]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/namespace.c
Merge remote-tracking branch 'mkp-scsi/4.10/scsi-fixes' into fixes
[mirror_ubuntu-zesty-kernel.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
29
30 /* Maximum number of mounts in a mount namespace */
31 unsigned int sysctl_mount_max __read_mostly = 100000;
32
33 static unsigned int m_hash_mask __read_mostly;
34 static unsigned int m_hash_shift __read_mostly;
35 static unsigned int mp_hash_mask __read_mostly;
36 static unsigned int mp_hash_shift __read_mostly;
37
38 static __initdata unsigned long mhash_entries;
39 static int __init set_mhash_entries(char *str)
40 {
41 if (!str)
42 return 0;
43 mhash_entries = simple_strtoul(str, &str, 0);
44 return 1;
45 }
46 __setup("mhash_entries=", set_mhash_entries);
47
48 static __initdata unsigned long mphash_entries;
49 static int __init set_mphash_entries(char *str)
50 {
51 if (!str)
52 return 0;
53 mphash_entries = simple_strtoul(str, &str, 0);
54 return 1;
55 }
56 __setup("mphash_entries=", set_mphash_entries);
57
58 static u64 event;
59 static DEFINE_IDA(mnt_id_ida);
60 static DEFINE_IDA(mnt_group_ida);
61 static DEFINE_SPINLOCK(mnt_id_lock);
62 static int mnt_id_start = 0;
63 static int mnt_group_start = 1;
64
65 static struct hlist_head *mount_hashtable __read_mostly;
66 static struct hlist_head *mountpoint_hashtable __read_mostly;
67 static struct kmem_cache *mnt_cache __read_mostly;
68 static DECLARE_RWSEM(namespace_sem);
69
70 /* /sys/fs */
71 struct kobject *fs_kobj;
72 EXPORT_SYMBOL_GPL(fs_kobj);
73
74 /*
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
77 * up the tree.
78 *
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
81 */
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
83
84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
85 {
86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
88 tmp = tmp + (tmp >> m_hash_shift);
89 return &mount_hashtable[tmp & m_hash_mask];
90 }
91
92 static inline struct hlist_head *mp_hash(struct dentry *dentry)
93 {
94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 tmp = tmp + (tmp >> mp_hash_shift);
96 return &mountpoint_hashtable[tmp & mp_hash_mask];
97 }
98
99 static int mnt_alloc_id(struct mount *mnt)
100 {
101 int res;
102
103 retry:
104 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
105 spin_lock(&mnt_id_lock);
106 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
107 if (!res)
108 mnt_id_start = mnt->mnt_id + 1;
109 spin_unlock(&mnt_id_lock);
110 if (res == -EAGAIN)
111 goto retry;
112
113 return res;
114 }
115
116 static void mnt_free_id(struct mount *mnt)
117 {
118 int id = mnt->mnt_id;
119 spin_lock(&mnt_id_lock);
120 ida_remove(&mnt_id_ida, id);
121 if (mnt_id_start > id)
122 mnt_id_start = id;
123 spin_unlock(&mnt_id_lock);
124 }
125
126 /*
127 * Allocate a new peer group ID
128 *
129 * mnt_group_ida is protected by namespace_sem
130 */
131 static int mnt_alloc_group_id(struct mount *mnt)
132 {
133 int res;
134
135 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
136 return -ENOMEM;
137
138 res = ida_get_new_above(&mnt_group_ida,
139 mnt_group_start,
140 &mnt->mnt_group_id);
141 if (!res)
142 mnt_group_start = mnt->mnt_group_id + 1;
143
144 return res;
145 }
146
147 /*
148 * Release a peer group ID
149 */
150 void mnt_release_group_id(struct mount *mnt)
151 {
152 int id = mnt->mnt_group_id;
153 ida_remove(&mnt_group_ida, id);
154 if (mnt_group_start > id)
155 mnt_group_start = id;
156 mnt->mnt_group_id = 0;
157 }
158
159 /*
160 * vfsmount lock must be held for read
161 */
162 static inline void mnt_add_count(struct mount *mnt, int n)
163 {
164 #ifdef CONFIG_SMP
165 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
166 #else
167 preempt_disable();
168 mnt->mnt_count += n;
169 preempt_enable();
170 #endif
171 }
172
173 /*
174 * vfsmount lock must be held for write
175 */
176 unsigned int mnt_get_count(struct mount *mnt)
177 {
178 #ifdef CONFIG_SMP
179 unsigned int count = 0;
180 int cpu;
181
182 for_each_possible_cpu(cpu) {
183 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
184 }
185
186 return count;
187 #else
188 return mnt->mnt_count;
189 #endif
190 }
191
192 static void drop_mountpoint(struct fs_pin *p)
193 {
194 struct mount *m = container_of(p, struct mount, mnt_umount);
195 dput(m->mnt_ex_mountpoint);
196 pin_remove(p);
197 mntput(&m->mnt);
198 }
199
200 static struct mount *alloc_vfsmnt(const char *name)
201 {
202 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
203 if (mnt) {
204 int err;
205
206 err = mnt_alloc_id(mnt);
207 if (err)
208 goto out_free_cache;
209
210 if (name) {
211 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
212 if (!mnt->mnt_devname)
213 goto out_free_id;
214 }
215
216 #ifdef CONFIG_SMP
217 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
218 if (!mnt->mnt_pcp)
219 goto out_free_devname;
220
221 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
222 #else
223 mnt->mnt_count = 1;
224 mnt->mnt_writers = 0;
225 #endif
226
227 INIT_HLIST_NODE(&mnt->mnt_hash);
228 INIT_LIST_HEAD(&mnt->mnt_child);
229 INIT_LIST_HEAD(&mnt->mnt_mounts);
230 INIT_LIST_HEAD(&mnt->mnt_list);
231 INIT_LIST_HEAD(&mnt->mnt_expire);
232 INIT_LIST_HEAD(&mnt->mnt_share);
233 INIT_LIST_HEAD(&mnt->mnt_slave_list);
234 INIT_LIST_HEAD(&mnt->mnt_slave);
235 INIT_HLIST_NODE(&mnt->mnt_mp_list);
236 #ifdef CONFIG_FSNOTIFY
237 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
238 #endif
239 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
240 }
241 return mnt;
242
243 #ifdef CONFIG_SMP
244 out_free_devname:
245 kfree_const(mnt->mnt_devname);
246 #endif
247 out_free_id:
248 mnt_free_id(mnt);
249 out_free_cache:
250 kmem_cache_free(mnt_cache, mnt);
251 return NULL;
252 }
253
254 /*
255 * Most r/o checks on a fs are for operations that take
256 * discrete amounts of time, like a write() or unlink().
257 * We must keep track of when those operations start
258 * (for permission checks) and when they end, so that
259 * we can determine when writes are able to occur to
260 * a filesystem.
261 */
262 /*
263 * __mnt_is_readonly: check whether a mount is read-only
264 * @mnt: the mount to check for its write status
265 *
266 * This shouldn't be used directly ouside of the VFS.
267 * It does not guarantee that the filesystem will stay
268 * r/w, just that it is right *now*. This can not and
269 * should not be used in place of IS_RDONLY(inode).
270 * mnt_want/drop_write() will _keep_ the filesystem
271 * r/w.
272 */
273 int __mnt_is_readonly(struct vfsmount *mnt)
274 {
275 if (mnt->mnt_flags & MNT_READONLY)
276 return 1;
277 if (mnt->mnt_sb->s_flags & MS_RDONLY)
278 return 1;
279 return 0;
280 }
281 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
282
283 static inline void mnt_inc_writers(struct mount *mnt)
284 {
285 #ifdef CONFIG_SMP
286 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
287 #else
288 mnt->mnt_writers++;
289 #endif
290 }
291
292 static inline void mnt_dec_writers(struct mount *mnt)
293 {
294 #ifdef CONFIG_SMP
295 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
296 #else
297 mnt->mnt_writers--;
298 #endif
299 }
300
301 static unsigned int mnt_get_writers(struct mount *mnt)
302 {
303 #ifdef CONFIG_SMP
304 unsigned int count = 0;
305 int cpu;
306
307 for_each_possible_cpu(cpu) {
308 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
309 }
310
311 return count;
312 #else
313 return mnt->mnt_writers;
314 #endif
315 }
316
317 static int mnt_is_readonly(struct vfsmount *mnt)
318 {
319 if (mnt->mnt_sb->s_readonly_remount)
320 return 1;
321 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
322 smp_rmb();
323 return __mnt_is_readonly(mnt);
324 }
325
326 /*
327 * Most r/o & frozen checks on a fs are for operations that take discrete
328 * amounts of time, like a write() or unlink(). We must keep track of when
329 * those operations start (for permission checks) and when they end, so that we
330 * can determine when writes are able to occur to a filesystem.
331 */
332 /**
333 * __mnt_want_write - get write access to a mount without freeze protection
334 * @m: the mount on which to take a write
335 *
336 * This tells the low-level filesystem that a write is about to be performed to
337 * it, and makes sure that writes are allowed (mnt it read-write) before
338 * returning success. This operation does not protect against filesystem being
339 * frozen. When the write operation is finished, __mnt_drop_write() must be
340 * called. This is effectively a refcount.
341 */
342 int __mnt_want_write(struct vfsmount *m)
343 {
344 struct mount *mnt = real_mount(m);
345 int ret = 0;
346
347 preempt_disable();
348 mnt_inc_writers(mnt);
349 /*
350 * The store to mnt_inc_writers must be visible before we pass
351 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
352 * incremented count after it has set MNT_WRITE_HOLD.
353 */
354 smp_mb();
355 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
356 cpu_relax();
357 /*
358 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
359 * be set to match its requirements. So we must not load that until
360 * MNT_WRITE_HOLD is cleared.
361 */
362 smp_rmb();
363 if (mnt_is_readonly(m)) {
364 mnt_dec_writers(mnt);
365 ret = -EROFS;
366 }
367 preempt_enable();
368
369 return ret;
370 }
371
372 /**
373 * mnt_want_write - get write access to a mount
374 * @m: the mount on which to take a write
375 *
376 * This tells the low-level filesystem that a write is about to be performed to
377 * it, and makes sure that writes are allowed (mount is read-write, filesystem
378 * is not frozen) before returning success. When the write operation is
379 * finished, mnt_drop_write() must be called. This is effectively a refcount.
380 */
381 int mnt_want_write(struct vfsmount *m)
382 {
383 int ret;
384
385 sb_start_write(m->mnt_sb);
386 ret = __mnt_want_write(m);
387 if (ret)
388 sb_end_write(m->mnt_sb);
389 return ret;
390 }
391 EXPORT_SYMBOL_GPL(mnt_want_write);
392
393 /**
394 * mnt_clone_write - get write access to a mount
395 * @mnt: the mount on which to take a write
396 *
397 * This is effectively like mnt_want_write, except
398 * it must only be used to take an extra write reference
399 * on a mountpoint that we already know has a write reference
400 * on it. This allows some optimisation.
401 *
402 * After finished, mnt_drop_write must be called as usual to
403 * drop the reference.
404 */
405 int mnt_clone_write(struct vfsmount *mnt)
406 {
407 /* superblock may be r/o */
408 if (__mnt_is_readonly(mnt))
409 return -EROFS;
410 preempt_disable();
411 mnt_inc_writers(real_mount(mnt));
412 preempt_enable();
413 return 0;
414 }
415 EXPORT_SYMBOL_GPL(mnt_clone_write);
416
417 /**
418 * __mnt_want_write_file - get write access to a file's mount
419 * @file: the file who's mount on which to take a write
420 *
421 * This is like __mnt_want_write, but it takes a file and can
422 * do some optimisations if the file is open for write already
423 */
424 int __mnt_want_write_file(struct file *file)
425 {
426 if (!(file->f_mode & FMODE_WRITER))
427 return __mnt_want_write(file->f_path.mnt);
428 else
429 return mnt_clone_write(file->f_path.mnt);
430 }
431
432 /**
433 * mnt_want_write_file - get write access to a file's mount
434 * @file: the file who's mount on which to take a write
435 *
436 * This is like mnt_want_write, but it takes a file and can
437 * do some optimisations if the file is open for write already
438 */
439 int mnt_want_write_file(struct file *file)
440 {
441 int ret;
442
443 sb_start_write(file->f_path.mnt->mnt_sb);
444 ret = __mnt_want_write_file(file);
445 if (ret)
446 sb_end_write(file->f_path.mnt->mnt_sb);
447 return ret;
448 }
449 EXPORT_SYMBOL_GPL(mnt_want_write_file);
450
451 /**
452 * __mnt_drop_write - give up write access to a mount
453 * @mnt: the mount on which to give up write access
454 *
455 * Tells the low-level filesystem that we are done
456 * performing writes to it. Must be matched with
457 * __mnt_want_write() call above.
458 */
459 void __mnt_drop_write(struct vfsmount *mnt)
460 {
461 preempt_disable();
462 mnt_dec_writers(real_mount(mnt));
463 preempt_enable();
464 }
465
466 /**
467 * mnt_drop_write - give up write access to a mount
468 * @mnt: the mount on which to give up write access
469 *
470 * Tells the low-level filesystem that we are done performing writes to it and
471 * also allows filesystem to be frozen again. Must be matched with
472 * mnt_want_write() call above.
473 */
474 void mnt_drop_write(struct vfsmount *mnt)
475 {
476 __mnt_drop_write(mnt);
477 sb_end_write(mnt->mnt_sb);
478 }
479 EXPORT_SYMBOL_GPL(mnt_drop_write);
480
481 void __mnt_drop_write_file(struct file *file)
482 {
483 __mnt_drop_write(file->f_path.mnt);
484 }
485
486 void mnt_drop_write_file(struct file *file)
487 {
488 mnt_drop_write(file->f_path.mnt);
489 }
490 EXPORT_SYMBOL(mnt_drop_write_file);
491
492 static int mnt_make_readonly(struct mount *mnt)
493 {
494 int ret = 0;
495
496 lock_mount_hash();
497 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
498 /*
499 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
500 * should be visible before we do.
501 */
502 smp_mb();
503
504 /*
505 * With writers on hold, if this value is zero, then there are
506 * definitely no active writers (although held writers may subsequently
507 * increment the count, they'll have to wait, and decrement it after
508 * seeing MNT_READONLY).
509 *
510 * It is OK to have counter incremented on one CPU and decremented on
511 * another: the sum will add up correctly. The danger would be when we
512 * sum up each counter, if we read a counter before it is incremented,
513 * but then read another CPU's count which it has been subsequently
514 * decremented from -- we would see more decrements than we should.
515 * MNT_WRITE_HOLD protects against this scenario, because
516 * mnt_want_write first increments count, then smp_mb, then spins on
517 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
518 * we're counting up here.
519 */
520 if (mnt_get_writers(mnt) > 0)
521 ret = -EBUSY;
522 else
523 mnt->mnt.mnt_flags |= MNT_READONLY;
524 /*
525 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
526 * that become unheld will see MNT_READONLY.
527 */
528 smp_wmb();
529 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
530 unlock_mount_hash();
531 return ret;
532 }
533
534 static void __mnt_unmake_readonly(struct mount *mnt)
535 {
536 lock_mount_hash();
537 mnt->mnt.mnt_flags &= ~MNT_READONLY;
538 unlock_mount_hash();
539 }
540
541 int sb_prepare_remount_readonly(struct super_block *sb)
542 {
543 struct mount *mnt;
544 int err = 0;
545
546 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
547 if (atomic_long_read(&sb->s_remove_count))
548 return -EBUSY;
549
550 lock_mount_hash();
551 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
552 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
553 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
554 smp_mb();
555 if (mnt_get_writers(mnt) > 0) {
556 err = -EBUSY;
557 break;
558 }
559 }
560 }
561 if (!err && atomic_long_read(&sb->s_remove_count))
562 err = -EBUSY;
563
564 if (!err) {
565 sb->s_readonly_remount = 1;
566 smp_wmb();
567 }
568 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
569 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
570 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
571 }
572 unlock_mount_hash();
573
574 return err;
575 }
576
577 static void free_vfsmnt(struct mount *mnt)
578 {
579 kfree_const(mnt->mnt_devname);
580 #ifdef CONFIG_SMP
581 free_percpu(mnt->mnt_pcp);
582 #endif
583 kmem_cache_free(mnt_cache, mnt);
584 }
585
586 static void delayed_free_vfsmnt(struct rcu_head *head)
587 {
588 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
589 }
590
591 /* call under rcu_read_lock */
592 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
593 {
594 struct mount *mnt;
595 if (read_seqretry(&mount_lock, seq))
596 return 1;
597 if (bastard == NULL)
598 return 0;
599 mnt = real_mount(bastard);
600 mnt_add_count(mnt, 1);
601 if (likely(!read_seqretry(&mount_lock, seq)))
602 return 0;
603 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
604 mnt_add_count(mnt, -1);
605 return 1;
606 }
607 return -1;
608 }
609
610 /* call under rcu_read_lock */
611 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
612 {
613 int res = __legitimize_mnt(bastard, seq);
614 if (likely(!res))
615 return true;
616 if (unlikely(res < 0)) {
617 rcu_read_unlock();
618 mntput(bastard);
619 rcu_read_lock();
620 }
621 return false;
622 }
623
624 /*
625 * find the first mount at @dentry on vfsmount @mnt.
626 * call under rcu_read_lock()
627 */
628 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
629 {
630 struct hlist_head *head = m_hash(mnt, dentry);
631 struct mount *p;
632
633 hlist_for_each_entry_rcu(p, head, mnt_hash)
634 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
635 return p;
636 return NULL;
637 }
638
639 /*
640 * find the last mount at @dentry on vfsmount @mnt.
641 * mount_lock must be held.
642 */
643 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
644 {
645 struct mount *p, *res = NULL;
646 p = __lookup_mnt(mnt, dentry);
647 if (!p)
648 goto out;
649 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
650 res = p;
651 hlist_for_each_entry_continue(p, mnt_hash) {
652 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
653 break;
654 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
655 res = p;
656 }
657 out:
658 return res;
659 }
660
661 /*
662 * lookup_mnt - Return the first child mount mounted at path
663 *
664 * "First" means first mounted chronologically. If you create the
665 * following mounts:
666 *
667 * mount /dev/sda1 /mnt
668 * mount /dev/sda2 /mnt
669 * mount /dev/sda3 /mnt
670 *
671 * Then lookup_mnt() on the base /mnt dentry in the root mount will
672 * return successively the root dentry and vfsmount of /dev/sda1, then
673 * /dev/sda2, then /dev/sda3, then NULL.
674 *
675 * lookup_mnt takes a reference to the found vfsmount.
676 */
677 struct vfsmount *lookup_mnt(const struct path *path)
678 {
679 struct mount *child_mnt;
680 struct vfsmount *m;
681 unsigned seq;
682
683 rcu_read_lock();
684 do {
685 seq = read_seqbegin(&mount_lock);
686 child_mnt = __lookup_mnt(path->mnt, path->dentry);
687 m = child_mnt ? &child_mnt->mnt : NULL;
688 } while (!legitimize_mnt(m, seq));
689 rcu_read_unlock();
690 return m;
691 }
692
693 /*
694 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
695 * current mount namespace.
696 *
697 * The common case is dentries are not mountpoints at all and that
698 * test is handled inline. For the slow case when we are actually
699 * dealing with a mountpoint of some kind, walk through all of the
700 * mounts in the current mount namespace and test to see if the dentry
701 * is a mountpoint.
702 *
703 * The mount_hashtable is not usable in the context because we
704 * need to identify all mounts that may be in the current mount
705 * namespace not just a mount that happens to have some specified
706 * parent mount.
707 */
708 bool __is_local_mountpoint(struct dentry *dentry)
709 {
710 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
711 struct mount *mnt;
712 bool is_covered = false;
713
714 if (!d_mountpoint(dentry))
715 goto out;
716
717 down_read(&namespace_sem);
718 list_for_each_entry(mnt, &ns->list, mnt_list) {
719 is_covered = (mnt->mnt_mountpoint == dentry);
720 if (is_covered)
721 break;
722 }
723 up_read(&namespace_sem);
724 out:
725 return is_covered;
726 }
727
728 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
729 {
730 struct hlist_head *chain = mp_hash(dentry);
731 struct mountpoint *mp;
732
733 hlist_for_each_entry(mp, chain, m_hash) {
734 if (mp->m_dentry == dentry) {
735 /* might be worth a WARN_ON() */
736 if (d_unlinked(dentry))
737 return ERR_PTR(-ENOENT);
738 mp->m_count++;
739 return mp;
740 }
741 }
742 return NULL;
743 }
744
745 static struct mountpoint *new_mountpoint(struct dentry *dentry)
746 {
747 struct hlist_head *chain = mp_hash(dentry);
748 struct mountpoint *mp;
749 int ret;
750
751 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
752 if (!mp)
753 return ERR_PTR(-ENOMEM);
754
755 ret = d_set_mounted(dentry);
756 if (ret) {
757 kfree(mp);
758 return ERR_PTR(ret);
759 }
760
761 mp->m_dentry = dentry;
762 mp->m_count = 1;
763 hlist_add_head(&mp->m_hash, chain);
764 INIT_HLIST_HEAD(&mp->m_list);
765 return mp;
766 }
767
768 static void put_mountpoint(struct mountpoint *mp)
769 {
770 if (!--mp->m_count) {
771 struct dentry *dentry = mp->m_dentry;
772 BUG_ON(!hlist_empty(&mp->m_list));
773 spin_lock(&dentry->d_lock);
774 dentry->d_flags &= ~DCACHE_MOUNTED;
775 spin_unlock(&dentry->d_lock);
776 hlist_del(&mp->m_hash);
777 kfree(mp);
778 }
779 }
780
781 static inline int check_mnt(struct mount *mnt)
782 {
783 return mnt->mnt_ns == current->nsproxy->mnt_ns;
784 }
785
786 /*
787 * vfsmount lock must be held for write
788 */
789 static void touch_mnt_namespace(struct mnt_namespace *ns)
790 {
791 if (ns) {
792 ns->event = ++event;
793 wake_up_interruptible(&ns->poll);
794 }
795 }
796
797 /*
798 * vfsmount lock must be held for write
799 */
800 static void __touch_mnt_namespace(struct mnt_namespace *ns)
801 {
802 if (ns && ns->event != event) {
803 ns->event = event;
804 wake_up_interruptible(&ns->poll);
805 }
806 }
807
808 /*
809 * vfsmount lock must be held for write
810 */
811 static void unhash_mnt(struct mount *mnt)
812 {
813 mnt->mnt_parent = mnt;
814 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
815 list_del_init(&mnt->mnt_child);
816 hlist_del_init_rcu(&mnt->mnt_hash);
817 hlist_del_init(&mnt->mnt_mp_list);
818 put_mountpoint(mnt->mnt_mp);
819 mnt->mnt_mp = NULL;
820 }
821
822 /*
823 * vfsmount lock must be held for write
824 */
825 static void detach_mnt(struct mount *mnt, struct path *old_path)
826 {
827 old_path->dentry = mnt->mnt_mountpoint;
828 old_path->mnt = &mnt->mnt_parent->mnt;
829 unhash_mnt(mnt);
830 }
831
832 /*
833 * vfsmount lock must be held for write
834 */
835 static void umount_mnt(struct mount *mnt)
836 {
837 /* old mountpoint will be dropped when we can do that */
838 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
839 unhash_mnt(mnt);
840 }
841
842 /*
843 * vfsmount lock must be held for write
844 */
845 void mnt_set_mountpoint(struct mount *mnt,
846 struct mountpoint *mp,
847 struct mount *child_mnt)
848 {
849 mp->m_count++;
850 mnt_add_count(mnt, 1); /* essentially, that's mntget */
851 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
852 child_mnt->mnt_parent = mnt;
853 child_mnt->mnt_mp = mp;
854 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
855 }
856
857 /*
858 * vfsmount lock must be held for write
859 */
860 static void attach_mnt(struct mount *mnt,
861 struct mount *parent,
862 struct mountpoint *mp)
863 {
864 mnt_set_mountpoint(parent, mp, mnt);
865 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
866 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
867 }
868
869 static void attach_shadowed(struct mount *mnt,
870 struct mount *parent,
871 struct mount *shadows)
872 {
873 if (shadows) {
874 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
875 list_add(&mnt->mnt_child, &shadows->mnt_child);
876 } else {
877 hlist_add_head_rcu(&mnt->mnt_hash,
878 m_hash(&parent->mnt, mnt->mnt_mountpoint));
879 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
880 }
881 }
882
883 /*
884 * vfsmount lock must be held for write
885 */
886 static void commit_tree(struct mount *mnt, struct mount *shadows)
887 {
888 struct mount *parent = mnt->mnt_parent;
889 struct mount *m;
890 LIST_HEAD(head);
891 struct mnt_namespace *n = parent->mnt_ns;
892
893 BUG_ON(parent == mnt);
894
895 list_add_tail(&head, &mnt->mnt_list);
896 list_for_each_entry(m, &head, mnt_list)
897 m->mnt_ns = n;
898
899 list_splice(&head, n->list.prev);
900
901 n->mounts += n->pending_mounts;
902 n->pending_mounts = 0;
903
904 attach_shadowed(mnt, parent, shadows);
905 touch_mnt_namespace(n);
906 }
907
908 static struct mount *next_mnt(struct mount *p, struct mount *root)
909 {
910 struct list_head *next = p->mnt_mounts.next;
911 if (next == &p->mnt_mounts) {
912 while (1) {
913 if (p == root)
914 return NULL;
915 next = p->mnt_child.next;
916 if (next != &p->mnt_parent->mnt_mounts)
917 break;
918 p = p->mnt_parent;
919 }
920 }
921 return list_entry(next, struct mount, mnt_child);
922 }
923
924 static struct mount *skip_mnt_tree(struct mount *p)
925 {
926 struct list_head *prev = p->mnt_mounts.prev;
927 while (prev != &p->mnt_mounts) {
928 p = list_entry(prev, struct mount, mnt_child);
929 prev = p->mnt_mounts.prev;
930 }
931 return p;
932 }
933
934 struct vfsmount *
935 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
936 {
937 struct mount *mnt;
938 struct dentry *root;
939
940 if (!type)
941 return ERR_PTR(-ENODEV);
942
943 mnt = alloc_vfsmnt(name);
944 if (!mnt)
945 return ERR_PTR(-ENOMEM);
946
947 if (flags & MS_KERNMOUNT)
948 mnt->mnt.mnt_flags = MNT_INTERNAL;
949
950 root = mount_fs(type, flags, name, data);
951 if (IS_ERR(root)) {
952 mnt_free_id(mnt);
953 free_vfsmnt(mnt);
954 return ERR_CAST(root);
955 }
956
957 mnt->mnt.mnt_root = root;
958 mnt->mnt.mnt_sb = root->d_sb;
959 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
960 mnt->mnt_parent = mnt;
961 lock_mount_hash();
962 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
963 unlock_mount_hash();
964 return &mnt->mnt;
965 }
966 EXPORT_SYMBOL_GPL(vfs_kern_mount);
967
968 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
969 int flag)
970 {
971 struct super_block *sb = old->mnt.mnt_sb;
972 struct mount *mnt;
973 int err;
974
975 mnt = alloc_vfsmnt(old->mnt_devname);
976 if (!mnt)
977 return ERR_PTR(-ENOMEM);
978
979 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
980 mnt->mnt_group_id = 0; /* not a peer of original */
981 else
982 mnt->mnt_group_id = old->mnt_group_id;
983
984 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
985 err = mnt_alloc_group_id(mnt);
986 if (err)
987 goto out_free;
988 }
989
990 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
991 /* Don't allow unprivileged users to change mount flags */
992 if (flag & CL_UNPRIVILEGED) {
993 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
994
995 if (mnt->mnt.mnt_flags & MNT_READONLY)
996 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
997
998 if (mnt->mnt.mnt_flags & MNT_NODEV)
999 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1000
1001 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1002 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1003
1004 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1005 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1006 }
1007
1008 /* Don't allow unprivileged users to reveal what is under a mount */
1009 if ((flag & CL_UNPRIVILEGED) &&
1010 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1011 mnt->mnt.mnt_flags |= MNT_LOCKED;
1012
1013 atomic_inc(&sb->s_active);
1014 mnt->mnt.mnt_sb = sb;
1015 mnt->mnt.mnt_root = dget(root);
1016 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1017 mnt->mnt_parent = mnt;
1018 lock_mount_hash();
1019 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1020 unlock_mount_hash();
1021
1022 if ((flag & CL_SLAVE) ||
1023 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1024 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1025 mnt->mnt_master = old;
1026 CLEAR_MNT_SHARED(mnt);
1027 } else if (!(flag & CL_PRIVATE)) {
1028 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1029 list_add(&mnt->mnt_share, &old->mnt_share);
1030 if (IS_MNT_SLAVE(old))
1031 list_add(&mnt->mnt_slave, &old->mnt_slave);
1032 mnt->mnt_master = old->mnt_master;
1033 } else {
1034 CLEAR_MNT_SHARED(mnt);
1035 }
1036 if (flag & CL_MAKE_SHARED)
1037 set_mnt_shared(mnt);
1038
1039 /* stick the duplicate mount on the same expiry list
1040 * as the original if that was on one */
1041 if (flag & CL_EXPIRE) {
1042 if (!list_empty(&old->mnt_expire))
1043 list_add(&mnt->mnt_expire, &old->mnt_expire);
1044 }
1045
1046 return mnt;
1047
1048 out_free:
1049 mnt_free_id(mnt);
1050 free_vfsmnt(mnt);
1051 return ERR_PTR(err);
1052 }
1053
1054 static void cleanup_mnt(struct mount *mnt)
1055 {
1056 /*
1057 * This probably indicates that somebody messed
1058 * up a mnt_want/drop_write() pair. If this
1059 * happens, the filesystem was probably unable
1060 * to make r/w->r/o transitions.
1061 */
1062 /*
1063 * The locking used to deal with mnt_count decrement provides barriers,
1064 * so mnt_get_writers() below is safe.
1065 */
1066 WARN_ON(mnt_get_writers(mnt));
1067 if (unlikely(mnt->mnt_pins.first))
1068 mnt_pin_kill(mnt);
1069 fsnotify_vfsmount_delete(&mnt->mnt);
1070 dput(mnt->mnt.mnt_root);
1071 deactivate_super(mnt->mnt.mnt_sb);
1072 mnt_free_id(mnt);
1073 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1074 }
1075
1076 static void __cleanup_mnt(struct rcu_head *head)
1077 {
1078 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1079 }
1080
1081 static LLIST_HEAD(delayed_mntput_list);
1082 static void delayed_mntput(struct work_struct *unused)
1083 {
1084 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1085 struct llist_node *next;
1086
1087 for (; node; node = next) {
1088 next = llist_next(node);
1089 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1090 }
1091 }
1092 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1093
1094 static void mntput_no_expire(struct mount *mnt)
1095 {
1096 rcu_read_lock();
1097 mnt_add_count(mnt, -1);
1098 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1099 rcu_read_unlock();
1100 return;
1101 }
1102 lock_mount_hash();
1103 if (mnt_get_count(mnt)) {
1104 rcu_read_unlock();
1105 unlock_mount_hash();
1106 return;
1107 }
1108 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1109 rcu_read_unlock();
1110 unlock_mount_hash();
1111 return;
1112 }
1113 mnt->mnt.mnt_flags |= MNT_DOOMED;
1114 rcu_read_unlock();
1115
1116 list_del(&mnt->mnt_instance);
1117
1118 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1119 struct mount *p, *tmp;
1120 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1121 umount_mnt(p);
1122 }
1123 }
1124 unlock_mount_hash();
1125
1126 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1127 struct task_struct *task = current;
1128 if (likely(!(task->flags & PF_KTHREAD))) {
1129 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1130 if (!task_work_add(task, &mnt->mnt_rcu, true))
1131 return;
1132 }
1133 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1134 schedule_delayed_work(&delayed_mntput_work, 1);
1135 return;
1136 }
1137 cleanup_mnt(mnt);
1138 }
1139
1140 void mntput(struct vfsmount *mnt)
1141 {
1142 if (mnt) {
1143 struct mount *m = real_mount(mnt);
1144 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1145 if (unlikely(m->mnt_expiry_mark))
1146 m->mnt_expiry_mark = 0;
1147 mntput_no_expire(m);
1148 }
1149 }
1150 EXPORT_SYMBOL(mntput);
1151
1152 struct vfsmount *mntget(struct vfsmount *mnt)
1153 {
1154 if (mnt)
1155 mnt_add_count(real_mount(mnt), 1);
1156 return mnt;
1157 }
1158 EXPORT_SYMBOL(mntget);
1159
1160 /* path_is_mountpoint() - Check if path is a mount in the current
1161 * namespace.
1162 *
1163 * d_mountpoint() can only be used reliably to establish if a dentry is
1164 * not mounted in any namespace and that common case is handled inline.
1165 * d_mountpoint() isn't aware of the possibility there may be multiple
1166 * mounts using a given dentry in a different namespace. This function
1167 * checks if the passed in path is a mountpoint rather than the dentry
1168 * alone.
1169 */
1170 bool path_is_mountpoint(const struct path *path)
1171 {
1172 unsigned seq;
1173 bool res;
1174
1175 if (!d_mountpoint(path->dentry))
1176 return false;
1177
1178 rcu_read_lock();
1179 do {
1180 seq = read_seqbegin(&mount_lock);
1181 res = __path_is_mountpoint(path);
1182 } while (read_seqretry(&mount_lock, seq));
1183 rcu_read_unlock();
1184
1185 return res;
1186 }
1187 EXPORT_SYMBOL(path_is_mountpoint);
1188
1189 struct vfsmount *mnt_clone_internal(const struct path *path)
1190 {
1191 struct mount *p;
1192 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1193 if (IS_ERR(p))
1194 return ERR_CAST(p);
1195 p->mnt.mnt_flags |= MNT_INTERNAL;
1196 return &p->mnt;
1197 }
1198
1199 static inline void mangle(struct seq_file *m, const char *s)
1200 {
1201 seq_escape(m, s, " \t\n\\");
1202 }
1203
1204 /*
1205 * Simple .show_options callback for filesystems which don't want to
1206 * implement more complex mount option showing.
1207 *
1208 * See also save_mount_options().
1209 */
1210 int generic_show_options(struct seq_file *m, struct dentry *root)
1211 {
1212 const char *options;
1213
1214 rcu_read_lock();
1215 options = rcu_dereference(root->d_sb->s_options);
1216
1217 if (options != NULL && options[0]) {
1218 seq_putc(m, ',');
1219 mangle(m, options);
1220 }
1221 rcu_read_unlock();
1222
1223 return 0;
1224 }
1225 EXPORT_SYMBOL(generic_show_options);
1226
1227 /*
1228 * If filesystem uses generic_show_options(), this function should be
1229 * called from the fill_super() callback.
1230 *
1231 * The .remount_fs callback usually needs to be handled in a special
1232 * way, to make sure, that previous options are not overwritten if the
1233 * remount fails.
1234 *
1235 * Also note, that if the filesystem's .remount_fs function doesn't
1236 * reset all options to their default value, but changes only newly
1237 * given options, then the displayed options will not reflect reality
1238 * any more.
1239 */
1240 void save_mount_options(struct super_block *sb, char *options)
1241 {
1242 BUG_ON(sb->s_options);
1243 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1244 }
1245 EXPORT_SYMBOL(save_mount_options);
1246
1247 void replace_mount_options(struct super_block *sb, char *options)
1248 {
1249 char *old = sb->s_options;
1250 rcu_assign_pointer(sb->s_options, options);
1251 if (old) {
1252 synchronize_rcu();
1253 kfree(old);
1254 }
1255 }
1256 EXPORT_SYMBOL(replace_mount_options);
1257
1258 #ifdef CONFIG_PROC_FS
1259 /* iterator; we want it to have access to namespace_sem, thus here... */
1260 static void *m_start(struct seq_file *m, loff_t *pos)
1261 {
1262 struct proc_mounts *p = m->private;
1263
1264 down_read(&namespace_sem);
1265 if (p->cached_event == p->ns->event) {
1266 void *v = p->cached_mount;
1267 if (*pos == p->cached_index)
1268 return v;
1269 if (*pos == p->cached_index + 1) {
1270 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1271 return p->cached_mount = v;
1272 }
1273 }
1274
1275 p->cached_event = p->ns->event;
1276 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1277 p->cached_index = *pos;
1278 return p->cached_mount;
1279 }
1280
1281 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1282 {
1283 struct proc_mounts *p = m->private;
1284
1285 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1286 p->cached_index = *pos;
1287 return p->cached_mount;
1288 }
1289
1290 static void m_stop(struct seq_file *m, void *v)
1291 {
1292 up_read(&namespace_sem);
1293 }
1294
1295 static int m_show(struct seq_file *m, void *v)
1296 {
1297 struct proc_mounts *p = m->private;
1298 struct mount *r = list_entry(v, struct mount, mnt_list);
1299 return p->show(m, &r->mnt);
1300 }
1301
1302 const struct seq_operations mounts_op = {
1303 .start = m_start,
1304 .next = m_next,
1305 .stop = m_stop,
1306 .show = m_show,
1307 };
1308 #endif /* CONFIG_PROC_FS */
1309
1310 /**
1311 * may_umount_tree - check if a mount tree is busy
1312 * @mnt: root of mount tree
1313 *
1314 * This is called to check if a tree of mounts has any
1315 * open files, pwds, chroots or sub mounts that are
1316 * busy.
1317 */
1318 int may_umount_tree(struct vfsmount *m)
1319 {
1320 struct mount *mnt = real_mount(m);
1321 int actual_refs = 0;
1322 int minimum_refs = 0;
1323 struct mount *p;
1324 BUG_ON(!m);
1325
1326 /* write lock needed for mnt_get_count */
1327 lock_mount_hash();
1328 for (p = mnt; p; p = next_mnt(p, mnt)) {
1329 actual_refs += mnt_get_count(p);
1330 minimum_refs += 2;
1331 }
1332 unlock_mount_hash();
1333
1334 if (actual_refs > minimum_refs)
1335 return 0;
1336
1337 return 1;
1338 }
1339
1340 EXPORT_SYMBOL(may_umount_tree);
1341
1342 /**
1343 * may_umount - check if a mount point is busy
1344 * @mnt: root of mount
1345 *
1346 * This is called to check if a mount point has any
1347 * open files, pwds, chroots or sub mounts. If the
1348 * mount has sub mounts this will return busy
1349 * regardless of whether the sub mounts are busy.
1350 *
1351 * Doesn't take quota and stuff into account. IOW, in some cases it will
1352 * give false negatives. The main reason why it's here is that we need
1353 * a non-destructive way to look for easily umountable filesystems.
1354 */
1355 int may_umount(struct vfsmount *mnt)
1356 {
1357 int ret = 1;
1358 down_read(&namespace_sem);
1359 lock_mount_hash();
1360 if (propagate_mount_busy(real_mount(mnt), 2))
1361 ret = 0;
1362 unlock_mount_hash();
1363 up_read(&namespace_sem);
1364 return ret;
1365 }
1366
1367 EXPORT_SYMBOL(may_umount);
1368
1369 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1370
1371 static void namespace_unlock(void)
1372 {
1373 struct hlist_head head;
1374
1375 hlist_move_list(&unmounted, &head);
1376
1377 up_write(&namespace_sem);
1378
1379 if (likely(hlist_empty(&head)))
1380 return;
1381
1382 synchronize_rcu();
1383
1384 group_pin_kill(&head);
1385 }
1386
1387 static inline void namespace_lock(void)
1388 {
1389 down_write(&namespace_sem);
1390 }
1391
1392 enum umount_tree_flags {
1393 UMOUNT_SYNC = 1,
1394 UMOUNT_PROPAGATE = 2,
1395 UMOUNT_CONNECTED = 4,
1396 };
1397
1398 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1399 {
1400 /* Leaving mounts connected is only valid for lazy umounts */
1401 if (how & UMOUNT_SYNC)
1402 return true;
1403
1404 /* A mount without a parent has nothing to be connected to */
1405 if (!mnt_has_parent(mnt))
1406 return true;
1407
1408 /* Because the reference counting rules change when mounts are
1409 * unmounted and connected, umounted mounts may not be
1410 * connected to mounted mounts.
1411 */
1412 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1413 return true;
1414
1415 /* Has it been requested that the mount remain connected? */
1416 if (how & UMOUNT_CONNECTED)
1417 return false;
1418
1419 /* Is the mount locked such that it needs to remain connected? */
1420 if (IS_MNT_LOCKED(mnt))
1421 return false;
1422
1423 /* By default disconnect the mount */
1424 return true;
1425 }
1426
1427 /*
1428 * mount_lock must be held
1429 * namespace_sem must be held for write
1430 */
1431 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1432 {
1433 LIST_HEAD(tmp_list);
1434 struct mount *p;
1435
1436 if (how & UMOUNT_PROPAGATE)
1437 propagate_mount_unlock(mnt);
1438
1439 /* Gather the mounts to umount */
1440 for (p = mnt; p; p = next_mnt(p, mnt)) {
1441 p->mnt.mnt_flags |= MNT_UMOUNT;
1442 list_move(&p->mnt_list, &tmp_list);
1443 }
1444
1445 /* Hide the mounts from mnt_mounts */
1446 list_for_each_entry(p, &tmp_list, mnt_list) {
1447 list_del_init(&p->mnt_child);
1448 }
1449
1450 /* Add propogated mounts to the tmp_list */
1451 if (how & UMOUNT_PROPAGATE)
1452 propagate_umount(&tmp_list);
1453
1454 while (!list_empty(&tmp_list)) {
1455 struct mnt_namespace *ns;
1456 bool disconnect;
1457 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1458 list_del_init(&p->mnt_expire);
1459 list_del_init(&p->mnt_list);
1460 ns = p->mnt_ns;
1461 if (ns) {
1462 ns->mounts--;
1463 __touch_mnt_namespace(ns);
1464 }
1465 p->mnt_ns = NULL;
1466 if (how & UMOUNT_SYNC)
1467 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1468
1469 disconnect = disconnect_mount(p, how);
1470
1471 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1472 disconnect ? &unmounted : NULL);
1473 if (mnt_has_parent(p)) {
1474 mnt_add_count(p->mnt_parent, -1);
1475 if (!disconnect) {
1476 /* Don't forget about p */
1477 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1478 } else {
1479 umount_mnt(p);
1480 }
1481 }
1482 change_mnt_propagation(p, MS_PRIVATE);
1483 }
1484 }
1485
1486 static void shrink_submounts(struct mount *mnt);
1487
1488 static int do_umount(struct mount *mnt, int flags)
1489 {
1490 struct super_block *sb = mnt->mnt.mnt_sb;
1491 int retval;
1492
1493 retval = security_sb_umount(&mnt->mnt, flags);
1494 if (retval)
1495 return retval;
1496
1497 /*
1498 * Allow userspace to request a mountpoint be expired rather than
1499 * unmounting unconditionally. Unmount only happens if:
1500 * (1) the mark is already set (the mark is cleared by mntput())
1501 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1502 */
1503 if (flags & MNT_EXPIRE) {
1504 if (&mnt->mnt == current->fs->root.mnt ||
1505 flags & (MNT_FORCE | MNT_DETACH))
1506 return -EINVAL;
1507
1508 /*
1509 * probably don't strictly need the lock here if we examined
1510 * all race cases, but it's a slowpath.
1511 */
1512 lock_mount_hash();
1513 if (mnt_get_count(mnt) != 2) {
1514 unlock_mount_hash();
1515 return -EBUSY;
1516 }
1517 unlock_mount_hash();
1518
1519 if (!xchg(&mnt->mnt_expiry_mark, 1))
1520 return -EAGAIN;
1521 }
1522
1523 /*
1524 * If we may have to abort operations to get out of this
1525 * mount, and they will themselves hold resources we must
1526 * allow the fs to do things. In the Unix tradition of
1527 * 'Gee thats tricky lets do it in userspace' the umount_begin
1528 * might fail to complete on the first run through as other tasks
1529 * must return, and the like. Thats for the mount program to worry
1530 * about for the moment.
1531 */
1532
1533 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1534 sb->s_op->umount_begin(sb);
1535 }
1536
1537 /*
1538 * No sense to grab the lock for this test, but test itself looks
1539 * somewhat bogus. Suggestions for better replacement?
1540 * Ho-hum... In principle, we might treat that as umount + switch
1541 * to rootfs. GC would eventually take care of the old vfsmount.
1542 * Actually it makes sense, especially if rootfs would contain a
1543 * /reboot - static binary that would close all descriptors and
1544 * call reboot(9). Then init(8) could umount root and exec /reboot.
1545 */
1546 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1547 /*
1548 * Special case for "unmounting" root ...
1549 * we just try to remount it readonly.
1550 */
1551 if (!capable(CAP_SYS_ADMIN))
1552 return -EPERM;
1553 down_write(&sb->s_umount);
1554 if (!(sb->s_flags & MS_RDONLY))
1555 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1556 up_write(&sb->s_umount);
1557 return retval;
1558 }
1559
1560 namespace_lock();
1561 lock_mount_hash();
1562 event++;
1563
1564 if (flags & MNT_DETACH) {
1565 if (!list_empty(&mnt->mnt_list))
1566 umount_tree(mnt, UMOUNT_PROPAGATE);
1567 retval = 0;
1568 } else {
1569 shrink_submounts(mnt);
1570 retval = -EBUSY;
1571 if (!propagate_mount_busy(mnt, 2)) {
1572 if (!list_empty(&mnt->mnt_list))
1573 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1574 retval = 0;
1575 }
1576 }
1577 unlock_mount_hash();
1578 namespace_unlock();
1579 return retval;
1580 }
1581
1582 /*
1583 * __detach_mounts - lazily unmount all mounts on the specified dentry
1584 *
1585 * During unlink, rmdir, and d_drop it is possible to loose the path
1586 * to an existing mountpoint, and wind up leaking the mount.
1587 * detach_mounts allows lazily unmounting those mounts instead of
1588 * leaking them.
1589 *
1590 * The caller may hold dentry->d_inode->i_mutex.
1591 */
1592 void __detach_mounts(struct dentry *dentry)
1593 {
1594 struct mountpoint *mp;
1595 struct mount *mnt;
1596
1597 namespace_lock();
1598 mp = lookup_mountpoint(dentry);
1599 if (IS_ERR_OR_NULL(mp))
1600 goto out_unlock;
1601
1602 lock_mount_hash();
1603 event++;
1604 while (!hlist_empty(&mp->m_list)) {
1605 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1606 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1607 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1608 umount_mnt(mnt);
1609 }
1610 else umount_tree(mnt, UMOUNT_CONNECTED);
1611 }
1612 unlock_mount_hash();
1613 put_mountpoint(mp);
1614 out_unlock:
1615 namespace_unlock();
1616 }
1617
1618 /*
1619 * Is the caller allowed to modify his namespace?
1620 */
1621 static inline bool may_mount(void)
1622 {
1623 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1624 }
1625
1626 static inline bool may_mandlock(void)
1627 {
1628 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1629 return false;
1630 #endif
1631 return capable(CAP_SYS_ADMIN);
1632 }
1633
1634 /*
1635 * Now umount can handle mount points as well as block devices.
1636 * This is important for filesystems which use unnamed block devices.
1637 *
1638 * We now support a flag for forced unmount like the other 'big iron'
1639 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1640 */
1641
1642 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1643 {
1644 struct path path;
1645 struct mount *mnt;
1646 int retval;
1647 int lookup_flags = 0;
1648
1649 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1650 return -EINVAL;
1651
1652 if (!may_mount())
1653 return -EPERM;
1654
1655 if (!(flags & UMOUNT_NOFOLLOW))
1656 lookup_flags |= LOOKUP_FOLLOW;
1657
1658 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1659 if (retval)
1660 goto out;
1661 mnt = real_mount(path.mnt);
1662 retval = -EINVAL;
1663 if (path.dentry != path.mnt->mnt_root)
1664 goto dput_and_out;
1665 if (!check_mnt(mnt))
1666 goto dput_and_out;
1667 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1668 goto dput_and_out;
1669 retval = -EPERM;
1670 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1671 goto dput_and_out;
1672
1673 retval = do_umount(mnt, flags);
1674 dput_and_out:
1675 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1676 dput(path.dentry);
1677 mntput_no_expire(mnt);
1678 out:
1679 return retval;
1680 }
1681
1682 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1683
1684 /*
1685 * The 2.0 compatible umount. No flags.
1686 */
1687 SYSCALL_DEFINE1(oldumount, char __user *, name)
1688 {
1689 return sys_umount(name, 0);
1690 }
1691
1692 #endif
1693
1694 static bool is_mnt_ns_file(struct dentry *dentry)
1695 {
1696 /* Is this a proxy for a mount namespace? */
1697 return dentry->d_op == &ns_dentry_operations &&
1698 dentry->d_fsdata == &mntns_operations;
1699 }
1700
1701 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1702 {
1703 return container_of(ns, struct mnt_namespace, ns);
1704 }
1705
1706 static bool mnt_ns_loop(struct dentry *dentry)
1707 {
1708 /* Could bind mounting the mount namespace inode cause a
1709 * mount namespace loop?
1710 */
1711 struct mnt_namespace *mnt_ns;
1712 if (!is_mnt_ns_file(dentry))
1713 return false;
1714
1715 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1716 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1717 }
1718
1719 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1720 int flag)
1721 {
1722 struct mount *res, *p, *q, *r, *parent;
1723
1724 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1725 return ERR_PTR(-EINVAL);
1726
1727 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1728 return ERR_PTR(-EINVAL);
1729
1730 res = q = clone_mnt(mnt, dentry, flag);
1731 if (IS_ERR(q))
1732 return q;
1733
1734 q->mnt_mountpoint = mnt->mnt_mountpoint;
1735
1736 p = mnt;
1737 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1738 struct mount *s;
1739 if (!is_subdir(r->mnt_mountpoint, dentry))
1740 continue;
1741
1742 for (s = r; s; s = next_mnt(s, r)) {
1743 struct mount *t = NULL;
1744 if (!(flag & CL_COPY_UNBINDABLE) &&
1745 IS_MNT_UNBINDABLE(s)) {
1746 s = skip_mnt_tree(s);
1747 continue;
1748 }
1749 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1750 is_mnt_ns_file(s->mnt.mnt_root)) {
1751 s = skip_mnt_tree(s);
1752 continue;
1753 }
1754 while (p != s->mnt_parent) {
1755 p = p->mnt_parent;
1756 q = q->mnt_parent;
1757 }
1758 p = s;
1759 parent = q;
1760 q = clone_mnt(p, p->mnt.mnt_root, flag);
1761 if (IS_ERR(q))
1762 goto out;
1763 lock_mount_hash();
1764 list_add_tail(&q->mnt_list, &res->mnt_list);
1765 mnt_set_mountpoint(parent, p->mnt_mp, q);
1766 if (!list_empty(&parent->mnt_mounts)) {
1767 t = list_last_entry(&parent->mnt_mounts,
1768 struct mount, mnt_child);
1769 if (t->mnt_mp != p->mnt_mp)
1770 t = NULL;
1771 }
1772 attach_shadowed(q, parent, t);
1773 unlock_mount_hash();
1774 }
1775 }
1776 return res;
1777 out:
1778 if (res) {
1779 lock_mount_hash();
1780 umount_tree(res, UMOUNT_SYNC);
1781 unlock_mount_hash();
1782 }
1783 return q;
1784 }
1785
1786 /* Caller should check returned pointer for errors */
1787
1788 struct vfsmount *collect_mounts(const struct path *path)
1789 {
1790 struct mount *tree;
1791 namespace_lock();
1792 if (!check_mnt(real_mount(path->mnt)))
1793 tree = ERR_PTR(-EINVAL);
1794 else
1795 tree = copy_tree(real_mount(path->mnt), path->dentry,
1796 CL_COPY_ALL | CL_PRIVATE);
1797 namespace_unlock();
1798 if (IS_ERR(tree))
1799 return ERR_CAST(tree);
1800 return &tree->mnt;
1801 }
1802
1803 void drop_collected_mounts(struct vfsmount *mnt)
1804 {
1805 namespace_lock();
1806 lock_mount_hash();
1807 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1808 unlock_mount_hash();
1809 namespace_unlock();
1810 }
1811
1812 /**
1813 * clone_private_mount - create a private clone of a path
1814 *
1815 * This creates a new vfsmount, which will be the clone of @path. The new will
1816 * not be attached anywhere in the namespace and will be private (i.e. changes
1817 * to the originating mount won't be propagated into this).
1818 *
1819 * Release with mntput().
1820 */
1821 struct vfsmount *clone_private_mount(const struct path *path)
1822 {
1823 struct mount *old_mnt = real_mount(path->mnt);
1824 struct mount *new_mnt;
1825
1826 if (IS_MNT_UNBINDABLE(old_mnt))
1827 return ERR_PTR(-EINVAL);
1828
1829 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1830 if (IS_ERR(new_mnt))
1831 return ERR_CAST(new_mnt);
1832
1833 return &new_mnt->mnt;
1834 }
1835 EXPORT_SYMBOL_GPL(clone_private_mount);
1836
1837 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1838 struct vfsmount *root)
1839 {
1840 struct mount *mnt;
1841 int res = f(root, arg);
1842 if (res)
1843 return res;
1844 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1845 res = f(&mnt->mnt, arg);
1846 if (res)
1847 return res;
1848 }
1849 return 0;
1850 }
1851
1852 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1853 {
1854 struct mount *p;
1855
1856 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1857 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1858 mnt_release_group_id(p);
1859 }
1860 }
1861
1862 static int invent_group_ids(struct mount *mnt, bool recurse)
1863 {
1864 struct mount *p;
1865
1866 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1867 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1868 int err = mnt_alloc_group_id(p);
1869 if (err) {
1870 cleanup_group_ids(mnt, p);
1871 return err;
1872 }
1873 }
1874 }
1875
1876 return 0;
1877 }
1878
1879 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1880 {
1881 unsigned int max = READ_ONCE(sysctl_mount_max);
1882 unsigned int mounts = 0, old, pending, sum;
1883 struct mount *p;
1884
1885 for (p = mnt; p; p = next_mnt(p, mnt))
1886 mounts++;
1887
1888 old = ns->mounts;
1889 pending = ns->pending_mounts;
1890 sum = old + pending;
1891 if ((old > sum) ||
1892 (pending > sum) ||
1893 (max < sum) ||
1894 (mounts > (max - sum)))
1895 return -ENOSPC;
1896
1897 ns->pending_mounts = pending + mounts;
1898 return 0;
1899 }
1900
1901 /*
1902 * @source_mnt : mount tree to be attached
1903 * @nd : place the mount tree @source_mnt is attached
1904 * @parent_nd : if non-null, detach the source_mnt from its parent and
1905 * store the parent mount and mountpoint dentry.
1906 * (done when source_mnt is moved)
1907 *
1908 * NOTE: in the table below explains the semantics when a source mount
1909 * of a given type is attached to a destination mount of a given type.
1910 * ---------------------------------------------------------------------------
1911 * | BIND MOUNT OPERATION |
1912 * |**************************************************************************
1913 * | source-->| shared | private | slave | unbindable |
1914 * | dest | | | | |
1915 * | | | | | | |
1916 * | v | | | | |
1917 * |**************************************************************************
1918 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1919 * | | | | | |
1920 * |non-shared| shared (+) | private | slave (*) | invalid |
1921 * ***************************************************************************
1922 * A bind operation clones the source mount and mounts the clone on the
1923 * destination mount.
1924 *
1925 * (++) the cloned mount is propagated to all the mounts in the propagation
1926 * tree of the destination mount and the cloned mount is added to
1927 * the peer group of the source mount.
1928 * (+) the cloned mount is created under the destination mount and is marked
1929 * as shared. The cloned mount is added to the peer group of the source
1930 * mount.
1931 * (+++) the mount is propagated to all the mounts in the propagation tree
1932 * of the destination mount and the cloned mount is made slave
1933 * of the same master as that of the source mount. The cloned mount
1934 * is marked as 'shared and slave'.
1935 * (*) the cloned mount is made a slave of the same master as that of the
1936 * source mount.
1937 *
1938 * ---------------------------------------------------------------------------
1939 * | MOVE MOUNT OPERATION |
1940 * |**************************************************************************
1941 * | source-->| shared | private | slave | unbindable |
1942 * | dest | | | | |
1943 * | | | | | | |
1944 * | v | | | | |
1945 * |**************************************************************************
1946 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1947 * | | | | | |
1948 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1949 * ***************************************************************************
1950 *
1951 * (+) the mount is moved to the destination. And is then propagated to
1952 * all the mounts in the propagation tree of the destination mount.
1953 * (+*) the mount is moved to the destination.
1954 * (+++) the mount is moved to the destination and is then propagated to
1955 * all the mounts belonging to the destination mount's propagation tree.
1956 * the mount is marked as 'shared and slave'.
1957 * (*) the mount continues to be a slave at the new location.
1958 *
1959 * if the source mount is a tree, the operations explained above is
1960 * applied to each mount in the tree.
1961 * Must be called without spinlocks held, since this function can sleep
1962 * in allocations.
1963 */
1964 static int attach_recursive_mnt(struct mount *source_mnt,
1965 struct mount *dest_mnt,
1966 struct mountpoint *dest_mp,
1967 struct path *parent_path)
1968 {
1969 HLIST_HEAD(tree_list);
1970 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1971 struct mount *child, *p;
1972 struct hlist_node *n;
1973 int err;
1974
1975 /* Is there space to add these mounts to the mount namespace? */
1976 if (!parent_path) {
1977 err = count_mounts(ns, source_mnt);
1978 if (err)
1979 goto out;
1980 }
1981
1982 if (IS_MNT_SHARED(dest_mnt)) {
1983 err = invent_group_ids(source_mnt, true);
1984 if (err)
1985 goto out;
1986 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1987 lock_mount_hash();
1988 if (err)
1989 goto out_cleanup_ids;
1990 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1991 set_mnt_shared(p);
1992 } else {
1993 lock_mount_hash();
1994 }
1995 if (parent_path) {
1996 detach_mnt(source_mnt, parent_path);
1997 attach_mnt(source_mnt, dest_mnt, dest_mp);
1998 touch_mnt_namespace(source_mnt->mnt_ns);
1999 } else {
2000 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2001 commit_tree(source_mnt, NULL);
2002 }
2003
2004 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2005 struct mount *q;
2006 hlist_del_init(&child->mnt_hash);
2007 q = __lookup_mnt_last(&child->mnt_parent->mnt,
2008 child->mnt_mountpoint);
2009 commit_tree(child, q);
2010 }
2011 unlock_mount_hash();
2012
2013 return 0;
2014
2015 out_cleanup_ids:
2016 while (!hlist_empty(&tree_list)) {
2017 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2018 child->mnt_parent->mnt_ns->pending_mounts = 0;
2019 umount_tree(child, UMOUNT_SYNC);
2020 }
2021 unlock_mount_hash();
2022 cleanup_group_ids(source_mnt, NULL);
2023 out:
2024 ns->pending_mounts = 0;
2025 return err;
2026 }
2027
2028 static struct mountpoint *lock_mount(struct path *path)
2029 {
2030 struct vfsmount *mnt;
2031 struct dentry *dentry = path->dentry;
2032 retry:
2033 inode_lock(dentry->d_inode);
2034 if (unlikely(cant_mount(dentry))) {
2035 inode_unlock(dentry->d_inode);
2036 return ERR_PTR(-ENOENT);
2037 }
2038 namespace_lock();
2039 mnt = lookup_mnt(path);
2040 if (likely(!mnt)) {
2041 struct mountpoint *mp = lookup_mountpoint(dentry);
2042 if (!mp)
2043 mp = new_mountpoint(dentry);
2044 if (IS_ERR(mp)) {
2045 namespace_unlock();
2046 inode_unlock(dentry->d_inode);
2047 return mp;
2048 }
2049 return mp;
2050 }
2051 namespace_unlock();
2052 inode_unlock(path->dentry->d_inode);
2053 path_put(path);
2054 path->mnt = mnt;
2055 dentry = path->dentry = dget(mnt->mnt_root);
2056 goto retry;
2057 }
2058
2059 static void unlock_mount(struct mountpoint *where)
2060 {
2061 struct dentry *dentry = where->m_dentry;
2062 put_mountpoint(where);
2063 namespace_unlock();
2064 inode_unlock(dentry->d_inode);
2065 }
2066
2067 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2068 {
2069 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2070 return -EINVAL;
2071
2072 if (d_is_dir(mp->m_dentry) !=
2073 d_is_dir(mnt->mnt.mnt_root))
2074 return -ENOTDIR;
2075
2076 return attach_recursive_mnt(mnt, p, mp, NULL);
2077 }
2078
2079 /*
2080 * Sanity check the flags to change_mnt_propagation.
2081 */
2082
2083 static int flags_to_propagation_type(int flags)
2084 {
2085 int type = flags & ~(MS_REC | MS_SILENT);
2086
2087 /* Fail if any non-propagation flags are set */
2088 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2089 return 0;
2090 /* Only one propagation flag should be set */
2091 if (!is_power_of_2(type))
2092 return 0;
2093 return type;
2094 }
2095
2096 /*
2097 * recursively change the type of the mountpoint.
2098 */
2099 static int do_change_type(struct path *path, int flag)
2100 {
2101 struct mount *m;
2102 struct mount *mnt = real_mount(path->mnt);
2103 int recurse = flag & MS_REC;
2104 int type;
2105 int err = 0;
2106
2107 if (path->dentry != path->mnt->mnt_root)
2108 return -EINVAL;
2109
2110 type = flags_to_propagation_type(flag);
2111 if (!type)
2112 return -EINVAL;
2113
2114 namespace_lock();
2115 if (type == MS_SHARED) {
2116 err = invent_group_ids(mnt, recurse);
2117 if (err)
2118 goto out_unlock;
2119 }
2120
2121 lock_mount_hash();
2122 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2123 change_mnt_propagation(m, type);
2124 unlock_mount_hash();
2125
2126 out_unlock:
2127 namespace_unlock();
2128 return err;
2129 }
2130
2131 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2132 {
2133 struct mount *child;
2134 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2135 if (!is_subdir(child->mnt_mountpoint, dentry))
2136 continue;
2137
2138 if (child->mnt.mnt_flags & MNT_LOCKED)
2139 return true;
2140 }
2141 return false;
2142 }
2143
2144 /*
2145 * do loopback mount.
2146 */
2147 static int do_loopback(struct path *path, const char *old_name,
2148 int recurse)
2149 {
2150 struct path old_path;
2151 struct mount *mnt = NULL, *old, *parent;
2152 struct mountpoint *mp;
2153 int err;
2154 if (!old_name || !*old_name)
2155 return -EINVAL;
2156 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2157 if (err)
2158 return err;
2159
2160 err = -EINVAL;
2161 if (mnt_ns_loop(old_path.dentry))
2162 goto out;
2163
2164 mp = lock_mount(path);
2165 err = PTR_ERR(mp);
2166 if (IS_ERR(mp))
2167 goto out;
2168
2169 old = real_mount(old_path.mnt);
2170 parent = real_mount(path->mnt);
2171
2172 err = -EINVAL;
2173 if (IS_MNT_UNBINDABLE(old))
2174 goto out2;
2175
2176 if (!check_mnt(parent))
2177 goto out2;
2178
2179 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2180 goto out2;
2181
2182 if (!recurse && has_locked_children(old, old_path.dentry))
2183 goto out2;
2184
2185 if (recurse)
2186 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2187 else
2188 mnt = clone_mnt(old, old_path.dentry, 0);
2189
2190 if (IS_ERR(mnt)) {
2191 err = PTR_ERR(mnt);
2192 goto out2;
2193 }
2194
2195 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2196
2197 err = graft_tree(mnt, parent, mp);
2198 if (err) {
2199 lock_mount_hash();
2200 umount_tree(mnt, UMOUNT_SYNC);
2201 unlock_mount_hash();
2202 }
2203 out2:
2204 unlock_mount(mp);
2205 out:
2206 path_put(&old_path);
2207 return err;
2208 }
2209
2210 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2211 {
2212 int error = 0;
2213 int readonly_request = 0;
2214
2215 if (ms_flags & MS_RDONLY)
2216 readonly_request = 1;
2217 if (readonly_request == __mnt_is_readonly(mnt))
2218 return 0;
2219
2220 if (readonly_request)
2221 error = mnt_make_readonly(real_mount(mnt));
2222 else
2223 __mnt_unmake_readonly(real_mount(mnt));
2224 return error;
2225 }
2226
2227 /*
2228 * change filesystem flags. dir should be a physical root of filesystem.
2229 * If you've mounted a non-root directory somewhere and want to do remount
2230 * on it - tough luck.
2231 */
2232 static int do_remount(struct path *path, int flags, int mnt_flags,
2233 void *data)
2234 {
2235 int err;
2236 struct super_block *sb = path->mnt->mnt_sb;
2237 struct mount *mnt = real_mount(path->mnt);
2238
2239 if (!check_mnt(mnt))
2240 return -EINVAL;
2241
2242 if (path->dentry != path->mnt->mnt_root)
2243 return -EINVAL;
2244
2245 /* Don't allow changing of locked mnt flags.
2246 *
2247 * No locks need to be held here while testing the various
2248 * MNT_LOCK flags because those flags can never be cleared
2249 * once they are set.
2250 */
2251 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2252 !(mnt_flags & MNT_READONLY)) {
2253 return -EPERM;
2254 }
2255 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2256 !(mnt_flags & MNT_NODEV)) {
2257 return -EPERM;
2258 }
2259 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2260 !(mnt_flags & MNT_NOSUID)) {
2261 return -EPERM;
2262 }
2263 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2264 !(mnt_flags & MNT_NOEXEC)) {
2265 return -EPERM;
2266 }
2267 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2268 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2269 return -EPERM;
2270 }
2271
2272 err = security_sb_remount(sb, data);
2273 if (err)
2274 return err;
2275
2276 down_write(&sb->s_umount);
2277 if (flags & MS_BIND)
2278 err = change_mount_flags(path->mnt, flags);
2279 else if (!capable(CAP_SYS_ADMIN))
2280 err = -EPERM;
2281 else
2282 err = do_remount_sb(sb, flags, data, 0);
2283 if (!err) {
2284 lock_mount_hash();
2285 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2286 mnt->mnt.mnt_flags = mnt_flags;
2287 touch_mnt_namespace(mnt->mnt_ns);
2288 unlock_mount_hash();
2289 }
2290 up_write(&sb->s_umount);
2291 return err;
2292 }
2293
2294 static inline int tree_contains_unbindable(struct mount *mnt)
2295 {
2296 struct mount *p;
2297 for (p = mnt; p; p = next_mnt(p, mnt)) {
2298 if (IS_MNT_UNBINDABLE(p))
2299 return 1;
2300 }
2301 return 0;
2302 }
2303
2304 static int do_move_mount(struct path *path, const char *old_name)
2305 {
2306 struct path old_path, parent_path;
2307 struct mount *p;
2308 struct mount *old;
2309 struct mountpoint *mp;
2310 int err;
2311 if (!old_name || !*old_name)
2312 return -EINVAL;
2313 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2314 if (err)
2315 return err;
2316
2317 mp = lock_mount(path);
2318 err = PTR_ERR(mp);
2319 if (IS_ERR(mp))
2320 goto out;
2321
2322 old = real_mount(old_path.mnt);
2323 p = real_mount(path->mnt);
2324
2325 err = -EINVAL;
2326 if (!check_mnt(p) || !check_mnt(old))
2327 goto out1;
2328
2329 if (old->mnt.mnt_flags & MNT_LOCKED)
2330 goto out1;
2331
2332 err = -EINVAL;
2333 if (old_path.dentry != old_path.mnt->mnt_root)
2334 goto out1;
2335
2336 if (!mnt_has_parent(old))
2337 goto out1;
2338
2339 if (d_is_dir(path->dentry) !=
2340 d_is_dir(old_path.dentry))
2341 goto out1;
2342 /*
2343 * Don't move a mount residing in a shared parent.
2344 */
2345 if (IS_MNT_SHARED(old->mnt_parent))
2346 goto out1;
2347 /*
2348 * Don't move a mount tree containing unbindable mounts to a destination
2349 * mount which is shared.
2350 */
2351 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2352 goto out1;
2353 err = -ELOOP;
2354 for (; mnt_has_parent(p); p = p->mnt_parent)
2355 if (p == old)
2356 goto out1;
2357
2358 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2359 if (err)
2360 goto out1;
2361
2362 /* if the mount is moved, it should no longer be expire
2363 * automatically */
2364 list_del_init(&old->mnt_expire);
2365 out1:
2366 unlock_mount(mp);
2367 out:
2368 if (!err)
2369 path_put(&parent_path);
2370 path_put(&old_path);
2371 return err;
2372 }
2373
2374 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2375 {
2376 int err;
2377 const char *subtype = strchr(fstype, '.');
2378 if (subtype) {
2379 subtype++;
2380 err = -EINVAL;
2381 if (!subtype[0])
2382 goto err;
2383 } else
2384 subtype = "";
2385
2386 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2387 err = -ENOMEM;
2388 if (!mnt->mnt_sb->s_subtype)
2389 goto err;
2390 return mnt;
2391
2392 err:
2393 mntput(mnt);
2394 return ERR_PTR(err);
2395 }
2396
2397 /*
2398 * add a mount into a namespace's mount tree
2399 */
2400 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2401 {
2402 struct mountpoint *mp;
2403 struct mount *parent;
2404 int err;
2405
2406 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2407
2408 mp = lock_mount(path);
2409 if (IS_ERR(mp))
2410 return PTR_ERR(mp);
2411
2412 parent = real_mount(path->mnt);
2413 err = -EINVAL;
2414 if (unlikely(!check_mnt(parent))) {
2415 /* that's acceptable only for automounts done in private ns */
2416 if (!(mnt_flags & MNT_SHRINKABLE))
2417 goto unlock;
2418 /* ... and for those we'd better have mountpoint still alive */
2419 if (!parent->mnt_ns)
2420 goto unlock;
2421 }
2422
2423 /* Refuse the same filesystem on the same mount point */
2424 err = -EBUSY;
2425 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2426 path->mnt->mnt_root == path->dentry)
2427 goto unlock;
2428
2429 err = -EINVAL;
2430 if (d_is_symlink(newmnt->mnt.mnt_root))
2431 goto unlock;
2432
2433 newmnt->mnt.mnt_flags = mnt_flags;
2434 err = graft_tree(newmnt, parent, mp);
2435
2436 unlock:
2437 unlock_mount(mp);
2438 return err;
2439 }
2440
2441 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2442
2443 /*
2444 * create a new mount for userspace and request it to be added into the
2445 * namespace's tree
2446 */
2447 static int do_new_mount(struct path *path, const char *fstype, int flags,
2448 int mnt_flags, const char *name, void *data)
2449 {
2450 struct file_system_type *type;
2451 struct vfsmount *mnt;
2452 int err;
2453
2454 if (!fstype)
2455 return -EINVAL;
2456
2457 type = get_fs_type(fstype);
2458 if (!type)
2459 return -ENODEV;
2460
2461 mnt = vfs_kern_mount(type, flags, name, data);
2462 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2463 !mnt->mnt_sb->s_subtype)
2464 mnt = fs_set_subtype(mnt, fstype);
2465
2466 put_filesystem(type);
2467 if (IS_ERR(mnt))
2468 return PTR_ERR(mnt);
2469
2470 if (mount_too_revealing(mnt, &mnt_flags)) {
2471 mntput(mnt);
2472 return -EPERM;
2473 }
2474
2475 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2476 if (err)
2477 mntput(mnt);
2478 return err;
2479 }
2480
2481 int finish_automount(struct vfsmount *m, struct path *path)
2482 {
2483 struct mount *mnt = real_mount(m);
2484 int err;
2485 /* The new mount record should have at least 2 refs to prevent it being
2486 * expired before we get a chance to add it
2487 */
2488 BUG_ON(mnt_get_count(mnt) < 2);
2489
2490 if (m->mnt_sb == path->mnt->mnt_sb &&
2491 m->mnt_root == path->dentry) {
2492 err = -ELOOP;
2493 goto fail;
2494 }
2495
2496 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2497 if (!err)
2498 return 0;
2499 fail:
2500 /* remove m from any expiration list it may be on */
2501 if (!list_empty(&mnt->mnt_expire)) {
2502 namespace_lock();
2503 list_del_init(&mnt->mnt_expire);
2504 namespace_unlock();
2505 }
2506 mntput(m);
2507 mntput(m);
2508 return err;
2509 }
2510
2511 /**
2512 * mnt_set_expiry - Put a mount on an expiration list
2513 * @mnt: The mount to list.
2514 * @expiry_list: The list to add the mount to.
2515 */
2516 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2517 {
2518 namespace_lock();
2519
2520 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2521
2522 namespace_unlock();
2523 }
2524 EXPORT_SYMBOL(mnt_set_expiry);
2525
2526 /*
2527 * process a list of expirable mountpoints with the intent of discarding any
2528 * mountpoints that aren't in use and haven't been touched since last we came
2529 * here
2530 */
2531 void mark_mounts_for_expiry(struct list_head *mounts)
2532 {
2533 struct mount *mnt, *next;
2534 LIST_HEAD(graveyard);
2535
2536 if (list_empty(mounts))
2537 return;
2538
2539 namespace_lock();
2540 lock_mount_hash();
2541
2542 /* extract from the expiration list every vfsmount that matches the
2543 * following criteria:
2544 * - only referenced by its parent vfsmount
2545 * - still marked for expiry (marked on the last call here; marks are
2546 * cleared by mntput())
2547 */
2548 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2549 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2550 propagate_mount_busy(mnt, 1))
2551 continue;
2552 list_move(&mnt->mnt_expire, &graveyard);
2553 }
2554 while (!list_empty(&graveyard)) {
2555 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2556 touch_mnt_namespace(mnt->mnt_ns);
2557 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2558 }
2559 unlock_mount_hash();
2560 namespace_unlock();
2561 }
2562
2563 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2564
2565 /*
2566 * Ripoff of 'select_parent()'
2567 *
2568 * search the list of submounts for a given mountpoint, and move any
2569 * shrinkable submounts to the 'graveyard' list.
2570 */
2571 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2572 {
2573 struct mount *this_parent = parent;
2574 struct list_head *next;
2575 int found = 0;
2576
2577 repeat:
2578 next = this_parent->mnt_mounts.next;
2579 resume:
2580 while (next != &this_parent->mnt_mounts) {
2581 struct list_head *tmp = next;
2582 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2583
2584 next = tmp->next;
2585 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2586 continue;
2587 /*
2588 * Descend a level if the d_mounts list is non-empty.
2589 */
2590 if (!list_empty(&mnt->mnt_mounts)) {
2591 this_parent = mnt;
2592 goto repeat;
2593 }
2594
2595 if (!propagate_mount_busy(mnt, 1)) {
2596 list_move_tail(&mnt->mnt_expire, graveyard);
2597 found++;
2598 }
2599 }
2600 /*
2601 * All done at this level ... ascend and resume the search
2602 */
2603 if (this_parent != parent) {
2604 next = this_parent->mnt_child.next;
2605 this_parent = this_parent->mnt_parent;
2606 goto resume;
2607 }
2608 return found;
2609 }
2610
2611 /*
2612 * process a list of expirable mountpoints with the intent of discarding any
2613 * submounts of a specific parent mountpoint
2614 *
2615 * mount_lock must be held for write
2616 */
2617 static void shrink_submounts(struct mount *mnt)
2618 {
2619 LIST_HEAD(graveyard);
2620 struct mount *m;
2621
2622 /* extract submounts of 'mountpoint' from the expiration list */
2623 while (select_submounts(mnt, &graveyard)) {
2624 while (!list_empty(&graveyard)) {
2625 m = list_first_entry(&graveyard, struct mount,
2626 mnt_expire);
2627 touch_mnt_namespace(m->mnt_ns);
2628 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2629 }
2630 }
2631 }
2632
2633 /*
2634 * Some copy_from_user() implementations do not return the exact number of
2635 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2636 * Note that this function differs from copy_from_user() in that it will oops
2637 * on bad values of `to', rather than returning a short copy.
2638 */
2639 static long exact_copy_from_user(void *to, const void __user * from,
2640 unsigned long n)
2641 {
2642 char *t = to;
2643 const char __user *f = from;
2644 char c;
2645
2646 if (!access_ok(VERIFY_READ, from, n))
2647 return n;
2648
2649 while (n) {
2650 if (__get_user(c, f)) {
2651 memset(t, 0, n);
2652 break;
2653 }
2654 *t++ = c;
2655 f++;
2656 n--;
2657 }
2658 return n;
2659 }
2660
2661 void *copy_mount_options(const void __user * data)
2662 {
2663 int i;
2664 unsigned long size;
2665 char *copy;
2666
2667 if (!data)
2668 return NULL;
2669
2670 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2671 if (!copy)
2672 return ERR_PTR(-ENOMEM);
2673
2674 /* We only care that *some* data at the address the user
2675 * gave us is valid. Just in case, we'll zero
2676 * the remainder of the page.
2677 */
2678 /* copy_from_user cannot cross TASK_SIZE ! */
2679 size = TASK_SIZE - (unsigned long)data;
2680 if (size > PAGE_SIZE)
2681 size = PAGE_SIZE;
2682
2683 i = size - exact_copy_from_user(copy, data, size);
2684 if (!i) {
2685 kfree(copy);
2686 return ERR_PTR(-EFAULT);
2687 }
2688 if (i != PAGE_SIZE)
2689 memset(copy + i, 0, PAGE_SIZE - i);
2690 return copy;
2691 }
2692
2693 char *copy_mount_string(const void __user *data)
2694 {
2695 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2696 }
2697
2698 /*
2699 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2700 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2701 *
2702 * data is a (void *) that can point to any structure up to
2703 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2704 * information (or be NULL).
2705 *
2706 * Pre-0.97 versions of mount() didn't have a flags word.
2707 * When the flags word was introduced its top half was required
2708 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2709 * Therefore, if this magic number is present, it carries no information
2710 * and must be discarded.
2711 */
2712 long do_mount(const char *dev_name, const char __user *dir_name,
2713 const char *type_page, unsigned long flags, void *data_page)
2714 {
2715 struct path path;
2716 int retval = 0;
2717 int mnt_flags = 0;
2718
2719 /* Discard magic */
2720 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2721 flags &= ~MS_MGC_MSK;
2722
2723 /* Basic sanity checks */
2724 if (data_page)
2725 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2726
2727 /* ... and get the mountpoint */
2728 retval = user_path(dir_name, &path);
2729 if (retval)
2730 return retval;
2731
2732 retval = security_sb_mount(dev_name, &path,
2733 type_page, flags, data_page);
2734 if (!retval && !may_mount())
2735 retval = -EPERM;
2736 if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2737 retval = -EPERM;
2738 if (retval)
2739 goto dput_out;
2740
2741 /* Default to relatime unless overriden */
2742 if (!(flags & MS_NOATIME))
2743 mnt_flags |= MNT_RELATIME;
2744
2745 /* Separate the per-mountpoint flags */
2746 if (flags & MS_NOSUID)
2747 mnt_flags |= MNT_NOSUID;
2748 if (flags & MS_NODEV)
2749 mnt_flags |= MNT_NODEV;
2750 if (flags & MS_NOEXEC)
2751 mnt_flags |= MNT_NOEXEC;
2752 if (flags & MS_NOATIME)
2753 mnt_flags |= MNT_NOATIME;
2754 if (flags & MS_NODIRATIME)
2755 mnt_flags |= MNT_NODIRATIME;
2756 if (flags & MS_STRICTATIME)
2757 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2758 if (flags & MS_RDONLY)
2759 mnt_flags |= MNT_READONLY;
2760
2761 /* The default atime for remount is preservation */
2762 if ((flags & MS_REMOUNT) &&
2763 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2764 MS_STRICTATIME)) == 0)) {
2765 mnt_flags &= ~MNT_ATIME_MASK;
2766 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2767 }
2768
2769 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2770 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2771 MS_STRICTATIME | MS_NOREMOTELOCK);
2772
2773 if (flags & MS_REMOUNT)
2774 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2775 data_page);
2776 else if (flags & MS_BIND)
2777 retval = do_loopback(&path, dev_name, flags & MS_REC);
2778 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2779 retval = do_change_type(&path, flags);
2780 else if (flags & MS_MOVE)
2781 retval = do_move_mount(&path, dev_name);
2782 else
2783 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2784 dev_name, data_page);
2785 dput_out:
2786 path_put(&path);
2787 return retval;
2788 }
2789
2790 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2791 {
2792 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2793 }
2794
2795 static void dec_mnt_namespaces(struct ucounts *ucounts)
2796 {
2797 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2798 }
2799
2800 static void free_mnt_ns(struct mnt_namespace *ns)
2801 {
2802 ns_free_inum(&ns->ns);
2803 dec_mnt_namespaces(ns->ucounts);
2804 put_user_ns(ns->user_ns);
2805 kfree(ns);
2806 }
2807
2808 /*
2809 * Assign a sequence number so we can detect when we attempt to bind
2810 * mount a reference to an older mount namespace into the current
2811 * mount namespace, preventing reference counting loops. A 64bit
2812 * number incrementing at 10Ghz will take 12,427 years to wrap which
2813 * is effectively never, so we can ignore the possibility.
2814 */
2815 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2816
2817 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2818 {
2819 struct mnt_namespace *new_ns;
2820 struct ucounts *ucounts;
2821 int ret;
2822
2823 ucounts = inc_mnt_namespaces(user_ns);
2824 if (!ucounts)
2825 return ERR_PTR(-ENOSPC);
2826
2827 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2828 if (!new_ns) {
2829 dec_mnt_namespaces(ucounts);
2830 return ERR_PTR(-ENOMEM);
2831 }
2832 ret = ns_alloc_inum(&new_ns->ns);
2833 if (ret) {
2834 kfree(new_ns);
2835 dec_mnt_namespaces(ucounts);
2836 return ERR_PTR(ret);
2837 }
2838 new_ns->ns.ops = &mntns_operations;
2839 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2840 atomic_set(&new_ns->count, 1);
2841 new_ns->root = NULL;
2842 INIT_LIST_HEAD(&new_ns->list);
2843 init_waitqueue_head(&new_ns->poll);
2844 new_ns->event = 0;
2845 new_ns->user_ns = get_user_ns(user_ns);
2846 new_ns->ucounts = ucounts;
2847 new_ns->mounts = 0;
2848 new_ns->pending_mounts = 0;
2849 return new_ns;
2850 }
2851
2852 __latent_entropy
2853 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2854 struct user_namespace *user_ns, struct fs_struct *new_fs)
2855 {
2856 struct mnt_namespace *new_ns;
2857 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2858 struct mount *p, *q;
2859 struct mount *old;
2860 struct mount *new;
2861 int copy_flags;
2862
2863 BUG_ON(!ns);
2864
2865 if (likely(!(flags & CLONE_NEWNS))) {
2866 get_mnt_ns(ns);
2867 return ns;
2868 }
2869
2870 old = ns->root;
2871
2872 new_ns = alloc_mnt_ns(user_ns);
2873 if (IS_ERR(new_ns))
2874 return new_ns;
2875
2876 namespace_lock();
2877 /* First pass: copy the tree topology */
2878 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2879 if (user_ns != ns->user_ns)
2880 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2881 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2882 if (IS_ERR(new)) {
2883 namespace_unlock();
2884 free_mnt_ns(new_ns);
2885 return ERR_CAST(new);
2886 }
2887 new_ns->root = new;
2888 list_add_tail(&new_ns->list, &new->mnt_list);
2889
2890 /*
2891 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2892 * as belonging to new namespace. We have already acquired a private
2893 * fs_struct, so tsk->fs->lock is not needed.
2894 */
2895 p = old;
2896 q = new;
2897 while (p) {
2898 q->mnt_ns = new_ns;
2899 new_ns->mounts++;
2900 if (new_fs) {
2901 if (&p->mnt == new_fs->root.mnt) {
2902 new_fs->root.mnt = mntget(&q->mnt);
2903 rootmnt = &p->mnt;
2904 }
2905 if (&p->mnt == new_fs->pwd.mnt) {
2906 new_fs->pwd.mnt = mntget(&q->mnt);
2907 pwdmnt = &p->mnt;
2908 }
2909 }
2910 p = next_mnt(p, old);
2911 q = next_mnt(q, new);
2912 if (!q)
2913 break;
2914 while (p->mnt.mnt_root != q->mnt.mnt_root)
2915 p = next_mnt(p, old);
2916 }
2917 namespace_unlock();
2918
2919 if (rootmnt)
2920 mntput(rootmnt);
2921 if (pwdmnt)
2922 mntput(pwdmnt);
2923
2924 return new_ns;
2925 }
2926
2927 /**
2928 * create_mnt_ns - creates a private namespace and adds a root filesystem
2929 * @mnt: pointer to the new root filesystem mountpoint
2930 */
2931 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2932 {
2933 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2934 if (!IS_ERR(new_ns)) {
2935 struct mount *mnt = real_mount(m);
2936 mnt->mnt_ns = new_ns;
2937 new_ns->root = mnt;
2938 new_ns->mounts++;
2939 list_add(&mnt->mnt_list, &new_ns->list);
2940 } else {
2941 mntput(m);
2942 }
2943 return new_ns;
2944 }
2945
2946 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2947 {
2948 struct mnt_namespace *ns;
2949 struct super_block *s;
2950 struct path path;
2951 int err;
2952
2953 ns = create_mnt_ns(mnt);
2954 if (IS_ERR(ns))
2955 return ERR_CAST(ns);
2956
2957 err = vfs_path_lookup(mnt->mnt_root, mnt,
2958 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2959
2960 put_mnt_ns(ns);
2961
2962 if (err)
2963 return ERR_PTR(err);
2964
2965 /* trade a vfsmount reference for active sb one */
2966 s = path.mnt->mnt_sb;
2967 atomic_inc(&s->s_active);
2968 mntput(path.mnt);
2969 /* lock the sucker */
2970 down_write(&s->s_umount);
2971 /* ... and return the root of (sub)tree on it */
2972 return path.dentry;
2973 }
2974 EXPORT_SYMBOL(mount_subtree);
2975
2976 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2977 char __user *, type, unsigned long, flags, void __user *, data)
2978 {
2979 int ret;
2980 char *kernel_type;
2981 char *kernel_dev;
2982 void *options;
2983
2984 kernel_type = copy_mount_string(type);
2985 ret = PTR_ERR(kernel_type);
2986 if (IS_ERR(kernel_type))
2987 goto out_type;
2988
2989 kernel_dev = copy_mount_string(dev_name);
2990 ret = PTR_ERR(kernel_dev);
2991 if (IS_ERR(kernel_dev))
2992 goto out_dev;
2993
2994 options = copy_mount_options(data);
2995 ret = PTR_ERR(options);
2996 if (IS_ERR(options))
2997 goto out_data;
2998
2999 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3000
3001 kfree(options);
3002 out_data:
3003 kfree(kernel_dev);
3004 out_dev:
3005 kfree(kernel_type);
3006 out_type:
3007 return ret;
3008 }
3009
3010 /*
3011 * Return true if path is reachable from root
3012 *
3013 * namespace_sem or mount_lock is held
3014 */
3015 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3016 const struct path *root)
3017 {
3018 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3019 dentry = mnt->mnt_mountpoint;
3020 mnt = mnt->mnt_parent;
3021 }
3022 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3023 }
3024
3025 bool path_is_under(const struct path *path1, const struct path *path2)
3026 {
3027 bool res;
3028 read_seqlock_excl(&mount_lock);
3029 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3030 read_sequnlock_excl(&mount_lock);
3031 return res;
3032 }
3033 EXPORT_SYMBOL(path_is_under);
3034
3035 /*
3036 * pivot_root Semantics:
3037 * Moves the root file system of the current process to the directory put_old,
3038 * makes new_root as the new root file system of the current process, and sets
3039 * root/cwd of all processes which had them on the current root to new_root.
3040 *
3041 * Restrictions:
3042 * The new_root and put_old must be directories, and must not be on the
3043 * same file system as the current process root. The put_old must be
3044 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3045 * pointed to by put_old must yield the same directory as new_root. No other
3046 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3047 *
3048 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3049 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3050 * in this situation.
3051 *
3052 * Notes:
3053 * - we don't move root/cwd if they are not at the root (reason: if something
3054 * cared enough to change them, it's probably wrong to force them elsewhere)
3055 * - it's okay to pick a root that isn't the root of a file system, e.g.
3056 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3057 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3058 * first.
3059 */
3060 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3061 const char __user *, put_old)
3062 {
3063 struct path new, old, parent_path, root_parent, root;
3064 struct mount *new_mnt, *root_mnt, *old_mnt;
3065 struct mountpoint *old_mp, *root_mp;
3066 int error;
3067
3068 if (!may_mount())
3069 return -EPERM;
3070
3071 error = user_path_dir(new_root, &new);
3072 if (error)
3073 goto out0;
3074
3075 error = user_path_dir(put_old, &old);
3076 if (error)
3077 goto out1;
3078
3079 error = security_sb_pivotroot(&old, &new);
3080 if (error)
3081 goto out2;
3082
3083 get_fs_root(current->fs, &root);
3084 old_mp = lock_mount(&old);
3085 error = PTR_ERR(old_mp);
3086 if (IS_ERR(old_mp))
3087 goto out3;
3088
3089 error = -EINVAL;
3090 new_mnt = real_mount(new.mnt);
3091 root_mnt = real_mount(root.mnt);
3092 old_mnt = real_mount(old.mnt);
3093 if (IS_MNT_SHARED(old_mnt) ||
3094 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3095 IS_MNT_SHARED(root_mnt->mnt_parent))
3096 goto out4;
3097 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3098 goto out4;
3099 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3100 goto out4;
3101 error = -ENOENT;
3102 if (d_unlinked(new.dentry))
3103 goto out4;
3104 error = -EBUSY;
3105 if (new_mnt == root_mnt || old_mnt == root_mnt)
3106 goto out4; /* loop, on the same file system */
3107 error = -EINVAL;
3108 if (root.mnt->mnt_root != root.dentry)
3109 goto out4; /* not a mountpoint */
3110 if (!mnt_has_parent(root_mnt))
3111 goto out4; /* not attached */
3112 root_mp = root_mnt->mnt_mp;
3113 if (new.mnt->mnt_root != new.dentry)
3114 goto out4; /* not a mountpoint */
3115 if (!mnt_has_parent(new_mnt))
3116 goto out4; /* not attached */
3117 /* make sure we can reach put_old from new_root */
3118 if (!is_path_reachable(old_mnt, old.dentry, &new))
3119 goto out4;
3120 /* make certain new is below the root */
3121 if (!is_path_reachable(new_mnt, new.dentry, &root))
3122 goto out4;
3123 root_mp->m_count++; /* pin it so it won't go away */
3124 lock_mount_hash();
3125 detach_mnt(new_mnt, &parent_path);
3126 detach_mnt(root_mnt, &root_parent);
3127 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3128 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3129 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3130 }
3131 /* mount old root on put_old */
3132 attach_mnt(root_mnt, old_mnt, old_mp);
3133 /* mount new_root on / */
3134 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3135 touch_mnt_namespace(current->nsproxy->mnt_ns);
3136 /* A moved mount should not expire automatically */
3137 list_del_init(&new_mnt->mnt_expire);
3138 unlock_mount_hash();
3139 chroot_fs_refs(&root, &new);
3140 put_mountpoint(root_mp);
3141 error = 0;
3142 out4:
3143 unlock_mount(old_mp);
3144 if (!error) {
3145 path_put(&root_parent);
3146 path_put(&parent_path);
3147 }
3148 out3:
3149 path_put(&root);
3150 out2:
3151 path_put(&old);
3152 out1:
3153 path_put(&new);
3154 out0:
3155 return error;
3156 }
3157
3158 static void __init init_mount_tree(void)
3159 {
3160 struct vfsmount *mnt;
3161 struct mnt_namespace *ns;
3162 struct path root;
3163 struct file_system_type *type;
3164
3165 type = get_fs_type("rootfs");
3166 if (!type)
3167 panic("Can't find rootfs type");
3168 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3169 put_filesystem(type);
3170 if (IS_ERR(mnt))
3171 panic("Can't create rootfs");
3172
3173 ns = create_mnt_ns(mnt);
3174 if (IS_ERR(ns))
3175 panic("Can't allocate initial namespace");
3176
3177 init_task.nsproxy->mnt_ns = ns;
3178 get_mnt_ns(ns);
3179
3180 root.mnt = mnt;
3181 root.dentry = mnt->mnt_root;
3182 mnt->mnt_flags |= MNT_LOCKED;
3183
3184 set_fs_pwd(current->fs, &root);
3185 set_fs_root(current->fs, &root);
3186 }
3187
3188 void __init mnt_init(void)
3189 {
3190 unsigned u;
3191 int err;
3192
3193 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3194 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3195
3196 mount_hashtable = alloc_large_system_hash("Mount-cache",
3197 sizeof(struct hlist_head),
3198 mhash_entries, 19,
3199 0,
3200 &m_hash_shift, &m_hash_mask, 0, 0);
3201 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3202 sizeof(struct hlist_head),
3203 mphash_entries, 19,
3204 0,
3205 &mp_hash_shift, &mp_hash_mask, 0, 0);
3206
3207 if (!mount_hashtable || !mountpoint_hashtable)
3208 panic("Failed to allocate mount hash table\n");
3209
3210 for (u = 0; u <= m_hash_mask; u++)
3211 INIT_HLIST_HEAD(&mount_hashtable[u]);
3212 for (u = 0; u <= mp_hash_mask; u++)
3213 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3214
3215 kernfs_init();
3216
3217 err = sysfs_init();
3218 if (err)
3219 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3220 __func__, err);
3221 fs_kobj = kobject_create_and_add("fs", NULL);
3222 if (!fs_kobj)
3223 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3224 init_rootfs();
3225 init_mount_tree();
3226 }
3227
3228 void put_mnt_ns(struct mnt_namespace *ns)
3229 {
3230 if (!atomic_dec_and_test(&ns->count))
3231 return;
3232 drop_collected_mounts(&ns->root->mnt);
3233 free_mnt_ns(ns);
3234 }
3235
3236 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3237 {
3238 struct vfsmount *mnt;
3239 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3240 if (!IS_ERR(mnt)) {
3241 /*
3242 * it is a longterm mount, don't release mnt until
3243 * we unmount before file sys is unregistered
3244 */
3245 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3246 }
3247 return mnt;
3248 }
3249 EXPORT_SYMBOL_GPL(kern_mount_data);
3250
3251 void kern_unmount(struct vfsmount *mnt)
3252 {
3253 /* release long term mount so mount point can be released */
3254 if (!IS_ERR_OR_NULL(mnt)) {
3255 real_mount(mnt)->mnt_ns = NULL;
3256 synchronize_rcu(); /* yecchhh... */
3257 mntput(mnt);
3258 }
3259 }
3260 EXPORT_SYMBOL(kern_unmount);
3261
3262 bool our_mnt(struct vfsmount *mnt)
3263 {
3264 return check_mnt(real_mount(mnt));
3265 }
3266
3267 bool current_chrooted(void)
3268 {
3269 /* Does the current process have a non-standard root */
3270 struct path ns_root;
3271 struct path fs_root;
3272 bool chrooted;
3273
3274 /* Find the namespace root */
3275 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3276 ns_root.dentry = ns_root.mnt->mnt_root;
3277 path_get(&ns_root);
3278 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3279 ;
3280
3281 get_fs_root(current->fs, &fs_root);
3282
3283 chrooted = !path_equal(&fs_root, &ns_root);
3284
3285 path_put(&fs_root);
3286 path_put(&ns_root);
3287
3288 return chrooted;
3289 }
3290
3291 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3292 int *new_mnt_flags)
3293 {
3294 int new_flags = *new_mnt_flags;
3295 struct mount *mnt;
3296 bool visible = false;
3297
3298 down_read(&namespace_sem);
3299 list_for_each_entry(mnt, &ns->list, mnt_list) {
3300 struct mount *child;
3301 int mnt_flags;
3302
3303 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3304 continue;
3305
3306 /* This mount is not fully visible if it's root directory
3307 * is not the root directory of the filesystem.
3308 */
3309 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3310 continue;
3311
3312 /* A local view of the mount flags */
3313 mnt_flags = mnt->mnt.mnt_flags;
3314
3315 /* Don't miss readonly hidden in the superblock flags */
3316 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3317 mnt_flags |= MNT_LOCK_READONLY;
3318
3319 /* Verify the mount flags are equal to or more permissive
3320 * than the proposed new mount.
3321 */
3322 if ((mnt_flags & MNT_LOCK_READONLY) &&
3323 !(new_flags & MNT_READONLY))
3324 continue;
3325 if ((mnt_flags & MNT_LOCK_ATIME) &&
3326 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3327 continue;
3328
3329 /* This mount is not fully visible if there are any
3330 * locked child mounts that cover anything except for
3331 * empty directories.
3332 */
3333 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3334 struct inode *inode = child->mnt_mountpoint->d_inode;
3335 /* Only worry about locked mounts */
3336 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3337 continue;
3338 /* Is the directory permanetly empty? */
3339 if (!is_empty_dir_inode(inode))
3340 goto next;
3341 }
3342 /* Preserve the locked attributes */
3343 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3344 MNT_LOCK_ATIME);
3345 visible = true;
3346 goto found;
3347 next: ;
3348 }
3349 found:
3350 up_read(&namespace_sem);
3351 return visible;
3352 }
3353
3354 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3355 {
3356 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3357 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3358 unsigned long s_iflags;
3359
3360 if (ns->user_ns == &init_user_ns)
3361 return false;
3362
3363 /* Can this filesystem be too revealing? */
3364 s_iflags = mnt->mnt_sb->s_iflags;
3365 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3366 return false;
3367
3368 if ((s_iflags & required_iflags) != required_iflags) {
3369 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3370 required_iflags);
3371 return true;
3372 }
3373
3374 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3375 }
3376
3377 bool mnt_may_suid(struct vfsmount *mnt)
3378 {
3379 /*
3380 * Foreign mounts (accessed via fchdir or through /proc
3381 * symlinks) are always treated as if they are nosuid. This
3382 * prevents namespaces from trusting potentially unsafe
3383 * suid/sgid bits, file caps, or security labels that originate
3384 * in other namespaces.
3385 */
3386 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3387 current_in_userns(mnt->mnt_sb->s_user_ns);
3388 }
3389
3390 static struct ns_common *mntns_get(struct task_struct *task)
3391 {
3392 struct ns_common *ns = NULL;
3393 struct nsproxy *nsproxy;
3394
3395 task_lock(task);
3396 nsproxy = task->nsproxy;
3397 if (nsproxy) {
3398 ns = &nsproxy->mnt_ns->ns;
3399 get_mnt_ns(to_mnt_ns(ns));
3400 }
3401 task_unlock(task);
3402
3403 return ns;
3404 }
3405
3406 static void mntns_put(struct ns_common *ns)
3407 {
3408 put_mnt_ns(to_mnt_ns(ns));
3409 }
3410
3411 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3412 {
3413 struct fs_struct *fs = current->fs;
3414 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3415 struct path root;
3416
3417 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3418 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3419 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3420 return -EPERM;
3421
3422 if (fs->users != 1)
3423 return -EINVAL;
3424
3425 get_mnt_ns(mnt_ns);
3426 put_mnt_ns(nsproxy->mnt_ns);
3427 nsproxy->mnt_ns = mnt_ns;
3428
3429 /* Find the root */
3430 root.mnt = &mnt_ns->root->mnt;
3431 root.dentry = mnt_ns->root->mnt.mnt_root;
3432 path_get(&root);
3433 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3434 ;
3435
3436 /* Update the pwd and root */
3437 set_fs_pwd(fs, &root);
3438 set_fs_root(fs, &root);
3439
3440 path_put(&root);
3441 return 0;
3442 }
3443
3444 static struct user_namespace *mntns_owner(struct ns_common *ns)
3445 {
3446 return to_mnt_ns(ns)->user_ns;
3447 }
3448
3449 const struct proc_ns_operations mntns_operations = {
3450 .name = "mnt",
3451 .type = CLONE_NEWNS,
3452 .get = mntns_get,
3453 .put = mntns_put,
3454 .install = mntns_install,
3455 .owner = mntns_owner,
3456 };