]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/namespace.c
Merge branch 'linux-4.15' of git://github.com/skeggsb/linux into drm-fixes
[mirror_ubuntu-bionic-kernel.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
29
30 #include "pnode.h"
31 #include "internal.h"
32
33 /* Maximum number of mounts in a mount namespace */
34 unsigned int sysctl_mount_max __read_mostly = 100000;
35
36 static unsigned int m_hash_mask __read_mostly;
37 static unsigned int m_hash_shift __read_mostly;
38 static unsigned int mp_hash_mask __read_mostly;
39 static unsigned int mp_hash_shift __read_mostly;
40
41 static __initdata unsigned long mhash_entries;
42 static int __init set_mhash_entries(char *str)
43 {
44 if (!str)
45 return 0;
46 mhash_entries = simple_strtoul(str, &str, 0);
47 return 1;
48 }
49 __setup("mhash_entries=", set_mhash_entries);
50
51 static __initdata unsigned long mphash_entries;
52 static int __init set_mphash_entries(char *str)
53 {
54 if (!str)
55 return 0;
56 mphash_entries = simple_strtoul(str, &str, 0);
57 return 1;
58 }
59 __setup("mphash_entries=", set_mphash_entries);
60
61 static u64 event;
62 static DEFINE_IDA(mnt_id_ida);
63 static DEFINE_IDA(mnt_group_ida);
64 static DEFINE_SPINLOCK(mnt_id_lock);
65 static int mnt_id_start = 0;
66 static int mnt_group_start = 1;
67
68 static struct hlist_head *mount_hashtable __read_mostly;
69 static struct hlist_head *mountpoint_hashtable __read_mostly;
70 static struct kmem_cache *mnt_cache __read_mostly;
71 static DECLARE_RWSEM(namespace_sem);
72
73 /* /sys/fs */
74 struct kobject *fs_kobj;
75 EXPORT_SYMBOL_GPL(fs_kobj);
76
77 /*
78 * vfsmount lock may be taken for read to prevent changes to the
79 * vfsmount hash, ie. during mountpoint lookups or walking back
80 * up the tree.
81 *
82 * It should be taken for write in all cases where the vfsmount
83 * tree or hash is modified or when a vfsmount structure is modified.
84 */
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
86
87 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
88 {
89 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
90 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
91 tmp = tmp + (tmp >> m_hash_shift);
92 return &mount_hashtable[tmp & m_hash_mask];
93 }
94
95 static inline struct hlist_head *mp_hash(struct dentry *dentry)
96 {
97 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
98 tmp = tmp + (tmp >> mp_hash_shift);
99 return &mountpoint_hashtable[tmp & mp_hash_mask];
100 }
101
102 static int mnt_alloc_id(struct mount *mnt)
103 {
104 int res;
105
106 retry:
107 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
108 spin_lock(&mnt_id_lock);
109 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
110 if (!res)
111 mnt_id_start = mnt->mnt_id + 1;
112 spin_unlock(&mnt_id_lock);
113 if (res == -EAGAIN)
114 goto retry;
115
116 return res;
117 }
118
119 static void mnt_free_id(struct mount *mnt)
120 {
121 int id = mnt->mnt_id;
122 spin_lock(&mnt_id_lock);
123 ida_remove(&mnt_id_ida, id);
124 if (mnt_id_start > id)
125 mnt_id_start = id;
126 spin_unlock(&mnt_id_lock);
127 }
128
129 /*
130 * Allocate a new peer group ID
131 *
132 * mnt_group_ida is protected by namespace_sem
133 */
134 static int mnt_alloc_group_id(struct mount *mnt)
135 {
136 int res;
137
138 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
139 return -ENOMEM;
140
141 res = ida_get_new_above(&mnt_group_ida,
142 mnt_group_start,
143 &mnt->mnt_group_id);
144 if (!res)
145 mnt_group_start = mnt->mnt_group_id + 1;
146
147 return res;
148 }
149
150 /*
151 * Release a peer group ID
152 */
153 void mnt_release_group_id(struct mount *mnt)
154 {
155 int id = mnt->mnt_group_id;
156 ida_remove(&mnt_group_ida, id);
157 if (mnt_group_start > id)
158 mnt_group_start = id;
159 mnt->mnt_group_id = 0;
160 }
161
162 /*
163 * vfsmount lock must be held for read
164 */
165 static inline void mnt_add_count(struct mount *mnt, int n)
166 {
167 #ifdef CONFIG_SMP
168 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
169 #else
170 preempt_disable();
171 mnt->mnt_count += n;
172 preempt_enable();
173 #endif
174 }
175
176 /*
177 * vfsmount lock must be held for write
178 */
179 unsigned int mnt_get_count(struct mount *mnt)
180 {
181 #ifdef CONFIG_SMP
182 unsigned int count = 0;
183 int cpu;
184
185 for_each_possible_cpu(cpu) {
186 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
187 }
188
189 return count;
190 #else
191 return mnt->mnt_count;
192 #endif
193 }
194
195 static void drop_mountpoint(struct fs_pin *p)
196 {
197 struct mount *m = container_of(p, struct mount, mnt_umount);
198 dput(m->mnt_ex_mountpoint);
199 pin_remove(p);
200 mntput(&m->mnt);
201 }
202
203 static struct mount *alloc_vfsmnt(const char *name)
204 {
205 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
206 if (mnt) {
207 int err;
208
209 err = mnt_alloc_id(mnt);
210 if (err)
211 goto out_free_cache;
212
213 if (name) {
214 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
215 if (!mnt->mnt_devname)
216 goto out_free_id;
217 }
218
219 #ifdef CONFIG_SMP
220 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
221 if (!mnt->mnt_pcp)
222 goto out_free_devname;
223
224 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
225 #else
226 mnt->mnt_count = 1;
227 mnt->mnt_writers = 0;
228 #endif
229
230 INIT_HLIST_NODE(&mnt->mnt_hash);
231 INIT_LIST_HEAD(&mnt->mnt_child);
232 INIT_LIST_HEAD(&mnt->mnt_mounts);
233 INIT_LIST_HEAD(&mnt->mnt_list);
234 INIT_LIST_HEAD(&mnt->mnt_expire);
235 INIT_LIST_HEAD(&mnt->mnt_share);
236 INIT_LIST_HEAD(&mnt->mnt_slave_list);
237 INIT_LIST_HEAD(&mnt->mnt_slave);
238 INIT_HLIST_NODE(&mnt->mnt_mp_list);
239 INIT_LIST_HEAD(&mnt->mnt_umounting);
240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
241 }
242 return mnt;
243
244 #ifdef CONFIG_SMP
245 out_free_devname:
246 kfree_const(mnt->mnt_devname);
247 #endif
248 out_free_id:
249 mnt_free_id(mnt);
250 out_free_cache:
251 kmem_cache_free(mnt_cache, mnt);
252 return NULL;
253 }
254
255 /*
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
262 */
263 /*
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
266 *
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
273 */
274 int __mnt_is_readonly(struct vfsmount *mnt)
275 {
276 if (mnt->mnt_flags & MNT_READONLY)
277 return 1;
278 if (sb_rdonly(mnt->mnt_sb))
279 return 1;
280 return 0;
281 }
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283
284 static inline void mnt_inc_writers(struct mount *mnt)
285 {
286 #ifdef CONFIG_SMP
287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
288 #else
289 mnt->mnt_writers++;
290 #endif
291 }
292
293 static inline void mnt_dec_writers(struct mount *mnt)
294 {
295 #ifdef CONFIG_SMP
296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
297 #else
298 mnt->mnt_writers--;
299 #endif
300 }
301
302 static unsigned int mnt_get_writers(struct mount *mnt)
303 {
304 #ifdef CONFIG_SMP
305 unsigned int count = 0;
306 int cpu;
307
308 for_each_possible_cpu(cpu) {
309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
310 }
311
312 return count;
313 #else
314 return mnt->mnt_writers;
315 #endif
316 }
317
318 static int mnt_is_readonly(struct vfsmount *mnt)
319 {
320 if (mnt->mnt_sb->s_readonly_remount)
321 return 1;
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 smp_rmb();
324 return __mnt_is_readonly(mnt);
325 }
326
327 /*
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
332 */
333 /**
334 * __mnt_want_write - get write access to a mount without freeze protection
335 * @m: the mount on which to take a write
336 *
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
342 */
343 int __mnt_want_write(struct vfsmount *m)
344 {
345 struct mount *mnt = real_mount(m);
346 int ret = 0;
347
348 preempt_disable();
349 mnt_inc_writers(mnt);
350 /*
351 * The store to mnt_inc_writers must be visible before we pass
352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
354 */
355 smp_mb();
356 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
357 cpu_relax();
358 /*
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
362 */
363 smp_rmb();
364 if (mnt_is_readonly(m)) {
365 mnt_dec_writers(mnt);
366 ret = -EROFS;
367 }
368 preempt_enable();
369
370 return ret;
371 }
372
373 /**
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
376 *
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
381 */
382 int mnt_want_write(struct vfsmount *m)
383 {
384 int ret;
385
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
388 if (ret)
389 sb_end_write(m->mnt_sb);
390 return ret;
391 }
392 EXPORT_SYMBOL_GPL(mnt_want_write);
393
394 /**
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
397 *
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
402 *
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
405 */
406 int mnt_clone_write(struct vfsmount *mnt)
407 {
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
410 return -EROFS;
411 preempt_disable();
412 mnt_inc_writers(real_mount(mnt));
413 preempt_enable();
414 return 0;
415 }
416 EXPORT_SYMBOL_GPL(mnt_clone_write);
417
418 /**
419 * __mnt_want_write_file - get write access to a file's mount
420 * @file: the file who's mount on which to take a write
421 *
422 * This is like __mnt_want_write, but it takes a file and can
423 * do some optimisations if the file is open for write already
424 */
425 int __mnt_want_write_file(struct file *file)
426 {
427 if (!(file->f_mode & FMODE_WRITER))
428 return __mnt_want_write(file->f_path.mnt);
429 else
430 return mnt_clone_write(file->f_path.mnt);
431 }
432
433 /**
434 * mnt_want_write_file_path - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
436 *
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
439 *
440 * Called by the vfs for cases when we have an open file at hand, but will do an
441 * inode operation on it (important distinction for files opened on overlayfs,
442 * since the file operations will come from the real underlying file, while
443 * inode operations come from the overlay).
444 */
445 int mnt_want_write_file_path(struct file *file)
446 {
447 int ret;
448
449 sb_start_write(file->f_path.mnt->mnt_sb);
450 ret = __mnt_want_write_file(file);
451 if (ret)
452 sb_end_write(file->f_path.mnt->mnt_sb);
453 return ret;
454 }
455
456 static inline int may_write_real(struct file *file)
457 {
458 struct dentry *dentry = file->f_path.dentry;
459 struct dentry *upperdentry;
460
461 /* Writable file? */
462 if (file->f_mode & FMODE_WRITER)
463 return 0;
464
465 /* Not overlayfs? */
466 if (likely(!(dentry->d_flags & DCACHE_OP_REAL)))
467 return 0;
468
469 /* File refers to upper, writable layer? */
470 upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
471 if (upperdentry &&
472 (file_inode(file) == d_inode(upperdentry) ||
473 file_inode(file) == d_inode(dentry)))
474 return 0;
475
476 /* Lower layer: can't write to real file, sorry... */
477 return -EPERM;
478 }
479
480 /**
481 * mnt_want_write_file - get write access to a file's mount
482 * @file: the file who's mount on which to take a write
483 *
484 * This is like mnt_want_write, but it takes a file and can
485 * do some optimisations if the file is open for write already
486 *
487 * Mostly called by filesystems from their ioctl operation before performing
488 * modification. On overlayfs this needs to check if the file is on a read-only
489 * lower layer and deny access in that case.
490 */
491 int mnt_want_write_file(struct file *file)
492 {
493 int ret;
494
495 ret = may_write_real(file);
496 if (!ret) {
497 sb_start_write(file_inode(file)->i_sb);
498 ret = __mnt_want_write_file(file);
499 if (ret)
500 sb_end_write(file_inode(file)->i_sb);
501 }
502 return ret;
503 }
504 EXPORT_SYMBOL_GPL(mnt_want_write_file);
505
506 /**
507 * __mnt_drop_write - give up write access to a mount
508 * @mnt: the mount on which to give up write access
509 *
510 * Tells the low-level filesystem that we are done
511 * performing writes to it. Must be matched with
512 * __mnt_want_write() call above.
513 */
514 void __mnt_drop_write(struct vfsmount *mnt)
515 {
516 preempt_disable();
517 mnt_dec_writers(real_mount(mnt));
518 preempt_enable();
519 }
520
521 /**
522 * mnt_drop_write - give up write access to a mount
523 * @mnt: the mount on which to give up write access
524 *
525 * Tells the low-level filesystem that we are done performing writes to it and
526 * also allows filesystem to be frozen again. Must be matched with
527 * mnt_want_write() call above.
528 */
529 void mnt_drop_write(struct vfsmount *mnt)
530 {
531 __mnt_drop_write(mnt);
532 sb_end_write(mnt->mnt_sb);
533 }
534 EXPORT_SYMBOL_GPL(mnt_drop_write);
535
536 void __mnt_drop_write_file(struct file *file)
537 {
538 __mnt_drop_write(file->f_path.mnt);
539 }
540
541 void mnt_drop_write_file_path(struct file *file)
542 {
543 mnt_drop_write(file->f_path.mnt);
544 }
545
546 void mnt_drop_write_file(struct file *file)
547 {
548 __mnt_drop_write(file->f_path.mnt);
549 sb_end_write(file_inode(file)->i_sb);
550 }
551 EXPORT_SYMBOL(mnt_drop_write_file);
552
553 static int mnt_make_readonly(struct mount *mnt)
554 {
555 int ret = 0;
556
557 lock_mount_hash();
558 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
559 /*
560 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
561 * should be visible before we do.
562 */
563 smp_mb();
564
565 /*
566 * With writers on hold, if this value is zero, then there are
567 * definitely no active writers (although held writers may subsequently
568 * increment the count, they'll have to wait, and decrement it after
569 * seeing MNT_READONLY).
570 *
571 * It is OK to have counter incremented on one CPU and decremented on
572 * another: the sum will add up correctly. The danger would be when we
573 * sum up each counter, if we read a counter before it is incremented,
574 * but then read another CPU's count which it has been subsequently
575 * decremented from -- we would see more decrements than we should.
576 * MNT_WRITE_HOLD protects against this scenario, because
577 * mnt_want_write first increments count, then smp_mb, then spins on
578 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
579 * we're counting up here.
580 */
581 if (mnt_get_writers(mnt) > 0)
582 ret = -EBUSY;
583 else
584 mnt->mnt.mnt_flags |= MNT_READONLY;
585 /*
586 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
587 * that become unheld will see MNT_READONLY.
588 */
589 smp_wmb();
590 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
591 unlock_mount_hash();
592 return ret;
593 }
594
595 static void __mnt_unmake_readonly(struct mount *mnt)
596 {
597 lock_mount_hash();
598 mnt->mnt.mnt_flags &= ~MNT_READONLY;
599 unlock_mount_hash();
600 }
601
602 int sb_prepare_remount_readonly(struct super_block *sb)
603 {
604 struct mount *mnt;
605 int err = 0;
606
607 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
608 if (atomic_long_read(&sb->s_remove_count))
609 return -EBUSY;
610
611 lock_mount_hash();
612 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
613 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
614 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
615 smp_mb();
616 if (mnt_get_writers(mnt) > 0) {
617 err = -EBUSY;
618 break;
619 }
620 }
621 }
622 if (!err && atomic_long_read(&sb->s_remove_count))
623 err = -EBUSY;
624
625 if (!err) {
626 sb->s_readonly_remount = 1;
627 smp_wmb();
628 }
629 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
630 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
631 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
632 }
633 unlock_mount_hash();
634
635 return err;
636 }
637
638 static void free_vfsmnt(struct mount *mnt)
639 {
640 kfree_const(mnt->mnt_devname);
641 #ifdef CONFIG_SMP
642 free_percpu(mnt->mnt_pcp);
643 #endif
644 kmem_cache_free(mnt_cache, mnt);
645 }
646
647 static void delayed_free_vfsmnt(struct rcu_head *head)
648 {
649 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
650 }
651
652 /* call under rcu_read_lock */
653 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
654 {
655 struct mount *mnt;
656 if (read_seqretry(&mount_lock, seq))
657 return 1;
658 if (bastard == NULL)
659 return 0;
660 mnt = real_mount(bastard);
661 mnt_add_count(mnt, 1);
662 if (likely(!read_seqretry(&mount_lock, seq)))
663 return 0;
664 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
665 mnt_add_count(mnt, -1);
666 return 1;
667 }
668 return -1;
669 }
670
671 /* call under rcu_read_lock */
672 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
673 {
674 int res = __legitimize_mnt(bastard, seq);
675 if (likely(!res))
676 return true;
677 if (unlikely(res < 0)) {
678 rcu_read_unlock();
679 mntput(bastard);
680 rcu_read_lock();
681 }
682 return false;
683 }
684
685 /*
686 * find the first mount at @dentry on vfsmount @mnt.
687 * call under rcu_read_lock()
688 */
689 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
690 {
691 struct hlist_head *head = m_hash(mnt, dentry);
692 struct mount *p;
693
694 hlist_for_each_entry_rcu(p, head, mnt_hash)
695 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
696 return p;
697 return NULL;
698 }
699
700 /*
701 * lookup_mnt - Return the first child mount mounted at path
702 *
703 * "First" means first mounted chronologically. If you create the
704 * following mounts:
705 *
706 * mount /dev/sda1 /mnt
707 * mount /dev/sda2 /mnt
708 * mount /dev/sda3 /mnt
709 *
710 * Then lookup_mnt() on the base /mnt dentry in the root mount will
711 * return successively the root dentry and vfsmount of /dev/sda1, then
712 * /dev/sda2, then /dev/sda3, then NULL.
713 *
714 * lookup_mnt takes a reference to the found vfsmount.
715 */
716 struct vfsmount *lookup_mnt(const struct path *path)
717 {
718 struct mount *child_mnt;
719 struct vfsmount *m;
720 unsigned seq;
721
722 rcu_read_lock();
723 do {
724 seq = read_seqbegin(&mount_lock);
725 child_mnt = __lookup_mnt(path->mnt, path->dentry);
726 m = child_mnt ? &child_mnt->mnt : NULL;
727 } while (!legitimize_mnt(m, seq));
728 rcu_read_unlock();
729 return m;
730 }
731
732 /*
733 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
734 * current mount namespace.
735 *
736 * The common case is dentries are not mountpoints at all and that
737 * test is handled inline. For the slow case when we are actually
738 * dealing with a mountpoint of some kind, walk through all of the
739 * mounts in the current mount namespace and test to see if the dentry
740 * is a mountpoint.
741 *
742 * The mount_hashtable is not usable in the context because we
743 * need to identify all mounts that may be in the current mount
744 * namespace not just a mount that happens to have some specified
745 * parent mount.
746 */
747 bool __is_local_mountpoint(struct dentry *dentry)
748 {
749 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
750 struct mount *mnt;
751 bool is_covered = false;
752
753 if (!d_mountpoint(dentry))
754 goto out;
755
756 down_read(&namespace_sem);
757 list_for_each_entry(mnt, &ns->list, mnt_list) {
758 is_covered = (mnt->mnt_mountpoint == dentry);
759 if (is_covered)
760 break;
761 }
762 up_read(&namespace_sem);
763 out:
764 return is_covered;
765 }
766
767 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
768 {
769 struct hlist_head *chain = mp_hash(dentry);
770 struct mountpoint *mp;
771
772 hlist_for_each_entry(mp, chain, m_hash) {
773 if (mp->m_dentry == dentry) {
774 /* might be worth a WARN_ON() */
775 if (d_unlinked(dentry))
776 return ERR_PTR(-ENOENT);
777 mp->m_count++;
778 return mp;
779 }
780 }
781 return NULL;
782 }
783
784 static struct mountpoint *get_mountpoint(struct dentry *dentry)
785 {
786 struct mountpoint *mp, *new = NULL;
787 int ret;
788
789 if (d_mountpoint(dentry)) {
790 mountpoint:
791 read_seqlock_excl(&mount_lock);
792 mp = lookup_mountpoint(dentry);
793 read_sequnlock_excl(&mount_lock);
794 if (mp)
795 goto done;
796 }
797
798 if (!new)
799 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
800 if (!new)
801 return ERR_PTR(-ENOMEM);
802
803
804 /* Exactly one processes may set d_mounted */
805 ret = d_set_mounted(dentry);
806
807 /* Someone else set d_mounted? */
808 if (ret == -EBUSY)
809 goto mountpoint;
810
811 /* The dentry is not available as a mountpoint? */
812 mp = ERR_PTR(ret);
813 if (ret)
814 goto done;
815
816 /* Add the new mountpoint to the hash table */
817 read_seqlock_excl(&mount_lock);
818 new->m_dentry = dentry;
819 new->m_count = 1;
820 hlist_add_head(&new->m_hash, mp_hash(dentry));
821 INIT_HLIST_HEAD(&new->m_list);
822 read_sequnlock_excl(&mount_lock);
823
824 mp = new;
825 new = NULL;
826 done:
827 kfree(new);
828 return mp;
829 }
830
831 static void put_mountpoint(struct mountpoint *mp)
832 {
833 if (!--mp->m_count) {
834 struct dentry *dentry = mp->m_dentry;
835 BUG_ON(!hlist_empty(&mp->m_list));
836 spin_lock(&dentry->d_lock);
837 dentry->d_flags &= ~DCACHE_MOUNTED;
838 spin_unlock(&dentry->d_lock);
839 hlist_del(&mp->m_hash);
840 kfree(mp);
841 }
842 }
843
844 static inline int check_mnt(struct mount *mnt)
845 {
846 return mnt->mnt_ns == current->nsproxy->mnt_ns;
847 }
848
849 /*
850 * vfsmount lock must be held for write
851 */
852 static void touch_mnt_namespace(struct mnt_namespace *ns)
853 {
854 if (ns) {
855 ns->event = ++event;
856 wake_up_interruptible(&ns->poll);
857 }
858 }
859
860 /*
861 * vfsmount lock must be held for write
862 */
863 static void __touch_mnt_namespace(struct mnt_namespace *ns)
864 {
865 if (ns && ns->event != event) {
866 ns->event = event;
867 wake_up_interruptible(&ns->poll);
868 }
869 }
870
871 /*
872 * vfsmount lock must be held for write
873 */
874 static void unhash_mnt(struct mount *mnt)
875 {
876 mnt->mnt_parent = mnt;
877 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
878 list_del_init(&mnt->mnt_child);
879 hlist_del_init_rcu(&mnt->mnt_hash);
880 hlist_del_init(&mnt->mnt_mp_list);
881 put_mountpoint(mnt->mnt_mp);
882 mnt->mnt_mp = NULL;
883 }
884
885 /*
886 * vfsmount lock must be held for write
887 */
888 static void detach_mnt(struct mount *mnt, struct path *old_path)
889 {
890 old_path->dentry = mnt->mnt_mountpoint;
891 old_path->mnt = &mnt->mnt_parent->mnt;
892 unhash_mnt(mnt);
893 }
894
895 /*
896 * vfsmount lock must be held for write
897 */
898 static void umount_mnt(struct mount *mnt)
899 {
900 /* old mountpoint will be dropped when we can do that */
901 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
902 unhash_mnt(mnt);
903 }
904
905 /*
906 * vfsmount lock must be held for write
907 */
908 void mnt_set_mountpoint(struct mount *mnt,
909 struct mountpoint *mp,
910 struct mount *child_mnt)
911 {
912 mp->m_count++;
913 mnt_add_count(mnt, 1); /* essentially, that's mntget */
914 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
915 child_mnt->mnt_parent = mnt;
916 child_mnt->mnt_mp = mp;
917 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
918 }
919
920 static void __attach_mnt(struct mount *mnt, struct mount *parent)
921 {
922 hlist_add_head_rcu(&mnt->mnt_hash,
923 m_hash(&parent->mnt, mnt->mnt_mountpoint));
924 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
925 }
926
927 /*
928 * vfsmount lock must be held for write
929 */
930 static void attach_mnt(struct mount *mnt,
931 struct mount *parent,
932 struct mountpoint *mp)
933 {
934 mnt_set_mountpoint(parent, mp, mnt);
935 __attach_mnt(mnt, parent);
936 }
937
938 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
939 {
940 struct mountpoint *old_mp = mnt->mnt_mp;
941 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
942 struct mount *old_parent = mnt->mnt_parent;
943
944 list_del_init(&mnt->mnt_child);
945 hlist_del_init(&mnt->mnt_mp_list);
946 hlist_del_init_rcu(&mnt->mnt_hash);
947
948 attach_mnt(mnt, parent, mp);
949
950 put_mountpoint(old_mp);
951
952 /*
953 * Safely avoid even the suggestion this code might sleep or
954 * lock the mount hash by taking advantage of the knowledge that
955 * mnt_change_mountpoint will not release the final reference
956 * to a mountpoint.
957 *
958 * During mounting, the mount passed in as the parent mount will
959 * continue to use the old mountpoint and during unmounting, the
960 * old mountpoint will continue to exist until namespace_unlock,
961 * which happens well after mnt_change_mountpoint.
962 */
963 spin_lock(&old_mountpoint->d_lock);
964 old_mountpoint->d_lockref.count--;
965 spin_unlock(&old_mountpoint->d_lock);
966
967 mnt_add_count(old_parent, -1);
968 }
969
970 /*
971 * vfsmount lock must be held for write
972 */
973 static void commit_tree(struct mount *mnt)
974 {
975 struct mount *parent = mnt->mnt_parent;
976 struct mount *m;
977 LIST_HEAD(head);
978 struct mnt_namespace *n = parent->mnt_ns;
979
980 BUG_ON(parent == mnt);
981
982 list_add_tail(&head, &mnt->mnt_list);
983 list_for_each_entry(m, &head, mnt_list)
984 m->mnt_ns = n;
985
986 list_splice(&head, n->list.prev);
987
988 n->mounts += n->pending_mounts;
989 n->pending_mounts = 0;
990
991 __attach_mnt(mnt, parent);
992 touch_mnt_namespace(n);
993 }
994
995 static struct mount *next_mnt(struct mount *p, struct mount *root)
996 {
997 struct list_head *next = p->mnt_mounts.next;
998 if (next == &p->mnt_mounts) {
999 while (1) {
1000 if (p == root)
1001 return NULL;
1002 next = p->mnt_child.next;
1003 if (next != &p->mnt_parent->mnt_mounts)
1004 break;
1005 p = p->mnt_parent;
1006 }
1007 }
1008 return list_entry(next, struct mount, mnt_child);
1009 }
1010
1011 static struct mount *skip_mnt_tree(struct mount *p)
1012 {
1013 struct list_head *prev = p->mnt_mounts.prev;
1014 while (prev != &p->mnt_mounts) {
1015 p = list_entry(prev, struct mount, mnt_child);
1016 prev = p->mnt_mounts.prev;
1017 }
1018 return p;
1019 }
1020
1021 struct vfsmount *
1022 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
1023 {
1024 struct mount *mnt;
1025 struct dentry *root;
1026
1027 if (!type)
1028 return ERR_PTR(-ENODEV);
1029
1030 mnt = alloc_vfsmnt(name);
1031 if (!mnt)
1032 return ERR_PTR(-ENOMEM);
1033
1034 if (flags & SB_KERNMOUNT)
1035 mnt->mnt.mnt_flags = MNT_INTERNAL;
1036
1037 root = mount_fs(type, flags, name, data);
1038 if (IS_ERR(root)) {
1039 mnt_free_id(mnt);
1040 free_vfsmnt(mnt);
1041 return ERR_CAST(root);
1042 }
1043
1044 mnt->mnt.mnt_root = root;
1045 mnt->mnt.mnt_sb = root->d_sb;
1046 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1047 mnt->mnt_parent = mnt;
1048 lock_mount_hash();
1049 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
1050 unlock_mount_hash();
1051 return &mnt->mnt;
1052 }
1053 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1054
1055 struct vfsmount *
1056 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1057 const char *name, void *data)
1058 {
1059 /* Until it is worked out how to pass the user namespace
1060 * through from the parent mount to the submount don't support
1061 * unprivileged mounts with submounts.
1062 */
1063 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1064 return ERR_PTR(-EPERM);
1065
1066 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1067 }
1068 EXPORT_SYMBOL_GPL(vfs_submount);
1069
1070 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1071 int flag)
1072 {
1073 struct super_block *sb = old->mnt.mnt_sb;
1074 struct mount *mnt;
1075 int err;
1076
1077 mnt = alloc_vfsmnt(old->mnt_devname);
1078 if (!mnt)
1079 return ERR_PTR(-ENOMEM);
1080
1081 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1082 mnt->mnt_group_id = 0; /* not a peer of original */
1083 else
1084 mnt->mnt_group_id = old->mnt_group_id;
1085
1086 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1087 err = mnt_alloc_group_id(mnt);
1088 if (err)
1089 goto out_free;
1090 }
1091
1092 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
1093 /* Don't allow unprivileged users to change mount flags */
1094 if (flag & CL_UNPRIVILEGED) {
1095 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1096
1097 if (mnt->mnt.mnt_flags & MNT_READONLY)
1098 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1099
1100 if (mnt->mnt.mnt_flags & MNT_NODEV)
1101 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1102
1103 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1104 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1105
1106 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1107 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1108 }
1109
1110 /* Don't allow unprivileged users to reveal what is under a mount */
1111 if ((flag & CL_UNPRIVILEGED) &&
1112 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1113 mnt->mnt.mnt_flags |= MNT_LOCKED;
1114
1115 atomic_inc(&sb->s_active);
1116 mnt->mnt.mnt_sb = sb;
1117 mnt->mnt.mnt_root = dget(root);
1118 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1119 mnt->mnt_parent = mnt;
1120 lock_mount_hash();
1121 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1122 unlock_mount_hash();
1123
1124 if ((flag & CL_SLAVE) ||
1125 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1126 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1127 mnt->mnt_master = old;
1128 CLEAR_MNT_SHARED(mnt);
1129 } else if (!(flag & CL_PRIVATE)) {
1130 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1131 list_add(&mnt->mnt_share, &old->mnt_share);
1132 if (IS_MNT_SLAVE(old))
1133 list_add(&mnt->mnt_slave, &old->mnt_slave);
1134 mnt->mnt_master = old->mnt_master;
1135 } else {
1136 CLEAR_MNT_SHARED(mnt);
1137 }
1138 if (flag & CL_MAKE_SHARED)
1139 set_mnt_shared(mnt);
1140
1141 /* stick the duplicate mount on the same expiry list
1142 * as the original if that was on one */
1143 if (flag & CL_EXPIRE) {
1144 if (!list_empty(&old->mnt_expire))
1145 list_add(&mnt->mnt_expire, &old->mnt_expire);
1146 }
1147
1148 return mnt;
1149
1150 out_free:
1151 mnt_free_id(mnt);
1152 free_vfsmnt(mnt);
1153 return ERR_PTR(err);
1154 }
1155
1156 static void cleanup_mnt(struct mount *mnt)
1157 {
1158 /*
1159 * This probably indicates that somebody messed
1160 * up a mnt_want/drop_write() pair. If this
1161 * happens, the filesystem was probably unable
1162 * to make r/w->r/o transitions.
1163 */
1164 /*
1165 * The locking used to deal with mnt_count decrement provides barriers,
1166 * so mnt_get_writers() below is safe.
1167 */
1168 WARN_ON(mnt_get_writers(mnt));
1169 if (unlikely(mnt->mnt_pins.first))
1170 mnt_pin_kill(mnt);
1171 fsnotify_vfsmount_delete(&mnt->mnt);
1172 dput(mnt->mnt.mnt_root);
1173 deactivate_super(mnt->mnt.mnt_sb);
1174 mnt_free_id(mnt);
1175 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1176 }
1177
1178 static void __cleanup_mnt(struct rcu_head *head)
1179 {
1180 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1181 }
1182
1183 static LLIST_HEAD(delayed_mntput_list);
1184 static void delayed_mntput(struct work_struct *unused)
1185 {
1186 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1187 struct mount *m, *t;
1188
1189 llist_for_each_entry_safe(m, t, node, mnt_llist)
1190 cleanup_mnt(m);
1191 }
1192 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1193
1194 static void mntput_no_expire(struct mount *mnt)
1195 {
1196 rcu_read_lock();
1197 mnt_add_count(mnt, -1);
1198 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1199 rcu_read_unlock();
1200 return;
1201 }
1202 lock_mount_hash();
1203 if (mnt_get_count(mnt)) {
1204 rcu_read_unlock();
1205 unlock_mount_hash();
1206 return;
1207 }
1208 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1209 rcu_read_unlock();
1210 unlock_mount_hash();
1211 return;
1212 }
1213 mnt->mnt.mnt_flags |= MNT_DOOMED;
1214 rcu_read_unlock();
1215
1216 list_del(&mnt->mnt_instance);
1217
1218 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1219 struct mount *p, *tmp;
1220 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1221 umount_mnt(p);
1222 }
1223 }
1224 unlock_mount_hash();
1225
1226 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1227 struct task_struct *task = current;
1228 if (likely(!(task->flags & PF_KTHREAD))) {
1229 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1230 if (!task_work_add(task, &mnt->mnt_rcu, true))
1231 return;
1232 }
1233 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1234 schedule_delayed_work(&delayed_mntput_work, 1);
1235 return;
1236 }
1237 cleanup_mnt(mnt);
1238 }
1239
1240 void mntput(struct vfsmount *mnt)
1241 {
1242 if (mnt) {
1243 struct mount *m = real_mount(mnt);
1244 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1245 if (unlikely(m->mnt_expiry_mark))
1246 m->mnt_expiry_mark = 0;
1247 mntput_no_expire(m);
1248 }
1249 }
1250 EXPORT_SYMBOL(mntput);
1251
1252 struct vfsmount *mntget(struct vfsmount *mnt)
1253 {
1254 if (mnt)
1255 mnt_add_count(real_mount(mnt), 1);
1256 return mnt;
1257 }
1258 EXPORT_SYMBOL(mntget);
1259
1260 /* path_is_mountpoint() - Check if path is a mount in the current
1261 * namespace.
1262 *
1263 * d_mountpoint() can only be used reliably to establish if a dentry is
1264 * not mounted in any namespace and that common case is handled inline.
1265 * d_mountpoint() isn't aware of the possibility there may be multiple
1266 * mounts using a given dentry in a different namespace. This function
1267 * checks if the passed in path is a mountpoint rather than the dentry
1268 * alone.
1269 */
1270 bool path_is_mountpoint(const struct path *path)
1271 {
1272 unsigned seq;
1273 bool res;
1274
1275 if (!d_mountpoint(path->dentry))
1276 return false;
1277
1278 rcu_read_lock();
1279 do {
1280 seq = read_seqbegin(&mount_lock);
1281 res = __path_is_mountpoint(path);
1282 } while (read_seqretry(&mount_lock, seq));
1283 rcu_read_unlock();
1284
1285 return res;
1286 }
1287 EXPORT_SYMBOL(path_is_mountpoint);
1288
1289 struct vfsmount *mnt_clone_internal(const struct path *path)
1290 {
1291 struct mount *p;
1292 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1293 if (IS_ERR(p))
1294 return ERR_CAST(p);
1295 p->mnt.mnt_flags |= MNT_INTERNAL;
1296 return &p->mnt;
1297 }
1298
1299 #ifdef CONFIG_PROC_FS
1300 /* iterator; we want it to have access to namespace_sem, thus here... */
1301 static void *m_start(struct seq_file *m, loff_t *pos)
1302 {
1303 struct proc_mounts *p = m->private;
1304
1305 down_read(&namespace_sem);
1306 if (p->cached_event == p->ns->event) {
1307 void *v = p->cached_mount;
1308 if (*pos == p->cached_index)
1309 return v;
1310 if (*pos == p->cached_index + 1) {
1311 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1312 return p->cached_mount = v;
1313 }
1314 }
1315
1316 p->cached_event = p->ns->event;
1317 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1318 p->cached_index = *pos;
1319 return p->cached_mount;
1320 }
1321
1322 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1323 {
1324 struct proc_mounts *p = m->private;
1325
1326 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1327 p->cached_index = *pos;
1328 return p->cached_mount;
1329 }
1330
1331 static void m_stop(struct seq_file *m, void *v)
1332 {
1333 up_read(&namespace_sem);
1334 }
1335
1336 static int m_show(struct seq_file *m, void *v)
1337 {
1338 struct proc_mounts *p = m->private;
1339 struct mount *r = list_entry(v, struct mount, mnt_list);
1340 return p->show(m, &r->mnt);
1341 }
1342
1343 const struct seq_operations mounts_op = {
1344 .start = m_start,
1345 .next = m_next,
1346 .stop = m_stop,
1347 .show = m_show,
1348 };
1349 #endif /* CONFIG_PROC_FS */
1350
1351 /**
1352 * may_umount_tree - check if a mount tree is busy
1353 * @mnt: root of mount tree
1354 *
1355 * This is called to check if a tree of mounts has any
1356 * open files, pwds, chroots or sub mounts that are
1357 * busy.
1358 */
1359 int may_umount_tree(struct vfsmount *m)
1360 {
1361 struct mount *mnt = real_mount(m);
1362 int actual_refs = 0;
1363 int minimum_refs = 0;
1364 struct mount *p;
1365 BUG_ON(!m);
1366
1367 /* write lock needed for mnt_get_count */
1368 lock_mount_hash();
1369 for (p = mnt; p; p = next_mnt(p, mnt)) {
1370 actual_refs += mnt_get_count(p);
1371 minimum_refs += 2;
1372 }
1373 unlock_mount_hash();
1374
1375 if (actual_refs > minimum_refs)
1376 return 0;
1377
1378 return 1;
1379 }
1380
1381 EXPORT_SYMBOL(may_umount_tree);
1382
1383 /**
1384 * may_umount - check if a mount point is busy
1385 * @mnt: root of mount
1386 *
1387 * This is called to check if a mount point has any
1388 * open files, pwds, chroots or sub mounts. If the
1389 * mount has sub mounts this will return busy
1390 * regardless of whether the sub mounts are busy.
1391 *
1392 * Doesn't take quota and stuff into account. IOW, in some cases it will
1393 * give false negatives. The main reason why it's here is that we need
1394 * a non-destructive way to look for easily umountable filesystems.
1395 */
1396 int may_umount(struct vfsmount *mnt)
1397 {
1398 int ret = 1;
1399 down_read(&namespace_sem);
1400 lock_mount_hash();
1401 if (propagate_mount_busy(real_mount(mnt), 2))
1402 ret = 0;
1403 unlock_mount_hash();
1404 up_read(&namespace_sem);
1405 return ret;
1406 }
1407
1408 EXPORT_SYMBOL(may_umount);
1409
1410 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1411
1412 static void namespace_unlock(void)
1413 {
1414 struct hlist_head head;
1415
1416 hlist_move_list(&unmounted, &head);
1417
1418 up_write(&namespace_sem);
1419
1420 if (likely(hlist_empty(&head)))
1421 return;
1422
1423 synchronize_rcu();
1424
1425 group_pin_kill(&head);
1426 }
1427
1428 static inline void namespace_lock(void)
1429 {
1430 down_write(&namespace_sem);
1431 }
1432
1433 enum umount_tree_flags {
1434 UMOUNT_SYNC = 1,
1435 UMOUNT_PROPAGATE = 2,
1436 UMOUNT_CONNECTED = 4,
1437 };
1438
1439 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1440 {
1441 /* Leaving mounts connected is only valid for lazy umounts */
1442 if (how & UMOUNT_SYNC)
1443 return true;
1444
1445 /* A mount without a parent has nothing to be connected to */
1446 if (!mnt_has_parent(mnt))
1447 return true;
1448
1449 /* Because the reference counting rules change when mounts are
1450 * unmounted and connected, umounted mounts may not be
1451 * connected to mounted mounts.
1452 */
1453 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1454 return true;
1455
1456 /* Has it been requested that the mount remain connected? */
1457 if (how & UMOUNT_CONNECTED)
1458 return false;
1459
1460 /* Is the mount locked such that it needs to remain connected? */
1461 if (IS_MNT_LOCKED(mnt))
1462 return false;
1463
1464 /* By default disconnect the mount */
1465 return true;
1466 }
1467
1468 /*
1469 * mount_lock must be held
1470 * namespace_sem must be held for write
1471 */
1472 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1473 {
1474 LIST_HEAD(tmp_list);
1475 struct mount *p;
1476
1477 if (how & UMOUNT_PROPAGATE)
1478 propagate_mount_unlock(mnt);
1479
1480 /* Gather the mounts to umount */
1481 for (p = mnt; p; p = next_mnt(p, mnt)) {
1482 p->mnt.mnt_flags |= MNT_UMOUNT;
1483 list_move(&p->mnt_list, &tmp_list);
1484 }
1485
1486 /* Hide the mounts from mnt_mounts */
1487 list_for_each_entry(p, &tmp_list, mnt_list) {
1488 list_del_init(&p->mnt_child);
1489 }
1490
1491 /* Add propogated mounts to the tmp_list */
1492 if (how & UMOUNT_PROPAGATE)
1493 propagate_umount(&tmp_list);
1494
1495 while (!list_empty(&tmp_list)) {
1496 struct mnt_namespace *ns;
1497 bool disconnect;
1498 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1499 list_del_init(&p->mnt_expire);
1500 list_del_init(&p->mnt_list);
1501 ns = p->mnt_ns;
1502 if (ns) {
1503 ns->mounts--;
1504 __touch_mnt_namespace(ns);
1505 }
1506 p->mnt_ns = NULL;
1507 if (how & UMOUNT_SYNC)
1508 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1509
1510 disconnect = disconnect_mount(p, how);
1511
1512 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1513 disconnect ? &unmounted : NULL);
1514 if (mnt_has_parent(p)) {
1515 mnt_add_count(p->mnt_parent, -1);
1516 if (!disconnect) {
1517 /* Don't forget about p */
1518 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1519 } else {
1520 umount_mnt(p);
1521 }
1522 }
1523 change_mnt_propagation(p, MS_PRIVATE);
1524 }
1525 }
1526
1527 static void shrink_submounts(struct mount *mnt);
1528
1529 static int do_umount(struct mount *mnt, int flags)
1530 {
1531 struct super_block *sb = mnt->mnt.mnt_sb;
1532 int retval;
1533
1534 retval = security_sb_umount(&mnt->mnt, flags);
1535 if (retval)
1536 return retval;
1537
1538 /*
1539 * Allow userspace to request a mountpoint be expired rather than
1540 * unmounting unconditionally. Unmount only happens if:
1541 * (1) the mark is already set (the mark is cleared by mntput())
1542 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1543 */
1544 if (flags & MNT_EXPIRE) {
1545 if (&mnt->mnt == current->fs->root.mnt ||
1546 flags & (MNT_FORCE | MNT_DETACH))
1547 return -EINVAL;
1548
1549 /*
1550 * probably don't strictly need the lock here if we examined
1551 * all race cases, but it's a slowpath.
1552 */
1553 lock_mount_hash();
1554 if (mnt_get_count(mnt) != 2) {
1555 unlock_mount_hash();
1556 return -EBUSY;
1557 }
1558 unlock_mount_hash();
1559
1560 if (!xchg(&mnt->mnt_expiry_mark, 1))
1561 return -EAGAIN;
1562 }
1563
1564 /*
1565 * If we may have to abort operations to get out of this
1566 * mount, and they will themselves hold resources we must
1567 * allow the fs to do things. In the Unix tradition of
1568 * 'Gee thats tricky lets do it in userspace' the umount_begin
1569 * might fail to complete on the first run through as other tasks
1570 * must return, and the like. Thats for the mount program to worry
1571 * about for the moment.
1572 */
1573
1574 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1575 sb->s_op->umount_begin(sb);
1576 }
1577
1578 /*
1579 * No sense to grab the lock for this test, but test itself looks
1580 * somewhat bogus. Suggestions for better replacement?
1581 * Ho-hum... In principle, we might treat that as umount + switch
1582 * to rootfs. GC would eventually take care of the old vfsmount.
1583 * Actually it makes sense, especially if rootfs would contain a
1584 * /reboot - static binary that would close all descriptors and
1585 * call reboot(9). Then init(8) could umount root and exec /reboot.
1586 */
1587 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1588 /*
1589 * Special case for "unmounting" root ...
1590 * we just try to remount it readonly.
1591 */
1592 if (!capable(CAP_SYS_ADMIN))
1593 return -EPERM;
1594 down_write(&sb->s_umount);
1595 if (!sb_rdonly(sb))
1596 retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1597 up_write(&sb->s_umount);
1598 return retval;
1599 }
1600
1601 namespace_lock();
1602 lock_mount_hash();
1603 event++;
1604
1605 if (flags & MNT_DETACH) {
1606 if (!list_empty(&mnt->mnt_list))
1607 umount_tree(mnt, UMOUNT_PROPAGATE);
1608 retval = 0;
1609 } else {
1610 shrink_submounts(mnt);
1611 retval = -EBUSY;
1612 if (!propagate_mount_busy(mnt, 2)) {
1613 if (!list_empty(&mnt->mnt_list))
1614 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1615 retval = 0;
1616 }
1617 }
1618 unlock_mount_hash();
1619 namespace_unlock();
1620 return retval;
1621 }
1622
1623 /*
1624 * __detach_mounts - lazily unmount all mounts on the specified dentry
1625 *
1626 * During unlink, rmdir, and d_drop it is possible to loose the path
1627 * to an existing mountpoint, and wind up leaking the mount.
1628 * detach_mounts allows lazily unmounting those mounts instead of
1629 * leaking them.
1630 *
1631 * The caller may hold dentry->d_inode->i_mutex.
1632 */
1633 void __detach_mounts(struct dentry *dentry)
1634 {
1635 struct mountpoint *mp;
1636 struct mount *mnt;
1637
1638 namespace_lock();
1639 lock_mount_hash();
1640 mp = lookup_mountpoint(dentry);
1641 if (IS_ERR_OR_NULL(mp))
1642 goto out_unlock;
1643
1644 event++;
1645 while (!hlist_empty(&mp->m_list)) {
1646 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1647 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1648 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1649 umount_mnt(mnt);
1650 }
1651 else umount_tree(mnt, UMOUNT_CONNECTED);
1652 }
1653 put_mountpoint(mp);
1654 out_unlock:
1655 unlock_mount_hash();
1656 namespace_unlock();
1657 }
1658
1659 /*
1660 * Is the caller allowed to modify his namespace?
1661 */
1662 static inline bool may_mount(void)
1663 {
1664 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1665 }
1666
1667 static inline bool may_mandlock(void)
1668 {
1669 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1670 return false;
1671 #endif
1672 return capable(CAP_SYS_ADMIN);
1673 }
1674
1675 /*
1676 * Now umount can handle mount points as well as block devices.
1677 * This is important for filesystems which use unnamed block devices.
1678 *
1679 * We now support a flag for forced unmount like the other 'big iron'
1680 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1681 */
1682
1683 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1684 {
1685 struct path path;
1686 struct mount *mnt;
1687 int retval;
1688 int lookup_flags = 0;
1689
1690 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1691 return -EINVAL;
1692
1693 if (!may_mount())
1694 return -EPERM;
1695
1696 if (!(flags & UMOUNT_NOFOLLOW))
1697 lookup_flags |= LOOKUP_FOLLOW;
1698
1699 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1700 if (retval)
1701 goto out;
1702 mnt = real_mount(path.mnt);
1703 retval = -EINVAL;
1704 if (path.dentry != path.mnt->mnt_root)
1705 goto dput_and_out;
1706 if (!check_mnt(mnt))
1707 goto dput_and_out;
1708 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1709 goto dput_and_out;
1710 retval = -EPERM;
1711 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1712 goto dput_and_out;
1713
1714 retval = do_umount(mnt, flags);
1715 dput_and_out:
1716 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1717 dput(path.dentry);
1718 mntput_no_expire(mnt);
1719 out:
1720 return retval;
1721 }
1722
1723 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1724
1725 /*
1726 * The 2.0 compatible umount. No flags.
1727 */
1728 SYSCALL_DEFINE1(oldumount, char __user *, name)
1729 {
1730 return sys_umount(name, 0);
1731 }
1732
1733 #endif
1734
1735 static bool is_mnt_ns_file(struct dentry *dentry)
1736 {
1737 /* Is this a proxy for a mount namespace? */
1738 return dentry->d_op == &ns_dentry_operations &&
1739 dentry->d_fsdata == &mntns_operations;
1740 }
1741
1742 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1743 {
1744 return container_of(ns, struct mnt_namespace, ns);
1745 }
1746
1747 static bool mnt_ns_loop(struct dentry *dentry)
1748 {
1749 /* Could bind mounting the mount namespace inode cause a
1750 * mount namespace loop?
1751 */
1752 struct mnt_namespace *mnt_ns;
1753 if (!is_mnt_ns_file(dentry))
1754 return false;
1755
1756 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1757 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1758 }
1759
1760 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1761 int flag)
1762 {
1763 struct mount *res, *p, *q, *r, *parent;
1764
1765 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1766 return ERR_PTR(-EINVAL);
1767
1768 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1769 return ERR_PTR(-EINVAL);
1770
1771 res = q = clone_mnt(mnt, dentry, flag);
1772 if (IS_ERR(q))
1773 return q;
1774
1775 q->mnt_mountpoint = mnt->mnt_mountpoint;
1776
1777 p = mnt;
1778 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1779 struct mount *s;
1780 if (!is_subdir(r->mnt_mountpoint, dentry))
1781 continue;
1782
1783 for (s = r; s; s = next_mnt(s, r)) {
1784 if (!(flag & CL_COPY_UNBINDABLE) &&
1785 IS_MNT_UNBINDABLE(s)) {
1786 s = skip_mnt_tree(s);
1787 continue;
1788 }
1789 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1790 is_mnt_ns_file(s->mnt.mnt_root)) {
1791 s = skip_mnt_tree(s);
1792 continue;
1793 }
1794 while (p != s->mnt_parent) {
1795 p = p->mnt_parent;
1796 q = q->mnt_parent;
1797 }
1798 p = s;
1799 parent = q;
1800 q = clone_mnt(p, p->mnt.mnt_root, flag);
1801 if (IS_ERR(q))
1802 goto out;
1803 lock_mount_hash();
1804 list_add_tail(&q->mnt_list, &res->mnt_list);
1805 attach_mnt(q, parent, p->mnt_mp);
1806 unlock_mount_hash();
1807 }
1808 }
1809 return res;
1810 out:
1811 if (res) {
1812 lock_mount_hash();
1813 umount_tree(res, UMOUNT_SYNC);
1814 unlock_mount_hash();
1815 }
1816 return q;
1817 }
1818
1819 /* Caller should check returned pointer for errors */
1820
1821 struct vfsmount *collect_mounts(const struct path *path)
1822 {
1823 struct mount *tree;
1824 namespace_lock();
1825 if (!check_mnt(real_mount(path->mnt)))
1826 tree = ERR_PTR(-EINVAL);
1827 else
1828 tree = copy_tree(real_mount(path->mnt), path->dentry,
1829 CL_COPY_ALL | CL_PRIVATE);
1830 namespace_unlock();
1831 if (IS_ERR(tree))
1832 return ERR_CAST(tree);
1833 return &tree->mnt;
1834 }
1835
1836 void drop_collected_mounts(struct vfsmount *mnt)
1837 {
1838 namespace_lock();
1839 lock_mount_hash();
1840 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1841 unlock_mount_hash();
1842 namespace_unlock();
1843 }
1844
1845 /**
1846 * clone_private_mount - create a private clone of a path
1847 *
1848 * This creates a new vfsmount, which will be the clone of @path. The new will
1849 * not be attached anywhere in the namespace and will be private (i.e. changes
1850 * to the originating mount won't be propagated into this).
1851 *
1852 * Release with mntput().
1853 */
1854 struct vfsmount *clone_private_mount(const struct path *path)
1855 {
1856 struct mount *old_mnt = real_mount(path->mnt);
1857 struct mount *new_mnt;
1858
1859 if (IS_MNT_UNBINDABLE(old_mnt))
1860 return ERR_PTR(-EINVAL);
1861
1862 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1863 if (IS_ERR(new_mnt))
1864 return ERR_CAST(new_mnt);
1865
1866 return &new_mnt->mnt;
1867 }
1868 EXPORT_SYMBOL_GPL(clone_private_mount);
1869
1870 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1871 struct vfsmount *root)
1872 {
1873 struct mount *mnt;
1874 int res = f(root, arg);
1875 if (res)
1876 return res;
1877 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1878 res = f(&mnt->mnt, arg);
1879 if (res)
1880 return res;
1881 }
1882 return 0;
1883 }
1884
1885 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1886 {
1887 struct mount *p;
1888
1889 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1890 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1891 mnt_release_group_id(p);
1892 }
1893 }
1894
1895 static int invent_group_ids(struct mount *mnt, bool recurse)
1896 {
1897 struct mount *p;
1898
1899 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1900 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1901 int err = mnt_alloc_group_id(p);
1902 if (err) {
1903 cleanup_group_ids(mnt, p);
1904 return err;
1905 }
1906 }
1907 }
1908
1909 return 0;
1910 }
1911
1912 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1913 {
1914 unsigned int max = READ_ONCE(sysctl_mount_max);
1915 unsigned int mounts = 0, old, pending, sum;
1916 struct mount *p;
1917
1918 for (p = mnt; p; p = next_mnt(p, mnt))
1919 mounts++;
1920
1921 old = ns->mounts;
1922 pending = ns->pending_mounts;
1923 sum = old + pending;
1924 if ((old > sum) ||
1925 (pending > sum) ||
1926 (max < sum) ||
1927 (mounts > (max - sum)))
1928 return -ENOSPC;
1929
1930 ns->pending_mounts = pending + mounts;
1931 return 0;
1932 }
1933
1934 /*
1935 * @source_mnt : mount tree to be attached
1936 * @nd : place the mount tree @source_mnt is attached
1937 * @parent_nd : if non-null, detach the source_mnt from its parent and
1938 * store the parent mount and mountpoint dentry.
1939 * (done when source_mnt is moved)
1940 *
1941 * NOTE: in the table below explains the semantics when a source mount
1942 * of a given type is attached to a destination mount of a given type.
1943 * ---------------------------------------------------------------------------
1944 * | BIND MOUNT OPERATION |
1945 * |**************************************************************************
1946 * | source-->| shared | private | slave | unbindable |
1947 * | dest | | | | |
1948 * | | | | | | |
1949 * | v | | | | |
1950 * |**************************************************************************
1951 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1952 * | | | | | |
1953 * |non-shared| shared (+) | private | slave (*) | invalid |
1954 * ***************************************************************************
1955 * A bind operation clones the source mount and mounts the clone on the
1956 * destination mount.
1957 *
1958 * (++) the cloned mount is propagated to all the mounts in the propagation
1959 * tree of the destination mount and the cloned mount is added to
1960 * the peer group of the source mount.
1961 * (+) the cloned mount is created under the destination mount and is marked
1962 * as shared. The cloned mount is added to the peer group of the source
1963 * mount.
1964 * (+++) the mount is propagated to all the mounts in the propagation tree
1965 * of the destination mount and the cloned mount is made slave
1966 * of the same master as that of the source mount. The cloned mount
1967 * is marked as 'shared and slave'.
1968 * (*) the cloned mount is made a slave of the same master as that of the
1969 * source mount.
1970 *
1971 * ---------------------------------------------------------------------------
1972 * | MOVE MOUNT OPERATION |
1973 * |**************************************************************************
1974 * | source-->| shared | private | slave | unbindable |
1975 * | dest | | | | |
1976 * | | | | | | |
1977 * | v | | | | |
1978 * |**************************************************************************
1979 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1980 * | | | | | |
1981 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1982 * ***************************************************************************
1983 *
1984 * (+) the mount is moved to the destination. And is then propagated to
1985 * all the mounts in the propagation tree of the destination mount.
1986 * (+*) the mount is moved to the destination.
1987 * (+++) the mount is moved to the destination and is then propagated to
1988 * all the mounts belonging to the destination mount's propagation tree.
1989 * the mount is marked as 'shared and slave'.
1990 * (*) the mount continues to be a slave at the new location.
1991 *
1992 * if the source mount is a tree, the operations explained above is
1993 * applied to each mount in the tree.
1994 * Must be called without spinlocks held, since this function can sleep
1995 * in allocations.
1996 */
1997 static int attach_recursive_mnt(struct mount *source_mnt,
1998 struct mount *dest_mnt,
1999 struct mountpoint *dest_mp,
2000 struct path *parent_path)
2001 {
2002 HLIST_HEAD(tree_list);
2003 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2004 struct mountpoint *smp;
2005 struct mount *child, *p;
2006 struct hlist_node *n;
2007 int err;
2008
2009 /* Preallocate a mountpoint in case the new mounts need
2010 * to be tucked under other mounts.
2011 */
2012 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2013 if (IS_ERR(smp))
2014 return PTR_ERR(smp);
2015
2016 /* Is there space to add these mounts to the mount namespace? */
2017 if (!parent_path) {
2018 err = count_mounts(ns, source_mnt);
2019 if (err)
2020 goto out;
2021 }
2022
2023 if (IS_MNT_SHARED(dest_mnt)) {
2024 err = invent_group_ids(source_mnt, true);
2025 if (err)
2026 goto out;
2027 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2028 lock_mount_hash();
2029 if (err)
2030 goto out_cleanup_ids;
2031 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2032 set_mnt_shared(p);
2033 } else {
2034 lock_mount_hash();
2035 }
2036 if (parent_path) {
2037 detach_mnt(source_mnt, parent_path);
2038 attach_mnt(source_mnt, dest_mnt, dest_mp);
2039 touch_mnt_namespace(source_mnt->mnt_ns);
2040 } else {
2041 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2042 commit_tree(source_mnt);
2043 }
2044
2045 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2046 struct mount *q;
2047 hlist_del_init(&child->mnt_hash);
2048 q = __lookup_mnt(&child->mnt_parent->mnt,
2049 child->mnt_mountpoint);
2050 if (q)
2051 mnt_change_mountpoint(child, smp, q);
2052 commit_tree(child);
2053 }
2054 put_mountpoint(smp);
2055 unlock_mount_hash();
2056
2057 return 0;
2058
2059 out_cleanup_ids:
2060 while (!hlist_empty(&tree_list)) {
2061 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2062 child->mnt_parent->mnt_ns->pending_mounts = 0;
2063 umount_tree(child, UMOUNT_SYNC);
2064 }
2065 unlock_mount_hash();
2066 cleanup_group_ids(source_mnt, NULL);
2067 out:
2068 ns->pending_mounts = 0;
2069
2070 read_seqlock_excl(&mount_lock);
2071 put_mountpoint(smp);
2072 read_sequnlock_excl(&mount_lock);
2073
2074 return err;
2075 }
2076
2077 static struct mountpoint *lock_mount(struct path *path)
2078 {
2079 struct vfsmount *mnt;
2080 struct dentry *dentry = path->dentry;
2081 retry:
2082 inode_lock(dentry->d_inode);
2083 if (unlikely(cant_mount(dentry))) {
2084 inode_unlock(dentry->d_inode);
2085 return ERR_PTR(-ENOENT);
2086 }
2087 namespace_lock();
2088 mnt = lookup_mnt(path);
2089 if (likely(!mnt)) {
2090 struct mountpoint *mp = get_mountpoint(dentry);
2091 if (IS_ERR(mp)) {
2092 namespace_unlock();
2093 inode_unlock(dentry->d_inode);
2094 return mp;
2095 }
2096 return mp;
2097 }
2098 namespace_unlock();
2099 inode_unlock(path->dentry->d_inode);
2100 path_put(path);
2101 path->mnt = mnt;
2102 dentry = path->dentry = dget(mnt->mnt_root);
2103 goto retry;
2104 }
2105
2106 static void unlock_mount(struct mountpoint *where)
2107 {
2108 struct dentry *dentry = where->m_dentry;
2109
2110 read_seqlock_excl(&mount_lock);
2111 put_mountpoint(where);
2112 read_sequnlock_excl(&mount_lock);
2113
2114 namespace_unlock();
2115 inode_unlock(dentry->d_inode);
2116 }
2117
2118 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2119 {
2120 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2121 return -EINVAL;
2122
2123 if (d_is_dir(mp->m_dentry) !=
2124 d_is_dir(mnt->mnt.mnt_root))
2125 return -ENOTDIR;
2126
2127 return attach_recursive_mnt(mnt, p, mp, NULL);
2128 }
2129
2130 /*
2131 * Sanity check the flags to change_mnt_propagation.
2132 */
2133
2134 static int flags_to_propagation_type(int ms_flags)
2135 {
2136 int type = ms_flags & ~(MS_REC | MS_SILENT);
2137
2138 /* Fail if any non-propagation flags are set */
2139 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2140 return 0;
2141 /* Only one propagation flag should be set */
2142 if (!is_power_of_2(type))
2143 return 0;
2144 return type;
2145 }
2146
2147 /*
2148 * recursively change the type of the mountpoint.
2149 */
2150 static int do_change_type(struct path *path, int ms_flags)
2151 {
2152 struct mount *m;
2153 struct mount *mnt = real_mount(path->mnt);
2154 int recurse = ms_flags & MS_REC;
2155 int type;
2156 int err = 0;
2157
2158 if (path->dentry != path->mnt->mnt_root)
2159 return -EINVAL;
2160
2161 type = flags_to_propagation_type(ms_flags);
2162 if (!type)
2163 return -EINVAL;
2164
2165 namespace_lock();
2166 if (type == MS_SHARED) {
2167 err = invent_group_ids(mnt, recurse);
2168 if (err)
2169 goto out_unlock;
2170 }
2171
2172 lock_mount_hash();
2173 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2174 change_mnt_propagation(m, type);
2175 unlock_mount_hash();
2176
2177 out_unlock:
2178 namespace_unlock();
2179 return err;
2180 }
2181
2182 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2183 {
2184 struct mount *child;
2185 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2186 if (!is_subdir(child->mnt_mountpoint, dentry))
2187 continue;
2188
2189 if (child->mnt.mnt_flags & MNT_LOCKED)
2190 return true;
2191 }
2192 return false;
2193 }
2194
2195 /*
2196 * do loopback mount.
2197 */
2198 static int do_loopback(struct path *path, const char *old_name,
2199 int recurse)
2200 {
2201 struct path old_path;
2202 struct mount *mnt = NULL, *old, *parent;
2203 struct mountpoint *mp;
2204 int err;
2205 if (!old_name || !*old_name)
2206 return -EINVAL;
2207 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2208 if (err)
2209 return err;
2210
2211 err = -EINVAL;
2212 if (mnt_ns_loop(old_path.dentry))
2213 goto out;
2214
2215 mp = lock_mount(path);
2216 err = PTR_ERR(mp);
2217 if (IS_ERR(mp))
2218 goto out;
2219
2220 old = real_mount(old_path.mnt);
2221 parent = real_mount(path->mnt);
2222
2223 err = -EINVAL;
2224 if (IS_MNT_UNBINDABLE(old))
2225 goto out2;
2226
2227 if (!check_mnt(parent))
2228 goto out2;
2229
2230 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2231 goto out2;
2232
2233 if (!recurse && has_locked_children(old, old_path.dentry))
2234 goto out2;
2235
2236 if (recurse)
2237 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2238 else
2239 mnt = clone_mnt(old, old_path.dentry, 0);
2240
2241 if (IS_ERR(mnt)) {
2242 err = PTR_ERR(mnt);
2243 goto out2;
2244 }
2245
2246 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2247
2248 err = graft_tree(mnt, parent, mp);
2249 if (err) {
2250 lock_mount_hash();
2251 umount_tree(mnt, UMOUNT_SYNC);
2252 unlock_mount_hash();
2253 }
2254 out2:
2255 unlock_mount(mp);
2256 out:
2257 path_put(&old_path);
2258 return err;
2259 }
2260
2261 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2262 {
2263 int error = 0;
2264 int readonly_request = 0;
2265
2266 if (ms_flags & MS_RDONLY)
2267 readonly_request = 1;
2268 if (readonly_request == __mnt_is_readonly(mnt))
2269 return 0;
2270
2271 if (readonly_request)
2272 error = mnt_make_readonly(real_mount(mnt));
2273 else
2274 __mnt_unmake_readonly(real_mount(mnt));
2275 return error;
2276 }
2277
2278 /*
2279 * change filesystem flags. dir should be a physical root of filesystem.
2280 * If you've mounted a non-root directory somewhere and want to do remount
2281 * on it - tough luck.
2282 */
2283 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2284 int mnt_flags, void *data)
2285 {
2286 int err;
2287 struct super_block *sb = path->mnt->mnt_sb;
2288 struct mount *mnt = real_mount(path->mnt);
2289
2290 if (!check_mnt(mnt))
2291 return -EINVAL;
2292
2293 if (path->dentry != path->mnt->mnt_root)
2294 return -EINVAL;
2295
2296 /* Don't allow changing of locked mnt flags.
2297 *
2298 * No locks need to be held here while testing the various
2299 * MNT_LOCK flags because those flags can never be cleared
2300 * once they are set.
2301 */
2302 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2303 !(mnt_flags & MNT_READONLY)) {
2304 return -EPERM;
2305 }
2306 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2307 !(mnt_flags & MNT_NODEV)) {
2308 return -EPERM;
2309 }
2310 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2311 !(mnt_flags & MNT_NOSUID)) {
2312 return -EPERM;
2313 }
2314 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2315 !(mnt_flags & MNT_NOEXEC)) {
2316 return -EPERM;
2317 }
2318 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2319 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2320 return -EPERM;
2321 }
2322
2323 err = security_sb_remount(sb, data);
2324 if (err)
2325 return err;
2326
2327 down_write(&sb->s_umount);
2328 if (ms_flags & MS_BIND)
2329 err = change_mount_flags(path->mnt, ms_flags);
2330 else if (!capable(CAP_SYS_ADMIN))
2331 err = -EPERM;
2332 else
2333 err = do_remount_sb(sb, sb_flags, data, 0);
2334 if (!err) {
2335 lock_mount_hash();
2336 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2337 mnt->mnt.mnt_flags = mnt_flags;
2338 touch_mnt_namespace(mnt->mnt_ns);
2339 unlock_mount_hash();
2340 }
2341 up_write(&sb->s_umount);
2342 return err;
2343 }
2344
2345 static inline int tree_contains_unbindable(struct mount *mnt)
2346 {
2347 struct mount *p;
2348 for (p = mnt; p; p = next_mnt(p, mnt)) {
2349 if (IS_MNT_UNBINDABLE(p))
2350 return 1;
2351 }
2352 return 0;
2353 }
2354
2355 static int do_move_mount(struct path *path, const char *old_name)
2356 {
2357 struct path old_path, parent_path;
2358 struct mount *p;
2359 struct mount *old;
2360 struct mountpoint *mp;
2361 int err;
2362 if (!old_name || !*old_name)
2363 return -EINVAL;
2364 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2365 if (err)
2366 return err;
2367
2368 mp = lock_mount(path);
2369 err = PTR_ERR(mp);
2370 if (IS_ERR(mp))
2371 goto out;
2372
2373 old = real_mount(old_path.mnt);
2374 p = real_mount(path->mnt);
2375
2376 err = -EINVAL;
2377 if (!check_mnt(p) || !check_mnt(old))
2378 goto out1;
2379
2380 if (old->mnt.mnt_flags & MNT_LOCKED)
2381 goto out1;
2382
2383 err = -EINVAL;
2384 if (old_path.dentry != old_path.mnt->mnt_root)
2385 goto out1;
2386
2387 if (!mnt_has_parent(old))
2388 goto out1;
2389
2390 if (d_is_dir(path->dentry) !=
2391 d_is_dir(old_path.dentry))
2392 goto out1;
2393 /*
2394 * Don't move a mount residing in a shared parent.
2395 */
2396 if (IS_MNT_SHARED(old->mnt_parent))
2397 goto out1;
2398 /*
2399 * Don't move a mount tree containing unbindable mounts to a destination
2400 * mount which is shared.
2401 */
2402 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2403 goto out1;
2404 err = -ELOOP;
2405 for (; mnt_has_parent(p); p = p->mnt_parent)
2406 if (p == old)
2407 goto out1;
2408
2409 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2410 if (err)
2411 goto out1;
2412
2413 /* if the mount is moved, it should no longer be expire
2414 * automatically */
2415 list_del_init(&old->mnt_expire);
2416 out1:
2417 unlock_mount(mp);
2418 out:
2419 if (!err)
2420 path_put(&parent_path);
2421 path_put(&old_path);
2422 return err;
2423 }
2424
2425 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2426 {
2427 int err;
2428 const char *subtype = strchr(fstype, '.');
2429 if (subtype) {
2430 subtype++;
2431 err = -EINVAL;
2432 if (!subtype[0])
2433 goto err;
2434 } else
2435 subtype = "";
2436
2437 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2438 err = -ENOMEM;
2439 if (!mnt->mnt_sb->s_subtype)
2440 goto err;
2441 return mnt;
2442
2443 err:
2444 mntput(mnt);
2445 return ERR_PTR(err);
2446 }
2447
2448 /*
2449 * add a mount into a namespace's mount tree
2450 */
2451 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2452 {
2453 struct mountpoint *mp;
2454 struct mount *parent;
2455 int err;
2456
2457 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2458
2459 mp = lock_mount(path);
2460 if (IS_ERR(mp))
2461 return PTR_ERR(mp);
2462
2463 parent = real_mount(path->mnt);
2464 err = -EINVAL;
2465 if (unlikely(!check_mnt(parent))) {
2466 /* that's acceptable only for automounts done in private ns */
2467 if (!(mnt_flags & MNT_SHRINKABLE))
2468 goto unlock;
2469 /* ... and for those we'd better have mountpoint still alive */
2470 if (!parent->mnt_ns)
2471 goto unlock;
2472 }
2473
2474 /* Refuse the same filesystem on the same mount point */
2475 err = -EBUSY;
2476 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2477 path->mnt->mnt_root == path->dentry)
2478 goto unlock;
2479
2480 err = -EINVAL;
2481 if (d_is_symlink(newmnt->mnt.mnt_root))
2482 goto unlock;
2483
2484 newmnt->mnt.mnt_flags = mnt_flags;
2485 err = graft_tree(newmnt, parent, mp);
2486
2487 unlock:
2488 unlock_mount(mp);
2489 return err;
2490 }
2491
2492 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2493
2494 /*
2495 * create a new mount for userspace and request it to be added into the
2496 * namespace's tree
2497 */
2498 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2499 int mnt_flags, const char *name, void *data)
2500 {
2501 struct file_system_type *type;
2502 struct vfsmount *mnt;
2503 int err;
2504
2505 if (!fstype)
2506 return -EINVAL;
2507
2508 type = get_fs_type(fstype);
2509 if (!type)
2510 return -ENODEV;
2511
2512 mnt = vfs_kern_mount(type, sb_flags, name, data);
2513 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2514 !mnt->mnt_sb->s_subtype)
2515 mnt = fs_set_subtype(mnt, fstype);
2516
2517 put_filesystem(type);
2518 if (IS_ERR(mnt))
2519 return PTR_ERR(mnt);
2520
2521 if (mount_too_revealing(mnt, &mnt_flags)) {
2522 mntput(mnt);
2523 return -EPERM;
2524 }
2525
2526 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2527 if (err)
2528 mntput(mnt);
2529 return err;
2530 }
2531
2532 int finish_automount(struct vfsmount *m, struct path *path)
2533 {
2534 struct mount *mnt = real_mount(m);
2535 int err;
2536 /* The new mount record should have at least 2 refs to prevent it being
2537 * expired before we get a chance to add it
2538 */
2539 BUG_ON(mnt_get_count(mnt) < 2);
2540
2541 if (m->mnt_sb == path->mnt->mnt_sb &&
2542 m->mnt_root == path->dentry) {
2543 err = -ELOOP;
2544 goto fail;
2545 }
2546
2547 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2548 if (!err)
2549 return 0;
2550 fail:
2551 /* remove m from any expiration list it may be on */
2552 if (!list_empty(&mnt->mnt_expire)) {
2553 namespace_lock();
2554 list_del_init(&mnt->mnt_expire);
2555 namespace_unlock();
2556 }
2557 mntput(m);
2558 mntput(m);
2559 return err;
2560 }
2561
2562 /**
2563 * mnt_set_expiry - Put a mount on an expiration list
2564 * @mnt: The mount to list.
2565 * @expiry_list: The list to add the mount to.
2566 */
2567 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2568 {
2569 namespace_lock();
2570
2571 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2572
2573 namespace_unlock();
2574 }
2575 EXPORT_SYMBOL(mnt_set_expiry);
2576
2577 /*
2578 * process a list of expirable mountpoints with the intent of discarding any
2579 * mountpoints that aren't in use and haven't been touched since last we came
2580 * here
2581 */
2582 void mark_mounts_for_expiry(struct list_head *mounts)
2583 {
2584 struct mount *mnt, *next;
2585 LIST_HEAD(graveyard);
2586
2587 if (list_empty(mounts))
2588 return;
2589
2590 namespace_lock();
2591 lock_mount_hash();
2592
2593 /* extract from the expiration list every vfsmount that matches the
2594 * following criteria:
2595 * - only referenced by its parent vfsmount
2596 * - still marked for expiry (marked on the last call here; marks are
2597 * cleared by mntput())
2598 */
2599 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2600 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2601 propagate_mount_busy(mnt, 1))
2602 continue;
2603 list_move(&mnt->mnt_expire, &graveyard);
2604 }
2605 while (!list_empty(&graveyard)) {
2606 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2607 touch_mnt_namespace(mnt->mnt_ns);
2608 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2609 }
2610 unlock_mount_hash();
2611 namespace_unlock();
2612 }
2613
2614 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2615
2616 /*
2617 * Ripoff of 'select_parent()'
2618 *
2619 * search the list of submounts for a given mountpoint, and move any
2620 * shrinkable submounts to the 'graveyard' list.
2621 */
2622 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2623 {
2624 struct mount *this_parent = parent;
2625 struct list_head *next;
2626 int found = 0;
2627
2628 repeat:
2629 next = this_parent->mnt_mounts.next;
2630 resume:
2631 while (next != &this_parent->mnt_mounts) {
2632 struct list_head *tmp = next;
2633 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2634
2635 next = tmp->next;
2636 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2637 continue;
2638 /*
2639 * Descend a level if the d_mounts list is non-empty.
2640 */
2641 if (!list_empty(&mnt->mnt_mounts)) {
2642 this_parent = mnt;
2643 goto repeat;
2644 }
2645
2646 if (!propagate_mount_busy(mnt, 1)) {
2647 list_move_tail(&mnt->mnt_expire, graveyard);
2648 found++;
2649 }
2650 }
2651 /*
2652 * All done at this level ... ascend and resume the search
2653 */
2654 if (this_parent != parent) {
2655 next = this_parent->mnt_child.next;
2656 this_parent = this_parent->mnt_parent;
2657 goto resume;
2658 }
2659 return found;
2660 }
2661
2662 /*
2663 * process a list of expirable mountpoints with the intent of discarding any
2664 * submounts of a specific parent mountpoint
2665 *
2666 * mount_lock must be held for write
2667 */
2668 static void shrink_submounts(struct mount *mnt)
2669 {
2670 LIST_HEAD(graveyard);
2671 struct mount *m;
2672
2673 /* extract submounts of 'mountpoint' from the expiration list */
2674 while (select_submounts(mnt, &graveyard)) {
2675 while (!list_empty(&graveyard)) {
2676 m = list_first_entry(&graveyard, struct mount,
2677 mnt_expire);
2678 touch_mnt_namespace(m->mnt_ns);
2679 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2680 }
2681 }
2682 }
2683
2684 /*
2685 * Some copy_from_user() implementations do not return the exact number of
2686 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2687 * Note that this function differs from copy_from_user() in that it will oops
2688 * on bad values of `to', rather than returning a short copy.
2689 */
2690 static long exact_copy_from_user(void *to, const void __user * from,
2691 unsigned long n)
2692 {
2693 char *t = to;
2694 const char __user *f = from;
2695 char c;
2696
2697 if (!access_ok(VERIFY_READ, from, n))
2698 return n;
2699
2700 while (n) {
2701 if (__get_user(c, f)) {
2702 memset(t, 0, n);
2703 break;
2704 }
2705 *t++ = c;
2706 f++;
2707 n--;
2708 }
2709 return n;
2710 }
2711
2712 void *copy_mount_options(const void __user * data)
2713 {
2714 int i;
2715 unsigned long size;
2716 char *copy;
2717
2718 if (!data)
2719 return NULL;
2720
2721 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2722 if (!copy)
2723 return ERR_PTR(-ENOMEM);
2724
2725 /* We only care that *some* data at the address the user
2726 * gave us is valid. Just in case, we'll zero
2727 * the remainder of the page.
2728 */
2729 /* copy_from_user cannot cross TASK_SIZE ! */
2730 size = TASK_SIZE - (unsigned long)data;
2731 if (size > PAGE_SIZE)
2732 size = PAGE_SIZE;
2733
2734 i = size - exact_copy_from_user(copy, data, size);
2735 if (!i) {
2736 kfree(copy);
2737 return ERR_PTR(-EFAULT);
2738 }
2739 if (i != PAGE_SIZE)
2740 memset(copy + i, 0, PAGE_SIZE - i);
2741 return copy;
2742 }
2743
2744 char *copy_mount_string(const void __user *data)
2745 {
2746 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2747 }
2748
2749 /*
2750 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2751 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2752 *
2753 * data is a (void *) that can point to any structure up to
2754 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2755 * information (or be NULL).
2756 *
2757 * Pre-0.97 versions of mount() didn't have a flags word.
2758 * When the flags word was introduced its top half was required
2759 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2760 * Therefore, if this magic number is present, it carries no information
2761 * and must be discarded.
2762 */
2763 long do_mount(const char *dev_name, const char __user *dir_name,
2764 const char *type_page, unsigned long flags, void *data_page)
2765 {
2766 struct path path;
2767 unsigned int mnt_flags = 0, sb_flags;
2768 int retval = 0;
2769
2770 /* Discard magic */
2771 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2772 flags &= ~MS_MGC_MSK;
2773
2774 /* Basic sanity checks */
2775 if (data_page)
2776 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2777
2778 if (flags & MS_NOUSER)
2779 return -EINVAL;
2780
2781 /* ... and get the mountpoint */
2782 retval = user_path(dir_name, &path);
2783 if (retval)
2784 return retval;
2785
2786 retval = security_sb_mount(dev_name, &path,
2787 type_page, flags, data_page);
2788 if (!retval && !may_mount())
2789 retval = -EPERM;
2790 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
2791 retval = -EPERM;
2792 if (retval)
2793 goto dput_out;
2794
2795 /* Default to relatime unless overriden */
2796 if (!(flags & MS_NOATIME))
2797 mnt_flags |= MNT_RELATIME;
2798
2799 /* Separate the per-mountpoint flags */
2800 if (flags & MS_NOSUID)
2801 mnt_flags |= MNT_NOSUID;
2802 if (flags & MS_NODEV)
2803 mnt_flags |= MNT_NODEV;
2804 if (flags & MS_NOEXEC)
2805 mnt_flags |= MNT_NOEXEC;
2806 if (flags & MS_NOATIME)
2807 mnt_flags |= MNT_NOATIME;
2808 if (flags & MS_NODIRATIME)
2809 mnt_flags |= MNT_NODIRATIME;
2810 if (flags & MS_STRICTATIME)
2811 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2812 if (flags & SB_RDONLY)
2813 mnt_flags |= MNT_READONLY;
2814
2815 /* The default atime for remount is preservation */
2816 if ((flags & MS_REMOUNT) &&
2817 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2818 MS_STRICTATIME)) == 0)) {
2819 mnt_flags &= ~MNT_ATIME_MASK;
2820 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2821 }
2822
2823 sb_flags = flags & (SB_RDONLY |
2824 SB_SYNCHRONOUS |
2825 SB_MANDLOCK |
2826 SB_DIRSYNC |
2827 SB_SILENT |
2828 SB_POSIXACL |
2829 SB_LAZYTIME |
2830 SB_I_VERSION);
2831
2832 if (flags & MS_REMOUNT)
2833 retval = do_remount(&path, flags, sb_flags, mnt_flags,
2834 data_page);
2835 else if (flags & MS_BIND)
2836 retval = do_loopback(&path, dev_name, flags & MS_REC);
2837 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2838 retval = do_change_type(&path, flags);
2839 else if (flags & MS_MOVE)
2840 retval = do_move_mount(&path, dev_name);
2841 else
2842 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
2843 dev_name, data_page);
2844 dput_out:
2845 path_put(&path);
2846 return retval;
2847 }
2848
2849 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2850 {
2851 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2852 }
2853
2854 static void dec_mnt_namespaces(struct ucounts *ucounts)
2855 {
2856 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2857 }
2858
2859 static void free_mnt_ns(struct mnt_namespace *ns)
2860 {
2861 ns_free_inum(&ns->ns);
2862 dec_mnt_namespaces(ns->ucounts);
2863 put_user_ns(ns->user_ns);
2864 kfree(ns);
2865 }
2866
2867 /*
2868 * Assign a sequence number so we can detect when we attempt to bind
2869 * mount a reference to an older mount namespace into the current
2870 * mount namespace, preventing reference counting loops. A 64bit
2871 * number incrementing at 10Ghz will take 12,427 years to wrap which
2872 * is effectively never, so we can ignore the possibility.
2873 */
2874 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2875
2876 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2877 {
2878 struct mnt_namespace *new_ns;
2879 struct ucounts *ucounts;
2880 int ret;
2881
2882 ucounts = inc_mnt_namespaces(user_ns);
2883 if (!ucounts)
2884 return ERR_PTR(-ENOSPC);
2885
2886 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2887 if (!new_ns) {
2888 dec_mnt_namespaces(ucounts);
2889 return ERR_PTR(-ENOMEM);
2890 }
2891 ret = ns_alloc_inum(&new_ns->ns);
2892 if (ret) {
2893 kfree(new_ns);
2894 dec_mnt_namespaces(ucounts);
2895 return ERR_PTR(ret);
2896 }
2897 new_ns->ns.ops = &mntns_operations;
2898 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2899 atomic_set(&new_ns->count, 1);
2900 new_ns->root = NULL;
2901 INIT_LIST_HEAD(&new_ns->list);
2902 init_waitqueue_head(&new_ns->poll);
2903 new_ns->event = 0;
2904 new_ns->user_ns = get_user_ns(user_ns);
2905 new_ns->ucounts = ucounts;
2906 new_ns->mounts = 0;
2907 new_ns->pending_mounts = 0;
2908 return new_ns;
2909 }
2910
2911 __latent_entropy
2912 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2913 struct user_namespace *user_ns, struct fs_struct *new_fs)
2914 {
2915 struct mnt_namespace *new_ns;
2916 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2917 struct mount *p, *q;
2918 struct mount *old;
2919 struct mount *new;
2920 int copy_flags;
2921
2922 BUG_ON(!ns);
2923
2924 if (likely(!(flags & CLONE_NEWNS))) {
2925 get_mnt_ns(ns);
2926 return ns;
2927 }
2928
2929 old = ns->root;
2930
2931 new_ns = alloc_mnt_ns(user_ns);
2932 if (IS_ERR(new_ns))
2933 return new_ns;
2934
2935 namespace_lock();
2936 /* First pass: copy the tree topology */
2937 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2938 if (user_ns != ns->user_ns)
2939 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2940 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2941 if (IS_ERR(new)) {
2942 namespace_unlock();
2943 free_mnt_ns(new_ns);
2944 return ERR_CAST(new);
2945 }
2946 new_ns->root = new;
2947 list_add_tail(&new_ns->list, &new->mnt_list);
2948
2949 /*
2950 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2951 * as belonging to new namespace. We have already acquired a private
2952 * fs_struct, so tsk->fs->lock is not needed.
2953 */
2954 p = old;
2955 q = new;
2956 while (p) {
2957 q->mnt_ns = new_ns;
2958 new_ns->mounts++;
2959 if (new_fs) {
2960 if (&p->mnt == new_fs->root.mnt) {
2961 new_fs->root.mnt = mntget(&q->mnt);
2962 rootmnt = &p->mnt;
2963 }
2964 if (&p->mnt == new_fs->pwd.mnt) {
2965 new_fs->pwd.mnt = mntget(&q->mnt);
2966 pwdmnt = &p->mnt;
2967 }
2968 }
2969 p = next_mnt(p, old);
2970 q = next_mnt(q, new);
2971 if (!q)
2972 break;
2973 while (p->mnt.mnt_root != q->mnt.mnt_root)
2974 p = next_mnt(p, old);
2975 }
2976 namespace_unlock();
2977
2978 if (rootmnt)
2979 mntput(rootmnt);
2980 if (pwdmnt)
2981 mntput(pwdmnt);
2982
2983 return new_ns;
2984 }
2985
2986 /**
2987 * create_mnt_ns - creates a private namespace and adds a root filesystem
2988 * @mnt: pointer to the new root filesystem mountpoint
2989 */
2990 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2991 {
2992 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2993 if (!IS_ERR(new_ns)) {
2994 struct mount *mnt = real_mount(m);
2995 mnt->mnt_ns = new_ns;
2996 new_ns->root = mnt;
2997 new_ns->mounts++;
2998 list_add(&mnt->mnt_list, &new_ns->list);
2999 } else {
3000 mntput(m);
3001 }
3002 return new_ns;
3003 }
3004
3005 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3006 {
3007 struct mnt_namespace *ns;
3008 struct super_block *s;
3009 struct path path;
3010 int err;
3011
3012 ns = create_mnt_ns(mnt);
3013 if (IS_ERR(ns))
3014 return ERR_CAST(ns);
3015
3016 err = vfs_path_lookup(mnt->mnt_root, mnt,
3017 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3018
3019 put_mnt_ns(ns);
3020
3021 if (err)
3022 return ERR_PTR(err);
3023
3024 /* trade a vfsmount reference for active sb one */
3025 s = path.mnt->mnt_sb;
3026 atomic_inc(&s->s_active);
3027 mntput(path.mnt);
3028 /* lock the sucker */
3029 down_write(&s->s_umount);
3030 /* ... and return the root of (sub)tree on it */
3031 return path.dentry;
3032 }
3033 EXPORT_SYMBOL(mount_subtree);
3034
3035 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3036 char __user *, type, unsigned long, flags, void __user *, data)
3037 {
3038 int ret;
3039 char *kernel_type;
3040 char *kernel_dev;
3041 void *options;
3042
3043 kernel_type = copy_mount_string(type);
3044 ret = PTR_ERR(kernel_type);
3045 if (IS_ERR(kernel_type))
3046 goto out_type;
3047
3048 kernel_dev = copy_mount_string(dev_name);
3049 ret = PTR_ERR(kernel_dev);
3050 if (IS_ERR(kernel_dev))
3051 goto out_dev;
3052
3053 options = copy_mount_options(data);
3054 ret = PTR_ERR(options);
3055 if (IS_ERR(options))
3056 goto out_data;
3057
3058 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3059
3060 kfree(options);
3061 out_data:
3062 kfree(kernel_dev);
3063 out_dev:
3064 kfree(kernel_type);
3065 out_type:
3066 return ret;
3067 }
3068
3069 /*
3070 * Return true if path is reachable from root
3071 *
3072 * namespace_sem or mount_lock is held
3073 */
3074 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3075 const struct path *root)
3076 {
3077 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3078 dentry = mnt->mnt_mountpoint;
3079 mnt = mnt->mnt_parent;
3080 }
3081 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3082 }
3083
3084 bool path_is_under(const struct path *path1, const struct path *path2)
3085 {
3086 bool res;
3087 read_seqlock_excl(&mount_lock);
3088 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3089 read_sequnlock_excl(&mount_lock);
3090 return res;
3091 }
3092 EXPORT_SYMBOL(path_is_under);
3093
3094 /*
3095 * pivot_root Semantics:
3096 * Moves the root file system of the current process to the directory put_old,
3097 * makes new_root as the new root file system of the current process, and sets
3098 * root/cwd of all processes which had them on the current root to new_root.
3099 *
3100 * Restrictions:
3101 * The new_root and put_old must be directories, and must not be on the
3102 * same file system as the current process root. The put_old must be
3103 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3104 * pointed to by put_old must yield the same directory as new_root. No other
3105 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3106 *
3107 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3108 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3109 * in this situation.
3110 *
3111 * Notes:
3112 * - we don't move root/cwd if they are not at the root (reason: if something
3113 * cared enough to change them, it's probably wrong to force them elsewhere)
3114 * - it's okay to pick a root that isn't the root of a file system, e.g.
3115 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3116 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3117 * first.
3118 */
3119 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3120 const char __user *, put_old)
3121 {
3122 struct path new, old, parent_path, root_parent, root;
3123 struct mount *new_mnt, *root_mnt, *old_mnt;
3124 struct mountpoint *old_mp, *root_mp;
3125 int error;
3126
3127 if (!may_mount())
3128 return -EPERM;
3129
3130 error = user_path_dir(new_root, &new);
3131 if (error)
3132 goto out0;
3133
3134 error = user_path_dir(put_old, &old);
3135 if (error)
3136 goto out1;
3137
3138 error = security_sb_pivotroot(&old, &new);
3139 if (error)
3140 goto out2;
3141
3142 get_fs_root(current->fs, &root);
3143 old_mp = lock_mount(&old);
3144 error = PTR_ERR(old_mp);
3145 if (IS_ERR(old_mp))
3146 goto out3;
3147
3148 error = -EINVAL;
3149 new_mnt = real_mount(new.mnt);
3150 root_mnt = real_mount(root.mnt);
3151 old_mnt = real_mount(old.mnt);
3152 if (IS_MNT_SHARED(old_mnt) ||
3153 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3154 IS_MNT_SHARED(root_mnt->mnt_parent))
3155 goto out4;
3156 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3157 goto out4;
3158 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3159 goto out4;
3160 error = -ENOENT;
3161 if (d_unlinked(new.dentry))
3162 goto out4;
3163 error = -EBUSY;
3164 if (new_mnt == root_mnt || old_mnt == root_mnt)
3165 goto out4; /* loop, on the same file system */
3166 error = -EINVAL;
3167 if (root.mnt->mnt_root != root.dentry)
3168 goto out4; /* not a mountpoint */
3169 if (!mnt_has_parent(root_mnt))
3170 goto out4; /* not attached */
3171 root_mp = root_mnt->mnt_mp;
3172 if (new.mnt->mnt_root != new.dentry)
3173 goto out4; /* not a mountpoint */
3174 if (!mnt_has_parent(new_mnt))
3175 goto out4; /* not attached */
3176 /* make sure we can reach put_old from new_root */
3177 if (!is_path_reachable(old_mnt, old.dentry, &new))
3178 goto out4;
3179 /* make certain new is below the root */
3180 if (!is_path_reachable(new_mnt, new.dentry, &root))
3181 goto out4;
3182 root_mp->m_count++; /* pin it so it won't go away */
3183 lock_mount_hash();
3184 detach_mnt(new_mnt, &parent_path);
3185 detach_mnt(root_mnt, &root_parent);
3186 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3187 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3188 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3189 }
3190 /* mount old root on put_old */
3191 attach_mnt(root_mnt, old_mnt, old_mp);
3192 /* mount new_root on / */
3193 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3194 touch_mnt_namespace(current->nsproxy->mnt_ns);
3195 /* A moved mount should not expire automatically */
3196 list_del_init(&new_mnt->mnt_expire);
3197 put_mountpoint(root_mp);
3198 unlock_mount_hash();
3199 chroot_fs_refs(&root, &new);
3200 error = 0;
3201 out4:
3202 unlock_mount(old_mp);
3203 if (!error) {
3204 path_put(&root_parent);
3205 path_put(&parent_path);
3206 }
3207 out3:
3208 path_put(&root);
3209 out2:
3210 path_put(&old);
3211 out1:
3212 path_put(&new);
3213 out0:
3214 return error;
3215 }
3216
3217 static void __init init_mount_tree(void)
3218 {
3219 struct vfsmount *mnt;
3220 struct mnt_namespace *ns;
3221 struct path root;
3222 struct file_system_type *type;
3223
3224 type = get_fs_type("rootfs");
3225 if (!type)
3226 panic("Can't find rootfs type");
3227 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3228 put_filesystem(type);
3229 if (IS_ERR(mnt))
3230 panic("Can't create rootfs");
3231
3232 ns = create_mnt_ns(mnt);
3233 if (IS_ERR(ns))
3234 panic("Can't allocate initial namespace");
3235
3236 init_task.nsproxy->mnt_ns = ns;
3237 get_mnt_ns(ns);
3238
3239 root.mnt = mnt;
3240 root.dentry = mnt->mnt_root;
3241 mnt->mnt_flags |= MNT_LOCKED;
3242
3243 set_fs_pwd(current->fs, &root);
3244 set_fs_root(current->fs, &root);
3245 }
3246
3247 void __init mnt_init(void)
3248 {
3249 int err;
3250
3251 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3252 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3253
3254 mount_hashtable = alloc_large_system_hash("Mount-cache",
3255 sizeof(struct hlist_head),
3256 mhash_entries, 19,
3257 HASH_ZERO,
3258 &m_hash_shift, &m_hash_mask, 0, 0);
3259 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3260 sizeof(struct hlist_head),
3261 mphash_entries, 19,
3262 HASH_ZERO,
3263 &mp_hash_shift, &mp_hash_mask, 0, 0);
3264
3265 if (!mount_hashtable || !mountpoint_hashtable)
3266 panic("Failed to allocate mount hash table\n");
3267
3268 kernfs_init();
3269
3270 err = sysfs_init();
3271 if (err)
3272 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3273 __func__, err);
3274 fs_kobj = kobject_create_and_add("fs", NULL);
3275 if (!fs_kobj)
3276 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3277 init_rootfs();
3278 init_mount_tree();
3279 }
3280
3281 void put_mnt_ns(struct mnt_namespace *ns)
3282 {
3283 if (!atomic_dec_and_test(&ns->count))
3284 return;
3285 drop_collected_mounts(&ns->root->mnt);
3286 free_mnt_ns(ns);
3287 }
3288
3289 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3290 {
3291 struct vfsmount *mnt;
3292 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
3293 if (!IS_ERR(mnt)) {
3294 /*
3295 * it is a longterm mount, don't release mnt until
3296 * we unmount before file sys is unregistered
3297 */
3298 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3299 }
3300 return mnt;
3301 }
3302 EXPORT_SYMBOL_GPL(kern_mount_data);
3303
3304 void kern_unmount(struct vfsmount *mnt)
3305 {
3306 /* release long term mount so mount point can be released */
3307 if (!IS_ERR_OR_NULL(mnt)) {
3308 real_mount(mnt)->mnt_ns = NULL;
3309 synchronize_rcu(); /* yecchhh... */
3310 mntput(mnt);
3311 }
3312 }
3313 EXPORT_SYMBOL(kern_unmount);
3314
3315 bool our_mnt(struct vfsmount *mnt)
3316 {
3317 return check_mnt(real_mount(mnt));
3318 }
3319
3320 bool current_chrooted(void)
3321 {
3322 /* Does the current process have a non-standard root */
3323 struct path ns_root;
3324 struct path fs_root;
3325 bool chrooted;
3326
3327 /* Find the namespace root */
3328 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3329 ns_root.dentry = ns_root.mnt->mnt_root;
3330 path_get(&ns_root);
3331 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3332 ;
3333
3334 get_fs_root(current->fs, &fs_root);
3335
3336 chrooted = !path_equal(&fs_root, &ns_root);
3337
3338 path_put(&fs_root);
3339 path_put(&ns_root);
3340
3341 return chrooted;
3342 }
3343
3344 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3345 int *new_mnt_flags)
3346 {
3347 int new_flags = *new_mnt_flags;
3348 struct mount *mnt;
3349 bool visible = false;
3350
3351 down_read(&namespace_sem);
3352 list_for_each_entry(mnt, &ns->list, mnt_list) {
3353 struct mount *child;
3354 int mnt_flags;
3355
3356 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3357 continue;
3358
3359 /* This mount is not fully visible if it's root directory
3360 * is not the root directory of the filesystem.
3361 */
3362 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3363 continue;
3364
3365 /* A local view of the mount flags */
3366 mnt_flags = mnt->mnt.mnt_flags;
3367
3368 /* Don't miss readonly hidden in the superblock flags */
3369 if (sb_rdonly(mnt->mnt.mnt_sb))
3370 mnt_flags |= MNT_LOCK_READONLY;
3371
3372 /* Verify the mount flags are equal to or more permissive
3373 * than the proposed new mount.
3374 */
3375 if ((mnt_flags & MNT_LOCK_READONLY) &&
3376 !(new_flags & MNT_READONLY))
3377 continue;
3378 if ((mnt_flags & MNT_LOCK_ATIME) &&
3379 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3380 continue;
3381
3382 /* This mount is not fully visible if there are any
3383 * locked child mounts that cover anything except for
3384 * empty directories.
3385 */
3386 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3387 struct inode *inode = child->mnt_mountpoint->d_inode;
3388 /* Only worry about locked mounts */
3389 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3390 continue;
3391 /* Is the directory permanetly empty? */
3392 if (!is_empty_dir_inode(inode))
3393 goto next;
3394 }
3395 /* Preserve the locked attributes */
3396 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3397 MNT_LOCK_ATIME);
3398 visible = true;
3399 goto found;
3400 next: ;
3401 }
3402 found:
3403 up_read(&namespace_sem);
3404 return visible;
3405 }
3406
3407 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3408 {
3409 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3410 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3411 unsigned long s_iflags;
3412
3413 if (ns->user_ns == &init_user_ns)
3414 return false;
3415
3416 /* Can this filesystem be too revealing? */
3417 s_iflags = mnt->mnt_sb->s_iflags;
3418 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3419 return false;
3420
3421 if ((s_iflags & required_iflags) != required_iflags) {
3422 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3423 required_iflags);
3424 return true;
3425 }
3426
3427 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3428 }
3429
3430 bool mnt_may_suid(struct vfsmount *mnt)
3431 {
3432 /*
3433 * Foreign mounts (accessed via fchdir or through /proc
3434 * symlinks) are always treated as if they are nosuid. This
3435 * prevents namespaces from trusting potentially unsafe
3436 * suid/sgid bits, file caps, or security labels that originate
3437 * in other namespaces.
3438 */
3439 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3440 current_in_userns(mnt->mnt_sb->s_user_ns);
3441 }
3442
3443 static struct ns_common *mntns_get(struct task_struct *task)
3444 {
3445 struct ns_common *ns = NULL;
3446 struct nsproxy *nsproxy;
3447
3448 task_lock(task);
3449 nsproxy = task->nsproxy;
3450 if (nsproxy) {
3451 ns = &nsproxy->mnt_ns->ns;
3452 get_mnt_ns(to_mnt_ns(ns));
3453 }
3454 task_unlock(task);
3455
3456 return ns;
3457 }
3458
3459 static void mntns_put(struct ns_common *ns)
3460 {
3461 put_mnt_ns(to_mnt_ns(ns));
3462 }
3463
3464 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3465 {
3466 struct fs_struct *fs = current->fs;
3467 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3468 struct path root;
3469 int err;
3470
3471 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3472 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3473 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3474 return -EPERM;
3475
3476 if (fs->users != 1)
3477 return -EINVAL;
3478
3479 get_mnt_ns(mnt_ns);
3480 old_mnt_ns = nsproxy->mnt_ns;
3481 nsproxy->mnt_ns = mnt_ns;
3482
3483 /* Find the root */
3484 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3485 "/", LOOKUP_DOWN, &root);
3486 if (err) {
3487 /* revert to old namespace */
3488 nsproxy->mnt_ns = old_mnt_ns;
3489 put_mnt_ns(mnt_ns);
3490 return err;
3491 }
3492
3493 put_mnt_ns(old_mnt_ns);
3494
3495 /* Update the pwd and root */
3496 set_fs_pwd(fs, &root);
3497 set_fs_root(fs, &root);
3498
3499 path_put(&root);
3500 return 0;
3501 }
3502
3503 static struct user_namespace *mntns_owner(struct ns_common *ns)
3504 {
3505 return to_mnt_ns(ns)->user_ns;
3506 }
3507
3508 const struct proc_ns_operations mntns_operations = {
3509 .name = "mnt",
3510 .type = CLONE_NEWNS,
3511 .get = mntns_get,
3512 .put = mntns_put,
3513 .install = mntns_install,
3514 .owner = mntns_owner,
3515 };