]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/nfs/dir.c
fs: make remaining filesystems use .rename2
[mirror_ubuntu-bionic-kernel.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45
46 #include "nfstrace.h"
47
48 /* #define NFS_DEBUG_VERBOSE 1 */
49
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56
57 const struct file_operations nfs_dir_operations = {
58 .llseek = nfs_llseek_dir,
59 .read = generic_read_dir,
60 .iterate_shared = nfs_readdir,
61 .open = nfs_opendir,
62 .release = nfs_closedir,
63 .fsync = nfs_fsync_dir,
64 };
65
66 const struct address_space_operations nfs_dir_aops = {
67 .freepage = nfs_readdir_clear_array,
68 };
69
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71 {
72 struct nfs_inode *nfsi = NFS_I(dir);
73 struct nfs_open_dir_context *ctx;
74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 if (ctx != NULL) {
76 ctx->duped = 0;
77 ctx->attr_gencount = nfsi->attr_gencount;
78 ctx->dir_cookie = 0;
79 ctx->dup_cookie = 0;
80 ctx->cred = get_rpccred(cred);
81 spin_lock(&dir->i_lock);
82 list_add(&ctx->list, &nfsi->open_files);
83 spin_unlock(&dir->i_lock);
84 return ctx;
85 }
86 return ERR_PTR(-ENOMEM);
87 }
88
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 spin_lock(&dir->i_lock);
92 list_del(&ctx->list);
93 spin_unlock(&dir->i_lock);
94 put_rpccred(ctx->cred);
95 kfree(ctx);
96 }
97
98 /*
99 * Open file
100 */
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 int res = 0;
105 struct nfs_open_dir_context *ctx;
106 struct rpc_cred *cred;
107
108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109
110 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111
112 cred = rpc_lookup_cred();
113 if (IS_ERR(cred))
114 return PTR_ERR(cred);
115 ctx = alloc_nfs_open_dir_context(inode, cred);
116 if (IS_ERR(ctx)) {
117 res = PTR_ERR(ctx);
118 goto out;
119 }
120 filp->private_data = ctx;
121 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 /* This is a mountpoint, so d_revalidate will never
123 * have been called, so we need to refresh the
124 * inode (for close-open consistency) ourselves.
125 */
126 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
127 }
128 out:
129 put_rpccred(cred);
130 return res;
131 }
132
133 static int
134 nfs_closedir(struct inode *inode, struct file *filp)
135 {
136 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
137 return 0;
138 }
139
140 struct nfs_cache_array_entry {
141 u64 cookie;
142 u64 ino;
143 struct qstr string;
144 unsigned char d_type;
145 };
146
147 struct nfs_cache_array {
148 atomic_t refcount;
149 int size;
150 int eof_index;
151 u64 last_cookie;
152 struct nfs_cache_array_entry array[0];
153 };
154
155 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
156 typedef struct {
157 struct file *file;
158 struct page *page;
159 struct dir_context *ctx;
160 unsigned long page_index;
161 u64 *dir_cookie;
162 u64 last_cookie;
163 loff_t current_index;
164 decode_dirent_t decode;
165
166 unsigned long timestamp;
167 unsigned long gencount;
168 unsigned int cache_entry_index;
169 unsigned int plus:1;
170 unsigned int eof:1;
171 } nfs_readdir_descriptor_t;
172
173 /*
174 * The caller is responsible for calling nfs_readdir_release_array(page)
175 */
176 static
177 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
178 {
179 void *ptr;
180 if (page == NULL)
181 return ERR_PTR(-EIO);
182 ptr = kmap(page);
183 if (ptr == NULL)
184 return ERR_PTR(-ENOMEM);
185 return ptr;
186 }
187
188 static
189 void nfs_readdir_release_array(struct page *page)
190 {
191 kunmap(page);
192 }
193
194 /*
195 * we are freeing strings created by nfs_add_to_readdir_array()
196 */
197 static
198 void nfs_readdir_clear_array(struct page *page)
199 {
200 struct nfs_cache_array *array;
201 int i;
202
203 array = kmap_atomic(page);
204 if (atomic_dec_and_test(&array->refcount))
205 for (i = 0; i < array->size; i++)
206 kfree(array->array[i].string.name);
207 kunmap_atomic(array);
208 }
209
210 static bool grab_page(struct page *page)
211 {
212 struct nfs_cache_array *array = kmap_atomic(page);
213 bool res = atomic_inc_not_zero(&array->refcount);
214 kunmap_atomic(array);
215 return res;
216 }
217
218 /*
219 * the caller is responsible for freeing qstr.name
220 * when called by nfs_readdir_add_to_array, the strings will be freed in
221 * nfs_clear_readdir_array()
222 */
223 static
224 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
225 {
226 string->len = len;
227 string->name = kmemdup(name, len, GFP_KERNEL);
228 if (string->name == NULL)
229 return -ENOMEM;
230 /*
231 * Avoid a kmemleak false positive. The pointer to the name is stored
232 * in a page cache page which kmemleak does not scan.
233 */
234 kmemleak_not_leak(string->name);
235 string->hash = full_name_hash(NULL, name, len);
236 return 0;
237 }
238
239 static
240 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
241 {
242 struct nfs_cache_array *array = nfs_readdir_get_array(page);
243 struct nfs_cache_array_entry *cache_entry;
244 int ret;
245
246 if (IS_ERR(array))
247 return PTR_ERR(array);
248
249 cache_entry = &array->array[array->size];
250
251 /* Check that this entry lies within the page bounds */
252 ret = -ENOSPC;
253 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
254 goto out;
255
256 cache_entry->cookie = entry->prev_cookie;
257 cache_entry->ino = entry->ino;
258 cache_entry->d_type = entry->d_type;
259 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
260 if (ret)
261 goto out;
262 array->last_cookie = entry->cookie;
263 array->size++;
264 if (entry->eof != 0)
265 array->eof_index = array->size;
266 out:
267 nfs_readdir_release_array(page);
268 return ret;
269 }
270
271 static
272 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
273 {
274 loff_t diff = desc->ctx->pos - desc->current_index;
275 unsigned int index;
276
277 if (diff < 0)
278 goto out_eof;
279 if (diff >= array->size) {
280 if (array->eof_index >= 0)
281 goto out_eof;
282 return -EAGAIN;
283 }
284
285 index = (unsigned int)diff;
286 *desc->dir_cookie = array->array[index].cookie;
287 desc->cache_entry_index = index;
288 return 0;
289 out_eof:
290 desc->eof = 1;
291 return -EBADCOOKIE;
292 }
293
294 static bool
295 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
296 {
297 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
298 return false;
299 smp_rmb();
300 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
301 }
302
303 static
304 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
305 {
306 int i;
307 loff_t new_pos;
308 int status = -EAGAIN;
309
310 for (i = 0; i < array->size; i++) {
311 if (array->array[i].cookie == *desc->dir_cookie) {
312 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
313 struct nfs_open_dir_context *ctx = desc->file->private_data;
314
315 new_pos = desc->current_index + i;
316 if (ctx->attr_gencount != nfsi->attr_gencount ||
317 !nfs_readdir_inode_mapping_valid(nfsi)) {
318 ctx->duped = 0;
319 ctx->attr_gencount = nfsi->attr_gencount;
320 } else if (new_pos < desc->ctx->pos) {
321 if (ctx->duped > 0
322 && ctx->dup_cookie == *desc->dir_cookie) {
323 if (printk_ratelimit()) {
324 pr_notice("NFS: directory %pD2 contains a readdir loop."
325 "Please contact your server vendor. "
326 "The file: %.*s has duplicate cookie %llu\n",
327 desc->file, array->array[i].string.len,
328 array->array[i].string.name, *desc->dir_cookie);
329 }
330 status = -ELOOP;
331 goto out;
332 }
333 ctx->dup_cookie = *desc->dir_cookie;
334 ctx->duped = -1;
335 }
336 desc->ctx->pos = new_pos;
337 desc->cache_entry_index = i;
338 return 0;
339 }
340 }
341 if (array->eof_index >= 0) {
342 status = -EBADCOOKIE;
343 if (*desc->dir_cookie == array->last_cookie)
344 desc->eof = 1;
345 }
346 out:
347 return status;
348 }
349
350 static
351 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
352 {
353 struct nfs_cache_array *array;
354 int status;
355
356 array = nfs_readdir_get_array(desc->page);
357 if (IS_ERR(array)) {
358 status = PTR_ERR(array);
359 goto out;
360 }
361
362 if (*desc->dir_cookie == 0)
363 status = nfs_readdir_search_for_pos(array, desc);
364 else
365 status = nfs_readdir_search_for_cookie(array, desc);
366
367 if (status == -EAGAIN) {
368 desc->last_cookie = array->last_cookie;
369 desc->current_index += array->size;
370 desc->page_index++;
371 }
372 nfs_readdir_release_array(desc->page);
373 out:
374 return status;
375 }
376
377 /* Fill a page with xdr information before transferring to the cache page */
378 static
379 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
380 struct nfs_entry *entry, struct file *file, struct inode *inode)
381 {
382 struct nfs_open_dir_context *ctx = file->private_data;
383 struct rpc_cred *cred = ctx->cred;
384 unsigned long timestamp, gencount;
385 int error;
386
387 again:
388 timestamp = jiffies;
389 gencount = nfs_inc_attr_generation_counter();
390 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
391 NFS_SERVER(inode)->dtsize, desc->plus);
392 if (error < 0) {
393 /* We requested READDIRPLUS, but the server doesn't grok it */
394 if (error == -ENOTSUPP && desc->plus) {
395 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
396 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
397 desc->plus = 0;
398 goto again;
399 }
400 goto error;
401 }
402 desc->timestamp = timestamp;
403 desc->gencount = gencount;
404 error:
405 return error;
406 }
407
408 static int xdr_decode(nfs_readdir_descriptor_t *desc,
409 struct nfs_entry *entry, struct xdr_stream *xdr)
410 {
411 int error;
412
413 error = desc->decode(xdr, entry, desc->plus);
414 if (error)
415 return error;
416 entry->fattr->time_start = desc->timestamp;
417 entry->fattr->gencount = desc->gencount;
418 return 0;
419 }
420
421 /* Match file and dirent using either filehandle or fileid
422 * Note: caller is responsible for checking the fsid
423 */
424 static
425 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
426 {
427 struct inode *inode;
428 struct nfs_inode *nfsi;
429
430 if (d_really_is_negative(dentry))
431 return 0;
432
433 inode = d_inode(dentry);
434 if (is_bad_inode(inode) || NFS_STALE(inode))
435 return 0;
436
437 nfsi = NFS_I(inode);
438 if (entry->fattr->fileid == nfsi->fileid)
439 return 1;
440 if (nfs_compare_fh(entry->fh, &nfsi->fh) == 0)
441 return 1;
442 return 0;
443 }
444
445 static
446 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
447 {
448 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
449 return false;
450 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
451 return true;
452 if (ctx->pos == 0)
453 return true;
454 return false;
455 }
456
457 /*
458 * This function is called by the lookup code to request the use of
459 * readdirplus to accelerate any future lookups in the same
460 * directory.
461 */
462 static
463 void nfs_advise_use_readdirplus(struct inode *dir)
464 {
465 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
466 }
467
468 /*
469 * This function is mainly for use by nfs_getattr().
470 *
471 * If this is an 'ls -l', we want to force use of readdirplus.
472 * Do this by checking if there is an active file descriptor
473 * and calling nfs_advise_use_readdirplus, then forcing a
474 * cache flush.
475 */
476 void nfs_force_use_readdirplus(struct inode *dir)
477 {
478 if (!list_empty(&NFS_I(dir)->open_files)) {
479 nfs_advise_use_readdirplus(dir);
480 nfs_zap_mapping(dir, dir->i_mapping);
481 }
482 }
483
484 static
485 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
486 {
487 struct qstr filename = QSTR_INIT(entry->name, entry->len);
488 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
489 struct dentry *dentry;
490 struct dentry *alias;
491 struct inode *dir = d_inode(parent);
492 struct inode *inode;
493 int status;
494
495 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
496 return;
497 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
498 return;
499 if (filename.name[0] == '.') {
500 if (filename.len == 1)
501 return;
502 if (filename.len == 2 && filename.name[1] == '.')
503 return;
504 }
505 filename.hash = full_name_hash(parent, filename.name, filename.len);
506
507 dentry = d_lookup(parent, &filename);
508 again:
509 if (!dentry) {
510 dentry = d_alloc_parallel(parent, &filename, &wq);
511 if (IS_ERR(dentry))
512 return;
513 }
514 if (!d_in_lookup(dentry)) {
515 /* Is there a mountpoint here? If so, just exit */
516 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
517 &entry->fattr->fsid))
518 goto out;
519 if (nfs_same_file(dentry, entry)) {
520 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
521 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
522 if (!status)
523 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
524 goto out;
525 } else {
526 d_invalidate(dentry);
527 dput(dentry);
528 dentry = NULL;
529 goto again;
530 }
531 }
532
533 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
534 alias = d_splice_alias(inode, dentry);
535 d_lookup_done(dentry);
536 if (alias) {
537 if (IS_ERR(alias))
538 goto out;
539 dput(dentry);
540 dentry = alias;
541 }
542 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
543 out:
544 dput(dentry);
545 }
546
547 /* Perform conversion from xdr to cache array */
548 static
549 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
550 struct page **xdr_pages, struct page *page, unsigned int buflen)
551 {
552 struct xdr_stream stream;
553 struct xdr_buf buf;
554 struct page *scratch;
555 struct nfs_cache_array *array;
556 unsigned int count = 0;
557 int status;
558
559 scratch = alloc_page(GFP_KERNEL);
560 if (scratch == NULL)
561 return -ENOMEM;
562
563 if (buflen == 0)
564 goto out_nopages;
565
566 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
567 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
568
569 do {
570 status = xdr_decode(desc, entry, &stream);
571 if (status != 0) {
572 if (status == -EAGAIN)
573 status = 0;
574 break;
575 }
576
577 count++;
578
579 if (desc->plus != 0)
580 nfs_prime_dcache(file_dentry(desc->file), entry);
581
582 status = nfs_readdir_add_to_array(entry, page);
583 if (status != 0)
584 break;
585 } while (!entry->eof);
586
587 out_nopages:
588 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
589 array = nfs_readdir_get_array(page);
590 if (!IS_ERR(array)) {
591 array->eof_index = array->size;
592 status = 0;
593 nfs_readdir_release_array(page);
594 } else
595 status = PTR_ERR(array);
596 }
597
598 put_page(scratch);
599 return status;
600 }
601
602 static
603 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
604 {
605 unsigned int i;
606 for (i = 0; i < npages; i++)
607 put_page(pages[i]);
608 }
609
610 /*
611 * nfs_readdir_large_page will allocate pages that must be freed with a call
612 * to nfs_readdir_free_pagearray
613 */
614 static
615 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
616 {
617 unsigned int i;
618
619 for (i = 0; i < npages; i++) {
620 struct page *page = alloc_page(GFP_KERNEL);
621 if (page == NULL)
622 goto out_freepages;
623 pages[i] = page;
624 }
625 return 0;
626
627 out_freepages:
628 nfs_readdir_free_pages(pages, i);
629 return -ENOMEM;
630 }
631
632 static
633 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
634 {
635 struct page *pages[NFS_MAX_READDIR_PAGES];
636 struct nfs_entry entry;
637 struct file *file = desc->file;
638 struct nfs_cache_array *array;
639 int status = -ENOMEM;
640 unsigned int array_size = ARRAY_SIZE(pages);
641
642 entry.prev_cookie = 0;
643 entry.cookie = desc->last_cookie;
644 entry.eof = 0;
645 entry.fh = nfs_alloc_fhandle();
646 entry.fattr = nfs_alloc_fattr();
647 entry.server = NFS_SERVER(inode);
648 if (entry.fh == NULL || entry.fattr == NULL)
649 goto out;
650
651 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
652 if (IS_ERR(entry.label)) {
653 status = PTR_ERR(entry.label);
654 goto out;
655 }
656
657 array = nfs_readdir_get_array(page);
658 if (IS_ERR(array)) {
659 status = PTR_ERR(array);
660 goto out_label_free;
661 }
662 memset(array, 0, sizeof(struct nfs_cache_array));
663 atomic_set(&array->refcount, 1);
664 array->eof_index = -1;
665
666 status = nfs_readdir_alloc_pages(pages, array_size);
667 if (status < 0)
668 goto out_release_array;
669 do {
670 unsigned int pglen;
671 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
672
673 if (status < 0)
674 break;
675 pglen = status;
676 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
677 if (status < 0) {
678 if (status == -ENOSPC)
679 status = 0;
680 break;
681 }
682 } while (array->eof_index < 0);
683
684 nfs_readdir_free_pages(pages, array_size);
685 out_release_array:
686 nfs_readdir_release_array(page);
687 out_label_free:
688 nfs4_label_free(entry.label);
689 out:
690 nfs_free_fattr(entry.fattr);
691 nfs_free_fhandle(entry.fh);
692 return status;
693 }
694
695 /*
696 * Now we cache directories properly, by converting xdr information
697 * to an array that can be used for lookups later. This results in
698 * fewer cache pages, since we can store more information on each page.
699 * We only need to convert from xdr once so future lookups are much simpler
700 */
701 static
702 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
703 {
704 struct inode *inode = file_inode(desc->file);
705 int ret;
706
707 ret = nfs_readdir_xdr_to_array(desc, page, inode);
708 if (ret < 0)
709 goto error;
710 SetPageUptodate(page);
711
712 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
713 /* Should never happen */
714 nfs_zap_mapping(inode, inode->i_mapping);
715 }
716 unlock_page(page);
717 return 0;
718 error:
719 unlock_page(page);
720 return ret;
721 }
722
723 static
724 void cache_page_release(nfs_readdir_descriptor_t *desc)
725 {
726 nfs_readdir_clear_array(desc->page);
727 put_page(desc->page);
728 desc->page = NULL;
729 }
730
731 static
732 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
733 {
734 struct page *page;
735
736 for (;;) {
737 page = read_cache_page(desc->file->f_mapping,
738 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
739 if (IS_ERR(page) || grab_page(page))
740 break;
741 put_page(page);
742 }
743 return page;
744 }
745
746 /*
747 * Returns 0 if desc->dir_cookie was found on page desc->page_index
748 */
749 static
750 int find_cache_page(nfs_readdir_descriptor_t *desc)
751 {
752 int res;
753
754 desc->page = get_cache_page(desc);
755 if (IS_ERR(desc->page))
756 return PTR_ERR(desc->page);
757
758 res = nfs_readdir_search_array(desc);
759 if (res != 0)
760 cache_page_release(desc);
761 return res;
762 }
763
764 /* Search for desc->dir_cookie from the beginning of the page cache */
765 static inline
766 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
767 {
768 int res;
769
770 if (desc->page_index == 0) {
771 desc->current_index = 0;
772 desc->last_cookie = 0;
773 }
774 do {
775 res = find_cache_page(desc);
776 } while (res == -EAGAIN);
777 return res;
778 }
779
780 /*
781 * Once we've found the start of the dirent within a page: fill 'er up...
782 */
783 static
784 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
785 {
786 struct file *file = desc->file;
787 int i = 0;
788 int res = 0;
789 struct nfs_cache_array *array = NULL;
790 struct nfs_open_dir_context *ctx = file->private_data;
791
792 array = nfs_readdir_get_array(desc->page);
793 if (IS_ERR(array)) {
794 res = PTR_ERR(array);
795 goto out;
796 }
797
798 for (i = desc->cache_entry_index; i < array->size; i++) {
799 struct nfs_cache_array_entry *ent;
800
801 ent = &array->array[i];
802 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
803 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
804 desc->eof = 1;
805 break;
806 }
807 desc->ctx->pos++;
808 if (i < (array->size-1))
809 *desc->dir_cookie = array->array[i+1].cookie;
810 else
811 *desc->dir_cookie = array->last_cookie;
812 if (ctx->duped != 0)
813 ctx->duped = 1;
814 }
815 if (array->eof_index >= 0)
816 desc->eof = 1;
817
818 nfs_readdir_release_array(desc->page);
819 out:
820 cache_page_release(desc);
821 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
822 (unsigned long long)*desc->dir_cookie, res);
823 return res;
824 }
825
826 /*
827 * If we cannot find a cookie in our cache, we suspect that this is
828 * because it points to a deleted file, so we ask the server to return
829 * whatever it thinks is the next entry. We then feed this to filldir.
830 * If all goes well, we should then be able to find our way round the
831 * cache on the next call to readdir_search_pagecache();
832 *
833 * NOTE: we cannot add the anonymous page to the pagecache because
834 * the data it contains might not be page aligned. Besides,
835 * we should already have a complete representation of the
836 * directory in the page cache by the time we get here.
837 */
838 static inline
839 int uncached_readdir(nfs_readdir_descriptor_t *desc)
840 {
841 struct page *page = NULL;
842 int status;
843 struct inode *inode = file_inode(desc->file);
844 struct nfs_open_dir_context *ctx = desc->file->private_data;
845
846 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
847 (unsigned long long)*desc->dir_cookie);
848
849 page = alloc_page(GFP_HIGHUSER);
850 if (!page) {
851 status = -ENOMEM;
852 goto out;
853 }
854
855 desc->page_index = 0;
856 desc->last_cookie = *desc->dir_cookie;
857 desc->page = page;
858 ctx->duped = 0;
859
860 status = nfs_readdir_xdr_to_array(desc, page, inode);
861 if (status < 0)
862 goto out_release;
863
864 status = nfs_do_filldir(desc);
865
866 out:
867 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
868 __func__, status);
869 return status;
870 out_release:
871 cache_page_release(desc);
872 goto out;
873 }
874
875 static bool nfs_dir_mapping_need_revalidate(struct inode *dir)
876 {
877 struct nfs_inode *nfsi = NFS_I(dir);
878
879 if (nfs_attribute_cache_expired(dir))
880 return true;
881 if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
882 return true;
883 return false;
884 }
885
886 /* The file offset position represents the dirent entry number. A
887 last cookie cache takes care of the common case of reading the
888 whole directory.
889 */
890 static int nfs_readdir(struct file *file, struct dir_context *ctx)
891 {
892 struct dentry *dentry = file_dentry(file);
893 struct inode *inode = d_inode(dentry);
894 nfs_readdir_descriptor_t my_desc,
895 *desc = &my_desc;
896 struct nfs_open_dir_context *dir_ctx = file->private_data;
897 int res = 0;
898
899 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
900 file, (long long)ctx->pos);
901 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
902
903 /*
904 * ctx->pos points to the dirent entry number.
905 * *desc->dir_cookie has the cookie for the next entry. We have
906 * to either find the entry with the appropriate number or
907 * revalidate the cookie.
908 */
909 memset(desc, 0, sizeof(*desc));
910
911 desc->file = file;
912 desc->ctx = ctx;
913 desc->dir_cookie = &dir_ctx->dir_cookie;
914 desc->decode = NFS_PROTO(inode)->decode_dirent;
915 desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
916
917 if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode))
918 res = nfs_revalidate_mapping(inode, file->f_mapping);
919 if (res < 0)
920 goto out;
921
922 do {
923 res = readdir_search_pagecache(desc);
924
925 if (res == -EBADCOOKIE) {
926 res = 0;
927 /* This means either end of directory */
928 if (*desc->dir_cookie && desc->eof == 0) {
929 /* Or that the server has 'lost' a cookie */
930 res = uncached_readdir(desc);
931 if (res == 0)
932 continue;
933 }
934 break;
935 }
936 if (res == -ETOOSMALL && desc->plus) {
937 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
938 nfs_zap_caches(inode);
939 desc->page_index = 0;
940 desc->plus = 0;
941 desc->eof = 0;
942 continue;
943 }
944 if (res < 0)
945 break;
946
947 res = nfs_do_filldir(desc);
948 if (res < 0)
949 break;
950 } while (!desc->eof);
951 out:
952 if (res > 0)
953 res = 0;
954 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
955 return res;
956 }
957
958 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
959 {
960 struct nfs_open_dir_context *dir_ctx = filp->private_data;
961
962 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
963 filp, offset, whence);
964
965 switch (whence) {
966 case 1:
967 offset += filp->f_pos;
968 case 0:
969 if (offset >= 0)
970 break;
971 default:
972 return -EINVAL;
973 }
974 if (offset != filp->f_pos) {
975 filp->f_pos = offset;
976 dir_ctx->dir_cookie = 0;
977 dir_ctx->duped = 0;
978 }
979 return offset;
980 }
981
982 /*
983 * All directory operations under NFS are synchronous, so fsync()
984 * is a dummy operation.
985 */
986 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
987 int datasync)
988 {
989 struct inode *inode = file_inode(filp);
990
991 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
992
993 inode_lock(inode);
994 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
995 inode_unlock(inode);
996 return 0;
997 }
998
999 /**
1000 * nfs_force_lookup_revalidate - Mark the directory as having changed
1001 * @dir - pointer to directory inode
1002 *
1003 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1004 * full lookup on all child dentries of 'dir' whenever a change occurs
1005 * on the server that might have invalidated our dcache.
1006 *
1007 * The caller should be holding dir->i_lock
1008 */
1009 void nfs_force_lookup_revalidate(struct inode *dir)
1010 {
1011 NFS_I(dir)->cache_change_attribute++;
1012 }
1013 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1014
1015 /*
1016 * A check for whether or not the parent directory has changed.
1017 * In the case it has, we assume that the dentries are untrustworthy
1018 * and may need to be looked up again.
1019 * If rcu_walk prevents us from performing a full check, return 0.
1020 */
1021 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1022 int rcu_walk)
1023 {
1024 int ret;
1025
1026 if (IS_ROOT(dentry))
1027 return 1;
1028 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1029 return 0;
1030 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1031 return 0;
1032 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1033 if (rcu_walk)
1034 ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir);
1035 else
1036 ret = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1037 if (ret < 0)
1038 return 0;
1039 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1040 return 0;
1041 return 1;
1042 }
1043
1044 /*
1045 * Use intent information to check whether or not we're going to do
1046 * an O_EXCL create using this path component.
1047 */
1048 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1049 {
1050 if (NFS_PROTO(dir)->version == 2)
1051 return 0;
1052 return flags & LOOKUP_EXCL;
1053 }
1054
1055 /*
1056 * Inode and filehandle revalidation for lookups.
1057 *
1058 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1059 * or if the intent information indicates that we're about to open this
1060 * particular file and the "nocto" mount flag is not set.
1061 *
1062 */
1063 static
1064 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1065 {
1066 struct nfs_server *server = NFS_SERVER(inode);
1067 int ret;
1068
1069 if (IS_AUTOMOUNT(inode))
1070 return 0;
1071 /* VFS wants an on-the-wire revalidation */
1072 if (flags & LOOKUP_REVAL)
1073 goto out_force;
1074 /* This is an open(2) */
1075 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1076 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1077 goto out_force;
1078 out:
1079 return (inode->i_nlink == 0) ? -ENOENT : 0;
1080 out_force:
1081 if (flags & LOOKUP_RCU)
1082 return -ECHILD;
1083 ret = __nfs_revalidate_inode(server, inode);
1084 if (ret != 0)
1085 return ret;
1086 goto out;
1087 }
1088
1089 /*
1090 * We judge how long we want to trust negative
1091 * dentries by looking at the parent inode mtime.
1092 *
1093 * If parent mtime has changed, we revalidate, else we wait for a
1094 * period corresponding to the parent's attribute cache timeout value.
1095 *
1096 * If LOOKUP_RCU prevents us from performing a full check, return 1
1097 * suggesting a reval is needed.
1098 */
1099 static inline
1100 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1101 unsigned int flags)
1102 {
1103 /* Don't revalidate a negative dentry if we're creating a new file */
1104 if (flags & LOOKUP_CREATE)
1105 return 0;
1106 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1107 return 1;
1108 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1109 }
1110
1111 /*
1112 * This is called every time the dcache has a lookup hit,
1113 * and we should check whether we can really trust that
1114 * lookup.
1115 *
1116 * NOTE! The hit can be a negative hit too, don't assume
1117 * we have an inode!
1118 *
1119 * If the parent directory is seen to have changed, we throw out the
1120 * cached dentry and do a new lookup.
1121 */
1122 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1123 {
1124 struct inode *dir;
1125 struct inode *inode;
1126 struct dentry *parent;
1127 struct nfs_fh *fhandle = NULL;
1128 struct nfs_fattr *fattr = NULL;
1129 struct nfs4_label *label = NULL;
1130 int error;
1131
1132 if (flags & LOOKUP_RCU) {
1133 parent = ACCESS_ONCE(dentry->d_parent);
1134 dir = d_inode_rcu(parent);
1135 if (!dir)
1136 return -ECHILD;
1137 } else {
1138 parent = dget_parent(dentry);
1139 dir = d_inode(parent);
1140 }
1141 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1142 inode = d_inode(dentry);
1143
1144 if (!inode) {
1145 if (nfs_neg_need_reval(dir, dentry, flags)) {
1146 if (flags & LOOKUP_RCU)
1147 return -ECHILD;
1148 goto out_bad;
1149 }
1150 goto out_valid_noent;
1151 }
1152
1153 if (is_bad_inode(inode)) {
1154 if (flags & LOOKUP_RCU)
1155 return -ECHILD;
1156 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1157 __func__, dentry);
1158 goto out_bad;
1159 }
1160
1161 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1162 goto out_set_verifier;
1163
1164 /* Force a full look up iff the parent directory has changed */
1165 if (!nfs_is_exclusive_create(dir, flags) &&
1166 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1167
1168 if (nfs_lookup_verify_inode(inode, flags)) {
1169 if (flags & LOOKUP_RCU)
1170 return -ECHILD;
1171 goto out_zap_parent;
1172 }
1173 goto out_valid;
1174 }
1175
1176 if (flags & LOOKUP_RCU)
1177 return -ECHILD;
1178
1179 if (NFS_STALE(inode))
1180 goto out_bad;
1181
1182 error = -ENOMEM;
1183 fhandle = nfs_alloc_fhandle();
1184 fattr = nfs_alloc_fattr();
1185 if (fhandle == NULL || fattr == NULL)
1186 goto out_error;
1187
1188 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1189 if (IS_ERR(label))
1190 goto out_error;
1191
1192 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1193 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1194 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1195 if (error)
1196 goto out_bad;
1197 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1198 goto out_bad;
1199 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1200 goto out_bad;
1201
1202 nfs_setsecurity(inode, fattr, label);
1203
1204 nfs_free_fattr(fattr);
1205 nfs_free_fhandle(fhandle);
1206 nfs4_label_free(label);
1207
1208 out_set_verifier:
1209 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1210 out_valid:
1211 /* Success: notify readdir to use READDIRPLUS */
1212 nfs_advise_use_readdirplus(dir);
1213 out_valid_noent:
1214 if (flags & LOOKUP_RCU) {
1215 if (parent != ACCESS_ONCE(dentry->d_parent))
1216 return -ECHILD;
1217 } else
1218 dput(parent);
1219 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1220 __func__, dentry);
1221 return 1;
1222 out_zap_parent:
1223 nfs_zap_caches(dir);
1224 out_bad:
1225 WARN_ON(flags & LOOKUP_RCU);
1226 nfs_free_fattr(fattr);
1227 nfs_free_fhandle(fhandle);
1228 nfs4_label_free(label);
1229 nfs_mark_for_revalidate(dir);
1230 if (inode && S_ISDIR(inode->i_mode)) {
1231 /* Purge readdir caches. */
1232 nfs_zap_caches(inode);
1233 /*
1234 * We can't d_drop the root of a disconnected tree:
1235 * its d_hash is on the s_anon list and d_drop() would hide
1236 * it from shrink_dcache_for_unmount(), leading to busy
1237 * inodes on unmount and further oopses.
1238 */
1239 if (IS_ROOT(dentry))
1240 goto out_valid;
1241 }
1242 dput(parent);
1243 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1244 __func__, dentry);
1245 return 0;
1246 out_error:
1247 WARN_ON(flags & LOOKUP_RCU);
1248 nfs_free_fattr(fattr);
1249 nfs_free_fhandle(fhandle);
1250 nfs4_label_free(label);
1251 dput(parent);
1252 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1253 __func__, dentry, error);
1254 return error;
1255 }
1256
1257 /*
1258 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1259 * when we don't really care about the dentry name. This is called when a
1260 * pathwalk ends on a dentry that was not found via a normal lookup in the
1261 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1262 *
1263 * In this situation, we just want to verify that the inode itself is OK
1264 * since the dentry might have changed on the server.
1265 */
1266 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1267 {
1268 int error;
1269 struct inode *inode = d_inode(dentry);
1270
1271 /*
1272 * I believe we can only get a negative dentry here in the case of a
1273 * procfs-style symlink. Just assume it's correct for now, but we may
1274 * eventually need to do something more here.
1275 */
1276 if (!inode) {
1277 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1278 __func__, dentry);
1279 return 1;
1280 }
1281
1282 if (is_bad_inode(inode)) {
1283 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1284 __func__, dentry);
1285 return 0;
1286 }
1287
1288 error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1289 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1290 __func__, inode->i_ino, error ? "invalid" : "valid");
1291 return !error;
1292 }
1293
1294 /*
1295 * This is called from dput() when d_count is going to 0.
1296 */
1297 static int nfs_dentry_delete(const struct dentry *dentry)
1298 {
1299 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1300 dentry, dentry->d_flags);
1301
1302 /* Unhash any dentry with a stale inode */
1303 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1304 return 1;
1305
1306 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1307 /* Unhash it, so that ->d_iput() would be called */
1308 return 1;
1309 }
1310 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1311 /* Unhash it, so that ancestors of killed async unlink
1312 * files will be cleaned up during umount */
1313 return 1;
1314 }
1315 return 0;
1316
1317 }
1318
1319 /* Ensure that we revalidate inode->i_nlink */
1320 static void nfs_drop_nlink(struct inode *inode)
1321 {
1322 spin_lock(&inode->i_lock);
1323 /* drop the inode if we're reasonably sure this is the last link */
1324 if (inode->i_nlink == 1)
1325 clear_nlink(inode);
1326 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1327 spin_unlock(&inode->i_lock);
1328 }
1329
1330 /*
1331 * Called when the dentry loses inode.
1332 * We use it to clean up silly-renamed files.
1333 */
1334 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1335 {
1336 if (S_ISDIR(inode->i_mode))
1337 /* drop any readdir cache as it could easily be old */
1338 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1339
1340 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1341 nfs_complete_unlink(dentry, inode);
1342 nfs_drop_nlink(inode);
1343 }
1344 iput(inode);
1345 }
1346
1347 static void nfs_d_release(struct dentry *dentry)
1348 {
1349 /* free cached devname value, if it survived that far */
1350 if (unlikely(dentry->d_fsdata)) {
1351 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1352 WARN_ON(1);
1353 else
1354 kfree(dentry->d_fsdata);
1355 }
1356 }
1357
1358 const struct dentry_operations nfs_dentry_operations = {
1359 .d_revalidate = nfs_lookup_revalidate,
1360 .d_weak_revalidate = nfs_weak_revalidate,
1361 .d_delete = nfs_dentry_delete,
1362 .d_iput = nfs_dentry_iput,
1363 .d_automount = nfs_d_automount,
1364 .d_release = nfs_d_release,
1365 };
1366 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1367
1368 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1369 {
1370 struct dentry *res;
1371 struct inode *inode = NULL;
1372 struct nfs_fh *fhandle = NULL;
1373 struct nfs_fattr *fattr = NULL;
1374 struct nfs4_label *label = NULL;
1375 int error;
1376
1377 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1378 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1379
1380 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1381 return ERR_PTR(-ENAMETOOLONG);
1382
1383 /*
1384 * If we're doing an exclusive create, optimize away the lookup
1385 * but don't hash the dentry.
1386 */
1387 if (nfs_is_exclusive_create(dir, flags))
1388 return NULL;
1389
1390 res = ERR_PTR(-ENOMEM);
1391 fhandle = nfs_alloc_fhandle();
1392 fattr = nfs_alloc_fattr();
1393 if (fhandle == NULL || fattr == NULL)
1394 goto out;
1395
1396 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1397 if (IS_ERR(label))
1398 goto out;
1399
1400 trace_nfs_lookup_enter(dir, dentry, flags);
1401 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1402 if (error == -ENOENT)
1403 goto no_entry;
1404 if (error < 0) {
1405 res = ERR_PTR(error);
1406 goto out_label;
1407 }
1408 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1409 res = ERR_CAST(inode);
1410 if (IS_ERR(res))
1411 goto out_label;
1412
1413 /* Success: notify readdir to use READDIRPLUS */
1414 nfs_advise_use_readdirplus(dir);
1415
1416 no_entry:
1417 res = d_splice_alias(inode, dentry);
1418 if (res != NULL) {
1419 if (IS_ERR(res))
1420 goto out_label;
1421 dentry = res;
1422 }
1423 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1424 out_label:
1425 trace_nfs_lookup_exit(dir, dentry, flags, error);
1426 nfs4_label_free(label);
1427 out:
1428 nfs_free_fattr(fattr);
1429 nfs_free_fhandle(fhandle);
1430 return res;
1431 }
1432 EXPORT_SYMBOL_GPL(nfs_lookup);
1433
1434 #if IS_ENABLED(CONFIG_NFS_V4)
1435 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1436
1437 const struct dentry_operations nfs4_dentry_operations = {
1438 .d_revalidate = nfs4_lookup_revalidate,
1439 .d_delete = nfs_dentry_delete,
1440 .d_iput = nfs_dentry_iput,
1441 .d_automount = nfs_d_automount,
1442 .d_release = nfs_d_release,
1443 };
1444 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1445
1446 static fmode_t flags_to_mode(int flags)
1447 {
1448 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1449 if ((flags & O_ACCMODE) != O_WRONLY)
1450 res |= FMODE_READ;
1451 if ((flags & O_ACCMODE) != O_RDONLY)
1452 res |= FMODE_WRITE;
1453 return res;
1454 }
1455
1456 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1457 {
1458 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1459 }
1460
1461 static int do_open(struct inode *inode, struct file *filp)
1462 {
1463 nfs_fscache_open_file(inode, filp);
1464 return 0;
1465 }
1466
1467 static int nfs_finish_open(struct nfs_open_context *ctx,
1468 struct dentry *dentry,
1469 struct file *file, unsigned open_flags,
1470 int *opened)
1471 {
1472 int err;
1473
1474 err = finish_open(file, dentry, do_open, opened);
1475 if (err)
1476 goto out;
1477 nfs_file_set_open_context(file, ctx);
1478
1479 out:
1480 return err;
1481 }
1482
1483 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1484 struct file *file, unsigned open_flags,
1485 umode_t mode, int *opened)
1486 {
1487 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1488 struct nfs_open_context *ctx;
1489 struct dentry *res;
1490 struct iattr attr = { .ia_valid = ATTR_OPEN };
1491 struct inode *inode;
1492 unsigned int lookup_flags = 0;
1493 bool switched = false;
1494 int err;
1495
1496 /* Expect a negative dentry */
1497 BUG_ON(d_inode(dentry));
1498
1499 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1500 dir->i_sb->s_id, dir->i_ino, dentry);
1501
1502 err = nfs_check_flags(open_flags);
1503 if (err)
1504 return err;
1505
1506 /* NFS only supports OPEN on regular files */
1507 if ((open_flags & O_DIRECTORY)) {
1508 if (!d_in_lookup(dentry)) {
1509 /*
1510 * Hashed negative dentry with O_DIRECTORY: dentry was
1511 * revalidated and is fine, no need to perform lookup
1512 * again
1513 */
1514 return -ENOENT;
1515 }
1516 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1517 goto no_open;
1518 }
1519
1520 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1521 return -ENAMETOOLONG;
1522
1523 if (open_flags & O_CREAT) {
1524 attr.ia_valid |= ATTR_MODE;
1525 attr.ia_mode = mode & ~current_umask();
1526 }
1527 if (open_flags & O_TRUNC) {
1528 attr.ia_valid |= ATTR_SIZE;
1529 attr.ia_size = 0;
1530 }
1531
1532 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1533 d_drop(dentry);
1534 switched = true;
1535 dentry = d_alloc_parallel(dentry->d_parent,
1536 &dentry->d_name, &wq);
1537 if (IS_ERR(dentry))
1538 return PTR_ERR(dentry);
1539 if (unlikely(!d_in_lookup(dentry)))
1540 return finish_no_open(file, dentry);
1541 }
1542
1543 ctx = create_nfs_open_context(dentry, open_flags);
1544 err = PTR_ERR(ctx);
1545 if (IS_ERR(ctx))
1546 goto out;
1547
1548 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1549 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1550 if (IS_ERR(inode)) {
1551 err = PTR_ERR(inode);
1552 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1553 put_nfs_open_context(ctx);
1554 d_drop(dentry);
1555 switch (err) {
1556 case -ENOENT:
1557 d_add(dentry, NULL);
1558 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1559 break;
1560 case -EISDIR:
1561 case -ENOTDIR:
1562 goto no_open;
1563 case -ELOOP:
1564 if (!(open_flags & O_NOFOLLOW))
1565 goto no_open;
1566 break;
1567 /* case -EINVAL: */
1568 default:
1569 break;
1570 }
1571 goto out;
1572 }
1573
1574 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1575 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1576 put_nfs_open_context(ctx);
1577 out:
1578 if (unlikely(switched)) {
1579 d_lookup_done(dentry);
1580 dput(dentry);
1581 }
1582 return err;
1583
1584 no_open:
1585 res = nfs_lookup(dir, dentry, lookup_flags);
1586 if (switched) {
1587 d_lookup_done(dentry);
1588 if (!res)
1589 res = dentry;
1590 else
1591 dput(dentry);
1592 }
1593 if (IS_ERR(res))
1594 return PTR_ERR(res);
1595 return finish_no_open(file, res);
1596 }
1597 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1598
1599 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1600 {
1601 struct inode *inode;
1602 int ret = 0;
1603
1604 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1605 goto no_open;
1606 if (d_mountpoint(dentry))
1607 goto no_open;
1608 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1609 goto no_open;
1610
1611 inode = d_inode(dentry);
1612
1613 /* We can't create new files in nfs_open_revalidate(), so we
1614 * optimize away revalidation of negative dentries.
1615 */
1616 if (inode == NULL) {
1617 struct dentry *parent;
1618 struct inode *dir;
1619
1620 if (flags & LOOKUP_RCU) {
1621 parent = ACCESS_ONCE(dentry->d_parent);
1622 dir = d_inode_rcu(parent);
1623 if (!dir)
1624 return -ECHILD;
1625 } else {
1626 parent = dget_parent(dentry);
1627 dir = d_inode(parent);
1628 }
1629 if (!nfs_neg_need_reval(dir, dentry, flags))
1630 ret = 1;
1631 else if (flags & LOOKUP_RCU)
1632 ret = -ECHILD;
1633 if (!(flags & LOOKUP_RCU))
1634 dput(parent);
1635 else if (parent != ACCESS_ONCE(dentry->d_parent))
1636 return -ECHILD;
1637 goto out;
1638 }
1639
1640 /* NFS only supports OPEN on regular files */
1641 if (!S_ISREG(inode->i_mode))
1642 goto no_open;
1643 /* We cannot do exclusive creation on a positive dentry */
1644 if (flags & LOOKUP_EXCL)
1645 goto no_open;
1646
1647 /* Let f_op->open() actually open (and revalidate) the file */
1648 ret = 1;
1649
1650 out:
1651 return ret;
1652
1653 no_open:
1654 return nfs_lookup_revalidate(dentry, flags);
1655 }
1656
1657 #endif /* CONFIG_NFSV4 */
1658
1659 /*
1660 * Code common to create, mkdir, and mknod.
1661 */
1662 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1663 struct nfs_fattr *fattr,
1664 struct nfs4_label *label)
1665 {
1666 struct dentry *parent = dget_parent(dentry);
1667 struct inode *dir = d_inode(parent);
1668 struct inode *inode;
1669 int error = -EACCES;
1670
1671 d_drop(dentry);
1672
1673 /* We may have been initialized further down */
1674 if (d_really_is_positive(dentry))
1675 goto out;
1676 if (fhandle->size == 0) {
1677 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1678 if (error)
1679 goto out_error;
1680 }
1681 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1682 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1683 struct nfs_server *server = NFS_SB(dentry->d_sb);
1684 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1685 if (error < 0)
1686 goto out_error;
1687 }
1688 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1689 error = PTR_ERR(inode);
1690 if (IS_ERR(inode))
1691 goto out_error;
1692 d_add(dentry, inode);
1693 out:
1694 dput(parent);
1695 return 0;
1696 out_error:
1697 nfs_mark_for_revalidate(dir);
1698 dput(parent);
1699 return error;
1700 }
1701 EXPORT_SYMBOL_GPL(nfs_instantiate);
1702
1703 /*
1704 * Following a failed create operation, we drop the dentry rather
1705 * than retain a negative dentry. This avoids a problem in the event
1706 * that the operation succeeded on the server, but an error in the
1707 * reply path made it appear to have failed.
1708 */
1709 int nfs_create(struct inode *dir, struct dentry *dentry,
1710 umode_t mode, bool excl)
1711 {
1712 struct iattr attr;
1713 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1714 int error;
1715
1716 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1717 dir->i_sb->s_id, dir->i_ino, dentry);
1718
1719 attr.ia_mode = mode;
1720 attr.ia_valid = ATTR_MODE;
1721
1722 trace_nfs_create_enter(dir, dentry, open_flags);
1723 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1724 trace_nfs_create_exit(dir, dentry, open_flags, error);
1725 if (error != 0)
1726 goto out_err;
1727 return 0;
1728 out_err:
1729 d_drop(dentry);
1730 return error;
1731 }
1732 EXPORT_SYMBOL_GPL(nfs_create);
1733
1734 /*
1735 * See comments for nfs_proc_create regarding failed operations.
1736 */
1737 int
1738 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1739 {
1740 struct iattr attr;
1741 int status;
1742
1743 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1744 dir->i_sb->s_id, dir->i_ino, dentry);
1745
1746 attr.ia_mode = mode;
1747 attr.ia_valid = ATTR_MODE;
1748
1749 trace_nfs_mknod_enter(dir, dentry);
1750 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1751 trace_nfs_mknod_exit(dir, dentry, status);
1752 if (status != 0)
1753 goto out_err;
1754 return 0;
1755 out_err:
1756 d_drop(dentry);
1757 return status;
1758 }
1759 EXPORT_SYMBOL_GPL(nfs_mknod);
1760
1761 /*
1762 * See comments for nfs_proc_create regarding failed operations.
1763 */
1764 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1765 {
1766 struct iattr attr;
1767 int error;
1768
1769 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1770 dir->i_sb->s_id, dir->i_ino, dentry);
1771
1772 attr.ia_valid = ATTR_MODE;
1773 attr.ia_mode = mode | S_IFDIR;
1774
1775 trace_nfs_mkdir_enter(dir, dentry);
1776 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1777 trace_nfs_mkdir_exit(dir, dentry, error);
1778 if (error != 0)
1779 goto out_err;
1780 return 0;
1781 out_err:
1782 d_drop(dentry);
1783 return error;
1784 }
1785 EXPORT_SYMBOL_GPL(nfs_mkdir);
1786
1787 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1788 {
1789 if (simple_positive(dentry))
1790 d_delete(dentry);
1791 }
1792
1793 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1794 {
1795 int error;
1796
1797 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1798 dir->i_sb->s_id, dir->i_ino, dentry);
1799
1800 trace_nfs_rmdir_enter(dir, dentry);
1801 if (d_really_is_positive(dentry)) {
1802 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1803 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1804 /* Ensure the VFS deletes this inode */
1805 switch (error) {
1806 case 0:
1807 clear_nlink(d_inode(dentry));
1808 break;
1809 case -ENOENT:
1810 nfs_dentry_handle_enoent(dentry);
1811 }
1812 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1813 } else
1814 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1815 trace_nfs_rmdir_exit(dir, dentry, error);
1816
1817 return error;
1818 }
1819 EXPORT_SYMBOL_GPL(nfs_rmdir);
1820
1821 /*
1822 * Remove a file after making sure there are no pending writes,
1823 * and after checking that the file has only one user.
1824 *
1825 * We invalidate the attribute cache and free the inode prior to the operation
1826 * to avoid possible races if the server reuses the inode.
1827 */
1828 static int nfs_safe_remove(struct dentry *dentry)
1829 {
1830 struct inode *dir = d_inode(dentry->d_parent);
1831 struct inode *inode = d_inode(dentry);
1832 int error = -EBUSY;
1833
1834 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1835
1836 /* If the dentry was sillyrenamed, we simply call d_delete() */
1837 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1838 error = 0;
1839 goto out;
1840 }
1841
1842 trace_nfs_remove_enter(dir, dentry);
1843 if (inode != NULL) {
1844 NFS_PROTO(inode)->return_delegation(inode);
1845 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1846 if (error == 0)
1847 nfs_drop_nlink(inode);
1848 } else
1849 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1850 if (error == -ENOENT)
1851 nfs_dentry_handle_enoent(dentry);
1852 trace_nfs_remove_exit(dir, dentry, error);
1853 out:
1854 return error;
1855 }
1856
1857 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1858 * belongs to an active ".nfs..." file and we return -EBUSY.
1859 *
1860 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1861 */
1862 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1863 {
1864 int error;
1865 int need_rehash = 0;
1866
1867 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1868 dir->i_ino, dentry);
1869
1870 trace_nfs_unlink_enter(dir, dentry);
1871 spin_lock(&dentry->d_lock);
1872 if (d_count(dentry) > 1) {
1873 spin_unlock(&dentry->d_lock);
1874 /* Start asynchronous writeout of the inode */
1875 write_inode_now(d_inode(dentry), 0);
1876 error = nfs_sillyrename(dir, dentry);
1877 goto out;
1878 }
1879 if (!d_unhashed(dentry)) {
1880 __d_drop(dentry);
1881 need_rehash = 1;
1882 }
1883 spin_unlock(&dentry->d_lock);
1884 error = nfs_safe_remove(dentry);
1885 if (!error || error == -ENOENT) {
1886 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1887 } else if (need_rehash)
1888 d_rehash(dentry);
1889 out:
1890 trace_nfs_unlink_exit(dir, dentry, error);
1891 return error;
1892 }
1893 EXPORT_SYMBOL_GPL(nfs_unlink);
1894
1895 /*
1896 * To create a symbolic link, most file systems instantiate a new inode,
1897 * add a page to it containing the path, then write it out to the disk
1898 * using prepare_write/commit_write.
1899 *
1900 * Unfortunately the NFS client can't create the in-core inode first
1901 * because it needs a file handle to create an in-core inode (see
1902 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1903 * symlink request has completed on the server.
1904 *
1905 * So instead we allocate a raw page, copy the symname into it, then do
1906 * the SYMLINK request with the page as the buffer. If it succeeds, we
1907 * now have a new file handle and can instantiate an in-core NFS inode
1908 * and move the raw page into its mapping.
1909 */
1910 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1911 {
1912 struct page *page;
1913 char *kaddr;
1914 struct iattr attr;
1915 unsigned int pathlen = strlen(symname);
1916 int error;
1917
1918 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1919 dir->i_ino, dentry, symname);
1920
1921 if (pathlen > PAGE_SIZE)
1922 return -ENAMETOOLONG;
1923
1924 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1925 attr.ia_valid = ATTR_MODE;
1926
1927 page = alloc_page(GFP_USER);
1928 if (!page)
1929 return -ENOMEM;
1930
1931 kaddr = page_address(page);
1932 memcpy(kaddr, symname, pathlen);
1933 if (pathlen < PAGE_SIZE)
1934 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1935
1936 trace_nfs_symlink_enter(dir, dentry);
1937 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1938 trace_nfs_symlink_exit(dir, dentry, error);
1939 if (error != 0) {
1940 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1941 dir->i_sb->s_id, dir->i_ino,
1942 dentry, symname, error);
1943 d_drop(dentry);
1944 __free_page(page);
1945 return error;
1946 }
1947
1948 /*
1949 * No big deal if we can't add this page to the page cache here.
1950 * READLINK will get the missing page from the server if needed.
1951 */
1952 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1953 GFP_KERNEL)) {
1954 SetPageUptodate(page);
1955 unlock_page(page);
1956 /*
1957 * add_to_page_cache_lru() grabs an extra page refcount.
1958 * Drop it here to avoid leaking this page later.
1959 */
1960 put_page(page);
1961 } else
1962 __free_page(page);
1963
1964 return 0;
1965 }
1966 EXPORT_SYMBOL_GPL(nfs_symlink);
1967
1968 int
1969 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1970 {
1971 struct inode *inode = d_inode(old_dentry);
1972 int error;
1973
1974 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1975 old_dentry, dentry);
1976
1977 trace_nfs_link_enter(inode, dir, dentry);
1978 NFS_PROTO(inode)->return_delegation(inode);
1979
1980 d_drop(dentry);
1981 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1982 if (error == 0) {
1983 ihold(inode);
1984 d_add(dentry, inode);
1985 }
1986 trace_nfs_link_exit(inode, dir, dentry, error);
1987 return error;
1988 }
1989 EXPORT_SYMBOL_GPL(nfs_link);
1990
1991 /*
1992 * RENAME
1993 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1994 * different file handle for the same inode after a rename (e.g. when
1995 * moving to a different directory). A fail-safe method to do so would
1996 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1997 * rename the old file using the sillyrename stuff. This way, the original
1998 * file in old_dir will go away when the last process iput()s the inode.
1999 *
2000 * FIXED.
2001 *
2002 * It actually works quite well. One needs to have the possibility for
2003 * at least one ".nfs..." file in each directory the file ever gets
2004 * moved or linked to which happens automagically with the new
2005 * implementation that only depends on the dcache stuff instead of
2006 * using the inode layer
2007 *
2008 * Unfortunately, things are a little more complicated than indicated
2009 * above. For a cross-directory move, we want to make sure we can get
2010 * rid of the old inode after the operation. This means there must be
2011 * no pending writes (if it's a file), and the use count must be 1.
2012 * If these conditions are met, we can drop the dentries before doing
2013 * the rename.
2014 */
2015 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2016 struct inode *new_dir, struct dentry *new_dentry,
2017 unsigned int flags)
2018 {
2019 struct inode *old_inode = d_inode(old_dentry);
2020 struct inode *new_inode = d_inode(new_dentry);
2021 struct dentry *dentry = NULL, *rehash = NULL;
2022 struct rpc_task *task;
2023 int error = -EBUSY;
2024
2025 if (flags)
2026 return -EINVAL;
2027
2028 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2029 old_dentry, new_dentry,
2030 d_count(new_dentry));
2031
2032 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2033 /*
2034 * For non-directories, check whether the target is busy and if so,
2035 * make a copy of the dentry and then do a silly-rename. If the
2036 * silly-rename succeeds, the copied dentry is hashed and becomes
2037 * the new target.
2038 */
2039 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2040 /*
2041 * To prevent any new references to the target during the
2042 * rename, we unhash the dentry in advance.
2043 */
2044 if (!d_unhashed(new_dentry)) {
2045 d_drop(new_dentry);
2046 rehash = new_dentry;
2047 }
2048
2049 if (d_count(new_dentry) > 2) {
2050 int err;
2051
2052 /* copy the target dentry's name */
2053 dentry = d_alloc(new_dentry->d_parent,
2054 &new_dentry->d_name);
2055 if (!dentry)
2056 goto out;
2057
2058 /* silly-rename the existing target ... */
2059 err = nfs_sillyrename(new_dir, new_dentry);
2060 if (err)
2061 goto out;
2062
2063 new_dentry = dentry;
2064 rehash = NULL;
2065 new_inode = NULL;
2066 }
2067 }
2068
2069 NFS_PROTO(old_inode)->return_delegation(old_inode);
2070 if (new_inode != NULL)
2071 NFS_PROTO(new_inode)->return_delegation(new_inode);
2072
2073 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2074 if (IS_ERR(task)) {
2075 error = PTR_ERR(task);
2076 goto out;
2077 }
2078
2079 error = rpc_wait_for_completion_task(task);
2080 if (error == 0)
2081 error = task->tk_status;
2082 rpc_put_task(task);
2083 nfs_mark_for_revalidate(old_inode);
2084 out:
2085 if (rehash)
2086 d_rehash(rehash);
2087 trace_nfs_rename_exit(old_dir, old_dentry,
2088 new_dir, new_dentry, error);
2089 if (!error) {
2090 if (new_inode != NULL)
2091 nfs_drop_nlink(new_inode);
2092 d_move(old_dentry, new_dentry);
2093 nfs_set_verifier(new_dentry,
2094 nfs_save_change_attribute(new_dir));
2095 } else if (error == -ENOENT)
2096 nfs_dentry_handle_enoent(old_dentry);
2097
2098 /* new dentry created? */
2099 if (dentry)
2100 dput(dentry);
2101 return error;
2102 }
2103 EXPORT_SYMBOL_GPL(nfs_rename);
2104
2105 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2106 static LIST_HEAD(nfs_access_lru_list);
2107 static atomic_long_t nfs_access_nr_entries;
2108
2109 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2110 module_param(nfs_access_max_cachesize, ulong, 0644);
2111 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2112
2113 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2114 {
2115 put_rpccred(entry->cred);
2116 kfree_rcu(entry, rcu_head);
2117 smp_mb__before_atomic();
2118 atomic_long_dec(&nfs_access_nr_entries);
2119 smp_mb__after_atomic();
2120 }
2121
2122 static void nfs_access_free_list(struct list_head *head)
2123 {
2124 struct nfs_access_entry *cache;
2125
2126 while (!list_empty(head)) {
2127 cache = list_entry(head->next, struct nfs_access_entry, lru);
2128 list_del(&cache->lru);
2129 nfs_access_free_entry(cache);
2130 }
2131 }
2132
2133 static unsigned long
2134 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2135 {
2136 LIST_HEAD(head);
2137 struct nfs_inode *nfsi, *next;
2138 struct nfs_access_entry *cache;
2139 long freed = 0;
2140
2141 spin_lock(&nfs_access_lru_lock);
2142 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2143 struct inode *inode;
2144
2145 if (nr_to_scan-- == 0)
2146 break;
2147 inode = &nfsi->vfs_inode;
2148 spin_lock(&inode->i_lock);
2149 if (list_empty(&nfsi->access_cache_entry_lru))
2150 goto remove_lru_entry;
2151 cache = list_entry(nfsi->access_cache_entry_lru.next,
2152 struct nfs_access_entry, lru);
2153 list_move(&cache->lru, &head);
2154 rb_erase(&cache->rb_node, &nfsi->access_cache);
2155 freed++;
2156 if (!list_empty(&nfsi->access_cache_entry_lru))
2157 list_move_tail(&nfsi->access_cache_inode_lru,
2158 &nfs_access_lru_list);
2159 else {
2160 remove_lru_entry:
2161 list_del_init(&nfsi->access_cache_inode_lru);
2162 smp_mb__before_atomic();
2163 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2164 smp_mb__after_atomic();
2165 }
2166 spin_unlock(&inode->i_lock);
2167 }
2168 spin_unlock(&nfs_access_lru_lock);
2169 nfs_access_free_list(&head);
2170 return freed;
2171 }
2172
2173 unsigned long
2174 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2175 {
2176 int nr_to_scan = sc->nr_to_scan;
2177 gfp_t gfp_mask = sc->gfp_mask;
2178
2179 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2180 return SHRINK_STOP;
2181 return nfs_do_access_cache_scan(nr_to_scan);
2182 }
2183
2184
2185 unsigned long
2186 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2187 {
2188 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2189 }
2190
2191 static void
2192 nfs_access_cache_enforce_limit(void)
2193 {
2194 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2195 unsigned long diff;
2196 unsigned int nr_to_scan;
2197
2198 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2199 return;
2200 nr_to_scan = 100;
2201 diff = nr_entries - nfs_access_max_cachesize;
2202 if (diff < nr_to_scan)
2203 nr_to_scan = diff;
2204 nfs_do_access_cache_scan(nr_to_scan);
2205 }
2206
2207 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2208 {
2209 struct rb_root *root_node = &nfsi->access_cache;
2210 struct rb_node *n;
2211 struct nfs_access_entry *entry;
2212
2213 /* Unhook entries from the cache */
2214 while ((n = rb_first(root_node)) != NULL) {
2215 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2216 rb_erase(n, root_node);
2217 list_move(&entry->lru, head);
2218 }
2219 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2220 }
2221
2222 void nfs_access_zap_cache(struct inode *inode)
2223 {
2224 LIST_HEAD(head);
2225
2226 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2227 return;
2228 /* Remove from global LRU init */
2229 spin_lock(&nfs_access_lru_lock);
2230 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2231 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2232
2233 spin_lock(&inode->i_lock);
2234 __nfs_access_zap_cache(NFS_I(inode), &head);
2235 spin_unlock(&inode->i_lock);
2236 spin_unlock(&nfs_access_lru_lock);
2237 nfs_access_free_list(&head);
2238 }
2239 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2240
2241 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2242 {
2243 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2244 struct nfs_access_entry *entry;
2245
2246 while (n != NULL) {
2247 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2248
2249 if (cred < entry->cred)
2250 n = n->rb_left;
2251 else if (cred > entry->cred)
2252 n = n->rb_right;
2253 else
2254 return entry;
2255 }
2256 return NULL;
2257 }
2258
2259 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res, bool may_block)
2260 {
2261 struct nfs_inode *nfsi = NFS_I(inode);
2262 struct nfs_access_entry *cache;
2263 bool retry = true;
2264 int err;
2265
2266 spin_lock(&inode->i_lock);
2267 for(;;) {
2268 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2269 goto out_zap;
2270 cache = nfs_access_search_rbtree(inode, cred);
2271 err = -ENOENT;
2272 if (cache == NULL)
2273 goto out;
2274 /* Found an entry, is our attribute cache valid? */
2275 if (!nfs_attribute_cache_expired(inode) &&
2276 !(nfsi->cache_validity & NFS_INO_INVALID_ATTR))
2277 break;
2278 err = -ECHILD;
2279 if (!may_block)
2280 goto out;
2281 if (!retry)
2282 goto out_zap;
2283 spin_unlock(&inode->i_lock);
2284 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2285 if (err)
2286 return err;
2287 spin_lock(&inode->i_lock);
2288 retry = false;
2289 }
2290 res->jiffies = cache->jiffies;
2291 res->cred = cache->cred;
2292 res->mask = cache->mask;
2293 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2294 err = 0;
2295 out:
2296 spin_unlock(&inode->i_lock);
2297 return err;
2298 out_zap:
2299 spin_unlock(&inode->i_lock);
2300 nfs_access_zap_cache(inode);
2301 return -ENOENT;
2302 }
2303
2304 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2305 {
2306 /* Only check the most recently returned cache entry,
2307 * but do it without locking.
2308 */
2309 struct nfs_inode *nfsi = NFS_I(inode);
2310 struct nfs_access_entry *cache;
2311 int err = -ECHILD;
2312 struct list_head *lh;
2313
2314 rcu_read_lock();
2315 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2316 goto out;
2317 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2318 cache = list_entry(lh, struct nfs_access_entry, lru);
2319 if (lh == &nfsi->access_cache_entry_lru ||
2320 cred != cache->cred)
2321 cache = NULL;
2322 if (cache == NULL)
2323 goto out;
2324 err = nfs_revalidate_inode_rcu(NFS_SERVER(inode), inode);
2325 if (err)
2326 goto out;
2327 res->jiffies = cache->jiffies;
2328 res->cred = cache->cred;
2329 res->mask = cache->mask;
2330 out:
2331 rcu_read_unlock();
2332 return err;
2333 }
2334
2335 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2336 {
2337 struct nfs_inode *nfsi = NFS_I(inode);
2338 struct rb_root *root_node = &nfsi->access_cache;
2339 struct rb_node **p = &root_node->rb_node;
2340 struct rb_node *parent = NULL;
2341 struct nfs_access_entry *entry;
2342
2343 spin_lock(&inode->i_lock);
2344 while (*p != NULL) {
2345 parent = *p;
2346 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2347
2348 if (set->cred < entry->cred)
2349 p = &parent->rb_left;
2350 else if (set->cred > entry->cred)
2351 p = &parent->rb_right;
2352 else
2353 goto found;
2354 }
2355 rb_link_node(&set->rb_node, parent, p);
2356 rb_insert_color(&set->rb_node, root_node);
2357 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2358 spin_unlock(&inode->i_lock);
2359 return;
2360 found:
2361 rb_replace_node(parent, &set->rb_node, root_node);
2362 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2363 list_del(&entry->lru);
2364 spin_unlock(&inode->i_lock);
2365 nfs_access_free_entry(entry);
2366 }
2367
2368 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2369 {
2370 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2371 if (cache == NULL)
2372 return;
2373 RB_CLEAR_NODE(&cache->rb_node);
2374 cache->jiffies = set->jiffies;
2375 cache->cred = get_rpccred(set->cred);
2376 cache->mask = set->mask;
2377
2378 /* The above field assignments must be visible
2379 * before this item appears on the lru. We cannot easily
2380 * use rcu_assign_pointer, so just force the memory barrier.
2381 */
2382 smp_wmb();
2383 nfs_access_add_rbtree(inode, cache);
2384
2385 /* Update accounting */
2386 smp_mb__before_atomic();
2387 atomic_long_inc(&nfs_access_nr_entries);
2388 smp_mb__after_atomic();
2389
2390 /* Add inode to global LRU list */
2391 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2392 spin_lock(&nfs_access_lru_lock);
2393 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2394 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2395 &nfs_access_lru_list);
2396 spin_unlock(&nfs_access_lru_lock);
2397 }
2398 nfs_access_cache_enforce_limit();
2399 }
2400 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2401
2402 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2403 {
2404 entry->mask = 0;
2405 if (access_result & NFS4_ACCESS_READ)
2406 entry->mask |= MAY_READ;
2407 if (access_result &
2408 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2409 entry->mask |= MAY_WRITE;
2410 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2411 entry->mask |= MAY_EXEC;
2412 }
2413 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2414
2415 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2416 {
2417 struct nfs_access_entry cache;
2418 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2419 int status;
2420
2421 trace_nfs_access_enter(inode);
2422
2423 status = nfs_access_get_cached_rcu(inode, cred, &cache);
2424 if (status != 0)
2425 status = nfs_access_get_cached(inode, cred, &cache, may_block);
2426 if (status == 0)
2427 goto out_cached;
2428
2429 status = -ECHILD;
2430 if (!may_block)
2431 goto out;
2432
2433 /* Be clever: ask server to check for all possible rights */
2434 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2435 cache.cred = cred;
2436 cache.jiffies = jiffies;
2437 status = NFS_PROTO(inode)->access(inode, &cache);
2438 if (status != 0) {
2439 if (status == -ESTALE) {
2440 nfs_zap_caches(inode);
2441 if (!S_ISDIR(inode->i_mode))
2442 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2443 }
2444 goto out;
2445 }
2446 nfs_access_add_cache(inode, &cache);
2447 out_cached:
2448 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2449 status = -EACCES;
2450 out:
2451 trace_nfs_access_exit(inode, status);
2452 return status;
2453 }
2454
2455 static int nfs_open_permission_mask(int openflags)
2456 {
2457 int mask = 0;
2458
2459 if (openflags & __FMODE_EXEC) {
2460 /* ONLY check exec rights */
2461 mask = MAY_EXEC;
2462 } else {
2463 if ((openflags & O_ACCMODE) != O_WRONLY)
2464 mask |= MAY_READ;
2465 if ((openflags & O_ACCMODE) != O_RDONLY)
2466 mask |= MAY_WRITE;
2467 }
2468
2469 return mask;
2470 }
2471
2472 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2473 {
2474 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2475 }
2476 EXPORT_SYMBOL_GPL(nfs_may_open);
2477
2478 static int nfs_execute_ok(struct inode *inode, int mask)
2479 {
2480 struct nfs_server *server = NFS_SERVER(inode);
2481 int ret;
2482
2483 if (mask & MAY_NOT_BLOCK)
2484 ret = nfs_revalidate_inode_rcu(server, inode);
2485 else
2486 ret = nfs_revalidate_inode(server, inode);
2487 if (ret == 0 && !execute_ok(inode))
2488 ret = -EACCES;
2489 return ret;
2490 }
2491
2492 int nfs_permission(struct inode *inode, int mask)
2493 {
2494 struct rpc_cred *cred;
2495 int res = 0;
2496
2497 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2498
2499 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2500 goto out;
2501 /* Is this sys_access() ? */
2502 if (mask & (MAY_ACCESS | MAY_CHDIR))
2503 goto force_lookup;
2504
2505 switch (inode->i_mode & S_IFMT) {
2506 case S_IFLNK:
2507 goto out;
2508 case S_IFREG:
2509 if ((mask & MAY_OPEN) &&
2510 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2511 return 0;
2512 break;
2513 case S_IFDIR:
2514 /*
2515 * Optimize away all write operations, since the server
2516 * will check permissions when we perform the op.
2517 */
2518 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2519 goto out;
2520 }
2521
2522 force_lookup:
2523 if (!NFS_PROTO(inode)->access)
2524 goto out_notsup;
2525
2526 /* Always try fast lookups first */
2527 rcu_read_lock();
2528 cred = rpc_lookup_cred_nonblock();
2529 if (!IS_ERR(cred))
2530 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2531 else
2532 res = PTR_ERR(cred);
2533 rcu_read_unlock();
2534 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2535 /* Fast lookup failed, try the slow way */
2536 cred = rpc_lookup_cred();
2537 if (!IS_ERR(cred)) {
2538 res = nfs_do_access(inode, cred, mask);
2539 put_rpccred(cred);
2540 } else
2541 res = PTR_ERR(cred);
2542 }
2543 out:
2544 if (!res && (mask & MAY_EXEC))
2545 res = nfs_execute_ok(inode, mask);
2546
2547 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2548 inode->i_sb->s_id, inode->i_ino, mask, res);
2549 return res;
2550 out_notsup:
2551 if (mask & MAY_NOT_BLOCK)
2552 return -ECHILD;
2553
2554 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2555 if (res == 0)
2556 res = generic_permission(inode, mask);
2557 goto out;
2558 }
2559 EXPORT_SYMBOL_GPL(nfs_permission);
2560
2561 /*
2562 * Local variables:
2563 * version-control: t
2564 * kept-new-versions: 5
2565 * End:
2566 */