnt_ns = NULL;
1523 if (how & UMOUNT_SYNC)
1524 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1525
1526 disconnect = disconnect_mount(p, how);
1527 if (mnt_has_parent(p)) {
1528 mnt_add_count(p->mnt_parent, -1);
1529 if (!disconnect) {
1530 /* Don't forget about p */
1531 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1532 } else {
1533 umount_mnt(p);
1534 }
1535 }
1536 change_mnt_propagation(p, MS_PRIVATE);
1537 if (disconnect)
1538 hlist_add_head(&p->mnt_umount, &unmounted);
1539 }
1540 }
1541
1542 static void shrink_submounts(struct mount *mnt);
1543
1544 static int do_umount_root(struct super_block *sb)
1545 {
1546 int ret = 0;
1547
1548 down_write(&sb->s_umount);
1549 if (!sb_rdonly(sb)) {
1550 struct fs_context *fc;
1551
1552 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1553 SB_RDONLY);
1554 if (IS_ERR(fc)) {
1555 ret = PTR_ERR(fc);
1556 } else {
1557 ret = parse_monolithic_mount_data(fc, NULL);
1558 if (!ret)
1559 ret = reconfigure_super(fc);
1560 put_fs_context(fc);
1561 }
1562 }
1563 up_write(&sb->s_umount);
1564 return ret;
1565 }
1566
1567 static int do_umount(struct mount *mnt, int flags)
1568 {
1569 struct super_block *sb = mnt->mnt.mnt_sb;
1570 int retval;
1571
1572 retval = security_sb_umount(&mnt->mnt, flags);
1573 if (retval)
1574 return retval;
1575
1576 /*
1577 * Allow userspace to request a mountpoint be expired rather than
1578 * unmounting unconditionally. Unmount only happens if:
1579 * (1) the mark is already set (the mark is cleared by mntput())
1580 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1581 */
1582 if (flags & MNT_EXPIRE) {
1583 if (&mnt->mnt == current->fs->root.mnt ||
1584 flags & (MNT_FORCE | MNT_DETACH))
1585 return -EINVAL;
1586
1587 /*
1588 * probably don't strictly need the lock here if we examined
1589 * all race cases, but it's a slowpath.
1590 */
1591 lock_mount_hash();
1592 if (mnt_get_count(mnt) != 2) {
1593 unlock_mount_hash();
1594 return -EBUSY;
1595 }
1596 unlock_mount_hash();
1597
1598 if (!xchg(&mnt->mnt_expiry_mark, 1))
1599 return -EAGAIN;
1600 }
1601
1602 /*
1603 * If we may have to abort operations to get out of this
1604 * mount, and they will themselves hold resources we must
1605 * allow the fs to do things. In the Unix tradition of
1606 * 'Gee thats tricky lets do it in userspace' the umount_begin
1607 * might fail to complete on the first run through as other tasks
1608 * must return, and the like. Thats for the mount program to worry
1609 * about for the moment.
1610 */
1611
1612 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1613 sb->s_op->umount_begin(sb);
1614 }
1615
1616 /*
1617 * No sense to grab the lock for this test, but test itself looks
1618 * somewhat bogus. Suggestions for better replacement?
1619 * Ho-hum... In principle, we might treat that as umount + switch
1620 * to rootfs. GC would eventually take care of the old vfsmount.
1621 * Actually it makes sense, especially if rootfs would contain a
1622 * /reboot - static binary that would close all descriptors and
1623 * call reboot(9). Then init(8) could umount root and exec /reboot.
1624 */
1625 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1626 /*
1627 * Special case for "unmounting" root ...
1628 * we just try to remount it readonly.
1629 */
1630 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1631 return -EPERM;
1632 return do_umount_root(sb);
1633 }
1634
1635 namespace_lock();
1636 lock_mount_hash();
1637
1638 /* Recheck MNT_LOCKED with the locks held */
1639 retval = -EINVAL;
1640 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1641 goto out;
1642
1643 event++;
1644 if (flags & MNT_DETACH) {
1645 if (!list_empty(&mnt->mnt_list))
1646 umount_tree(mnt, UMOUNT_PROPAGATE);
1647 retval = 0;
1648 } else {
1649 shrink_submounts(mnt);
1650 retval = -EBUSY;
1651 if (!propagate_mount_busy(mnt, 2)) {
1652 if (!list_empty(&mnt->mnt_list))
1653 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1654 retval = 0;
1655 }
1656 }
1657 out:
1658 unlock_mount_hash();
1659 namespace_unlock();
1660 return retval;
1661 }
1662
1663 /*
1664 * __detach_mounts - lazily unmount all mounts on the specified dentry
1665 *
1666 * During unlink, rmdir, and d_drop it is possible to loose the path
1667 * to an existing mountpoint, and wind up leaking the mount.
1668 * detach_mounts allows lazily unmounting those mounts instead of
1669 * leaking them.
1670 *
1671 * The caller may hold dentry->d_inode->i_mutex.
1672 */
1673 void __detach_mounts(struct dentry *dentry)
1674 {
1675 struct mountpoint *mp;
1676 struct mount *mnt;
1677
1678 namespace_lock();
1679 lock_mount_hash();
1680 mp = lookup_mountpoint(dentry);
1681 if (!mp)
1682 goto out_unlock;
1683
1684 event++;
1685 while (!hlist_empty(&mp->m_list)) {
1686 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1687 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1688 umount_mnt(mnt);
1689 hlist_add_head(&mnt->mnt_umount, &unmounted);
1690 }
1691 else umount_tree(mnt, UMOUNT_CONNECTED);
1692 }
1693 put_mountpoint(mp);
1694 out_unlock:
1695 unlock_mount_hash();
1696 namespace_unlock();
1697 }
1698
1699 /*
1700 * Is the caller allowed to modify his namespace?
1701 */
1702 static inline bool may_mount(void)
1703 {
1704 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1705 }
1706
1707 #ifdef CONFIG_MANDATORY_FILE_LOCKING
1708 static inline bool may_mandlock(void)
1709 {
1710 return capable(CAP_SYS_ADMIN);
1711 }
1712 #else
1713 static inline bool may_mandlock(void)
1714 {
1715 pr_warn("VFS: \"mand\" mount option not supported");
1716 return false;
1717 }
1718 #endif
1719
1720 static int can_umount(const struct path *path, int flags)
1721 {
1722 struct mount *mnt = real_mount(path->mnt);
1723
1724 if (!may_mount())
1725 return -EPERM;
1726 if (path->dentry != path->mnt->mnt_root)
1727 return -EINVAL;
1728 if (!check_mnt(mnt))
1729 return -EINVAL;
1730 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1731 return -EINVAL;
1732 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1733 return -EPERM;
1734 return 0;
1735 }
1736
1737 // caller is responsible for flags being sane
1738 int path_umount(struct path *path, int flags)
1739 {
1740 struct mount *mnt = real_mount(path->mnt);
1741 int ret;
1742
1743 ret = can_umount(path, flags);
1744 if (!ret)
1745 ret = do_umount(mnt, flags);
1746
1747 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1748 dput(path->dentry);
1749 mntput_no_expire(mnt);
1750 return ret;
1751 }
1752
1753 static int ksys_umount(char __user *name, int flags)
1754 {
1755 int lookup_flags = LOOKUP_MOUNTPOINT;
1756 struct path path;
1757 int ret;
1758
1759 // basic validity checks done first
1760 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1761 return -EINVAL;
1762
1763 if (!(flags & UMOUNT_NOFOLLOW))
1764 lookup_flags |= LOOKUP_FOLLOW;
1765 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1766 if (ret)
1767 return ret;
1768 return path_umount(&path, flags);
1769 }
1770
1771 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1772 {
1773 return ksys_umount(name, flags);
1774 }
1775
1776 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1777
1778 /*
1779 * The 2.0 compatible umount. No flags.
1780 */
1781 SYSCALL_DEFINE1(oldumount, char __user *, name)
1782 {
1783 return ksys_umount(name, 0);
1784 }
1785
1786 #endif
1787
1788 static bool is_mnt_ns_file(struct dentry *dentry)
1789 {
1790 /* Is this a proxy for a mount namespace? */
1791 return dentry->d_op == &ns_dentry_operations &&
1792 dentry->d_fsdata == &mntns_operations;
1793 }
1794
1795 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1796 {
1797 return container_of(ns, struct mnt_namespace, ns);
1798 }
1799
1800 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1801 {
1802 return &mnt->ns;
1803 }
1804
1805 static bool mnt_ns_loop(struct dentry *dentry)
1806 {
1807 /* Could bind mounting the mount namespace inode cause a
1808 * mount namespace loop?
1809 */
1810 struct mnt_namespace *mnt_ns;
1811 if (!is_mnt_ns_file(dentry))
1812 return false;
1813
1814 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1815 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1816 }
1817
1818 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1819 int flag)
1820 {
1821 struct mount *res, *p, *q, *r, *parent;
1822
1823 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1824 return ERR_PTR(-EINVAL);
1825
1826 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1827 return ERR_PTR(-EINVAL);
1828
1829 res = q = clone_mnt(mnt, dentry, flag);
1830 if (IS_ERR(q))
1831 return q;
1832
1833 q->mnt_mountpoint = mnt->mnt_mountpoint;
1834
1835 p = mnt;
1836 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1837 struct mount *s;
1838 if (!is_subdir(r->mnt_mountpoint, dentry))
1839 continue;
1840
1841 for (s = r; s; s = next_mnt(s, r)) {
1842 if (!(flag & CL_COPY_UNBINDABLE) &&
1843 IS_MNT_UNBINDABLE(s)) {
1844 if (s->mnt.mnt_flags & MNT_LOCKED) {
1845 /* Both unbindable and locked. */
1846 q = ERR_PTR(-EPERM);
1847 goto out;
1848 } else {
1849 s = skip_mnt_tree(s);
1850 continue;
1851 }
1852 }
1853 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1854 is_mnt_ns_file(s->mnt.mnt_root)) {
1855 s = skip_mnt_tree(s);
1856 continue;
1857 }
1858 while (p != s->mnt_parent) {
1859 p = p->mnt_parent;
1860 q = q->mnt_parent;
1861 }
1862 p = s;
1863 parent = q;
1864 q = clone_mnt(p, p->mnt.mnt_root, flag);
1865 if (IS_ERR(q))
1866 goto out;
1867 lock_mount_hash();
1868 list_add_tail(&q->mnt_list, &res->mnt_list);
1869 attach_mnt(q, parent, p->mnt_mp);
1870 unlock_mount_hash();
1871 }
1872 }
1873 return res;
1874 out:
1875 if (res) {
1876 lock_mount_hash();
1877 umount_tree(res, UMOUNT_SYNC);
1878 unlock_mount_hash();
1879 }
1880 return q;
1881 }
1882
1883 /* Caller should check returned pointer for errors */
1884
1885 struct vfsmount *collect_mounts(const struct path *path)
1886 {
1887 struct mount *tree;
1888 namespace_lock();
1889 if (!check_mnt(real_mount(path->mnt)))
1890 tree = ERR_PTR(-EINVAL);
1891 else
1892 tree = copy_tree(real_mount(path->mnt), path->dentry,
1893 CL_COPY_ALL | CL_PRIVATE);
1894 namespace_unlock();
1895 if (IS_ERR(tree))
1896 return ERR_CAST(tree);
1897 return &tree->mnt;
1898 }
1899
1900 static void free_mnt_ns(struct mnt_namespace *);
1901 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1902
1903 void dissolve_on_fput(struct vfsmount *mnt)
1904 {
1905 struct mnt_namespace *ns;
1906 namespace_lock();
1907 lock_mount_hash();
1908 ns = real_mount(mnt)->mnt_ns;
1909 if (ns) {
1910 if (is_anon_ns(ns))
1911 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1912 else
1913 ns = NULL;
1914 }
1915 unlock_mount_hash();
1916 namespace_unlock();
1917 if (ns)
1918 free_mnt_ns(ns);
1919 }
1920
1921 void drop_collected_mounts(struct vfsmount *mnt)
1922 {
1923 namespace_lock();
1924 lock_mount_hash();
1925 umount_tree(real_mount(mnt), 0);
1926 unlock_mount_hash();
1927 namespace_unlock();
1928 }
1929
1930 /**
1931 * clone_private_mount - create a private clone of a path
1932 *
1933 * This creates a new vfsmount, which will be the clone of @path. The new will
1934 * not be attached anywhere in the namespace and will be private (i.e. changes
1935 * to the originating mount won't be propagated into this).
1936 *
1937 * Release with mntput().
1938 */
1939 struct vfsmount *clone_private_mount(const struct path *path)
1940 {
1941 struct mount *old_mnt = real_mount(path->mnt);
1942 struct mount *new_mnt;
1943
1944 if (IS_MNT_UNBINDABLE(old_mnt))
1945 return ERR_PTR(-EINVAL);
1946
1947 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1948 if (IS_ERR(new_mnt))
1949 return ERR_CAST(new_mnt);
1950
1951 /* Longterm mount to be removed by kern_unmount*() */
1952 new_mnt->mnt_ns = MNT_NS_INTERNAL;
1953
1954 return &new_mnt->mnt;
1955 }
1956 EXPORT_SYMBOL_GPL(clone_private_mount);
1957
1958 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1959 struct vfsmount *root)
1960 {
1961 struct mount *mnt;
1962 int res = f(root, arg);
1963 if (res)
1964 return res;
1965 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1966 res = f(&mnt->mnt, arg);
1967 if (res)
1968 return res;
1969 }
1970 return 0;
1971 }
1972 EXPORT_SYMBOL_GPL(iterate_mounts);
1973
1974 static void lock_mnt_tree(struct mount *mnt)
1975 {
1976 struct mount *p;
1977
1978 for (p = mnt; p; p = next_mnt(p, mnt)) {
1979 int flags = p->mnt.mnt_flags;
1980 /* Don't allow unprivileged users to change mount flags */
1981 flags |= MNT_LOCK_ATIME;
1982
1983 if (flags & MNT_READONLY)
1984 flags |= MNT_LOCK_READONLY;
1985
1986 if (flags & MNT_NODEV)
1987 flags |= MNT_LOCK_NODEV;
1988
1989 if (flags & MNT_NOSUID)
1990 flags |= MNT_LOCK_NOSUID;
1991
1992 if (flags & MNT_NOEXEC)
1993 flags |= MNT_LOCK_NOEXEC;
1994 /* Don't allow unprivileged users to reveal what is under a mount */
1995 if (list_empty(&p->mnt_expire))
1996 flags |= MNT_LOCKED;
1997 p->mnt.mnt_flags = flags;
1998 }
1999 }
2000
2001 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2002 {
2003 struct mount *p;
2004
2005 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2006 if (p->mnt_group_id && !IS_MNT_SHARED(p))
2007 mnt_release_group_id(p);
2008 }
2009 }
2010
2011 static int invent_group_ids(struct mount *mnt, bool recurse)
2012 {
2013 struct mount *p;
2014
2015 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2016 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2017 int err = mnt_alloc_group_id(p);
2018 if (err) {
2019 cleanup_group_ids(mnt, p);
2020 return err;
2021 }
2022 }
2023 }
2024
2025 return 0;
2026 }
2027
2028 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2029 {
2030 unsigned int max = READ_ONCE(sysctl_mount_max);
2031 unsigned int mounts = 0, old, pending, sum;
2032 struct mount *p;
2033
2034 for (p = mnt; p; p = next_mnt(p, mnt))
2035 mounts++;
2036
2037 old = ns->mounts;
2038 pending = ns->pending_mounts;
2039 sum = old + pending;
2040 if ((old > sum) ||
2041 (pending > sum) ||
2042 (max < sum) ||
2043 (mounts > (max - sum)))
2044 return -ENOSPC;
2045
2046 ns->pending_mounts = pending + mounts;
2047 return 0;
2048 }
2049
2050 /*
2051 * @source_mnt : mount tree to be attached
2052 * @nd : place the mount tree @source_mnt is attached
2053 * @parent_nd : if non-null, detach the source_mnt from its parent and
2054 * store the parent mount and mountpoint dentry.
2055 * (done when source_mnt is moved)
2056 *
2057 * NOTE: in the table below explains the semantics when a source mount
2058 * of a given type is attached to a destination mount of a given type.
2059 * ---------------------------------------------------------------------------
2060 * | BIND MOUNT OPERATION |
2061 * |**************************************************************************
2062 * | source-->| shared | private | slave | unbindable |
2063 * | dest | | | | |
2064 * | | | | | | |
2065 * | v | | | | |
2066 * |**************************************************************************
2067 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2068 * | | | | | |
2069 * |non-shared| shared (+) | private | slave (*) | invalid |
2070 * ***************************************************************************
2071 * A bind operation clones the source mount and mounts the clone on the
2072 * destination mount.
2073 *
2074 * (++) the cloned mount is propagated to all the mounts in the propagation
2075 * tree of the destination mount and the cloned mount is added to
2076 * the peer group of the source mount.
2077 * (+) the cloned mount is created under the destination mount and is marked
2078 * as shared. The cloned mount is added to the peer group of the source
2079 * mount.
2080 * (+++) the mount is propagated to all the mounts in the propagation tree
2081 * of the destination mount and the cloned mount is made slave
2082 * of the same master as that of the source mount. The cloned mount
2083 * is marked as 'shared and slave'.
2084 * (*) the cloned mount is made a slave of the same master as that of the
2085 * source mount.
2086 *
2087 * ---------------------------------------------------------------------------
2088 * | MOVE MOUNT OPERATION |
2089 * |**************************************************************************
2090 * | source-->| shared | private | slave | unbindable |
2091 * | dest | | | | |
2092 * | | | | | | |
2093 * | v | | | | |
2094 * |**************************************************************************
2095 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2096 * | | | | | |
2097 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2098 * ***************************************************************************
2099 *
2100 * (+) the mount is moved to the destination. And is then propagated to
2101 * all the mounts in the propagation tree of the destination mount.
2102 * (+*) the mount is moved to the destination.
2103 * (+++) the mount is moved to the destination and is then propagated to
2104 * all the mounts belonging to the destination mount's propagation tree.
2105 * the mount is marked as 'shared and slave'.
2106 * (*) the mount continues to be a slave at the new location.
2107 *
2108 * if the source mount is a tree, the operations explained above is
2109 * applied to each mount in the tree.
2110 * Must be called without spinlocks held, since this function can sleep
2111 * in allocations.
2112 */
2113 static int attach_recursive_mnt(struct mount *source_mnt,
2114 struct mount *dest_mnt,
2115 struct mountpoint *dest_mp,
2116 bool moving)
2117 {
2118 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2119 HLIST_HEAD(tree_list);
2120 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2121 struct mountpoint *smp;
2122 struct mount *child, *p;
2123 struct hlist_node *n;
2124 int err;
2125
2126 /* Preallocate a mountpoint in case the new mounts need
2127 * to be tucked under other mounts.
2128 */
2129 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2130 if (IS_ERR(smp))
2131 return PTR_ERR(smp);
2132
2133 /* Is there space to add these mounts to the mount namespace? */
2134 if (!moving) {
2135 err = count_mounts(ns, source_mnt);
2136 if (err)
2137 goto out;
2138 }
2139
2140 if (IS_MNT_SHARED(dest_mnt)) {
2141 err = invent_group_ids(source_mnt, true);
2142 if (err)
2143 goto out;
2144 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2145 lock_mount_hash();
2146 if (err)
2147 goto out_cleanup_ids;
2148 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2149 set_mnt_shared(p);
2150 } else {
2151 lock_mount_hash();
2152 }
2153 if (moving) {
2154 unhash_mnt(source_mnt);
2155 attach_mnt(source_mnt, dest_mnt, dest_mp);
2156 touch_mnt_namespace(source_mnt->mnt_ns);
2157 } else {
2158 if (source_mnt->mnt_ns) {
2159 /* move from anon - the caller will destroy */
2160 list_del_init(&source_mnt->mnt_ns->list);
2161 }
2162 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2163 commit_tree(source_mnt);
2164 }
2165
2166 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2167 struct mount *q;
2168 hlist_del_init(&child->mnt_hash);
2169 q = __lookup_mnt(&child->mnt_parent->mnt,
2170 child->mnt_mountpoint);
2171 if (q)
2172 mnt_change_mountpoint(child, smp, q);
2173 /* Notice when we are propagating across user namespaces */
2174 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2175 lock_mnt_tree(child);
2176 child->mnt.mnt_flags &= ~MNT_LOCKED;
2177 commit_tree(child);
2178 }
2179 put_mountpoint(smp);
2180 unlock_mount_hash();
2181
2182 return 0;
2183
2184 out_cleanup_ids:
2185 while (!hlist_empty(&tree_list)) {
2186 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2187 child->mnt_parent->mnt_ns->pending_mounts = 0;
2188 umount_tree(child, UMOUNT_SYNC);
2189 }
2190 unlock_mount_hash();
2191 cleanup_group_ids(source_mnt, NULL);
2192 out:
2193 ns->pending_mounts = 0;
2194
2195 read_seqlock_excl(&mount_lock);
2196 put_mountpoint(smp);
2197 read_sequnlock_excl(&mount_lock);
2198
2199 return err;
2200 }
2201
2202 static struct mountpoint *lock_mount(struct path *path)
2203 {
2204 struct vfsmount *mnt;
2205 struct dentry *dentry = path->dentry;
2206 retry:
2207 inode_lock(dentry->d_inode);
2208 if (unlikely(cant_mount(dentry))) {
2209 inode_unlock(dentry->d_inode);
2210 return ERR_PTR(-ENOENT);
2211 }
2212 namespace_lock();
2213 mnt = lookup_mnt(path);
2214 if (likely(!mnt)) {
2215 struct mountpoint *mp = get_mountpoint(dentry);
2216 if (IS_ERR(mp)) {
2217 namespace_unlock();
2218 inode_unlock(dentry->d_inode);
2219 return mp;
2220 }
2221 return mp;
2222 }
2223 namespace_unlock();
2224 inode_unlock(path->dentry->d_inode);
2225 path_put(path);
2226 path->mnt = mnt;
2227 dentry = path->dentry = dget(mnt->mnt_root);
2228 goto retry;
2229 }
2230
2231 static void unlock_mount(struct mountpoint *where)
2232 {
2233 struct dentry *dentry = where->m_dentry;
2234
2235 read_seqlock_excl(&mount_lock);
2236 put_mountpoint(where);
2237 read_sequnlock_excl(&mount_lock);
2238
2239 namespace_unlock();
2240 inode_unlock(dentry->d_inode);
2241 }
2242
2243 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2244 {
2245 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2246 return -EINVAL;
2247
2248 if (d_is_dir(mp->m_dentry) !=
2249 d_is_dir(mnt->mnt.mnt_root))
2250 return -ENOTDIR;
2251
2252 return attach_recursive_mnt(mnt, p, mp, false);
2253 }
2254
2255 /*
2256 * Sanity check the flags to change_mnt_propagation.
2257 */
2258
2259 static int flags_to_propagation_type(int ms_flags)
2260 {
2261 int type = ms_flags & ~(MS_REC | MS_SILENT);
2262
2263 /* Fail if any non-propagation flags are set */
2264 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2265 return 0;
2266 /* Only one propagation flag should be set */
2267 if (!is_power_of_2(type))
2268 return 0;
2269 return type;
2270 }
2271
2272 /*
2273 * recursively change the type of the mountpoint.
2274 */
2275 static int do_change_type(struct path *path, int ms_flags)
2276 {
2277 struct mount *m;
2278 struct mount *mnt = real_mount(path->mnt);
2279 int recurse = ms_flags & MS_REC;
2280 int type;
2281 int err = 0;
2282
2283 if (path->dentry != path->mnt->mnt_root)
2284 return -EINVAL;
2285
2286 type = flags_to_propagation_type(ms_flags);
2287 if (!type)
2288 return -EINVAL;
2289
2290 namespace_lock();
2291 if (type == MS_SHARED) {
2292 err = invent_group_ids(mnt, recurse);
2293 if (err)
2294 goto out_unlock;
2295 }
2296
2297 lock_mount_hash();
2298 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2299 change_mnt_propagation(m, type);
2300 unlock_mount_hash();
2301
2302 out_unlock:
2303 namespace_unlock();
2304 return err;
2305 }
2306
2307 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2308 {
2309 struct mount *child;
2310 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2311 if (!is_subdir(child->mnt_mountpoint, dentry))
2312 continue;
2313
2314 if (child->mnt.mnt_flags & MNT_LOCKED)
2315 return true;
2316 }
2317 return false;
2318 }
2319
2320 static struct mount *__do_loopback(struct path *old_path, int recurse)
2321 {
2322 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2323
2324 if (IS_MNT_UNBINDABLE(old))
2325 return mnt;
2326
2327 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2328 return mnt;
2329
2330 if (!recurse && has_locked_children(old, old_path->dentry))
2331 return mnt;
2332
2333 if (recurse)
2334 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2335 else
2336 mnt = clone_mnt(old, old_path->dentry, 0);
2337
2338 if (!IS_ERR(mnt))
2339 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2340
2341 return mnt;
2342 }
2343
2344 /*
2345 * do loopback mount.
2346 */
2347 static int do_loopback(struct path *path, const char *old_name,
2348 int recurse)
2349 {
2350 struct path old_path;
2351 struct mount *mnt = NULL, *parent;
2352 struct mountpoint *mp;
2353 int err;
2354 if (!old_name || !*old_name)
2355 return -EINVAL;
2356 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2357 if (err)
2358 return err;
2359
2360 err = -EINVAL;
2361 if (mnt_ns_loop(old_path.dentry))
2362 goto out;
2363
2364 mp = lock_mount(path);
2365 if (IS_ERR(mp)) {
2366 err = PTR_ERR(mp);
2367 goto out;
2368 }
2369
2370 parent = real_mount(path->mnt);
2371 if (!check_mnt(parent))
2372 goto out2;
2373
2374 mnt = __do_loopback(&old_path, recurse);
2375 if (IS_ERR(mnt)) {
2376 err = PTR_ERR(mnt);
2377 goto out2;
2378 }
2379
2380 err = graft_tree(mnt, parent, mp);
2381 if (err) {
2382 lock_mount_hash();
2383 umount_tree(mnt, UMOUNT_SYNC);
2384 unlock_mount_hash();
2385 }
2386 out2:
2387 unlock_mount(mp);
2388 out:
2389 path_put(&old_path);
2390 return err;
2391 }
2392
2393 static struct file *open_detached_copy(struct path *path, bool recursive)
2394 {
2395 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2396 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2397 struct mount *mnt, *p;
2398 struct file *file;
2399
2400 if (IS_ERR(ns))
2401 return ERR_CAST(ns);
2402
2403 namespace_lock();
2404 mnt = __do_loopback(path, recursive);
2405 if (IS_ERR(mnt)) {
2406 namespace_unlock();
2407 free_mnt_ns(ns);
2408 return ERR_CAST(mnt);
2409 }
2410
2411 lock_mount_hash();
2412 for (p = mnt; p; p = next_mnt(p, mnt)) {
2413 p->mnt_ns = ns;
2414 ns->mounts++;
2415 }
2416 ns->root = mnt;
2417 list_add_tail(&ns->list, &mnt->mnt_list);
2418 mntget(&mnt->mnt);
2419 unlock_mount_hash();
2420 namespace_unlock();
2421
2422 mntput(path->mnt);
2423 path->mnt = &mnt->mnt;
2424 file = dentry_open(path, O_PATH, current_cred());
2425 if (IS_ERR(file))
2426 dissolve_on_fput(path->mnt);
2427 else
2428 file->f_mode |= FMODE_NEED_UNMOUNT;
2429 return file;
2430 }
2431
2432 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2433 {
2434 struct file *file;
2435 struct path path;
2436 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2437 bool detached = flags & OPEN_TREE_CLONE;
2438 int error;
2439 int fd;
2440
2441 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2442
2443 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2444 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2445 OPEN_TREE_CLOEXEC))
2446 return -EINVAL;
2447
2448 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2449 return -EINVAL;
2450
2451 if (flags & AT_NO_AUTOMOUNT)
2452 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2453 if (flags & AT_SYMLINK_NOFOLLOW)
2454 lookup_flags &= ~LOOKUP_FOLLOW;
2455 if (flags & AT_EMPTY_PATH)
2456 lookup_flags |= LOOKUP_EMPTY;
2457
2458 if (detached && !may_mount())
2459 return -EPERM;
2460
2461 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2462 if (fd < 0)
2463 return fd;
2464
2465 error = user_path_at(dfd, filename, lookup_flags, &path);
2466 if (unlikely(error)) {
2467 file = ERR_PTR(error);
2468 } else {
2469 if (detached)
2470 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2471 else
2472 file = dentry_open(&path, O_PATH, current_cred());
2473 path_put(&path);
2474 }
2475 if (IS_ERR(file)) {
2476 put_unused_fd(fd);
2477 return PTR_ERR(file);
2478 }
2479 fd_install(fd, file);
2480 return fd;
2481 }
2482
2483 /*
2484 * Don't allow locked mount flags to be cleared.
2485 *
2486 * No locks need to be held here while testing the various MNT_LOCK
2487 * flags because those flags can never be cleared once they are set.
2488 */
2489 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2490 {
2491 unsigned int fl = mnt->mnt.mnt_flags;
2492
2493 if ((fl & MNT_LOCK_READONLY) &&
2494 !(mnt_flags & MNT_READONLY))
2495 return false;
2496
2497 if ((fl & MNT_LOCK_NODEV) &&
2498 !(mnt_flags & MNT_NODEV))
2499 return false;
2500
2501 if ((fl & MNT_LOCK_NOSUID) &&
2502 !(mnt_flags & MNT_NOSUID))
2503 return false;
2504
2505 if ((fl & MNT_LOCK_NOEXEC) &&
2506 !(mnt_flags & MNT_NOEXEC))
2507 return false;
2508
2509 if ((fl & MNT_LOCK_ATIME) &&
2510 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2511 return false;
2512
2513 return true;
2514 }
2515
2516 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2517 {
2518 bool readonly_request = (mnt_flags & MNT_READONLY);
2519
2520 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2521 return 0;
2522
2523 if (readonly_request)
2524 return mnt_make_readonly(mnt);
2525
2526 return __mnt_unmake_readonly(mnt);
2527 }
2528
2529 /*
2530 * Update the user-settable attributes on a mount. The caller must hold
2531 * sb->s_umount for writing.
2532 */
2533 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2534 {
2535 lock_mount_hash();
2536 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2537 mnt->mnt.mnt_flags = mnt_flags;
2538 touch_mnt_namespace(mnt->mnt_ns);
2539 unlock_mount_hash();
2540 }
2541
2542 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2543 {
2544 struct super_block *sb = mnt->mnt_sb;
2545
2546 if (!__mnt_is_readonly(mnt) &&
2547 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2548 char *buf = (char *)__get_free_page(GFP_KERNEL);
2549 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2550 struct tm tm;
2551
2552 time64_to_tm(sb->s_time_max, 0, &tm);
2553
2554 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2555 sb->s_type->name,
2556 is_mounted(mnt) ? "remounted" : "mounted",
2557 mntpath,
2558 tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2559
2560 free_page((unsigned long)buf);
2561 }
2562 }
2563
2564 /*
2565 * Handle reconfiguration of the mountpoint only without alteration of the
2566 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2567 * to mount(2).
2568 */
2569 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2570 {
2571 struct super_block *sb = path->mnt->mnt_sb;
2572 struct mount *mnt = real_mount(path->mnt);
2573 int ret;
2574
2575 if (!check_mnt(mnt))
2576 return -EINVAL;
2577
2578 if (path->dentry != mnt->mnt.mnt_root)
2579 return -EINVAL;
2580
2581 if (!can_change_locked_flags(mnt, mnt_flags))
2582 return -EPERM;
2583
2584 down_write(&sb->s_umount);
2585 ret = change_mount_ro_state(mnt, mnt_flags);
2586 if (ret == 0)
2587 set_mount_attributes(mnt, mnt_flags);
2588 up_write(&sb->s_umount);
2589
2590 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2591
2592 return ret;
2593 }
2594
2595 /*
2596 * change filesystem flags. dir should be a physical root of filesystem.
2597 * If you've mounted a non-root directory somewhere and want to do remount
2598 * on it - tough luck.
2599 */
2600 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2601 int mnt_flags, void *data)
2602 {
2603 int err;
2604 struct super_block *sb = path->mnt->mnt_sb;
2605 struct mount *mnt = real_mount(path->mnt);
2606 struct fs_context *fc;
2607
2608 if (!check_mnt(mnt))
2609 return -EINVAL;
2610
2611 if (path->dentry != path->mnt->mnt_root)
2612 return -EINVAL;
2613
2614 if (!can_change_locked_flags(mnt, mnt_flags))
2615 return -EPERM;
2616
2617 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2618 if (IS_ERR(fc))
2619 return PTR_ERR(fc);
2620
2621 fc->oldapi = true;
2622 err = parse_monolithic_mount_data(fc, data);
2623 if (!err) {
2624 down_write(&sb->s_umount);
2625 err = -EPERM;
2626 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2627 err = reconfigure_super(fc);
2628 if (!err)
2629 set_mount_attributes(mnt, mnt_flags);
2630 }
2631 up_write(&sb->s_umount);
2632 }
2633
2634 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2635
2636 put_fs_context(fc);
2637 return err;
2638 }
2639
2640 static inline int tree_contains_unbindable(struct mount *mnt)
2641 {
2642 struct mount *p;
2643 for (p = mnt; p; p = next_mnt(p, mnt)) {
2644 if (IS_MNT_UNBINDABLE(p))
2645 return 1;
2646 }
2647 return 0;
2648 }
2649
2650 /*
2651 * Check that there aren't references to earlier/same mount namespaces in the
2652 * specified subtree. Such references can act as pins for mount namespaces
2653 * that aren't checked by the mount-cycle checking code, thereby allowing
2654 * cycles to be made.
2655 */
2656 static bool check_for_nsfs_mounts(struct mount *subtree)
2657 {
2658 struct mount *p;
2659 bool ret = false;
2660
2661 lock_mount_hash();
2662 for (p = subtree; p; p = next_mnt(p, subtree))
2663 if (mnt_ns_loop(p->mnt.mnt_root))
2664 goto out;
2665
2666 ret = true;
2667 out:
2668 unlock_mount_hash();
2669 return ret;
2670 }
2671
2672 static int do_move_mount(struct path *old_path, struct path *new_path)
2673 {
2674 struct mnt_namespace *ns;
2675 struct mount *p;
2676 struct mount *old;
2677 struct mount *parent;
2678 struct mountpoint *mp, *old_mp;
2679 int err;
2680 bool attached;
2681
2682 mp = lock_mount(new_path);
2683 if (IS_ERR(mp))
2684 return PTR_ERR(mp);
2685
2686 old = real_mount(old_path->mnt);
2687 p = real_mount(new_path->mnt);
2688 parent = old->mnt_parent;
2689 attached = mnt_has_parent(old);
2690 old_mp = old->mnt_mp;
2691 ns = old->mnt_ns;
2692
2693 err = -EINVAL;
2694 /* The mountpoint must be in our namespace. */
2695 if (!check_mnt(p))
2696 goto out;
2697
2698 /* The thing moved must be mounted... */
2699 if (!is_mounted(&old->mnt))
2700 goto out;
2701
2702 /* ... and either ours or the root of anon namespace */
2703 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2704 goto out;
2705
2706 if (old->mnt.mnt_flags & MNT_LOCKED)
2707 goto out;
2708
2709 if (old_path->dentry != old_path->mnt->mnt_root)
2710 goto out;
2711
2712 if (d_is_dir(new_path->dentry) !=
2713 d_is_dir(old_path->dentry))
2714 goto out;
2715 /*
2716 * Don't move a mount residing in a shared parent.
2717 */
2718 if (attached && IS_MNT_SHARED(parent))
2719 goto out;
2720 /*
2721 * Don't move a mount tree containing unbindable mounts to a destination
2722 * mount which is shared.
2723 */
2724 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2725 goto out;
2726 err = -ELOOP;
2727 if (!check_for_nsfs_mounts(old))
2728 goto out;
2729 for (; mnt_has_parent(p); p = p->mnt_parent)
2730 if (p == old)
2731 goto out;
2732
2733 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2734 attached);
2735 if (err)
2736 goto out;
2737
2738 /* if the mount is moved, it should no longer be expire
2739 * automatically */
2740 list_del_init(&old->mnt_expire);
2741 if (attached)
2742 put_mountpoint(old_mp);
2743 out:
2744 unlock_mount(mp);
2745 if (!err) {
2746 if (attached)
2747 mntput_no_expire(parent);
2748 else
2749 free_mnt_ns(ns);
2750 }
2751 return err;
2752 }
2753
2754 static int do_move_mount_old(struct path *path, const char *old_name)
2755 {
2756 struct path old_path;
2757 int err;
2758
2759 if (!old_name || !*old_name)
2760 return -EINVAL;
2761
2762 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2763 if (err)
2764 return err;
2765
2766 err = do_move_mount(&old_path, path);
2767 path_put(&old_path);
2768 return err;
2769 }
2770
2771 /*
2772 * add a mount into a namespace's mount tree
2773 */
2774 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2775 struct path *path, int mnt_flags)
2776 {
2777 struct mount *parent = real_mount(path->mnt);
2778
2779 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2780
2781 if (unlikely(!check_mnt(parent))) {
2782 /* that's acceptable only for automounts done in private ns */
2783 if (!(mnt_flags & MNT_SHRINKABLE))
2784 return -EINVAL;
2785 /* ... and for those we'd better have mountpoint still alive */
2786 if (!parent->mnt_ns)
2787 return -EINVAL;
2788 }
2789
2790 /* Refuse the same filesystem on the same mount point */
2791 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2792 path->mnt->mnt_root == path->dentry)
2793 return -EBUSY;
2794
2795 if (d_is_symlink(newmnt->mnt.mnt_root))
2796 return -EINVAL;
2797
2798 newmnt->mnt.mnt_flags = mnt_flags;
2799 return graft_tree(newmnt, parent, mp);
2800 }
2801
2802 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2803
2804 /*
2805 * Create a new mount using a superblock configuration and request it
2806 * be added to the namespace tree.
2807 */
2808 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2809 unsigned int mnt_flags)
2810 {
2811 struct vfsmount *mnt;
2812 struct mountpoint *mp;
2813 struct super_block *sb = fc->root->d_sb;
2814 int error;
2815
2816 error = security_sb_kern_mount(sb);
2817 if (!error && mount_too_revealing(sb, &mnt_flags))
2818 error = -EPERM;
2819
2820 if (unlikely(error)) {
2821 fc_drop_locked(fc);
2822 return error;
2823 }
2824
2825 up_write(&sb->s_umount);
2826
2827 mnt = vfs_create_mount(fc);
2828 if (IS_ERR(mnt))
2829 return PTR_ERR(mnt);
2830
2831 mnt_warn_timestamp_expiry(mountpoint, mnt);
2832
2833 mp = lock_mount(mountpoint);
2834 if (IS_ERR(mp)) {
2835 mntput(mnt);
2836 return PTR_ERR(mp);
2837 }
2838 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2839 unlock_mount(mp);
2840 if (error < 0)
2841 mntput(mnt);
2842 return error;
2843 }
2844
2845 /*
2846 * create a new mount for userspace and request it to be added into the
2847 * namespace's tree
2848 */
2849 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2850 int mnt_flags, const char *name, void *data)
2851 {
2852 struct file_system_type *type;
2853 struct fs_context *fc;
2854 const char *subtype = NULL;
2855 int err = 0;
2856
2857 if (!fstype)
2858 return -EINVAL;
2859
2860 type = get_fs_type(fstype);
2861 if (!type)
2862 return -ENODEV;
2863
2864 if (type->fs_flags & FS_HAS_SUBTYPE) {
2865 subtype = strchr(fstype, '.');
2866 if (subtype) {
2867 subtype++;
2868 if (!*subtype) {
2869 put_filesystem(type);
2870 return -EINVAL;
2871 }
2872 }
2873 }
2874
2875 fc = fs_context_for_mount(type, sb_flags);
2876 put_filesystem(type);
2877 if (IS_ERR(fc))
2878 return PTR_ERR(fc);
2879
2880 if (subtype)
2881 err = vfs_parse_fs_string(fc, "subtype",
2882 subtype, strlen(subtype));
2883 if (!err && name)
2884 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2885 if (!err)
2886 err = parse_monolithic_mount_data(fc, data);
2887 if (!err && !mount_capable(fc))
2888 err = -EPERM;
2889 if (!err)
2890 err = vfs_get_tree(fc);
2891 if (!err)
2892 err = do_new_mount_fc(fc, path, mnt_flags);
2893
2894 put_fs_context(fc);
2895 return err;
2896 }
2897
2898 int finish_automount(struct vfsmount *m, struct path *path)
2899 {
2900 struct dentry *dentry = path->dentry;
2901 struct mountpoint *mp;
2902 struct mount *mnt;
2903 int err;
2904
2905 if (!m)
2906 return 0;
2907 if (IS_ERR(m))
2908 return PTR_ERR(m);
2909
2910 mnt = real_mount(m);
2911 /* The new mount record should have at least 2 refs to prevent it being
2912 * expired before we get a chance to add it
2913 */
2914 BUG_ON(mnt_get_count(mnt) < 2);
2915
2916 if (m->mnt_sb == path->mnt->mnt_sb &&
2917 m->mnt_root == dentry) {
2918 err = -ELOOP;
2919 goto discard;
2920 }
2921
2922 /*
2923 * we don't want to use lock_mount() - in this case finding something
2924 * that overmounts our mountpoint to be means "quitely drop what we've
2925 * got", not "try to mount it on top".
2926 */
2927 inode_lock(dentry->d_inode);
2928 namespace_lock();
2929 if (unlikely(cant_mount(dentry))) {
2930 err = -ENOENT;
2931 goto discard_locked;
2932 }
2933 rcu_read_lock();
2934 if (unlikely(__lookup_mnt(path->mnt, dentry))) {
2935 rcu_read_unlock();
2936 err = 0;
2937 goto discard_locked;
2938 }
2939 rcu_read_unlock();
2940 mp = get_mountpoint(dentry);
2941 if (IS_ERR(mp)) {
2942 err = PTR_ERR(mp);
2943 goto discard_locked;
2944 }
2945
2946 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2947 unlock_mount(mp);
2948 if (unlikely(err))
2949 goto discard;
2950 mntput(m);
2951 return 0;
2952
2953 discard_locked:
2954 namespace_unlock();
2955 inode_unlock(dentry->d_inode);
2956 discard:
2957 /* remove m from any expiration list it may be on */
2958 if (!list_empty(&mnt->mnt_expire)) {
2959 namespace_lock();
2960 list_del_init(&mnt->mnt_expire);
2961 namespace_unlock();
2962 }
2963 mntput(m);
2964 mntput(m);
2965 return err;
2966 }
2967
2968 /**
2969 * mnt_set_expiry - Put a mount on an expiration list
2970 * @mnt: The mount to list.
2971 * @expiry_list: The list to add the mount to.
2972 */
2973 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2974 {
2975 namespace_lock();
2976
2977 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2978
2979 namespace_unlock();
2980 }
2981 EXPORT_SYMBOL(mnt_set_expiry);
2982
2983 /*
2984 * process a list of expirable mountpoints with the intent of discarding any
2985 * mountpoints that aren't in use and haven't been touched since last we came
2986 * here
2987 */
2988 void mark_mounts_for_expiry(struct list_head *mounts)
2989 {
2990 struct mount *mnt, *next;
2991 LIST_HEAD(graveyard);
2992
2993 if (list_empty(mounts))
2994 return;
2995
2996 namespace_lock();
2997 lock_mount_hash();
2998
2999 /* extract from the expiration list every vfsmount that matches the
3000 * following criteria:
3001 * - only referenced by its parent vfsmount
3002 * - still marked for expiry (marked on the last call here; marks are
3003 * cleared by mntput())
3004 */
3005 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3006 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3007 propagate_mount_busy(mnt, 1))
3008 continue;
3009 list_move(&mnt->mnt_expire, &graveyard);
3010 }
3011 while (!list_empty(&graveyard)) {
3012 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3013 touch_mnt_namespace(mnt->mnt_ns);
3014 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3015 }
3016 unlock_mount_hash();
3017 namespace_unlock();
3018 }
3019
3020 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3021
3022 /*
3023 * Ripoff of 'select_parent()'
3024 *
3025 * search the list of submounts for a given mountpoint, and move any
3026 * shrinkable submounts to the 'graveyard' list.
3027 */
3028 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3029 {
3030 struct mount *this_parent = parent;
3031 struct list_head *next;
3032 int found = 0;
3033
3034 repeat:
3035 next = this_parent->mnt_mounts.next;
3036 resume:
3037 while (next != &this_parent->mnt_mounts) {
3038 struct list_head *tmp = next;
3039 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3040
3041 next = tmp->next;
3042 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3043 continue;
3044 /*
3045 * Descend a level if the d_mounts list is non-empty.
3046 */
3047 if (!list_empty(&mnt->mnt_mounts)) {
3048 this_parent = mnt;
3049 goto repeat;
3050 }
3051
3052 if (!propagate_mount_busy(mnt, 1)) {
3053 list_move_tail(&mnt->mnt_expire, graveyard);
3054 found++;
3055 }
3056 }
3057 /*
3058 * All done at this level ... ascend and resume the search
3059 */
3060 if (this_parent != parent) {
3061 next = this_parent->mnt_child.next;
3062 this_parent = this_parent->mnt_parent;
3063 goto resume;
3064 }
3065 return found;
3066 }
3067
3068 /*
3069 * process a list of expirable mountpoints with the intent of discarding any
3070 * submounts of a specific parent mountpoint
3071 *
3072 * mount_lock must be held for write
3073 */
3074 static void shrink_submounts(struct mount *mnt)
3075 {
3076 LIST_HEAD(graveyard);
3077 struct mount *m;
3078
3079 /* extract submounts of 'mountpoint' from the expiration list */
3080 while (select_submounts(mnt, &graveyard)) {
3081 while (!list_empty(&graveyard)) {
3082 m = list_first_entry(&graveyard, struct mount,
3083 mnt_expire);
3084 touch_mnt_namespace(m->mnt_ns);
3085 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3086 }
3087 }
3088 }
3089
3090 static void *copy_mount_options(const void __user * data)
3091 {
3092 char *copy;
3093 unsigned left, offset;
3094
3095 if (!data)
3096 return NULL;
3097
3098 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3099 if (!copy)
3100 return ERR_PTR(-ENOMEM);
3101
3102 left = copy_from_user(copy, data, PAGE_SIZE);
3103
3104 /*
3105 * Not all architectures have an exact copy_from_user(). Resort to
3106 * byte at a time.
3107 */
3108 offset = PAGE_SIZE - left;
3109 while (left) {
3110 char c;
3111 if (get_user(c, (const char __user *)data + offset))
3112 break;
3113 copy[offset] = c;
3114 left--;
3115 offset++;
3116 }
3117
3118 if (left == PAGE_SIZE) {
3119 kfree(copy);
3120 return ERR_PTR(-EFAULT);
3121 }
3122
3123 return copy;
3124 }
3125
3126 static char *copy_mount_string(const void __user *data)
3127 {
3128 return data ? strndup_user(data, PATH_MAX) : NULL;
3129 }
3130
3131 /*
3132 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3133 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3134 *
3135 * data is a (void *) that can point to any structure up to
3136 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3137 * information (or be NULL).
3138 *
3139 * Pre-0.97 versions of mount() didn't have a flags word.
3140 * When the flags word was introduced its top half was required
3141 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3142 * Therefore, if this magic number is present, it carries no information
3143 * and must be discarded.
3144 */
3145 int path_mount(const char *dev_name, struct path *path,
3146 const char *type_page, unsigned long flags, void *data_page)
3147 {
3148 unsigned int mnt_flags = 0, sb_flags;
3149 int ret;
3150
3151 /* Discard magic */
3152 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3153 flags &= ~MS_MGC_MSK;
3154
3155 /* Basic sanity checks */
3156 if (data_page)
3157 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3158
3159 if (flags & MS_NOUSER)
3160 return -EINVAL;
3161
3162 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3163 if (ret)
3164 return ret;
3165 if (!may_mount())
3166 return -EPERM;
3167 if ((flags & SB_MANDLOCK) && !may_mandlock())
3168 return -EPERM;
3169
3170 /* Default to relatime unless overriden */
3171 if (!(flags & MS_NOATIME))
3172 mnt_flags |= MNT_RELATIME;
3173
3174 /* Separate the per-mountpoint flags */
3175 if (flags & MS_NOSUID)
3176 mnt_flags |= MNT_NOSUID;
3177 if (flags & MS_NODEV)
3178 mnt_flags |= MNT_NODEV;
3179 if (flags & MS_NOEXEC)
3180 mnt_flags |= MNT_NOEXEC;
3181 if (flags & MS_NOATIME)
3182 mnt_flags |= MNT_NOATIME;
3183 if (flags & MS_NODIRATIME)
3184 mnt_flags |= MNT_NODIRATIME;
3185 if (flags & MS_STRICTATIME)
3186 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3187 if (flags & MS_RDONLY)
3188 mnt_flags |= MNT_READONLY;
3189 if (flags & MS_NOSYMFOLLOW)
3190 mnt_flags |= MNT_NOSYMFOLLOW;
3191
3192 /* The default atime for remount is preservation */
3193 if ((flags & MS_REMOUNT) &&
3194 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3195 MS_STRICTATIME)) == 0)) {
3196 mnt_flags &= ~MNT_ATIME_MASK;
3197 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3198 }
3199
3200 sb_flags = flags & (SB_RDONLY |
3201 SB_SYNCHRONOUS |
3202 SB_MANDLOCK |
3203 SB_DIRSYNC |
3204 SB_SILENT |
3205 SB_POSIXACL |
3206 SB_LAZYTIME |
3207 SB_I_VERSION);
3208
3209 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3210 return do_reconfigure_mnt(path, mnt_flags);
3211 if (flags & MS_REMOUNT)
3212 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3213 if (flags & MS_BIND)
3214 return do_loopback(path, dev_name, flags & MS_REC);
3215 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3216 return do_change_type(path, flags);
3217 if (flags & MS_MOVE)
3218 return do_move_mount_old(path, dev_name);
3219
3220 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3221 data_page);
3222 }
3223
3224 long do_mount(const char *dev_name, const char __user *dir_name,
3225 const char *type_page, unsigned long flags, void *data_page)
3226 {
3227 struct path path;
3228 int ret;
3229
3230 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3231 if (ret)
3232 return ret;
3233 ret = path_mount(dev_name, &path, type_page, flags, data_page);
3234 path_put(&path);
3235 return ret;
3236 }
3237
3238 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3239 {
3240 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3241 }
3242
3243 static void dec_mnt_namespaces(struct ucounts *ucounts)
3244 {
3245 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3246 }
3247
3248 static void free_mnt_ns(struct mnt_namespace *ns)
3249 {
3250 if (!is_anon_ns(ns))
3251 ns_free_inum(&ns->ns);
3252 dec_mnt_namespaces(ns->ucounts);
3253 put_user_ns(ns->user_ns);
3254 kfree(ns);
3255 }
3256
3257 /*
3258 * Assign a sequence number so we can detect when we attempt to bind
3259 * mount a reference to an older mount namespace into the current
3260 * mount namespace, preventing reference counting loops. A 64bit
3261 * number incrementing at 10Ghz will take 12,427 years to wrap which
3262 * is effectively never, so we can ignore the possibility.
3263 */
3264 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3265
3266 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3267 {
3268 struct mnt_namespace *new_ns;
3269 struct ucounts *ucounts;
3270 int ret;
3271
3272 ucounts = inc_mnt_namespaces(user_ns);
3273 if (!ucounts)
3274 return ERR_PTR(-ENOSPC);
3275
3276 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3277 if (!new_ns) {
3278 dec_mnt_namespaces(ucounts);
3279 return ERR_PTR(-ENOMEM);
3280 }
3281 if (!anon) {
3282 ret = ns_alloc_inum(&new_ns->ns);
3283 if (ret) {
3284 kfree(new_ns);
3285 dec_mnt_namespaces(ucounts);
3286 return ERR_PTR(ret);
3287 }
3288 }
3289 new_ns->ns.ops = &mntns_operations;
3290 if (!anon)
3291 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3292 refcount_set(&new_ns->ns.count, 1);
3293 INIT_LIST_HEAD(&new_ns->list);
3294 init_waitqueue_head(&new_ns->poll);
3295 spin_lock_init(&new_ns->ns_lock);
3296 new_ns->user_ns = get_user_ns(user_ns);
3297 new_ns->ucounts = ucounts;
3298 return new_ns;
3299 }
3300
3301 __latent_entropy
3302 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3303 struct user_namespace *user_ns, struct fs_struct *new_fs)
3304 {
3305 struct mnt_namespace *new_ns;
3306 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3307 struct mount *p, *q;
3308 struct mount *old;
3309 struct mount *new;
3310 int copy_flags;
3311
3312 BUG_ON(!ns);
3313
3314 if (likely(!(flags & CLONE_NEWNS))) {
3315 get_mnt_ns(ns);
3316 return ns;
3317 }
3318
3319 old = ns->root;
3320
3321 new_ns = alloc_mnt_ns(user_ns, false);
3322 if (IS_ERR(new_ns))
3323 return new_ns;
3324
3325 namespace_lock();
3326 /* First pass: copy the tree topology */
3327 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3328 if (user_ns != ns->user_ns)
3329 copy_flags |= CL_SHARED_TO_SLAVE;
3330 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3331 if (IS_ERR(new)) {
3332 namespace_unlock();
3333 free_mnt_ns(new_ns);
3334 return ERR_CAST(new);
3335 }
3336 if (user_ns != ns->user_ns) {
3337 lock_mount_hash();
3338 lock_mnt_tree(new);
3339 unlock_mount_hash();
3340 }
3341 new_ns->root = new;
3342 list_add_tail(&new_ns->list, &new->mnt_list);
3343
3344 /*
3345 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3346 * as belonging to new namespace. We have already acquired a private
3347 * fs_struct, so tsk->fs->lock is not needed.
3348 */
3349 p = old;
3350 q = new;
3351 while (p) {
3352 q->mnt_ns = new_ns;
3353 new_ns->mounts++;
3354 if (new_fs) {
3355 if (&p->mnt == new_fs->root.mnt) {
3356 new_fs->root.mnt = mntget(&q->mnt);
3357 rootmnt = &p->mnt;
3358 }
3359 if (&p->mnt == new_fs->pwd.mnt) {
3360 new_fs->pwd.mnt = mntget(&q->mnt);
3361 pwdmnt = &p->mnt;
3362 }
3363 }
3364 p = next_mnt(p, old);
3365 q = next_mnt(q, new);
3366 if (!q)
3367 break;
3368 while (p->mnt.mnt_root != q->mnt.mnt_root)
3369 p = next_mnt(p, old);
3370 }
3371 namespace_unlock();
3372
3373 if (rootmnt)
3374 mntput(rootmnt);
3375 if (pwdmnt)
3376 mntput(pwdmnt);
3377
3378 return new_ns;
3379 }
3380
3381 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3382 {
3383 struct mount *mnt = real_mount(m);
3384 struct mnt_namespace *ns;
3385 struct super_block *s;
3386 struct path path;
3387 int err;
3388
3389 ns = alloc_mnt_ns(&init_user_ns, true);
3390 if (IS_ERR(ns)) {
3391 mntput(m);
3392 return ERR_CAST(ns);
3393 }
3394 mnt->mnt_ns = ns;
3395 ns->root = mnt;
3396 ns->mounts++;
3397 list_add(&mnt->mnt_list, &ns->list);
3398
3399 err = vfs_path_lookup(m->mnt_root, m,
3400 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3401
3402 put_mnt_ns(ns);
3403
3404 if (err)
3405 return ERR_PTR(err);
3406
3407 /* trade a vfsmount reference for active sb one */
3408 s = path.mnt->mnt_sb;
3409 atomic_inc(&s->s_active);
3410 mntput(path.mnt);
3411 /* lock the sucker */
3412 down_write(&s->s_umount);
3413 /* ... and return the root of (sub)tree on it */
3414 return path.dentry;
3415 }
3416 EXPORT_SYMBOL(mount_subtree);
3417
3418 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3419 char __user *, type, unsigned long, flags, void __user *, data)
3420 {
3421 int ret;
3422 char *kernel_type;
3423 char *kernel_dev;
3424 void *options;
3425
3426 kernel_type = copy_mount_string(type);
3427 ret = PTR_ERR(kernel_type);
3428 if (IS_ERR(kernel_type))
3429 goto out_type;
3430
3431 kernel_dev = copy_mount_string(dev_name);
3432 ret = PTR_ERR(kernel_dev);
3433 if (IS_ERR(kernel_dev))
3434 goto out_dev;
3435
3436 options = copy_mount_options(data);
3437 ret = PTR_ERR(options);
3438 if (IS_ERR(options))
3439 goto out_data;
3440
3441 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3442
3443 kfree(options);
3444 out_data:
3445 kfree(kernel_dev);
3446 out_dev:
3447 kfree(kernel_type);
3448 out_type:
3449 return ret;
3450 }
3451
3452 /*
3453 * Create a kernel mount representation for a new, prepared superblock
3454 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3455 */
3456 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3457 unsigned int, attr_flags)
3458 {
3459 struct mnt_namespace *ns;
3460 struct fs_context *fc;
3461 struct file *file;
3462 struct path newmount;
3463 struct mount *mnt;
3464 struct fd f;
3465 unsigned int mnt_flags = 0;
3466 long ret;
3467
3468 if (!may_mount())
3469 return -EPERM;
3470
3471 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3472 return -EINVAL;
3473
3474 if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3475 MOUNT_ATTR_NOSUID |
3476 MOUNT_ATTR_NODEV |
3477 MOUNT_ATTR_NOEXEC |
3478 MOUNT_ATTR__ATIME |
3479 MOUNT_ATTR_NODIRATIME))
3480 return -EINVAL;
3481
3482 if (attr_flags & MOUNT_ATTR_RDONLY)
3483 mnt_flags |= MNT_READONLY;
3484 if (attr_flags & MOUNT_ATTR_NOSUID)
3485 mnt_flags |= MNT_NOSUID;
3486 if (attr_flags & MOUNT_ATTR_NODEV)
3487 mnt_flags |= MNT_NODEV;
3488 if (attr_flags & MOUNT_ATTR_NOEXEC)
3489 mnt_flags |= MNT_NOEXEC;
3490 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3491 mnt_flags |= MNT_NODIRATIME;
3492
3493 switch (attr_flags & MOUNT_ATTR__ATIME) {
3494 case MOUNT_ATTR_STRICTATIME:
3495 break;
3496 case MOUNT_ATTR_NOATIME:
3497 mnt_flags |= MNT_NOATIME;
3498 break;
3499 case MOUNT_ATTR_RELATIME:
3500 mnt_flags |= MNT_RELATIME;
3501 break;
3502 default:
3503 return -EINVAL;
3504 }
3505
3506 f = fdget(fs_fd);
3507 if (!f.file)
3508 return -EBADF;
3509
3510 ret = -EINVAL;
3511 if (f.file->f_op != &fscontext_fops)
3512 goto err_fsfd;
3513
3514 fc = f.file->private_data;
3515
3516 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3517 if (ret < 0)
3518 goto err_fsfd;
3519
3520 /* There must be a valid superblock or we can't mount it */
3521 ret = -EINVAL;
3522 if (!fc->root)
3523 goto err_unlock;
3524
3525 ret = -EPERM;
3526 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3527 pr_warn("VFS: Mount too revealing\n");
3528 goto err_unlock;
3529 }
3530
3531 ret = -EBUSY;
3532 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3533 goto err_unlock;
3534
3535 ret = -EPERM;
3536 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3537 goto err_unlock;
3538
3539 newmount.mnt = vfs_create_mount(fc);
3540 if (IS_ERR(newmount.mnt)) {
3541 ret = PTR_ERR(newmount.mnt);
3542 goto err_unlock;
3543 }
3544 newmount.dentry = dget(fc->root);
3545 newmount.mnt->mnt_flags = mnt_flags;
3546
3547 /* We've done the mount bit - now move the file context into more or
3548 * less the same state as if we'd done an fspick(). We don't want to
3549 * do any memory allocation or anything like that at this point as we
3550 * don't want to have to handle any errors incurred.
3551 */
3552 vfs_clean_context(fc);
3553
3554 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3555 if (IS_ERR(ns)) {
3556 ret = PTR_ERR(ns);
3557 goto err_path;
3558 }
3559 mnt = real_mount(newmount.mnt);
3560 mnt->mnt_ns = ns;
3561 ns->root = mnt;
3562 ns->mounts = 1;
3563 list_add(&mnt->mnt_list, &ns->list);
3564 mntget(newmount.mnt);
3565
3566 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3567 * it, not just simply put it.
3568 */
3569 file = dentry_open(&newmount, O_PATH, fc->cred);
3570 if (IS_ERR(file)) {
3571 dissolve_on_fput(newmount.mnt);
3572 ret = PTR_ERR(file);
3573 goto err_path;
3574 }
3575 file->f_mode |= FMODE_NEED_UNMOUNT;
3576
3577 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3578 if (ret >= 0)
3579 fd_install(ret, file);
3580 else
3581 fput(file);
3582
3583 err_path:
3584 path_put(&newmount);
3585 err_unlock:
3586 mutex_unlock(&fc->uapi_mutex);
3587 err_fsfd:
3588 fdput(f);
3589 return ret;
3590 }
3591
3592 /*
3593 * Move a mount from one place to another. In combination with
3594 * fsopen()/fsmount() this is used to install a new mount and in combination
3595 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3596 * a mount subtree.
3597 *
3598 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3599 */
3600 SYSCALL_DEFINE5(move_mount,
3601 int, from_dfd, const char __user *, from_pathname,
3602 int, to_dfd, const char __user *, to_pathname,
3603 unsigned int, flags)
3604 {
3605 struct path from_path, to_path;
3606 unsigned int lflags;
3607 int ret = 0;
3608
3609 if (!may_mount())
3610 return -EPERM;
3611
3612 if (flags & ~MOVE_MOUNT__MASK)
3613 return -EINVAL;
3614
3615 /* If someone gives a pathname, they aren't permitted to move
3616 * from an fd that requires unmount as we can't get at the flag
3617 * to clear it afterwards.
3618 */
3619 lflags = 0;
3620 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3621 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3622 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3623
3624 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3625 if (ret < 0)
3626 return ret;
3627
3628 lflags = 0;
3629 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3630 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3631 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3632
3633 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3634 if (ret < 0)
3635 goto out_from;
3636
3637 ret = security_move_mount(&from_path, &to_path);
3638 if (ret < 0)
3639 goto out_to;
3640
3641 ret = do_move_mount(&from_path, &to_path);
3642
3643 out_to:
3644 path_put(&to_path);
3645 out_from:
3646 path_put(&from_path);
3647 return ret;
3648 }
3649
3650 /*
3651 * Return true if path is reachable from root
3652 *
3653 * namespace_sem or mount_lock is held
3654 */
3655 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3656 const struct path *root)
3657 {
3658 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3659 dentry = mnt->mnt_mountpoint;
3660 mnt = mnt->mnt_parent;
3661 }
3662 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3663 }
3664
3665 bool path_is_under(const struct path *path1, const struct path *path2)
3666 {
3667 bool res;
3668 read_seqlock_excl(&mount_lock);
3669 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3670 read_sequnlock_excl(&mount_lock);
3671 return res;
3672 }
3673 EXPORT_SYMBOL(path_is_under);
3674
3675 /*
3676 * pivot_root Semantics:
3677 * Moves the root file system of the current process to the directory put_old,
3678 * makes new_root as the new root file system of the current process, and sets
3679 * root/cwd of all processes which had them on the current root to new_root.
3680 *
3681 * Restrictions:
3682 * The new_root and put_old must be directories, and must not be on the
3683 * same file system as the current process root. The put_old must be
3684 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3685 * pointed to by put_old must yield the same directory as new_root. No other
3686 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3687 *
3688 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3689 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3690 * in this situation.
3691 *
3692 * Notes:
3693 * - we don't move root/cwd if they are not at the root (reason: if something
3694 * cared enough to change them, it's probably wrong to force them elsewhere)
3695 * - it's okay to pick a root that isn't the root of a file system, e.g.
3696 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3697 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3698 * first.
3699 */
3700 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3701 const char __user *, put_old)
3702 {
3703 struct path new, old, root;
3704 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3705 struct mountpoint *old_mp, *root_mp;
3706 int error;
3707
3708 if (!may_mount())
3709 return -EPERM;
3710
3711 error = user_path_at(AT_FDCWD, new_root,
3712 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3713 if (error)
3714 goto out0;
3715
3716 error = user_path_at(AT_FDCWD, put_old,
3717 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3718 if (error)
3719 goto out1;
3720
3721 error = security_sb_pivotroot(&old, &new);
3722 if (error)
3723 goto out2;
3724
3725 get_fs_root(current->fs, &root);
3726 old_mp = lock_mount(&old);
3727 error = PTR_ERR(old_mp);
3728 if (IS_ERR(old_mp))
3729 goto out3;
3730
3731 error = -EINVAL;
3732 new_mnt = real_mount(new.mnt);
3733 root_mnt = real_mount(root.mnt);
3734 old_mnt = real_mount(old.mnt);
3735 ex_parent = new_mnt->mnt_parent;
3736 root_parent = root_mnt->mnt_parent;
3737 if (IS_MNT_SHARED(old_mnt) ||
3738 IS_MNT_SHARED(ex_parent) ||
3739 IS_MNT_SHARED(root_parent))
3740 goto out4;
3741 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3742 goto out4;
3743 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3744 goto out4;
3745 error = -ENOENT;
3746 if (d_unlinked(new.dentry))
3747 goto out4;
3748 error = -EBUSY;
3749 if (new_mnt == root_mnt || old_mnt == root_mnt)
3750 goto out4; /* loop, on the same file system */
3751 error = -EINVAL;
3752 if (root.mnt->mnt_root != root.dentry)
3753 goto out4; /* not a mountpoint */
3754 if (!mnt_has_parent(root_mnt))
3755 goto out4; /* not attached */
3756 if (new.mnt->mnt_root != new.dentry)
3757 goto out4; /* not a mountpoint */
3758 if (!mnt_has_parent(new_mnt))
3759 goto out4; /* not attached */
3760 /* make sure we can reach put_old from new_root */
3761 if (!is_path_reachable(old_mnt, old.dentry, &new))
3762 goto out4;
3763 /* make certain new is below the root */
3764 if (!is_path_reachable(new_mnt, new.dentry, &root))
3765 goto out4;
3766 lock_mount_hash();
3767 umount_mnt(new_mnt);
3768 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
3769 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3770 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3771 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3772 }
3773 /* mount old root on put_old */
3774 attach_mnt(root_mnt, old_mnt, old_mp);
3775 /* mount new_root on / */
3776 attach_mnt(new_mnt, root_parent, root_mp);
3777 mnt_add_count(root_parent, -1);
3778 touch_mnt_namespace(current->nsproxy->mnt_ns);
3779 /* A moved mount should not expire automatically */
3780 list_del_init(&new_mnt->mnt_expire);
3781 put_mountpoint(root_mp);
3782 unlock_mount_hash();
3783 chroot_fs_refs(&root, &new);
3784 error = 0;
3785 out4:
3786 unlock_mount(old_mp);
3787 if (!error)
3788 mntput_no_expire(ex_parent);
3789 out3:
3790 path_put(&root);
3791 out2:
3792 path_put(&old);
3793 out1:
3794 path_put(&new);
3795 out0:
3796 return error;
3797 }
3798
3799 static void __init init_mount_tree(void)
3800 {
3801 struct vfsmount *mnt;
3802 struct mount *m;
3803 struct mnt_namespace *ns;
3804 struct path root;
3805
3806 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
3807 if (IS_ERR(mnt))
3808 panic("Can't create rootfs");
3809
3810 ns = alloc_mnt_ns(&init_user_ns, false);
3811 if (IS_ERR(ns))
3812 panic("Can't allocate initial namespace");
3813 m = real_mount(mnt);
3814 m->mnt_ns = ns;
3815 ns->root = m;
3816 ns->mounts = 1;
3817 list_add(&m->mnt_list, &ns->list);
3818 init_task.nsproxy->mnt_ns = ns;
3819 get_mnt_ns(ns);
3820
3821 root.mnt = mnt;
3822 root.dentry = mnt->mnt_root;
3823 mnt->mnt_flags |= MNT_LOCKED;
3824
3825 set_fs_pwd(current->fs, &root);
3826 set_fs_root(current->fs, &root);
3827 }
3828
3829 void __init mnt_init(void)
3830 {
3831 int err;
3832
3833 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3834 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3835
3836 mount_hashtable = alloc_large_system_hash("Mount-cache",
3837 sizeof(struct hlist_head),
3838 mhash_entries, 19,
3839 HASH_ZERO,
3840 &m_hash_shift, &m_hash_mask, 0, 0);
3841 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3842 sizeof(struct hlist_head),
3843 mphash_entries, 19,
3844 HASH_ZERO,
3845 &mp_hash_shift, &mp_hash_mask, 0, 0);
3846
3847 if (!mount_hashtable || !mountpoint_hashtable)
3848 panic("Failed to allocate mount hash table\n");
3849
3850 kernfs_init();
3851
3852 err = sysfs_init();
3853 if (err)
3854 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3855 __func__, err);
3856 fs_kobj = kobject_create_and_add("fs", NULL);
3857 if (!fs_kobj)
3858 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3859 shmem_init();
3860 init_rootfs();
3861 init_mount_tree();
3862 }
3863
3864 void put_mnt_ns(struct mnt_namespace *ns)
3865 {
3866 if (!refcount_dec_and_test(&ns->ns.count))
3867 return;
3868 drop_collected_mounts(&ns->root->mnt);
3869 free_mnt_ns(ns);
3870 }
3871
3872 struct vfsmount *kern_mount(struct file_system_type *type)
3873 {
3874 struct vfsmount *mnt;
3875 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
3876 if (!IS_ERR(mnt)) {
3877 /*
3878 * it is a longterm mount, don't release mnt until
3879 * we unmount before file sys is unregistered
3880 */
3881 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3882 }
3883 return mnt;
3884 }
3885 EXPORT_SYMBOL_GPL(kern_mount);
3886
3887 void kern_unmount(struct vfsmount *mnt)
3888 {
3889 /* release long term mount so mount point can be released */
3890 if (!IS_ERR_OR_NULL(mnt)) {
3891 real_mount(mnt)->mnt_ns = NULL;
3892 synchronize_rcu(); /* yecchhh... */
3893 mntput(mnt);
3894 }
3895 }
3896 EXPORT_SYMBOL(kern_unmount);
3897
3898 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
3899 {
3900 unsigned int i;
3901
3902 for (i = 0; i < num; i++)
3903 if (mnt[i])
3904 real_mount(mnt[i])->mnt_ns = NULL;
3905 synchronize_rcu_expedited();
3906 for (i = 0; i < num; i++)
3907 mntput(mnt[i]);
3908 }
3909 EXPORT_SYMBOL(kern_unmount_array);
3910
3911 bool our_mnt(struct vfsmount *mnt)
3912 {
3913 return check_mnt(real_mount(mnt));
3914 }
3915
3916 bool current_chrooted(void)
3917 {
3918 /* Does the current process have a non-standard root */
3919 struct path ns_root;
3920 struct path fs_root;
3921 bool chrooted;
3922
3923 /* Find the namespace root */
3924 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3925 ns_root.dentry = ns_root.mnt->mnt_root;
3926 path_get(&ns_root);
3927 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3928 ;
3929
3930 get_fs_root(current->fs, &fs_root);
3931
3932 chrooted = !path_equal(&fs_root, &ns_root);
3933
3934 path_put(&fs_root);
3935 path_put(&ns_root);
3936
3937 return chrooted;
3938 }
3939
3940 static bool mnt_already_visible(struct mnt_namespace *ns,
3941 const struct super_block *sb,
3942 int *new_mnt_flags)
3943 {
3944 int new_flags = *new_mnt_flags;
3945 struct mount *mnt;
3946 bool visible = false;
3947
3948 down_read(&namespace_sem);
3949 lock_ns_list(ns);
3950 list_for_each_entry(mnt, &ns->list, mnt_list) {
3951 struct mount *child;
3952 int mnt_flags;
3953
3954 if (mnt_is_cursor(mnt))
3955 continue;
3956
3957 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
3958 continue;
3959
3960 /* This mount is not fully visible if it's root directory
3961 * is not the root directory of the filesystem.
3962 */
3963 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3964 continue;
3965
3966 /* A local view of the mount flags */
3967 mnt_flags = mnt->mnt.mnt_flags;
3968
3969 /* Don't miss readonly hidden in the superblock flags */
3970 if (sb_rdonly(mnt->mnt.mnt_sb))
3971 mnt_flags |= MNT_LOCK_READONLY;
3972
3973 /* Verify the mount flags are equal to or more permissive
3974 * than the proposed new mount.
3975 */
3976 if ((mnt_flags & MNT_LOCK_READONLY) &&
3977 !(new_flags & MNT_READONLY))
3978 continue;
3979 if ((mnt_flags & MNT_LOCK_ATIME) &&
3980 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3981 continue;
3982
3983 /* This mount is not fully visible if there are any
3984 * locked child mounts that cover anything except for
3985 * empty directories.
3986 */
3987 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3988 struct inode *inode = child->mnt_mountpoint->d_inode;
3989 /* Only worry about locked mounts */
3990 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3991 continue;
3992 /* Is the directory permanetly empty? */
3993 if (!is_empty_dir_inode(inode))
3994 goto next;
3995 }
3996 /* Preserve the locked attributes */
3997 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3998 MNT_LOCK_ATIME);
3999 visible = true;
4000 goto found;
4001 next: ;
4002 }
4003 found:
4004 unlock_ns_list(ns);
4005 up_read(&namespace_sem);
4006 return visible;
4007 }
4008
4009 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4010 {
4011 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4012 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4013 unsigned long s_iflags;
4014
4015 if (ns->user_ns == &init_user_ns)
4016 return false;
4017
4018 /* Can this filesystem be too revealing? */
4019 s_iflags = sb->s_iflags;
4020 if (!(s_iflags & SB_I_USERNS_VISIBLE))
4021 return false;
4022
4023 if ((s_iflags & required_iflags) != required_iflags) {
4024 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4025 required_iflags);
4026 return true;
4027 }
4028
4029 return !mnt_already_visible(ns, sb, new_mnt_flags);
4030 }
4031
4032 bool mnt_may_suid(struct vfsmount *mnt)
4033 {
4034 /*
4035 * Foreign mounts (accessed via fchdir or through /proc
4036 * symlinks) are always treated as if they are nosuid. This
4037 * prevents namespaces from trusting potentially unsafe
4038 * suid/sgid bits, file caps, or security labels that originate
4039 * in other namespaces.
4040 */
4041 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4042 current_in_userns(mnt->mnt_sb->s_user_ns);
4043 }
4044
4045 static struct ns_common *mntns_get(struct task_struct *task)
4046 {
4047 struct ns_common *ns = NULL;
4048 struct nsproxy *nsproxy;
4049
4050 task_lock(task);
4051 nsproxy = task->nsproxy;
4052 if (nsproxy) {
4053 ns = &nsproxy->mnt_ns->ns;
4054 get_mnt_ns(to_mnt_ns(ns));
4055 }
4056 task_unlock(task);
4057
4058 return ns;
4059 }
4060
4061 static void mntns_put(struct ns_common *ns)
4062 {
4063 put_mnt_ns(to_mnt_ns(ns));
4064 }
4065
4066 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4067 {
4068 struct nsproxy *nsproxy = nsset->nsproxy;
4069 struct fs_struct *fs = nsset->fs;
4070 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4071 struct user_namespace *user_ns = nsset->cred->user_ns;
4072 struct path root;
4073 int err;
4074
4075 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4076 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4077 !ns_capable(user_ns, CAP_SYS_ADMIN))
4078 return -EPERM;
4079
4080 if (is_anon_ns(mnt_ns))
4081 return -EINVAL;
4082
4083 if (fs->users != 1)
4084 return -EINVAL;
4085
4086 get_mnt_ns(mnt_ns);
4087 old_mnt_ns = nsproxy->mnt_ns;
4088 nsproxy->mnt_ns = mnt_ns;
4089
4090 /* Find the root */
4091 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4092 "/", LOOKUP_DOWN, &root);
4093 if (err) {
4094 /* revert to old namespace */
4095 nsproxy->mnt_ns = old_mnt_ns;
4096 put_mnt_ns(mnt_ns);
4097 return err;
4098 }
4099
4100 put_mnt_ns(old_mnt_ns);
4101
4102 /* Update the pwd and root */
4103 set_fs_pwd(fs, &root);
4104 set_fs_root(fs, &root);
4105
4106 path_put(&root);
4107 return 0;
4108 }
4109
4110 static struct user_namespace *mntns_owner(struct ns_common *ns)
4111 {
4112 return to_mnt_ns(ns)->user_ns;
4113 }
4114
4115 const struct proc_ns_operations mntns_operations = {
4116 .name = "mnt",
4117 .type = CLONE_NEWNS,
4118 .get = mntns_get,
4119 .put = mntns_put,
4120 .install = mntns_install,
4121 .owner = mntns_owner,
4122 };