]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/nfs/dir.c
Merge tag 'nfs-for-3.5-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[mirror_ubuntu-artful-kernel.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
36 #include <linux/kmemleak.h>
37 #include <linux/xattr.h>
38
39 #include "delegation.h"
40 #include "iostat.h"
41 #include "internal.h"
42 #include "fscache.h"
43
44 /* #define NFS_DEBUG_VERBOSE 1 */
45
46 static int nfs_opendir(struct inode *, struct file *);
47 static int nfs_closedir(struct inode *, struct file *);
48 static int nfs_readdir(struct file *, void *, filldir_t);
49 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
50 static int nfs_create(struct inode *, struct dentry *, umode_t, struct nameidata *);
51 static int nfs_mkdir(struct inode *, struct dentry *, umode_t);
52 static int nfs_rmdir(struct inode *, struct dentry *);
53 static int nfs_unlink(struct inode *, struct dentry *);
54 static int nfs_symlink(struct inode *, struct dentry *, const char *);
55 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
56 static int nfs_mknod(struct inode *, struct dentry *, umode_t, dev_t);
57 static int nfs_rename(struct inode *, struct dentry *,
58 struct inode *, struct dentry *);
59 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
60 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
61 static void nfs_readdir_clear_array(struct page*);
62
63 const struct file_operations nfs_dir_operations = {
64 .llseek = nfs_llseek_dir,
65 .read = generic_read_dir,
66 .readdir = nfs_readdir,
67 .open = nfs_opendir,
68 .release = nfs_closedir,
69 .fsync = nfs_fsync_dir,
70 };
71
72 const struct inode_operations nfs_dir_inode_operations = {
73 .create = nfs_create,
74 .lookup = nfs_lookup,
75 .link = nfs_link,
76 .unlink = nfs_unlink,
77 .symlink = nfs_symlink,
78 .mkdir = nfs_mkdir,
79 .rmdir = nfs_rmdir,
80 .mknod = nfs_mknod,
81 .rename = nfs_rename,
82 .permission = nfs_permission,
83 .getattr = nfs_getattr,
84 .setattr = nfs_setattr,
85 };
86
87 const struct address_space_operations nfs_dir_aops = {
88 .freepage = nfs_readdir_clear_array,
89 };
90
91 #ifdef CONFIG_NFS_V3
92 const struct inode_operations nfs3_dir_inode_operations = {
93 .create = nfs_create,
94 .lookup = nfs_lookup,
95 .link = nfs_link,
96 .unlink = nfs_unlink,
97 .symlink = nfs_symlink,
98 .mkdir = nfs_mkdir,
99 .rmdir = nfs_rmdir,
100 .mknod = nfs_mknod,
101 .rename = nfs_rename,
102 .permission = nfs_permission,
103 .getattr = nfs_getattr,
104 .setattr = nfs_setattr,
105 .listxattr = nfs3_listxattr,
106 .getxattr = nfs3_getxattr,
107 .setxattr = nfs3_setxattr,
108 .removexattr = nfs3_removexattr,
109 };
110 #endif /* CONFIG_NFS_V3 */
111
112 #ifdef CONFIG_NFS_V4
113
114 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
115 static int nfs_open_create(struct inode *dir, struct dentry *dentry, umode_t mode, struct nameidata *nd);
116 const struct inode_operations nfs4_dir_inode_operations = {
117 .create = nfs_open_create,
118 .lookup = nfs_atomic_lookup,
119 .link = nfs_link,
120 .unlink = nfs_unlink,
121 .symlink = nfs_symlink,
122 .mkdir = nfs_mkdir,
123 .rmdir = nfs_rmdir,
124 .mknod = nfs_mknod,
125 .rename = nfs_rename,
126 .permission = nfs_permission,
127 .getattr = nfs_getattr,
128 .setattr = nfs_setattr,
129 .getxattr = generic_getxattr,
130 .setxattr = generic_setxattr,
131 .listxattr = generic_listxattr,
132 .removexattr = generic_removexattr,
133 };
134
135 #endif /* CONFIG_NFS_V4 */
136
137 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
138 {
139 struct nfs_open_dir_context *ctx;
140 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
141 if (ctx != NULL) {
142 ctx->duped = 0;
143 ctx->attr_gencount = NFS_I(dir)->attr_gencount;
144 ctx->dir_cookie = 0;
145 ctx->dup_cookie = 0;
146 ctx->cred = get_rpccred(cred);
147 return ctx;
148 }
149 return ERR_PTR(-ENOMEM);
150 }
151
152 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx)
153 {
154 put_rpccred(ctx->cred);
155 kfree(ctx);
156 }
157
158 /*
159 * Open file
160 */
161 static int
162 nfs_opendir(struct inode *inode, struct file *filp)
163 {
164 int res = 0;
165 struct nfs_open_dir_context *ctx;
166 struct rpc_cred *cred;
167
168 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
169 filp->f_path.dentry->d_parent->d_name.name,
170 filp->f_path.dentry->d_name.name);
171
172 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
173
174 cred = rpc_lookup_cred();
175 if (IS_ERR(cred))
176 return PTR_ERR(cred);
177 ctx = alloc_nfs_open_dir_context(inode, cred);
178 if (IS_ERR(ctx)) {
179 res = PTR_ERR(ctx);
180 goto out;
181 }
182 filp->private_data = ctx;
183 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
184 /* This is a mountpoint, so d_revalidate will never
185 * have been called, so we need to refresh the
186 * inode (for close-open consistency) ourselves.
187 */
188 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
189 }
190 out:
191 put_rpccred(cred);
192 return res;
193 }
194
195 static int
196 nfs_closedir(struct inode *inode, struct file *filp)
197 {
198 put_nfs_open_dir_context(filp->private_data);
199 return 0;
200 }
201
202 struct nfs_cache_array_entry {
203 u64 cookie;
204 u64 ino;
205 struct qstr string;
206 unsigned char d_type;
207 };
208
209 struct nfs_cache_array {
210 int size;
211 int eof_index;
212 u64 last_cookie;
213 struct nfs_cache_array_entry array[0];
214 };
215
216 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
217 typedef struct {
218 struct file *file;
219 struct page *page;
220 unsigned long page_index;
221 u64 *dir_cookie;
222 u64 last_cookie;
223 loff_t current_index;
224 decode_dirent_t decode;
225
226 unsigned long timestamp;
227 unsigned long gencount;
228 unsigned int cache_entry_index;
229 unsigned int plus:1;
230 unsigned int eof:1;
231 } nfs_readdir_descriptor_t;
232
233 /*
234 * The caller is responsible for calling nfs_readdir_release_array(page)
235 */
236 static
237 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
238 {
239 void *ptr;
240 if (page == NULL)
241 return ERR_PTR(-EIO);
242 ptr = kmap(page);
243 if (ptr == NULL)
244 return ERR_PTR(-ENOMEM);
245 return ptr;
246 }
247
248 static
249 void nfs_readdir_release_array(struct page *page)
250 {
251 kunmap(page);
252 }
253
254 /*
255 * we are freeing strings created by nfs_add_to_readdir_array()
256 */
257 static
258 void nfs_readdir_clear_array(struct page *page)
259 {
260 struct nfs_cache_array *array;
261 int i;
262
263 array = kmap_atomic(page);
264 for (i = 0; i < array->size; i++)
265 kfree(array->array[i].string.name);
266 kunmap_atomic(array);
267 }
268
269 /*
270 * the caller is responsible for freeing qstr.name
271 * when called by nfs_readdir_add_to_array, the strings will be freed in
272 * nfs_clear_readdir_array()
273 */
274 static
275 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
276 {
277 string->len = len;
278 string->name = kmemdup(name, len, GFP_KERNEL);
279 if (string->name == NULL)
280 return -ENOMEM;
281 /*
282 * Avoid a kmemleak false positive. The pointer to the name is stored
283 * in a page cache page which kmemleak does not scan.
284 */
285 kmemleak_not_leak(string->name);
286 string->hash = full_name_hash(name, len);
287 return 0;
288 }
289
290 static
291 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
292 {
293 struct nfs_cache_array *array = nfs_readdir_get_array(page);
294 struct nfs_cache_array_entry *cache_entry;
295 int ret;
296
297 if (IS_ERR(array))
298 return PTR_ERR(array);
299
300 cache_entry = &array->array[array->size];
301
302 /* Check that this entry lies within the page bounds */
303 ret = -ENOSPC;
304 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
305 goto out;
306
307 cache_entry->cookie = entry->prev_cookie;
308 cache_entry->ino = entry->ino;
309 cache_entry->d_type = entry->d_type;
310 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
311 if (ret)
312 goto out;
313 array->last_cookie = entry->cookie;
314 array->size++;
315 if (entry->eof != 0)
316 array->eof_index = array->size;
317 out:
318 nfs_readdir_release_array(page);
319 return ret;
320 }
321
322 static
323 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
324 {
325 loff_t diff = desc->file->f_pos - desc->current_index;
326 unsigned int index;
327
328 if (diff < 0)
329 goto out_eof;
330 if (diff >= array->size) {
331 if (array->eof_index >= 0)
332 goto out_eof;
333 return -EAGAIN;
334 }
335
336 index = (unsigned int)diff;
337 *desc->dir_cookie = array->array[index].cookie;
338 desc->cache_entry_index = index;
339 return 0;
340 out_eof:
341 desc->eof = 1;
342 return -EBADCOOKIE;
343 }
344
345 static
346 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
347 {
348 int i;
349 loff_t new_pos;
350 int status = -EAGAIN;
351
352 for (i = 0; i < array->size; i++) {
353 if (array->array[i].cookie == *desc->dir_cookie) {
354 struct nfs_inode *nfsi = NFS_I(desc->file->f_path.dentry->d_inode);
355 struct nfs_open_dir_context *ctx = desc->file->private_data;
356
357 new_pos = desc->current_index + i;
358 if (ctx->attr_gencount != nfsi->attr_gencount
359 || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) {
360 ctx->duped = 0;
361 ctx->attr_gencount = nfsi->attr_gencount;
362 } else if (new_pos < desc->file->f_pos) {
363 if (ctx->duped > 0
364 && ctx->dup_cookie == *desc->dir_cookie) {
365 if (printk_ratelimit()) {
366 pr_notice("NFS: directory %s/%s contains a readdir loop."
367 "Please contact your server vendor. "
368 "The file: %s has duplicate cookie %llu\n",
369 desc->file->f_dentry->d_parent->d_name.name,
370 desc->file->f_dentry->d_name.name,
371 array->array[i].string.name,
372 *desc->dir_cookie);
373 }
374 status = -ELOOP;
375 goto out;
376 }
377 ctx->dup_cookie = *desc->dir_cookie;
378 ctx->duped = -1;
379 }
380 desc->file->f_pos = new_pos;
381 desc->cache_entry_index = i;
382 return 0;
383 }
384 }
385 if (array->eof_index >= 0) {
386 status = -EBADCOOKIE;
387 if (*desc->dir_cookie == array->last_cookie)
388 desc->eof = 1;
389 }
390 out:
391 return status;
392 }
393
394 static
395 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
396 {
397 struct nfs_cache_array *array;
398 int status;
399
400 array = nfs_readdir_get_array(desc->page);
401 if (IS_ERR(array)) {
402 status = PTR_ERR(array);
403 goto out;
404 }
405
406 if (*desc->dir_cookie == 0)
407 status = nfs_readdir_search_for_pos(array, desc);
408 else
409 status = nfs_readdir_search_for_cookie(array, desc);
410
411 if (status == -EAGAIN) {
412 desc->last_cookie = array->last_cookie;
413 desc->current_index += array->size;
414 desc->page_index++;
415 }
416 nfs_readdir_release_array(desc->page);
417 out:
418 return status;
419 }
420
421 /* Fill a page with xdr information before transferring to the cache page */
422 static
423 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
424 struct nfs_entry *entry, struct file *file, struct inode *inode)
425 {
426 struct nfs_open_dir_context *ctx = file->private_data;
427 struct rpc_cred *cred = ctx->cred;
428 unsigned long timestamp, gencount;
429 int error;
430
431 again:
432 timestamp = jiffies;
433 gencount = nfs_inc_attr_generation_counter();
434 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
435 NFS_SERVER(inode)->dtsize, desc->plus);
436 if (error < 0) {
437 /* We requested READDIRPLUS, but the server doesn't grok it */
438 if (error == -ENOTSUPP && desc->plus) {
439 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
440 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
441 desc->plus = 0;
442 goto again;
443 }
444 goto error;
445 }
446 desc->timestamp = timestamp;
447 desc->gencount = gencount;
448 error:
449 return error;
450 }
451
452 static int xdr_decode(nfs_readdir_descriptor_t *desc,
453 struct nfs_entry *entry, struct xdr_stream *xdr)
454 {
455 int error;
456
457 error = desc->decode(xdr, entry, desc->plus);
458 if (error)
459 return error;
460 entry->fattr->time_start = desc->timestamp;
461 entry->fattr->gencount = desc->gencount;
462 return 0;
463 }
464
465 static
466 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
467 {
468 if (dentry->d_inode == NULL)
469 goto different;
470 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
471 goto different;
472 return 1;
473 different:
474 return 0;
475 }
476
477 static
478 bool nfs_use_readdirplus(struct inode *dir, struct file *filp)
479 {
480 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
481 return false;
482 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
483 return true;
484 if (filp->f_pos == 0)
485 return true;
486 return false;
487 }
488
489 /*
490 * This function is called by the lookup code to request the use of
491 * readdirplus to accelerate any future lookups in the same
492 * directory.
493 */
494 static
495 void nfs_advise_use_readdirplus(struct inode *dir)
496 {
497 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
498 }
499
500 static
501 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
502 {
503 struct qstr filename = QSTR_INIT(entry->name, entry->len);
504 struct dentry *dentry;
505 struct dentry *alias;
506 struct inode *dir = parent->d_inode;
507 struct inode *inode;
508
509 if (filename.name[0] == '.') {
510 if (filename.len == 1)
511 return;
512 if (filename.len == 2 && filename.name[1] == '.')
513 return;
514 }
515 filename.hash = full_name_hash(filename.name, filename.len);
516
517 dentry = d_lookup(parent, &filename);
518 if (dentry != NULL) {
519 if (nfs_same_file(dentry, entry)) {
520 nfs_refresh_inode(dentry->d_inode, entry->fattr);
521 goto out;
522 } else {
523 d_drop(dentry);
524 dput(dentry);
525 }
526 }
527
528 dentry = d_alloc(parent, &filename);
529 if (dentry == NULL)
530 return;
531
532 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
533 if (IS_ERR(inode))
534 goto out;
535
536 alias = d_materialise_unique(dentry, inode);
537 if (IS_ERR(alias))
538 goto out;
539 else if (alias) {
540 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
541 dput(alias);
542 } else
543 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
544
545 out:
546 dput(dentry);
547 }
548
549 /* Perform conversion from xdr to cache array */
550 static
551 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
552 struct page **xdr_pages, struct page *page, unsigned int buflen)
553 {
554 struct xdr_stream stream;
555 struct xdr_buf buf;
556 struct page *scratch;
557 struct nfs_cache_array *array;
558 unsigned int count = 0;
559 int status;
560
561 scratch = alloc_page(GFP_KERNEL);
562 if (scratch == NULL)
563 return -ENOMEM;
564
565 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
566 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
567
568 do {
569 status = xdr_decode(desc, entry, &stream);
570 if (status != 0) {
571 if (status == -EAGAIN)
572 status = 0;
573 break;
574 }
575
576 count++;
577
578 if (desc->plus != 0)
579 nfs_prime_dcache(desc->file->f_path.dentry, entry);
580
581 status = nfs_readdir_add_to_array(entry, page);
582 if (status != 0)
583 break;
584 } while (!entry->eof);
585
586 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
587 array = nfs_readdir_get_array(page);
588 if (!IS_ERR(array)) {
589 array->eof_index = array->size;
590 status = 0;
591 nfs_readdir_release_array(page);
592 } else
593 status = PTR_ERR(array);
594 }
595
596 put_page(scratch);
597 return status;
598 }
599
600 static
601 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
602 {
603 unsigned int i;
604 for (i = 0; i < npages; i++)
605 put_page(pages[i]);
606 }
607
608 static
609 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
610 unsigned int npages)
611 {
612 nfs_readdir_free_pagearray(pages, npages);
613 }
614
615 /*
616 * nfs_readdir_large_page will allocate pages that must be freed with a call
617 * to nfs_readdir_free_large_page
618 */
619 static
620 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
621 {
622 unsigned int i;
623
624 for (i = 0; i < npages; i++) {
625 struct page *page = alloc_page(GFP_KERNEL);
626 if (page == NULL)
627 goto out_freepages;
628 pages[i] = page;
629 }
630 return 0;
631
632 out_freepages:
633 nfs_readdir_free_pagearray(pages, i);
634 return -ENOMEM;
635 }
636
637 static
638 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
639 {
640 struct page *pages[NFS_MAX_READDIR_PAGES];
641 void *pages_ptr = NULL;
642 struct nfs_entry entry;
643 struct file *file = desc->file;
644 struct nfs_cache_array *array;
645 int status = -ENOMEM;
646 unsigned int array_size = ARRAY_SIZE(pages);
647
648 entry.prev_cookie = 0;
649 entry.cookie = desc->last_cookie;
650 entry.eof = 0;
651 entry.fh = nfs_alloc_fhandle();
652 entry.fattr = nfs_alloc_fattr();
653 entry.server = NFS_SERVER(inode);
654 if (entry.fh == NULL || entry.fattr == NULL)
655 goto out;
656
657 array = nfs_readdir_get_array(page);
658 if (IS_ERR(array)) {
659 status = PTR_ERR(array);
660 goto out;
661 }
662 memset(array, 0, sizeof(struct nfs_cache_array));
663 array->eof_index = -1;
664
665 status = nfs_readdir_large_page(pages, array_size);
666 if (status < 0)
667 goto out_release_array;
668 do {
669 unsigned int pglen;
670 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
671
672 if (status < 0)
673 break;
674 pglen = status;
675 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
676 if (status < 0) {
677 if (status == -ENOSPC)
678 status = 0;
679 break;
680 }
681 } while (array->eof_index < 0);
682
683 nfs_readdir_free_large_page(pages_ptr, pages, array_size);
684 out_release_array:
685 nfs_readdir_release_array(page);
686 out:
687 nfs_free_fattr(entry.fattr);
688 nfs_free_fhandle(entry.fh);
689 return status;
690 }
691
692 /*
693 * Now we cache directories properly, by converting xdr information
694 * to an array that can be used for lookups later. This results in
695 * fewer cache pages, since we can store more information on each page.
696 * We only need to convert from xdr once so future lookups are much simpler
697 */
698 static
699 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
700 {
701 struct inode *inode = desc->file->f_path.dentry->d_inode;
702 int ret;
703
704 ret = nfs_readdir_xdr_to_array(desc, page, inode);
705 if (ret < 0)
706 goto error;
707 SetPageUptodate(page);
708
709 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
710 /* Should never happen */
711 nfs_zap_mapping(inode, inode->i_mapping);
712 }
713 unlock_page(page);
714 return 0;
715 error:
716 unlock_page(page);
717 return ret;
718 }
719
720 static
721 void cache_page_release(nfs_readdir_descriptor_t *desc)
722 {
723 if (!desc->page->mapping)
724 nfs_readdir_clear_array(desc->page);
725 page_cache_release(desc->page);
726 desc->page = NULL;
727 }
728
729 static
730 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
731 {
732 return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
733 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
734 }
735
736 /*
737 * Returns 0 if desc->dir_cookie was found on page desc->page_index
738 */
739 static
740 int find_cache_page(nfs_readdir_descriptor_t *desc)
741 {
742 int res;
743
744 desc->page = get_cache_page(desc);
745 if (IS_ERR(desc->page))
746 return PTR_ERR(desc->page);
747
748 res = nfs_readdir_search_array(desc);
749 if (res != 0)
750 cache_page_release(desc);
751 return res;
752 }
753
754 /* Search for desc->dir_cookie from the beginning of the page cache */
755 static inline
756 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
757 {
758 int res;
759
760 if (desc->page_index == 0) {
761 desc->current_index = 0;
762 desc->last_cookie = 0;
763 }
764 do {
765 res = find_cache_page(desc);
766 } while (res == -EAGAIN);
767 return res;
768 }
769
770 /*
771 * Once we've found the start of the dirent within a page: fill 'er up...
772 */
773 static
774 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
775 filldir_t filldir)
776 {
777 struct file *file = desc->file;
778 int i = 0;
779 int res = 0;
780 struct nfs_cache_array *array = NULL;
781 struct nfs_open_dir_context *ctx = file->private_data;
782
783 array = nfs_readdir_get_array(desc->page);
784 if (IS_ERR(array)) {
785 res = PTR_ERR(array);
786 goto out;
787 }
788
789 for (i = desc->cache_entry_index; i < array->size; i++) {
790 struct nfs_cache_array_entry *ent;
791
792 ent = &array->array[i];
793 if (filldir(dirent, ent->string.name, ent->string.len,
794 file->f_pos, nfs_compat_user_ino64(ent->ino),
795 ent->d_type) < 0) {
796 desc->eof = 1;
797 break;
798 }
799 file->f_pos++;
800 if (i < (array->size-1))
801 *desc->dir_cookie = array->array[i+1].cookie;
802 else
803 *desc->dir_cookie = array->last_cookie;
804 if (ctx->duped != 0)
805 ctx->duped = 1;
806 }
807 if (array->eof_index >= 0)
808 desc->eof = 1;
809
810 nfs_readdir_release_array(desc->page);
811 out:
812 cache_page_release(desc);
813 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
814 (unsigned long long)*desc->dir_cookie, res);
815 return res;
816 }
817
818 /*
819 * If we cannot find a cookie in our cache, we suspect that this is
820 * because it points to a deleted file, so we ask the server to return
821 * whatever it thinks is the next entry. We then feed this to filldir.
822 * If all goes well, we should then be able to find our way round the
823 * cache on the next call to readdir_search_pagecache();
824 *
825 * NOTE: we cannot add the anonymous page to the pagecache because
826 * the data it contains might not be page aligned. Besides,
827 * we should already have a complete representation of the
828 * directory in the page cache by the time we get here.
829 */
830 static inline
831 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
832 filldir_t filldir)
833 {
834 struct page *page = NULL;
835 int status;
836 struct inode *inode = desc->file->f_path.dentry->d_inode;
837 struct nfs_open_dir_context *ctx = desc->file->private_data;
838
839 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
840 (unsigned long long)*desc->dir_cookie);
841
842 page = alloc_page(GFP_HIGHUSER);
843 if (!page) {
844 status = -ENOMEM;
845 goto out;
846 }
847
848 desc->page_index = 0;
849 desc->last_cookie = *desc->dir_cookie;
850 desc->page = page;
851 ctx->duped = 0;
852
853 status = nfs_readdir_xdr_to_array(desc, page, inode);
854 if (status < 0)
855 goto out_release;
856
857 status = nfs_do_filldir(desc, dirent, filldir);
858
859 out:
860 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
861 __func__, status);
862 return status;
863 out_release:
864 cache_page_release(desc);
865 goto out;
866 }
867
868 /* The file offset position represents the dirent entry number. A
869 last cookie cache takes care of the common case of reading the
870 whole directory.
871 */
872 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
873 {
874 struct dentry *dentry = filp->f_path.dentry;
875 struct inode *inode = dentry->d_inode;
876 nfs_readdir_descriptor_t my_desc,
877 *desc = &my_desc;
878 struct nfs_open_dir_context *dir_ctx = filp->private_data;
879 int res;
880
881 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
882 dentry->d_parent->d_name.name, dentry->d_name.name,
883 (long long)filp->f_pos);
884 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
885
886 /*
887 * filp->f_pos points to the dirent entry number.
888 * *desc->dir_cookie has the cookie for the next entry. We have
889 * to either find the entry with the appropriate number or
890 * revalidate the cookie.
891 */
892 memset(desc, 0, sizeof(*desc));
893
894 desc->file = filp;
895 desc->dir_cookie = &dir_ctx->dir_cookie;
896 desc->decode = NFS_PROTO(inode)->decode_dirent;
897 desc->plus = nfs_use_readdirplus(inode, filp) ? 1 : 0;
898
899 nfs_block_sillyrename(dentry);
900 res = nfs_revalidate_mapping(inode, filp->f_mapping);
901 if (res < 0)
902 goto out;
903
904 do {
905 res = readdir_search_pagecache(desc);
906
907 if (res == -EBADCOOKIE) {
908 res = 0;
909 /* This means either end of directory */
910 if (*desc->dir_cookie && desc->eof == 0) {
911 /* Or that the server has 'lost' a cookie */
912 res = uncached_readdir(desc, dirent, filldir);
913 if (res == 0)
914 continue;
915 }
916 break;
917 }
918 if (res == -ETOOSMALL && desc->plus) {
919 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
920 nfs_zap_caches(inode);
921 desc->page_index = 0;
922 desc->plus = 0;
923 desc->eof = 0;
924 continue;
925 }
926 if (res < 0)
927 break;
928
929 res = nfs_do_filldir(desc, dirent, filldir);
930 if (res < 0)
931 break;
932 } while (!desc->eof);
933 out:
934 nfs_unblock_sillyrename(dentry);
935 if (res > 0)
936 res = 0;
937 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
938 dentry->d_parent->d_name.name, dentry->d_name.name,
939 res);
940 return res;
941 }
942
943 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
944 {
945 struct dentry *dentry = filp->f_path.dentry;
946 struct inode *inode = dentry->d_inode;
947 struct nfs_open_dir_context *dir_ctx = filp->private_data;
948
949 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
950 dentry->d_parent->d_name.name,
951 dentry->d_name.name,
952 offset, origin);
953
954 mutex_lock(&inode->i_mutex);
955 switch (origin) {
956 case 1:
957 offset += filp->f_pos;
958 case 0:
959 if (offset >= 0)
960 break;
961 default:
962 offset = -EINVAL;
963 goto out;
964 }
965 if (offset != filp->f_pos) {
966 filp->f_pos = offset;
967 dir_ctx->dir_cookie = 0;
968 dir_ctx->duped = 0;
969 }
970 out:
971 mutex_unlock(&inode->i_mutex);
972 return offset;
973 }
974
975 /*
976 * All directory operations under NFS are synchronous, so fsync()
977 * is a dummy operation.
978 */
979 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
980 int datasync)
981 {
982 struct dentry *dentry = filp->f_path.dentry;
983 struct inode *inode = dentry->d_inode;
984
985 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
986 dentry->d_parent->d_name.name, dentry->d_name.name,
987 datasync);
988
989 mutex_lock(&inode->i_mutex);
990 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
991 mutex_unlock(&inode->i_mutex);
992 return 0;
993 }
994
995 /**
996 * nfs_force_lookup_revalidate - Mark the directory as having changed
997 * @dir - pointer to directory inode
998 *
999 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1000 * full lookup on all child dentries of 'dir' whenever a change occurs
1001 * on the server that might have invalidated our dcache.
1002 *
1003 * The caller should be holding dir->i_lock
1004 */
1005 void nfs_force_lookup_revalidate(struct inode *dir)
1006 {
1007 NFS_I(dir)->cache_change_attribute++;
1008 }
1009
1010 /*
1011 * A check for whether or not the parent directory has changed.
1012 * In the case it has, we assume that the dentries are untrustworthy
1013 * and may need to be looked up again.
1014 */
1015 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
1016 {
1017 if (IS_ROOT(dentry))
1018 return 1;
1019 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1020 return 0;
1021 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1022 return 0;
1023 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1024 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1025 return 0;
1026 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1027 return 0;
1028 return 1;
1029 }
1030
1031 /*
1032 * Return the intent data that applies to this particular path component
1033 *
1034 * Note that the current set of intents only apply to the very last
1035 * component of the path and none of them is set before that last
1036 * component.
1037 */
1038 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd,
1039 unsigned int mask)
1040 {
1041 return nd->flags & mask;
1042 }
1043
1044 /*
1045 * Use intent information to check whether or not we're going to do
1046 * an O_EXCL create using this path component.
1047 */
1048 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
1049 {
1050 if (NFS_PROTO(dir)->version == 2)
1051 return 0;
1052 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
1053 }
1054
1055 /*
1056 * Inode and filehandle revalidation for lookups.
1057 *
1058 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1059 * or if the intent information indicates that we're about to open this
1060 * particular file and the "nocto" mount flag is not set.
1061 *
1062 */
1063 static inline
1064 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
1065 {
1066 struct nfs_server *server = NFS_SERVER(inode);
1067
1068 if (IS_AUTOMOUNT(inode))
1069 return 0;
1070 if (nd != NULL) {
1071 /* VFS wants an on-the-wire revalidation */
1072 if (nd->flags & LOOKUP_REVAL)
1073 goto out_force;
1074 /* This is an open(2) */
1075 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
1076 !(server->flags & NFS_MOUNT_NOCTO) &&
1077 (S_ISREG(inode->i_mode) ||
1078 S_ISDIR(inode->i_mode)))
1079 goto out_force;
1080 return 0;
1081 }
1082 return nfs_revalidate_inode(server, inode);
1083 out_force:
1084 return __nfs_revalidate_inode(server, inode);
1085 }
1086
1087 /*
1088 * We judge how long we want to trust negative
1089 * dentries by looking at the parent inode mtime.
1090 *
1091 * If parent mtime has changed, we revalidate, else we wait for a
1092 * period corresponding to the parent's attribute cache timeout value.
1093 */
1094 static inline
1095 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1096 struct nameidata *nd)
1097 {
1098 /* Don't revalidate a negative dentry if we're creating a new file */
1099 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
1100 return 0;
1101 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1102 return 1;
1103 return !nfs_check_verifier(dir, dentry);
1104 }
1105
1106 /*
1107 * This is called every time the dcache has a lookup hit,
1108 * and we should check whether we can really trust that
1109 * lookup.
1110 *
1111 * NOTE! The hit can be a negative hit too, don't assume
1112 * we have an inode!
1113 *
1114 * If the parent directory is seen to have changed, we throw out the
1115 * cached dentry and do a new lookup.
1116 */
1117 static int nfs_lookup_revalidate(struct dentry *dentry, struct nameidata *nd)
1118 {
1119 struct inode *dir;
1120 struct inode *inode;
1121 struct dentry *parent;
1122 struct nfs_fh *fhandle = NULL;
1123 struct nfs_fattr *fattr = NULL;
1124 int error;
1125
1126 if (nd->flags & LOOKUP_RCU)
1127 return -ECHILD;
1128
1129 parent = dget_parent(dentry);
1130 dir = parent->d_inode;
1131 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1132 inode = dentry->d_inode;
1133
1134 if (!inode) {
1135 if (nfs_neg_need_reval(dir, dentry, nd))
1136 goto out_bad;
1137 goto out_valid_noent;
1138 }
1139
1140 if (is_bad_inode(inode)) {
1141 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1142 __func__, dentry->d_parent->d_name.name,
1143 dentry->d_name.name);
1144 goto out_bad;
1145 }
1146
1147 if (nfs_have_delegation(inode, FMODE_READ))
1148 goto out_set_verifier;
1149
1150 /* Force a full look up iff the parent directory has changed */
1151 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
1152 if (nfs_lookup_verify_inode(inode, nd))
1153 goto out_zap_parent;
1154 goto out_valid;
1155 }
1156
1157 if (NFS_STALE(inode))
1158 goto out_bad;
1159
1160 error = -ENOMEM;
1161 fhandle = nfs_alloc_fhandle();
1162 fattr = nfs_alloc_fattr();
1163 if (fhandle == NULL || fattr == NULL)
1164 goto out_error;
1165
1166 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1167 if (error)
1168 goto out_bad;
1169 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1170 goto out_bad;
1171 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1172 goto out_bad;
1173
1174 nfs_free_fattr(fattr);
1175 nfs_free_fhandle(fhandle);
1176 out_set_verifier:
1177 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1178 out_valid:
1179 /* Success: notify readdir to use READDIRPLUS */
1180 nfs_advise_use_readdirplus(dir);
1181 out_valid_noent:
1182 dput(parent);
1183 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1184 __func__, dentry->d_parent->d_name.name,
1185 dentry->d_name.name);
1186 return 1;
1187 out_zap_parent:
1188 nfs_zap_caches(dir);
1189 out_bad:
1190 nfs_mark_for_revalidate(dir);
1191 if (inode && S_ISDIR(inode->i_mode)) {
1192 /* Purge readdir caches. */
1193 nfs_zap_caches(inode);
1194 /* If we have submounts, don't unhash ! */
1195 if (have_submounts(dentry))
1196 goto out_valid;
1197 if (dentry->d_flags & DCACHE_DISCONNECTED)
1198 goto out_valid;
1199 shrink_dcache_parent(dentry);
1200 }
1201 d_drop(dentry);
1202 nfs_free_fattr(fattr);
1203 nfs_free_fhandle(fhandle);
1204 dput(parent);
1205 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1206 __func__, dentry->d_parent->d_name.name,
1207 dentry->d_name.name);
1208 return 0;
1209 out_error:
1210 nfs_free_fattr(fattr);
1211 nfs_free_fhandle(fhandle);
1212 dput(parent);
1213 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1214 __func__, dentry->d_parent->d_name.name,
1215 dentry->d_name.name, error);
1216 return error;
1217 }
1218
1219 /*
1220 * This is called from dput() when d_count is going to 0.
1221 */
1222 static int nfs_dentry_delete(const struct dentry *dentry)
1223 {
1224 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1225 dentry->d_parent->d_name.name, dentry->d_name.name,
1226 dentry->d_flags);
1227
1228 /* Unhash any dentry with a stale inode */
1229 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1230 return 1;
1231
1232 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1233 /* Unhash it, so that ->d_iput() would be called */
1234 return 1;
1235 }
1236 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1237 /* Unhash it, so that ancestors of killed async unlink
1238 * files will be cleaned up during umount */
1239 return 1;
1240 }
1241 return 0;
1242
1243 }
1244
1245 static void nfs_drop_nlink(struct inode *inode)
1246 {
1247 spin_lock(&inode->i_lock);
1248 if (inode->i_nlink > 0)
1249 drop_nlink(inode);
1250 spin_unlock(&inode->i_lock);
1251 }
1252
1253 /*
1254 * Called when the dentry loses inode.
1255 * We use it to clean up silly-renamed files.
1256 */
1257 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1258 {
1259 if (S_ISDIR(inode->i_mode))
1260 /* drop any readdir cache as it could easily be old */
1261 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1262
1263 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1264 drop_nlink(inode);
1265 nfs_complete_unlink(dentry, inode);
1266 }
1267 iput(inode);
1268 }
1269
1270 static void nfs_d_release(struct dentry *dentry)
1271 {
1272 /* free cached devname value, if it survived that far */
1273 if (unlikely(dentry->d_fsdata)) {
1274 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1275 WARN_ON(1);
1276 else
1277 kfree(dentry->d_fsdata);
1278 }
1279 }
1280
1281 const struct dentry_operations nfs_dentry_operations = {
1282 .d_revalidate = nfs_lookup_revalidate,
1283 .d_delete = nfs_dentry_delete,
1284 .d_iput = nfs_dentry_iput,
1285 .d_automount = nfs_d_automount,
1286 .d_release = nfs_d_release,
1287 };
1288
1289 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
1290 {
1291 struct dentry *res;
1292 struct dentry *parent;
1293 struct inode *inode = NULL;
1294 struct nfs_fh *fhandle = NULL;
1295 struct nfs_fattr *fattr = NULL;
1296 int error;
1297
1298 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1299 dentry->d_parent->d_name.name, dentry->d_name.name);
1300 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1301
1302 res = ERR_PTR(-ENAMETOOLONG);
1303 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1304 goto out;
1305
1306 /*
1307 * If we're doing an exclusive create, optimize away the lookup
1308 * but don't hash the dentry.
1309 */
1310 if (nfs_is_exclusive_create(dir, nd)) {
1311 d_instantiate(dentry, NULL);
1312 res = NULL;
1313 goto out;
1314 }
1315
1316 res = ERR_PTR(-ENOMEM);
1317 fhandle = nfs_alloc_fhandle();
1318 fattr = nfs_alloc_fattr();
1319 if (fhandle == NULL || fattr == NULL)
1320 goto out;
1321
1322 parent = dentry->d_parent;
1323 /* Protect against concurrent sillydeletes */
1324 nfs_block_sillyrename(parent);
1325 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1326 if (error == -ENOENT)
1327 goto no_entry;
1328 if (error < 0) {
1329 res = ERR_PTR(error);
1330 goto out_unblock_sillyrename;
1331 }
1332 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1333 res = ERR_CAST(inode);
1334 if (IS_ERR(res))
1335 goto out_unblock_sillyrename;
1336
1337 /* Success: notify readdir to use READDIRPLUS */
1338 nfs_advise_use_readdirplus(dir);
1339
1340 no_entry:
1341 res = d_materialise_unique(dentry, inode);
1342 if (res != NULL) {
1343 if (IS_ERR(res))
1344 goto out_unblock_sillyrename;
1345 dentry = res;
1346 }
1347 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1348 out_unblock_sillyrename:
1349 nfs_unblock_sillyrename(parent);
1350 out:
1351 nfs_free_fattr(fattr);
1352 nfs_free_fhandle(fhandle);
1353 return res;
1354 }
1355
1356 #ifdef CONFIG_NFS_V4
1357 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
1358
1359 const struct dentry_operations nfs4_dentry_operations = {
1360 .d_revalidate = nfs_open_revalidate,
1361 .d_delete = nfs_dentry_delete,
1362 .d_iput = nfs_dentry_iput,
1363 .d_automount = nfs_d_automount,
1364 .d_release = nfs_d_release,
1365 };
1366
1367 /*
1368 * Use intent information to determine whether we need to substitute
1369 * the NFSv4-style stateful OPEN for the LOOKUP call
1370 */
1371 static int is_atomic_open(struct nameidata *nd)
1372 {
1373 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1374 return 0;
1375 /* NFS does not (yet) have a stateful open for directories */
1376 if (nd->flags & LOOKUP_DIRECTORY)
1377 return 0;
1378 /* Are we trying to write to a read only partition? */
1379 if (__mnt_is_readonly(nd->path.mnt) &&
1380 (nd->intent.open.flags & (O_CREAT|O_TRUNC|O_ACCMODE)))
1381 return 0;
1382 return 1;
1383 }
1384
1385 static fmode_t flags_to_mode(int flags)
1386 {
1387 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1388 if ((flags & O_ACCMODE) != O_WRONLY)
1389 res |= FMODE_READ;
1390 if ((flags & O_ACCMODE) != O_RDONLY)
1391 res |= FMODE_WRITE;
1392 return res;
1393 }
1394
1395 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1396 {
1397 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1398 }
1399
1400 static int do_open(struct inode *inode, struct file *filp)
1401 {
1402 nfs_fscache_set_inode_cookie(inode, filp);
1403 return 0;
1404 }
1405
1406 static int nfs_intent_set_file(struct nameidata *nd, struct nfs_open_context *ctx)
1407 {
1408 struct file *filp;
1409 int ret = 0;
1410
1411 /* If the open_intent is for execute, we have an extra check to make */
1412 if (ctx->mode & FMODE_EXEC) {
1413 ret = nfs_may_open(ctx->dentry->d_inode,
1414 ctx->cred,
1415 nd->intent.open.flags);
1416 if (ret < 0)
1417 goto out;
1418 }
1419 filp = lookup_instantiate_filp(nd, ctx->dentry, do_open);
1420 if (IS_ERR(filp))
1421 ret = PTR_ERR(filp);
1422 else
1423 nfs_file_set_open_context(filp, ctx);
1424 out:
1425 put_nfs_open_context(ctx);
1426 return ret;
1427 }
1428
1429 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1430 {
1431 struct nfs_open_context *ctx;
1432 struct iattr attr;
1433 struct dentry *res = NULL;
1434 struct inode *inode;
1435 int open_flags;
1436 int err;
1437
1438 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1439 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1440
1441 /* Check that we are indeed trying to open this file */
1442 if (!is_atomic_open(nd))
1443 goto no_open;
1444
1445 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1446 res = ERR_PTR(-ENAMETOOLONG);
1447 goto out;
1448 }
1449
1450 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1451 * the dentry. */
1452 if (nd->flags & LOOKUP_EXCL) {
1453 d_instantiate(dentry, NULL);
1454 goto out;
1455 }
1456
1457 open_flags = nd->intent.open.flags;
1458 attr.ia_valid = ATTR_OPEN;
1459
1460 ctx = create_nfs_open_context(dentry, open_flags);
1461 res = ERR_CAST(ctx);
1462 if (IS_ERR(ctx))
1463 goto out;
1464
1465 if (nd->flags & LOOKUP_CREATE) {
1466 attr.ia_mode = nd->intent.open.create_mode;
1467 attr.ia_valid |= ATTR_MODE;
1468 attr.ia_mode &= ~current_umask();
1469 } else
1470 open_flags &= ~(O_EXCL | O_CREAT);
1471
1472 if (open_flags & O_TRUNC) {
1473 attr.ia_valid |= ATTR_SIZE;
1474 attr.ia_size = 0;
1475 }
1476
1477 /* Open the file on the server */
1478 nfs_block_sillyrename(dentry->d_parent);
1479 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1480 if (IS_ERR(inode)) {
1481 nfs_unblock_sillyrename(dentry->d_parent);
1482 put_nfs_open_context(ctx);
1483 switch (PTR_ERR(inode)) {
1484 /* Make a negative dentry */
1485 case -ENOENT:
1486 d_add(dentry, NULL);
1487 res = NULL;
1488 goto out;
1489 /* This turned out not to be a regular file */
1490 case -EISDIR:
1491 case -ENOTDIR:
1492 goto no_open;
1493 case -ELOOP:
1494 if (!(nd->intent.open.flags & O_NOFOLLOW))
1495 goto no_open;
1496 /* case -EINVAL: */
1497 default:
1498 res = ERR_CAST(inode);
1499 goto out;
1500 }
1501 }
1502 res = d_add_unique(dentry, inode);
1503 nfs_unblock_sillyrename(dentry->d_parent);
1504 if (res != NULL) {
1505 dput(ctx->dentry);
1506 ctx->dentry = dget(res);
1507 dentry = res;
1508 }
1509 err = nfs_intent_set_file(nd, ctx);
1510 if (err < 0) {
1511 if (res != NULL)
1512 dput(res);
1513 return ERR_PTR(err);
1514 }
1515 out:
1516 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1517 return res;
1518 no_open:
1519 return nfs_lookup(dir, dentry, nd);
1520 }
1521
1522 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1523 {
1524 struct dentry *parent = NULL;
1525 struct inode *inode;
1526 struct inode *dir;
1527 struct nfs_open_context *ctx;
1528 struct iattr attr;
1529 int openflags, ret = 0;
1530
1531 if (nd->flags & LOOKUP_RCU)
1532 return -ECHILD;
1533
1534 inode = dentry->d_inode;
1535 if (!is_atomic_open(nd) || d_mountpoint(dentry))
1536 goto no_open;
1537
1538 parent = dget_parent(dentry);
1539 dir = parent->d_inode;
1540
1541 /* We can't create new files in nfs_open_revalidate(), so we
1542 * optimize away revalidation of negative dentries.
1543 */
1544 if (inode == NULL) {
1545 if (!nfs_neg_need_reval(dir, dentry, nd))
1546 ret = 1;
1547 goto out;
1548 }
1549
1550 /* NFS only supports OPEN on regular files */
1551 if (!S_ISREG(inode->i_mode))
1552 goto no_open_dput;
1553 openflags = nd->intent.open.flags;
1554 /* We cannot do exclusive creation on a positive dentry */
1555 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1556 goto no_open_dput;
1557 /* We can't create new files here */
1558 openflags &= ~(O_CREAT|O_EXCL);
1559
1560 ctx = create_nfs_open_context(dentry, openflags);
1561 ret = PTR_ERR(ctx);
1562 if (IS_ERR(ctx))
1563 goto out;
1564
1565 attr.ia_valid = ATTR_OPEN;
1566 if (openflags & O_TRUNC) {
1567 attr.ia_valid |= ATTR_SIZE;
1568 attr.ia_size = 0;
1569 nfs_wb_all(inode);
1570 }
1571
1572 /*
1573 * Note: we're not holding inode->i_mutex and so may be racing with
1574 * operations that change the directory. We therefore save the
1575 * change attribute *before* we do the RPC call.
1576 */
1577 inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, &attr);
1578 if (IS_ERR(inode)) {
1579 ret = PTR_ERR(inode);
1580 switch (ret) {
1581 case -EPERM:
1582 case -EACCES:
1583 case -EDQUOT:
1584 case -ENOSPC:
1585 case -EROFS:
1586 goto out_put_ctx;
1587 default:
1588 goto out_drop;
1589 }
1590 }
1591 iput(inode);
1592 if (inode != dentry->d_inode)
1593 goto out_drop;
1594
1595 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1596 ret = nfs_intent_set_file(nd, ctx);
1597 if (ret >= 0)
1598 ret = 1;
1599 out:
1600 dput(parent);
1601 return ret;
1602 out_drop:
1603 d_drop(dentry);
1604 ret = 0;
1605 out_put_ctx:
1606 put_nfs_open_context(ctx);
1607 goto out;
1608
1609 no_open_dput:
1610 dput(parent);
1611 no_open:
1612 return nfs_lookup_revalidate(dentry, nd);
1613 }
1614
1615 static int nfs_open_create(struct inode *dir, struct dentry *dentry,
1616 umode_t mode, struct nameidata *nd)
1617 {
1618 struct nfs_open_context *ctx = NULL;
1619 struct iattr attr;
1620 int error;
1621 int open_flags = O_CREAT|O_EXCL;
1622
1623 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1624 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1625
1626 attr.ia_mode = mode;
1627 attr.ia_valid = ATTR_MODE;
1628
1629 if (nd)
1630 open_flags = nd->intent.open.flags;
1631
1632 ctx = create_nfs_open_context(dentry, open_flags);
1633 error = PTR_ERR(ctx);
1634 if (IS_ERR(ctx))
1635 goto out_err_drop;
1636
1637 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, ctx);
1638 if (error != 0)
1639 goto out_put_ctx;
1640 if (nd) {
1641 error = nfs_intent_set_file(nd, ctx);
1642 if (error < 0)
1643 goto out_err;
1644 } else {
1645 put_nfs_open_context(ctx);
1646 }
1647 return 0;
1648 out_put_ctx:
1649 put_nfs_open_context(ctx);
1650 out_err_drop:
1651 d_drop(dentry);
1652 out_err:
1653 return error;
1654 }
1655
1656 #endif /* CONFIG_NFSV4 */
1657
1658 /*
1659 * Code common to create, mkdir, and mknod.
1660 */
1661 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1662 struct nfs_fattr *fattr)
1663 {
1664 struct dentry *parent = dget_parent(dentry);
1665 struct inode *dir = parent->d_inode;
1666 struct inode *inode;
1667 int error = -EACCES;
1668
1669 d_drop(dentry);
1670
1671 /* We may have been initialized further down */
1672 if (dentry->d_inode)
1673 goto out;
1674 if (fhandle->size == 0) {
1675 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1676 if (error)
1677 goto out_error;
1678 }
1679 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1680 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1681 struct nfs_server *server = NFS_SB(dentry->d_sb);
1682 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1683 if (error < 0)
1684 goto out_error;
1685 }
1686 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1687 error = PTR_ERR(inode);
1688 if (IS_ERR(inode))
1689 goto out_error;
1690 d_add(dentry, inode);
1691 out:
1692 dput(parent);
1693 return 0;
1694 out_error:
1695 nfs_mark_for_revalidate(dir);
1696 dput(parent);
1697 return error;
1698 }
1699
1700 /*
1701 * Following a failed create operation, we drop the dentry rather
1702 * than retain a negative dentry. This avoids a problem in the event
1703 * that the operation succeeded on the server, but an error in the
1704 * reply path made it appear to have failed.
1705 */
1706 static int nfs_create(struct inode *dir, struct dentry *dentry,
1707 umode_t mode, struct nameidata *nd)
1708 {
1709 struct iattr attr;
1710 int error;
1711 int open_flags = O_CREAT|O_EXCL;
1712
1713 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1714 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1715
1716 attr.ia_mode = mode;
1717 attr.ia_valid = ATTR_MODE;
1718
1719 if (nd)
1720 open_flags = nd->intent.open.flags;
1721
1722 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, NULL);
1723 if (error != 0)
1724 goto out_err;
1725 return 0;
1726 out_err:
1727 d_drop(dentry);
1728 return error;
1729 }
1730
1731 /*
1732 * See comments for nfs_proc_create regarding failed operations.
1733 */
1734 static int
1735 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1736 {
1737 struct iattr attr;
1738 int status;
1739
1740 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1741 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1742
1743 if (!new_valid_dev(rdev))
1744 return -EINVAL;
1745
1746 attr.ia_mode = mode;
1747 attr.ia_valid = ATTR_MODE;
1748
1749 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1750 if (status != 0)
1751 goto out_err;
1752 return 0;
1753 out_err:
1754 d_drop(dentry);
1755 return status;
1756 }
1757
1758 /*
1759 * See comments for nfs_proc_create regarding failed operations.
1760 */
1761 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1762 {
1763 struct iattr attr;
1764 int error;
1765
1766 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1767 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1768
1769 attr.ia_valid = ATTR_MODE;
1770 attr.ia_mode = mode | S_IFDIR;
1771
1772 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1773 if (error != 0)
1774 goto out_err;
1775 return 0;
1776 out_err:
1777 d_drop(dentry);
1778 return error;
1779 }
1780
1781 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1782 {
1783 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1784 d_delete(dentry);
1785 }
1786
1787 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1788 {
1789 int error;
1790
1791 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1792 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1793
1794 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1795 /* Ensure the VFS deletes this inode */
1796 if (error == 0 && dentry->d_inode != NULL)
1797 clear_nlink(dentry->d_inode);
1798 else if (error == -ENOENT)
1799 nfs_dentry_handle_enoent(dentry);
1800
1801 return error;
1802 }
1803
1804 /*
1805 * Remove a file after making sure there are no pending writes,
1806 * and after checking that the file has only one user.
1807 *
1808 * We invalidate the attribute cache and free the inode prior to the operation
1809 * to avoid possible races if the server reuses the inode.
1810 */
1811 static int nfs_safe_remove(struct dentry *dentry)
1812 {
1813 struct inode *dir = dentry->d_parent->d_inode;
1814 struct inode *inode = dentry->d_inode;
1815 int error = -EBUSY;
1816
1817 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1818 dentry->d_parent->d_name.name, dentry->d_name.name);
1819
1820 /* If the dentry was sillyrenamed, we simply call d_delete() */
1821 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1822 error = 0;
1823 goto out;
1824 }
1825
1826 if (inode != NULL) {
1827 nfs_inode_return_delegation(inode);
1828 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1829 /* The VFS may want to delete this inode */
1830 if (error == 0)
1831 nfs_drop_nlink(inode);
1832 nfs_mark_for_revalidate(inode);
1833 } else
1834 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1835 if (error == -ENOENT)
1836 nfs_dentry_handle_enoent(dentry);
1837 out:
1838 return error;
1839 }
1840
1841 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1842 * belongs to an active ".nfs..." file and we return -EBUSY.
1843 *
1844 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1845 */
1846 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1847 {
1848 int error;
1849 int need_rehash = 0;
1850
1851 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1852 dir->i_ino, dentry->d_name.name);
1853
1854 spin_lock(&dentry->d_lock);
1855 if (dentry->d_count > 1) {
1856 spin_unlock(&dentry->d_lock);
1857 /* Start asynchronous writeout of the inode */
1858 write_inode_now(dentry->d_inode, 0);
1859 error = nfs_sillyrename(dir, dentry);
1860 return error;
1861 }
1862 if (!d_unhashed(dentry)) {
1863 __d_drop(dentry);
1864 need_rehash = 1;
1865 }
1866 spin_unlock(&dentry->d_lock);
1867 error = nfs_safe_remove(dentry);
1868 if (!error || error == -ENOENT) {
1869 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1870 } else if (need_rehash)
1871 d_rehash(dentry);
1872 return error;
1873 }
1874
1875 /*
1876 * To create a symbolic link, most file systems instantiate a new inode,
1877 * add a page to it containing the path, then write it out to the disk
1878 * using prepare_write/commit_write.
1879 *
1880 * Unfortunately the NFS client can't create the in-core inode first
1881 * because it needs a file handle to create an in-core inode (see
1882 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1883 * symlink request has completed on the server.
1884 *
1885 * So instead we allocate a raw page, copy the symname into it, then do
1886 * the SYMLINK request with the page as the buffer. If it succeeds, we
1887 * now have a new file handle and can instantiate an in-core NFS inode
1888 * and move the raw page into its mapping.
1889 */
1890 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1891 {
1892 struct pagevec lru_pvec;
1893 struct page *page;
1894 char *kaddr;
1895 struct iattr attr;
1896 unsigned int pathlen = strlen(symname);
1897 int error;
1898
1899 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1900 dir->i_ino, dentry->d_name.name, symname);
1901
1902 if (pathlen > PAGE_SIZE)
1903 return -ENAMETOOLONG;
1904
1905 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1906 attr.ia_valid = ATTR_MODE;
1907
1908 page = alloc_page(GFP_HIGHUSER);
1909 if (!page)
1910 return -ENOMEM;
1911
1912 kaddr = kmap_atomic(page);
1913 memcpy(kaddr, symname, pathlen);
1914 if (pathlen < PAGE_SIZE)
1915 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1916 kunmap_atomic(kaddr);
1917
1918 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1919 if (error != 0) {
1920 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1921 dir->i_sb->s_id, dir->i_ino,
1922 dentry->d_name.name, symname, error);
1923 d_drop(dentry);
1924 __free_page(page);
1925 return error;
1926 }
1927
1928 /*
1929 * No big deal if we can't add this page to the page cache here.
1930 * READLINK will get the missing page from the server if needed.
1931 */
1932 pagevec_init(&lru_pvec, 0);
1933 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1934 GFP_KERNEL)) {
1935 pagevec_add(&lru_pvec, page);
1936 pagevec_lru_add_file(&lru_pvec);
1937 SetPageUptodate(page);
1938 unlock_page(page);
1939 } else
1940 __free_page(page);
1941
1942 return 0;
1943 }
1944
1945 static int
1946 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1947 {
1948 struct inode *inode = old_dentry->d_inode;
1949 int error;
1950
1951 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1952 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1953 dentry->d_parent->d_name.name, dentry->d_name.name);
1954
1955 nfs_inode_return_delegation(inode);
1956
1957 d_drop(dentry);
1958 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1959 if (error == 0) {
1960 ihold(inode);
1961 d_add(dentry, inode);
1962 }
1963 return error;
1964 }
1965
1966 /*
1967 * RENAME
1968 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1969 * different file handle for the same inode after a rename (e.g. when
1970 * moving to a different directory). A fail-safe method to do so would
1971 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1972 * rename the old file using the sillyrename stuff. This way, the original
1973 * file in old_dir will go away when the last process iput()s the inode.
1974 *
1975 * FIXED.
1976 *
1977 * It actually works quite well. One needs to have the possibility for
1978 * at least one ".nfs..." file in each directory the file ever gets
1979 * moved or linked to which happens automagically with the new
1980 * implementation that only depends on the dcache stuff instead of
1981 * using the inode layer
1982 *
1983 * Unfortunately, things are a little more complicated than indicated
1984 * above. For a cross-directory move, we want to make sure we can get
1985 * rid of the old inode after the operation. This means there must be
1986 * no pending writes (if it's a file), and the use count must be 1.
1987 * If these conditions are met, we can drop the dentries before doing
1988 * the rename.
1989 */
1990 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1991 struct inode *new_dir, struct dentry *new_dentry)
1992 {
1993 struct inode *old_inode = old_dentry->d_inode;
1994 struct inode *new_inode = new_dentry->d_inode;
1995 struct dentry *dentry = NULL, *rehash = NULL;
1996 int error = -EBUSY;
1997
1998 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1999 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
2000 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
2001 new_dentry->d_count);
2002
2003 /*
2004 * For non-directories, check whether the target is busy and if so,
2005 * make a copy of the dentry and then do a silly-rename. If the
2006 * silly-rename succeeds, the copied dentry is hashed and becomes
2007 * the new target.
2008 */
2009 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2010 /*
2011 * To prevent any new references to the target during the
2012 * rename, we unhash the dentry in advance.
2013 */
2014 if (!d_unhashed(new_dentry)) {
2015 d_drop(new_dentry);
2016 rehash = new_dentry;
2017 }
2018
2019 if (new_dentry->d_count > 2) {
2020 int err;
2021
2022 /* copy the target dentry's name */
2023 dentry = d_alloc(new_dentry->d_parent,
2024 &new_dentry->d_name);
2025 if (!dentry)
2026 goto out;
2027
2028 /* silly-rename the existing target ... */
2029 err = nfs_sillyrename(new_dir, new_dentry);
2030 if (err)
2031 goto out;
2032
2033 new_dentry = dentry;
2034 rehash = NULL;
2035 new_inode = NULL;
2036 }
2037 }
2038
2039 nfs_inode_return_delegation(old_inode);
2040 if (new_inode != NULL)
2041 nfs_inode_return_delegation(new_inode);
2042
2043 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
2044 new_dir, &new_dentry->d_name);
2045 nfs_mark_for_revalidate(old_inode);
2046 out:
2047 if (rehash)
2048 d_rehash(rehash);
2049 if (!error) {
2050 if (new_inode != NULL)
2051 nfs_drop_nlink(new_inode);
2052 d_move(old_dentry, new_dentry);
2053 nfs_set_verifier(new_dentry,
2054 nfs_save_change_attribute(new_dir));
2055 } else if (error == -ENOENT)
2056 nfs_dentry_handle_enoent(old_dentry);
2057
2058 /* new dentry created? */
2059 if (dentry)
2060 dput(dentry);
2061 return error;
2062 }
2063
2064 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2065 static LIST_HEAD(nfs_access_lru_list);
2066 static atomic_long_t nfs_access_nr_entries;
2067
2068 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2069 {
2070 put_rpccred(entry->cred);
2071 kfree(entry);
2072 smp_mb__before_atomic_dec();
2073 atomic_long_dec(&nfs_access_nr_entries);
2074 smp_mb__after_atomic_dec();
2075 }
2076
2077 static void nfs_access_free_list(struct list_head *head)
2078 {
2079 struct nfs_access_entry *cache;
2080
2081 while (!list_empty(head)) {
2082 cache = list_entry(head->next, struct nfs_access_entry, lru);
2083 list_del(&cache->lru);
2084 nfs_access_free_entry(cache);
2085 }
2086 }
2087
2088 int nfs_access_cache_shrinker(struct shrinker *shrink,
2089 struct shrink_control *sc)
2090 {
2091 LIST_HEAD(head);
2092 struct nfs_inode *nfsi, *next;
2093 struct nfs_access_entry *cache;
2094 int nr_to_scan = sc->nr_to_scan;
2095 gfp_t gfp_mask = sc->gfp_mask;
2096
2097 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2098 return (nr_to_scan == 0) ? 0 : -1;
2099
2100 spin_lock(&nfs_access_lru_lock);
2101 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2102 struct inode *inode;
2103
2104 if (nr_to_scan-- == 0)
2105 break;
2106 inode = &nfsi->vfs_inode;
2107 spin_lock(&inode->i_lock);
2108 if (list_empty(&nfsi->access_cache_entry_lru))
2109 goto remove_lru_entry;
2110 cache = list_entry(nfsi->access_cache_entry_lru.next,
2111 struct nfs_access_entry, lru);
2112 list_move(&cache->lru, &head);
2113 rb_erase(&cache->rb_node, &nfsi->access_cache);
2114 if (!list_empty(&nfsi->access_cache_entry_lru))
2115 list_move_tail(&nfsi->access_cache_inode_lru,
2116 &nfs_access_lru_list);
2117 else {
2118 remove_lru_entry:
2119 list_del_init(&nfsi->access_cache_inode_lru);
2120 smp_mb__before_clear_bit();
2121 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2122 smp_mb__after_clear_bit();
2123 }
2124 spin_unlock(&inode->i_lock);
2125 }
2126 spin_unlock(&nfs_access_lru_lock);
2127 nfs_access_free_list(&head);
2128 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
2129 }
2130
2131 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2132 {
2133 struct rb_root *root_node = &nfsi->access_cache;
2134 struct rb_node *n;
2135 struct nfs_access_entry *entry;
2136
2137 /* Unhook entries from the cache */
2138 while ((n = rb_first(root_node)) != NULL) {
2139 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2140 rb_erase(n, root_node);
2141 list_move(&entry->lru, head);
2142 }
2143 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2144 }
2145
2146 void nfs_access_zap_cache(struct inode *inode)
2147 {
2148 LIST_HEAD(head);
2149
2150 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2151 return;
2152 /* Remove from global LRU init */
2153 spin_lock(&nfs_access_lru_lock);
2154 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2155 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2156
2157 spin_lock(&inode->i_lock);
2158 __nfs_access_zap_cache(NFS_I(inode), &head);
2159 spin_unlock(&inode->i_lock);
2160 spin_unlock(&nfs_access_lru_lock);
2161 nfs_access_free_list(&head);
2162 }
2163
2164 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2165 {
2166 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2167 struct nfs_access_entry *entry;
2168
2169 while (n != NULL) {
2170 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2171
2172 if (cred < entry->cred)
2173 n = n->rb_left;
2174 else if (cred > entry->cred)
2175 n = n->rb_right;
2176 else
2177 return entry;
2178 }
2179 return NULL;
2180 }
2181
2182 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2183 {
2184 struct nfs_inode *nfsi = NFS_I(inode);
2185 struct nfs_access_entry *cache;
2186 int err = -ENOENT;
2187
2188 spin_lock(&inode->i_lock);
2189 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2190 goto out_zap;
2191 cache = nfs_access_search_rbtree(inode, cred);
2192 if (cache == NULL)
2193 goto out;
2194 if (!nfs_have_delegated_attributes(inode) &&
2195 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2196 goto out_stale;
2197 res->jiffies = cache->jiffies;
2198 res->cred = cache->cred;
2199 res->mask = cache->mask;
2200 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2201 err = 0;
2202 out:
2203 spin_unlock(&inode->i_lock);
2204 return err;
2205 out_stale:
2206 rb_erase(&cache->rb_node, &nfsi->access_cache);
2207 list_del(&cache->lru);
2208 spin_unlock(&inode->i_lock);
2209 nfs_access_free_entry(cache);
2210 return -ENOENT;
2211 out_zap:
2212 spin_unlock(&inode->i_lock);
2213 nfs_access_zap_cache(inode);
2214 return -ENOENT;
2215 }
2216
2217 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2218 {
2219 struct nfs_inode *nfsi = NFS_I(inode);
2220 struct rb_root *root_node = &nfsi->access_cache;
2221 struct rb_node **p = &root_node->rb_node;
2222 struct rb_node *parent = NULL;
2223 struct nfs_access_entry *entry;
2224
2225 spin_lock(&inode->i_lock);
2226 while (*p != NULL) {
2227 parent = *p;
2228 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2229
2230 if (set->cred < entry->cred)
2231 p = &parent->rb_left;
2232 else if (set->cred > entry->cred)
2233 p = &parent->rb_right;
2234 else
2235 goto found;
2236 }
2237 rb_link_node(&set->rb_node, parent, p);
2238 rb_insert_color(&set->rb_node, root_node);
2239 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2240 spin_unlock(&inode->i_lock);
2241 return;
2242 found:
2243 rb_replace_node(parent, &set->rb_node, root_node);
2244 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2245 list_del(&entry->lru);
2246 spin_unlock(&inode->i_lock);
2247 nfs_access_free_entry(entry);
2248 }
2249
2250 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2251 {
2252 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2253 if (cache == NULL)
2254 return;
2255 RB_CLEAR_NODE(&cache->rb_node);
2256 cache->jiffies = set->jiffies;
2257 cache->cred = get_rpccred(set->cred);
2258 cache->mask = set->mask;
2259
2260 nfs_access_add_rbtree(inode, cache);
2261
2262 /* Update accounting */
2263 smp_mb__before_atomic_inc();
2264 atomic_long_inc(&nfs_access_nr_entries);
2265 smp_mb__after_atomic_inc();
2266
2267 /* Add inode to global LRU list */
2268 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2269 spin_lock(&nfs_access_lru_lock);
2270 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2271 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2272 &nfs_access_lru_list);
2273 spin_unlock(&nfs_access_lru_lock);
2274 }
2275 }
2276
2277 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2278 {
2279 struct nfs_access_entry cache;
2280 int status;
2281
2282 status = nfs_access_get_cached(inode, cred, &cache);
2283 if (status == 0)
2284 goto out;
2285
2286 /* Be clever: ask server to check for all possible rights */
2287 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2288 cache.cred = cred;
2289 cache.jiffies = jiffies;
2290 status = NFS_PROTO(inode)->access(inode, &cache);
2291 if (status != 0) {
2292 if (status == -ESTALE) {
2293 nfs_zap_caches(inode);
2294 if (!S_ISDIR(inode->i_mode))
2295 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2296 }
2297 return status;
2298 }
2299 nfs_access_add_cache(inode, &cache);
2300 out:
2301 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2302 return 0;
2303 return -EACCES;
2304 }
2305
2306 static int nfs_open_permission_mask(int openflags)
2307 {
2308 int mask = 0;
2309
2310 if ((openflags & O_ACCMODE) != O_WRONLY)
2311 mask |= MAY_READ;
2312 if ((openflags & O_ACCMODE) != O_RDONLY)
2313 mask |= MAY_WRITE;
2314 if (openflags & __FMODE_EXEC)
2315 mask |= MAY_EXEC;
2316 return mask;
2317 }
2318
2319 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2320 {
2321 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2322 }
2323
2324 int nfs_permission(struct inode *inode, int mask)
2325 {
2326 struct rpc_cred *cred;
2327 int res = 0;
2328
2329 if (mask & MAY_NOT_BLOCK)
2330 return -ECHILD;
2331
2332 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2333
2334 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2335 goto out;
2336 /* Is this sys_access() ? */
2337 if (mask & (MAY_ACCESS | MAY_CHDIR))
2338 goto force_lookup;
2339
2340 switch (inode->i_mode & S_IFMT) {
2341 case S_IFLNK:
2342 goto out;
2343 case S_IFREG:
2344 /* NFSv4 has atomic_open... */
2345 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2346 && (mask & MAY_OPEN)
2347 && !(mask & MAY_EXEC))
2348 goto out;
2349 break;
2350 case S_IFDIR:
2351 /*
2352 * Optimize away all write operations, since the server
2353 * will check permissions when we perform the op.
2354 */
2355 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2356 goto out;
2357 }
2358
2359 force_lookup:
2360 if (!NFS_PROTO(inode)->access)
2361 goto out_notsup;
2362
2363 cred = rpc_lookup_cred();
2364 if (!IS_ERR(cred)) {
2365 res = nfs_do_access(inode, cred, mask);
2366 put_rpccred(cred);
2367 } else
2368 res = PTR_ERR(cred);
2369 out:
2370 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2371 res = -EACCES;
2372
2373 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2374 inode->i_sb->s_id, inode->i_ino, mask, res);
2375 return res;
2376 out_notsup:
2377 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2378 if (res == 0)
2379 res = generic_permission(inode, mask);
2380 goto out;
2381 }
2382
2383 /*
2384 * Local variables:
2385 * version-control: t
2386 * kept-new-versions: 5
2387 * End:
2388 */