]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/nfs/dir.c
NFS: Fix up documentation warnings
[mirror_ubuntu-hirsute-kernel.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45
46 #include "nfstrace.h"
47
48 /* #define NFS_DEBUG_VERBOSE 1 */
49
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56
57 const struct file_operations nfs_dir_operations = {
58 .llseek = nfs_llseek_dir,
59 .read = generic_read_dir,
60 .iterate = nfs_readdir,
61 .open = nfs_opendir,
62 .release = nfs_closedir,
63 .fsync = nfs_fsync_dir,
64 };
65
66 const struct address_space_operations nfs_dir_aops = {
67 .freepage = nfs_readdir_clear_array,
68 };
69
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
71 {
72 struct nfs_inode *nfsi = NFS_I(dir);
73 struct nfs_open_dir_context *ctx;
74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 if (ctx != NULL) {
76 ctx->duped = 0;
77 ctx->attr_gencount = nfsi->attr_gencount;
78 ctx->dir_cookie = 0;
79 ctx->dup_cookie = 0;
80 ctx->cred = get_cred(cred);
81 spin_lock(&dir->i_lock);
82 list_add(&ctx->list, &nfsi->open_files);
83 spin_unlock(&dir->i_lock);
84 return ctx;
85 }
86 return ERR_PTR(-ENOMEM);
87 }
88
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 spin_lock(&dir->i_lock);
92 list_del(&ctx->list);
93 spin_unlock(&dir->i_lock);
94 put_cred(ctx->cred);
95 kfree(ctx);
96 }
97
98 /*
99 * Open file
100 */
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 int res = 0;
105 struct nfs_open_dir_context *ctx;
106
107 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
108
109 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
110
111 ctx = alloc_nfs_open_dir_context(inode, current_cred());
112 if (IS_ERR(ctx)) {
113 res = PTR_ERR(ctx);
114 goto out;
115 }
116 filp->private_data = ctx;
117 out:
118 return res;
119 }
120
121 static int
122 nfs_closedir(struct inode *inode, struct file *filp)
123 {
124 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
125 return 0;
126 }
127
128 struct nfs_cache_array_entry {
129 u64 cookie;
130 u64 ino;
131 struct qstr string;
132 unsigned char d_type;
133 };
134
135 struct nfs_cache_array {
136 int size;
137 int eof_index;
138 u64 last_cookie;
139 struct nfs_cache_array_entry array[0];
140 };
141
142 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool);
143 typedef struct {
144 struct file *file;
145 struct page *page;
146 struct dir_context *ctx;
147 unsigned long page_index;
148 u64 *dir_cookie;
149 u64 last_cookie;
150 loff_t current_index;
151 decode_dirent_t decode;
152
153 unsigned long timestamp;
154 unsigned long gencount;
155 unsigned int cache_entry_index;
156 bool plus;
157 bool eof;
158 } nfs_readdir_descriptor_t;
159
160 /*
161 * we are freeing strings created by nfs_add_to_readdir_array()
162 */
163 static
164 void nfs_readdir_clear_array(struct page *page)
165 {
166 struct nfs_cache_array *array;
167 int i;
168
169 array = kmap_atomic(page);
170 for (i = 0; i < array->size; i++)
171 kfree(array->array[i].string.name);
172 kunmap_atomic(array);
173 }
174
175 /*
176 * the caller is responsible for freeing qstr.name
177 * when called by nfs_readdir_add_to_array, the strings will be freed in
178 * nfs_clear_readdir_array()
179 */
180 static
181 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
182 {
183 string->len = len;
184 string->name = kmemdup(name, len, GFP_KERNEL);
185 if (string->name == NULL)
186 return -ENOMEM;
187 /*
188 * Avoid a kmemleak false positive. The pointer to the name is stored
189 * in a page cache page which kmemleak does not scan.
190 */
191 kmemleak_not_leak(string->name);
192 string->hash = full_name_hash(NULL, name, len);
193 return 0;
194 }
195
196 static
197 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
198 {
199 struct nfs_cache_array *array = kmap(page);
200 struct nfs_cache_array_entry *cache_entry;
201 int ret;
202
203 cache_entry = &array->array[array->size];
204
205 /* Check that this entry lies within the page bounds */
206 ret = -ENOSPC;
207 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
208 goto out;
209
210 cache_entry->cookie = entry->prev_cookie;
211 cache_entry->ino = entry->ino;
212 cache_entry->d_type = entry->d_type;
213 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
214 if (ret)
215 goto out;
216 array->last_cookie = entry->cookie;
217 array->size++;
218 if (entry->eof != 0)
219 array->eof_index = array->size;
220 out:
221 kunmap(page);
222 return ret;
223 }
224
225 static
226 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
227 {
228 loff_t diff = desc->ctx->pos - desc->current_index;
229 unsigned int index;
230
231 if (diff < 0)
232 goto out_eof;
233 if (diff >= array->size) {
234 if (array->eof_index >= 0)
235 goto out_eof;
236 return -EAGAIN;
237 }
238
239 index = (unsigned int)diff;
240 *desc->dir_cookie = array->array[index].cookie;
241 desc->cache_entry_index = index;
242 return 0;
243 out_eof:
244 desc->eof = true;
245 return -EBADCOOKIE;
246 }
247
248 static bool
249 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
250 {
251 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
252 return false;
253 smp_rmb();
254 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
255 }
256
257 static
258 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
259 {
260 int i;
261 loff_t new_pos;
262 int status = -EAGAIN;
263
264 for (i = 0; i < array->size; i++) {
265 if (array->array[i].cookie == *desc->dir_cookie) {
266 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
267 struct nfs_open_dir_context *ctx = desc->file->private_data;
268
269 new_pos = desc->current_index + i;
270 if (ctx->attr_gencount != nfsi->attr_gencount ||
271 !nfs_readdir_inode_mapping_valid(nfsi)) {
272 ctx->duped = 0;
273 ctx->attr_gencount = nfsi->attr_gencount;
274 } else if (new_pos < desc->ctx->pos) {
275 if (ctx->duped > 0
276 && ctx->dup_cookie == *desc->dir_cookie) {
277 if (printk_ratelimit()) {
278 pr_notice("NFS: directory %pD2 contains a readdir loop."
279 "Please contact your server vendor. "
280 "The file: %.*s has duplicate cookie %llu\n",
281 desc->file, array->array[i].string.len,
282 array->array[i].string.name, *desc->dir_cookie);
283 }
284 status = -ELOOP;
285 goto out;
286 }
287 ctx->dup_cookie = *desc->dir_cookie;
288 ctx->duped = -1;
289 }
290 desc->ctx->pos = new_pos;
291 desc->cache_entry_index = i;
292 return 0;
293 }
294 }
295 if (array->eof_index >= 0) {
296 status = -EBADCOOKIE;
297 if (*desc->dir_cookie == array->last_cookie)
298 desc->eof = true;
299 }
300 out:
301 return status;
302 }
303
304 static
305 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
306 {
307 struct nfs_cache_array *array;
308 int status;
309
310 array = kmap(desc->page);
311
312 if (*desc->dir_cookie == 0)
313 status = nfs_readdir_search_for_pos(array, desc);
314 else
315 status = nfs_readdir_search_for_cookie(array, desc);
316
317 if (status == -EAGAIN) {
318 desc->last_cookie = array->last_cookie;
319 desc->current_index += array->size;
320 desc->page_index++;
321 }
322 kunmap(desc->page);
323 return status;
324 }
325
326 /* Fill a page with xdr information before transferring to the cache page */
327 static
328 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
329 struct nfs_entry *entry, struct file *file, struct inode *inode)
330 {
331 struct nfs_open_dir_context *ctx = file->private_data;
332 const struct cred *cred = ctx->cred;
333 unsigned long timestamp, gencount;
334 int error;
335
336 again:
337 timestamp = jiffies;
338 gencount = nfs_inc_attr_generation_counter();
339 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
340 NFS_SERVER(inode)->dtsize, desc->plus);
341 if (error < 0) {
342 /* We requested READDIRPLUS, but the server doesn't grok it */
343 if (error == -ENOTSUPP && desc->plus) {
344 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
345 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
346 desc->plus = false;
347 goto again;
348 }
349 goto error;
350 }
351 desc->timestamp = timestamp;
352 desc->gencount = gencount;
353 error:
354 return error;
355 }
356
357 static int xdr_decode(nfs_readdir_descriptor_t *desc,
358 struct nfs_entry *entry, struct xdr_stream *xdr)
359 {
360 int error;
361
362 error = desc->decode(xdr, entry, desc->plus);
363 if (error)
364 return error;
365 entry->fattr->time_start = desc->timestamp;
366 entry->fattr->gencount = desc->gencount;
367 return 0;
368 }
369
370 /* Match file and dirent using either filehandle or fileid
371 * Note: caller is responsible for checking the fsid
372 */
373 static
374 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
375 {
376 struct inode *inode;
377 struct nfs_inode *nfsi;
378
379 if (d_really_is_negative(dentry))
380 return 0;
381
382 inode = d_inode(dentry);
383 if (is_bad_inode(inode) || NFS_STALE(inode))
384 return 0;
385
386 nfsi = NFS_I(inode);
387 if (entry->fattr->fileid != nfsi->fileid)
388 return 0;
389 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
390 return 0;
391 return 1;
392 }
393
394 static
395 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
396 {
397 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
398 return false;
399 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
400 return true;
401 if (ctx->pos == 0)
402 return true;
403 return false;
404 }
405
406 /*
407 * This function is called by the lookup and getattr code to request the
408 * use of readdirplus to accelerate any future lookups in the same
409 * directory.
410 */
411 void nfs_advise_use_readdirplus(struct inode *dir)
412 {
413 struct nfs_inode *nfsi = NFS_I(dir);
414
415 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
416 !list_empty(&nfsi->open_files))
417 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
418 }
419
420 /*
421 * This function is mainly for use by nfs_getattr().
422 *
423 * If this is an 'ls -l', we want to force use of readdirplus.
424 * Do this by checking if there is an active file descriptor
425 * and calling nfs_advise_use_readdirplus, then forcing a
426 * cache flush.
427 */
428 void nfs_force_use_readdirplus(struct inode *dir)
429 {
430 struct nfs_inode *nfsi = NFS_I(dir);
431
432 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
433 !list_empty(&nfsi->open_files)) {
434 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
435 invalidate_mapping_pages(dir->i_mapping, 0, -1);
436 }
437 }
438
439 static
440 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
441 {
442 struct qstr filename = QSTR_INIT(entry->name, entry->len);
443 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
444 struct dentry *dentry;
445 struct dentry *alias;
446 struct inode *dir = d_inode(parent);
447 struct inode *inode;
448 int status;
449
450 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
451 return;
452 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
453 return;
454 if (filename.len == 0)
455 return;
456 /* Validate that the name doesn't contain any illegal '\0' */
457 if (strnlen(filename.name, filename.len) != filename.len)
458 return;
459 /* ...or '/' */
460 if (strnchr(filename.name, filename.len, '/'))
461 return;
462 if (filename.name[0] == '.') {
463 if (filename.len == 1)
464 return;
465 if (filename.len == 2 && filename.name[1] == '.')
466 return;
467 }
468 filename.hash = full_name_hash(parent, filename.name, filename.len);
469
470 dentry = d_lookup(parent, &filename);
471 again:
472 if (!dentry) {
473 dentry = d_alloc_parallel(parent, &filename, &wq);
474 if (IS_ERR(dentry))
475 return;
476 }
477 if (!d_in_lookup(dentry)) {
478 /* Is there a mountpoint here? If so, just exit */
479 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
480 &entry->fattr->fsid))
481 goto out;
482 if (nfs_same_file(dentry, entry)) {
483 if (!entry->fh->size)
484 goto out;
485 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
486 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
487 if (!status)
488 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
489 goto out;
490 } else {
491 d_invalidate(dentry);
492 dput(dentry);
493 dentry = NULL;
494 goto again;
495 }
496 }
497 if (!entry->fh->size) {
498 d_lookup_done(dentry);
499 goto out;
500 }
501
502 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
503 alias = d_splice_alias(inode, dentry);
504 d_lookup_done(dentry);
505 if (alias) {
506 if (IS_ERR(alias))
507 goto out;
508 dput(dentry);
509 dentry = alias;
510 }
511 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
512 out:
513 dput(dentry);
514 }
515
516 /* Perform conversion from xdr to cache array */
517 static
518 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
519 struct page **xdr_pages, struct page *page, unsigned int buflen)
520 {
521 struct xdr_stream stream;
522 struct xdr_buf buf;
523 struct page *scratch;
524 struct nfs_cache_array *array;
525 unsigned int count = 0;
526 int status;
527
528 scratch = alloc_page(GFP_KERNEL);
529 if (scratch == NULL)
530 return -ENOMEM;
531
532 if (buflen == 0)
533 goto out_nopages;
534
535 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
536 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
537
538 do {
539 status = xdr_decode(desc, entry, &stream);
540 if (status != 0) {
541 if (status == -EAGAIN)
542 status = 0;
543 break;
544 }
545
546 count++;
547
548 if (desc->plus)
549 nfs_prime_dcache(file_dentry(desc->file), entry);
550
551 status = nfs_readdir_add_to_array(entry, page);
552 if (status != 0)
553 break;
554 } while (!entry->eof);
555
556 out_nopages:
557 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
558 array = kmap(page);
559 array->eof_index = array->size;
560 status = 0;
561 kunmap(page);
562 }
563
564 put_page(scratch);
565 return status;
566 }
567
568 static
569 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
570 {
571 unsigned int i;
572 for (i = 0; i < npages; i++)
573 put_page(pages[i]);
574 }
575
576 /*
577 * nfs_readdir_large_page will allocate pages that must be freed with a call
578 * to nfs_readdir_free_pagearray
579 */
580 static
581 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
582 {
583 unsigned int i;
584
585 for (i = 0; i < npages; i++) {
586 struct page *page = alloc_page(GFP_KERNEL);
587 if (page == NULL)
588 goto out_freepages;
589 pages[i] = page;
590 }
591 return 0;
592
593 out_freepages:
594 nfs_readdir_free_pages(pages, i);
595 return -ENOMEM;
596 }
597
598 static
599 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
600 {
601 struct page *pages[NFS_MAX_READDIR_PAGES];
602 struct nfs_entry entry;
603 struct file *file = desc->file;
604 struct nfs_cache_array *array;
605 int status = -ENOMEM;
606 unsigned int array_size = ARRAY_SIZE(pages);
607
608 entry.prev_cookie = 0;
609 entry.cookie = desc->last_cookie;
610 entry.eof = 0;
611 entry.fh = nfs_alloc_fhandle();
612 entry.fattr = nfs_alloc_fattr();
613 entry.server = NFS_SERVER(inode);
614 if (entry.fh == NULL || entry.fattr == NULL)
615 goto out;
616
617 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
618 if (IS_ERR(entry.label)) {
619 status = PTR_ERR(entry.label);
620 goto out;
621 }
622
623 array = kmap(page);
624 memset(array, 0, sizeof(struct nfs_cache_array));
625 array->eof_index = -1;
626
627 status = nfs_readdir_alloc_pages(pages, array_size);
628 if (status < 0)
629 goto out_release_array;
630 do {
631 unsigned int pglen;
632 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
633
634 if (status < 0)
635 break;
636 pglen = status;
637 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
638 if (status < 0) {
639 if (status == -ENOSPC)
640 status = 0;
641 break;
642 }
643 } while (array->eof_index < 0);
644
645 nfs_readdir_free_pages(pages, array_size);
646 out_release_array:
647 kunmap(page);
648 nfs4_label_free(entry.label);
649 out:
650 nfs_free_fattr(entry.fattr);
651 nfs_free_fhandle(entry.fh);
652 return status;
653 }
654
655 /*
656 * Now we cache directories properly, by converting xdr information
657 * to an array that can be used for lookups later. This results in
658 * fewer cache pages, since we can store more information on each page.
659 * We only need to convert from xdr once so future lookups are much simpler
660 */
661 static
662 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
663 {
664 struct inode *inode = file_inode(desc->file);
665 int ret;
666
667 ret = nfs_readdir_xdr_to_array(desc, page, inode);
668 if (ret < 0)
669 goto error;
670 SetPageUptodate(page);
671
672 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
673 /* Should never happen */
674 nfs_zap_mapping(inode, inode->i_mapping);
675 }
676 unlock_page(page);
677 return 0;
678 error:
679 unlock_page(page);
680 return ret;
681 }
682
683 static
684 void cache_page_release(nfs_readdir_descriptor_t *desc)
685 {
686 if (!desc->page->mapping)
687 nfs_readdir_clear_array(desc->page);
688 put_page(desc->page);
689 desc->page = NULL;
690 }
691
692 static
693 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
694 {
695 return read_cache_page(desc->file->f_mapping,
696 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
697 }
698
699 /*
700 * Returns 0 if desc->dir_cookie was found on page desc->page_index
701 */
702 static
703 int find_cache_page(nfs_readdir_descriptor_t *desc)
704 {
705 int res;
706
707 desc->page = get_cache_page(desc);
708 if (IS_ERR(desc->page))
709 return PTR_ERR(desc->page);
710
711 res = nfs_readdir_search_array(desc);
712 if (res != 0)
713 cache_page_release(desc);
714 return res;
715 }
716
717 /* Search for desc->dir_cookie from the beginning of the page cache */
718 static inline
719 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
720 {
721 int res;
722
723 if (desc->page_index == 0) {
724 desc->current_index = 0;
725 desc->last_cookie = 0;
726 }
727 do {
728 res = find_cache_page(desc);
729 } while (res == -EAGAIN);
730 return res;
731 }
732
733 /*
734 * Once we've found the start of the dirent within a page: fill 'er up...
735 */
736 static
737 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
738 {
739 struct file *file = desc->file;
740 int i = 0;
741 int res = 0;
742 struct nfs_cache_array *array = NULL;
743 struct nfs_open_dir_context *ctx = file->private_data;
744
745 array = kmap(desc->page);
746 for (i = desc->cache_entry_index; i < array->size; i++) {
747 struct nfs_cache_array_entry *ent;
748
749 ent = &array->array[i];
750 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
751 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
752 desc->eof = true;
753 break;
754 }
755 desc->ctx->pos++;
756 if (i < (array->size-1))
757 *desc->dir_cookie = array->array[i+1].cookie;
758 else
759 *desc->dir_cookie = array->last_cookie;
760 if (ctx->duped != 0)
761 ctx->duped = 1;
762 }
763 if (array->eof_index >= 0)
764 desc->eof = true;
765
766 kunmap(desc->page);
767 cache_page_release(desc);
768 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
769 (unsigned long long)*desc->dir_cookie, res);
770 return res;
771 }
772
773 /*
774 * If we cannot find a cookie in our cache, we suspect that this is
775 * because it points to a deleted file, so we ask the server to return
776 * whatever it thinks is the next entry. We then feed this to filldir.
777 * If all goes well, we should then be able to find our way round the
778 * cache on the next call to readdir_search_pagecache();
779 *
780 * NOTE: we cannot add the anonymous page to the pagecache because
781 * the data it contains might not be page aligned. Besides,
782 * we should already have a complete representation of the
783 * directory in the page cache by the time we get here.
784 */
785 static inline
786 int uncached_readdir(nfs_readdir_descriptor_t *desc)
787 {
788 struct page *page = NULL;
789 int status;
790 struct inode *inode = file_inode(desc->file);
791 struct nfs_open_dir_context *ctx = desc->file->private_data;
792
793 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
794 (unsigned long long)*desc->dir_cookie);
795
796 page = alloc_page(GFP_HIGHUSER);
797 if (!page) {
798 status = -ENOMEM;
799 goto out;
800 }
801
802 desc->page_index = 0;
803 desc->last_cookie = *desc->dir_cookie;
804 desc->page = page;
805 ctx->duped = 0;
806
807 status = nfs_readdir_xdr_to_array(desc, page, inode);
808 if (status < 0)
809 goto out_release;
810
811 status = nfs_do_filldir(desc);
812
813 out:
814 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
815 __func__, status);
816 return status;
817 out_release:
818 cache_page_release(desc);
819 goto out;
820 }
821
822 /* The file offset position represents the dirent entry number. A
823 last cookie cache takes care of the common case of reading the
824 whole directory.
825 */
826 static int nfs_readdir(struct file *file, struct dir_context *ctx)
827 {
828 struct dentry *dentry = file_dentry(file);
829 struct inode *inode = d_inode(dentry);
830 nfs_readdir_descriptor_t my_desc,
831 *desc = &my_desc;
832 struct nfs_open_dir_context *dir_ctx = file->private_data;
833 int res = 0;
834
835 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
836 file, (long long)ctx->pos);
837 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
838
839 /*
840 * ctx->pos points to the dirent entry number.
841 * *desc->dir_cookie has the cookie for the next entry. We have
842 * to either find the entry with the appropriate number or
843 * revalidate the cookie.
844 */
845 memset(desc, 0, sizeof(*desc));
846
847 desc->file = file;
848 desc->ctx = ctx;
849 desc->dir_cookie = &dir_ctx->dir_cookie;
850 desc->decode = NFS_PROTO(inode)->decode_dirent;
851 desc->plus = nfs_use_readdirplus(inode, ctx);
852
853 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
854 res = nfs_revalidate_mapping(inode, file->f_mapping);
855 if (res < 0)
856 goto out;
857
858 do {
859 res = readdir_search_pagecache(desc);
860
861 if (res == -EBADCOOKIE) {
862 res = 0;
863 /* This means either end of directory */
864 if (*desc->dir_cookie && !desc->eof) {
865 /* Or that the server has 'lost' a cookie */
866 res = uncached_readdir(desc);
867 if (res == 0)
868 continue;
869 }
870 break;
871 }
872 if (res == -ETOOSMALL && desc->plus) {
873 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
874 nfs_zap_caches(inode);
875 desc->page_index = 0;
876 desc->plus = false;
877 desc->eof = false;
878 continue;
879 }
880 if (res < 0)
881 break;
882
883 res = nfs_do_filldir(desc);
884 if (res < 0)
885 break;
886 } while (!desc->eof);
887 out:
888 if (res > 0)
889 res = 0;
890 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
891 return res;
892 }
893
894 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
895 {
896 struct inode *inode = file_inode(filp);
897 struct nfs_open_dir_context *dir_ctx = filp->private_data;
898
899 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
900 filp, offset, whence);
901
902 switch (whence) {
903 default:
904 return -EINVAL;
905 case SEEK_SET:
906 if (offset < 0)
907 return -EINVAL;
908 inode_lock(inode);
909 break;
910 case SEEK_CUR:
911 if (offset == 0)
912 return filp->f_pos;
913 inode_lock(inode);
914 offset += filp->f_pos;
915 if (offset < 0) {
916 inode_unlock(inode);
917 return -EINVAL;
918 }
919 }
920 if (offset != filp->f_pos) {
921 filp->f_pos = offset;
922 dir_ctx->dir_cookie = 0;
923 dir_ctx->duped = 0;
924 }
925 inode_unlock(inode);
926 return offset;
927 }
928
929 /*
930 * All directory operations under NFS are synchronous, so fsync()
931 * is a dummy operation.
932 */
933 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
934 int datasync)
935 {
936 struct inode *inode = file_inode(filp);
937
938 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
939
940 inode_lock(inode);
941 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
942 inode_unlock(inode);
943 return 0;
944 }
945
946 /**
947 * nfs_force_lookup_revalidate - Mark the directory as having changed
948 * @dir: pointer to directory inode
949 *
950 * This forces the revalidation code in nfs_lookup_revalidate() to do a
951 * full lookup on all child dentries of 'dir' whenever a change occurs
952 * on the server that might have invalidated our dcache.
953 *
954 * The caller should be holding dir->i_lock
955 */
956 void nfs_force_lookup_revalidate(struct inode *dir)
957 {
958 NFS_I(dir)->cache_change_attribute++;
959 }
960 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
961
962 /*
963 * A check for whether or not the parent directory has changed.
964 * In the case it has, we assume that the dentries are untrustworthy
965 * and may need to be looked up again.
966 * If rcu_walk prevents us from performing a full check, return 0.
967 */
968 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
969 int rcu_walk)
970 {
971 if (IS_ROOT(dentry))
972 return 1;
973 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
974 return 0;
975 if (!nfs_verify_change_attribute(dir, dentry->d_time))
976 return 0;
977 /* Revalidate nfsi->cache_change_attribute before we declare a match */
978 if (nfs_mapping_need_revalidate_inode(dir)) {
979 if (rcu_walk)
980 return 0;
981 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
982 return 0;
983 }
984 if (!nfs_verify_change_attribute(dir, dentry->d_time))
985 return 0;
986 return 1;
987 }
988
989 /*
990 * Use intent information to check whether or not we're going to do
991 * an O_EXCL create using this path component.
992 */
993 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
994 {
995 if (NFS_PROTO(dir)->version == 2)
996 return 0;
997 return flags & LOOKUP_EXCL;
998 }
999
1000 /*
1001 * Inode and filehandle revalidation for lookups.
1002 *
1003 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1004 * or if the intent information indicates that we're about to open this
1005 * particular file and the "nocto" mount flag is not set.
1006 *
1007 */
1008 static
1009 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1010 {
1011 struct nfs_server *server = NFS_SERVER(inode);
1012 int ret;
1013
1014 if (IS_AUTOMOUNT(inode))
1015 return 0;
1016
1017 if (flags & LOOKUP_OPEN) {
1018 switch (inode->i_mode & S_IFMT) {
1019 case S_IFREG:
1020 /* A NFSv4 OPEN will revalidate later */
1021 if (server->caps & NFS_CAP_ATOMIC_OPEN)
1022 goto out;
1023 /* Fallthrough */
1024 case S_IFDIR:
1025 if (server->flags & NFS_MOUNT_NOCTO)
1026 break;
1027 /* NFS close-to-open cache consistency validation */
1028 goto out_force;
1029 }
1030 }
1031
1032 /* VFS wants an on-the-wire revalidation */
1033 if (flags & LOOKUP_REVAL)
1034 goto out_force;
1035 out:
1036 return (inode->i_nlink == 0) ? -ESTALE : 0;
1037 out_force:
1038 if (flags & LOOKUP_RCU)
1039 return -ECHILD;
1040 ret = __nfs_revalidate_inode(server, inode);
1041 if (ret != 0)
1042 return ret;
1043 goto out;
1044 }
1045
1046 /*
1047 * We judge how long we want to trust negative
1048 * dentries by looking at the parent inode mtime.
1049 *
1050 * If parent mtime has changed, we revalidate, else we wait for a
1051 * period corresponding to the parent's attribute cache timeout value.
1052 *
1053 * If LOOKUP_RCU prevents us from performing a full check, return 1
1054 * suggesting a reval is needed.
1055 *
1056 * Note that when creating a new file, or looking up a rename target,
1057 * then it shouldn't be necessary to revalidate a negative dentry.
1058 */
1059 static inline
1060 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1061 unsigned int flags)
1062 {
1063 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1064 return 0;
1065 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1066 return 1;
1067 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1068 }
1069
1070 static int
1071 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1072 struct inode *inode, int error)
1073 {
1074 switch (error) {
1075 case 1:
1076 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1077 __func__, dentry);
1078 return 1;
1079 case 0:
1080 nfs_mark_for_revalidate(dir);
1081 if (inode && S_ISDIR(inode->i_mode)) {
1082 /* Purge readdir caches. */
1083 nfs_zap_caches(inode);
1084 /*
1085 * We can't d_drop the root of a disconnected tree:
1086 * its d_hash is on the s_anon list and d_drop() would hide
1087 * it from shrink_dcache_for_unmount(), leading to busy
1088 * inodes on unmount and further oopses.
1089 */
1090 if (IS_ROOT(dentry))
1091 return 1;
1092 }
1093 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1094 __func__, dentry);
1095 return 0;
1096 }
1097 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1098 __func__, dentry, error);
1099 return error;
1100 }
1101
1102 static int
1103 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1104 unsigned int flags)
1105 {
1106 int ret = 1;
1107 if (nfs_neg_need_reval(dir, dentry, flags)) {
1108 if (flags & LOOKUP_RCU)
1109 return -ECHILD;
1110 ret = 0;
1111 }
1112 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1113 }
1114
1115 static int
1116 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1117 struct inode *inode)
1118 {
1119 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1120 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1121 }
1122
1123 static int
1124 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1125 struct inode *inode)
1126 {
1127 struct nfs_fh *fhandle;
1128 struct nfs_fattr *fattr;
1129 struct nfs4_label *label;
1130 int ret;
1131
1132 ret = -ENOMEM;
1133 fhandle = nfs_alloc_fhandle();
1134 fattr = nfs_alloc_fattr();
1135 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1136 if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1137 goto out;
1138
1139 ret = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1140 if (ret < 0) {
1141 if (ret == -ESTALE || ret == -ENOENT)
1142 ret = 0;
1143 goto out;
1144 }
1145 ret = 0;
1146 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1147 goto out;
1148 if (nfs_refresh_inode(inode, fattr) < 0)
1149 goto out;
1150
1151 nfs_setsecurity(inode, fattr, label);
1152 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1153
1154 /* set a readdirplus hint that we had a cache miss */
1155 nfs_force_use_readdirplus(dir);
1156 ret = 1;
1157 out:
1158 nfs_free_fattr(fattr);
1159 nfs_free_fhandle(fhandle);
1160 nfs4_label_free(label);
1161 return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1162 }
1163
1164 /*
1165 * This is called every time the dcache has a lookup hit,
1166 * and we should check whether we can really trust that
1167 * lookup.
1168 *
1169 * NOTE! The hit can be a negative hit too, don't assume
1170 * we have an inode!
1171 *
1172 * If the parent directory is seen to have changed, we throw out the
1173 * cached dentry and do a new lookup.
1174 */
1175 static int
1176 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1177 unsigned int flags)
1178 {
1179 struct inode *inode;
1180 int error;
1181
1182 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1183 inode = d_inode(dentry);
1184
1185 if (!inode)
1186 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1187
1188 if (is_bad_inode(inode)) {
1189 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1190 __func__, dentry);
1191 goto out_bad;
1192 }
1193
1194 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1195 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1196
1197 /* Force a full look up iff the parent directory has changed */
1198 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1199 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1200 error = nfs_lookup_verify_inode(inode, flags);
1201 if (error) {
1202 if (error == -ESTALE)
1203 nfs_zap_caches(dir);
1204 goto out_bad;
1205 }
1206 nfs_advise_use_readdirplus(dir);
1207 goto out_valid;
1208 }
1209
1210 if (flags & LOOKUP_RCU)
1211 return -ECHILD;
1212
1213 if (NFS_STALE(inode))
1214 goto out_bad;
1215
1216 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1217 error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1218 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1219 return error;
1220 out_valid:
1221 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1222 out_bad:
1223 if (flags & LOOKUP_RCU)
1224 return -ECHILD;
1225 return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1226 }
1227
1228 static int
1229 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1230 int (*reval)(struct inode *, struct dentry *, unsigned int))
1231 {
1232 struct dentry *parent;
1233 struct inode *dir;
1234 int ret;
1235
1236 if (flags & LOOKUP_RCU) {
1237 parent = READ_ONCE(dentry->d_parent);
1238 dir = d_inode_rcu(parent);
1239 if (!dir)
1240 return -ECHILD;
1241 ret = reval(dir, dentry, flags);
1242 if (parent != READ_ONCE(dentry->d_parent))
1243 return -ECHILD;
1244 } else {
1245 parent = dget_parent(dentry);
1246 ret = reval(d_inode(parent), dentry, flags);
1247 dput(parent);
1248 }
1249 return ret;
1250 }
1251
1252 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1253 {
1254 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1255 }
1256
1257 /*
1258 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1259 * when we don't really care about the dentry name. This is called when a
1260 * pathwalk ends on a dentry that was not found via a normal lookup in the
1261 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1262 *
1263 * In this situation, we just want to verify that the inode itself is OK
1264 * since the dentry might have changed on the server.
1265 */
1266 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1267 {
1268 struct inode *inode = d_inode(dentry);
1269 int error = 0;
1270
1271 /*
1272 * I believe we can only get a negative dentry here in the case of a
1273 * procfs-style symlink. Just assume it's correct for now, but we may
1274 * eventually need to do something more here.
1275 */
1276 if (!inode) {
1277 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1278 __func__, dentry);
1279 return 1;
1280 }
1281
1282 if (is_bad_inode(inode)) {
1283 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1284 __func__, dentry);
1285 return 0;
1286 }
1287
1288 error = nfs_lookup_verify_inode(inode, flags);
1289 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1290 __func__, inode->i_ino, error ? "invalid" : "valid");
1291 return !error;
1292 }
1293
1294 /*
1295 * This is called from dput() when d_count is going to 0.
1296 */
1297 static int nfs_dentry_delete(const struct dentry *dentry)
1298 {
1299 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1300 dentry, dentry->d_flags);
1301
1302 /* Unhash any dentry with a stale inode */
1303 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1304 return 1;
1305
1306 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1307 /* Unhash it, so that ->d_iput() would be called */
1308 return 1;
1309 }
1310 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1311 /* Unhash it, so that ancestors of killed async unlink
1312 * files will be cleaned up during umount */
1313 return 1;
1314 }
1315 return 0;
1316
1317 }
1318
1319 /* Ensure that we revalidate inode->i_nlink */
1320 static void nfs_drop_nlink(struct inode *inode)
1321 {
1322 spin_lock(&inode->i_lock);
1323 /* drop the inode if we're reasonably sure this is the last link */
1324 if (inode->i_nlink > 0)
1325 drop_nlink(inode);
1326 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1327 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1328 | NFS_INO_INVALID_CTIME
1329 | NFS_INO_INVALID_OTHER
1330 | NFS_INO_REVAL_FORCED;
1331 spin_unlock(&inode->i_lock);
1332 }
1333
1334 /*
1335 * Called when the dentry loses inode.
1336 * We use it to clean up silly-renamed files.
1337 */
1338 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1339 {
1340 if (S_ISDIR(inode->i_mode))
1341 /* drop any readdir cache as it could easily be old */
1342 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1343
1344 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1345 nfs_complete_unlink(dentry, inode);
1346 nfs_drop_nlink(inode);
1347 }
1348 iput(inode);
1349 }
1350
1351 static void nfs_d_release(struct dentry *dentry)
1352 {
1353 /* free cached devname value, if it survived that far */
1354 if (unlikely(dentry->d_fsdata)) {
1355 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1356 WARN_ON(1);
1357 else
1358 kfree(dentry->d_fsdata);
1359 }
1360 }
1361
1362 const struct dentry_operations nfs_dentry_operations = {
1363 .d_revalidate = nfs_lookup_revalidate,
1364 .d_weak_revalidate = nfs_weak_revalidate,
1365 .d_delete = nfs_dentry_delete,
1366 .d_iput = nfs_dentry_iput,
1367 .d_automount = nfs_d_automount,
1368 .d_release = nfs_d_release,
1369 };
1370 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1371
1372 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1373 {
1374 struct dentry *res;
1375 struct inode *inode = NULL;
1376 struct nfs_fh *fhandle = NULL;
1377 struct nfs_fattr *fattr = NULL;
1378 struct nfs4_label *label = NULL;
1379 int error;
1380
1381 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1382 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1383
1384 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1385 return ERR_PTR(-ENAMETOOLONG);
1386
1387 /*
1388 * If we're doing an exclusive create, optimize away the lookup
1389 * but don't hash the dentry.
1390 */
1391 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1392 return NULL;
1393
1394 res = ERR_PTR(-ENOMEM);
1395 fhandle = nfs_alloc_fhandle();
1396 fattr = nfs_alloc_fattr();
1397 if (fhandle == NULL || fattr == NULL)
1398 goto out;
1399
1400 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1401 if (IS_ERR(label))
1402 goto out;
1403
1404 trace_nfs_lookup_enter(dir, dentry, flags);
1405 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1406 if (error == -ENOENT)
1407 goto no_entry;
1408 if (error < 0) {
1409 res = ERR_PTR(error);
1410 goto out_label;
1411 }
1412 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1413 res = ERR_CAST(inode);
1414 if (IS_ERR(res))
1415 goto out_label;
1416
1417 /* Notify readdir to use READDIRPLUS */
1418 nfs_force_use_readdirplus(dir);
1419
1420 no_entry:
1421 res = d_splice_alias(inode, dentry);
1422 if (res != NULL) {
1423 if (IS_ERR(res))
1424 goto out_label;
1425 dentry = res;
1426 }
1427 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1428 out_label:
1429 trace_nfs_lookup_exit(dir, dentry, flags, error);
1430 nfs4_label_free(label);
1431 out:
1432 nfs_free_fattr(fattr);
1433 nfs_free_fhandle(fhandle);
1434 return res;
1435 }
1436 EXPORT_SYMBOL_GPL(nfs_lookup);
1437
1438 #if IS_ENABLED(CONFIG_NFS_V4)
1439 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1440
1441 const struct dentry_operations nfs4_dentry_operations = {
1442 .d_revalidate = nfs4_lookup_revalidate,
1443 .d_weak_revalidate = nfs_weak_revalidate,
1444 .d_delete = nfs_dentry_delete,
1445 .d_iput = nfs_dentry_iput,
1446 .d_automount = nfs_d_automount,
1447 .d_release = nfs_d_release,
1448 };
1449 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1450
1451 static fmode_t flags_to_mode(int flags)
1452 {
1453 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1454 if ((flags & O_ACCMODE) != O_WRONLY)
1455 res |= FMODE_READ;
1456 if ((flags & O_ACCMODE) != O_RDONLY)
1457 res |= FMODE_WRITE;
1458 return res;
1459 }
1460
1461 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1462 {
1463 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1464 }
1465
1466 static int do_open(struct inode *inode, struct file *filp)
1467 {
1468 nfs_fscache_open_file(inode, filp);
1469 return 0;
1470 }
1471
1472 static int nfs_finish_open(struct nfs_open_context *ctx,
1473 struct dentry *dentry,
1474 struct file *file, unsigned open_flags)
1475 {
1476 int err;
1477
1478 err = finish_open(file, dentry, do_open);
1479 if (err)
1480 goto out;
1481 if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1482 nfs_file_set_open_context(file, ctx);
1483 else
1484 err = -ESTALE;
1485 out:
1486 return err;
1487 }
1488
1489 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1490 struct file *file, unsigned open_flags,
1491 umode_t mode)
1492 {
1493 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1494 struct nfs_open_context *ctx;
1495 struct dentry *res;
1496 struct iattr attr = { .ia_valid = ATTR_OPEN };
1497 struct inode *inode;
1498 unsigned int lookup_flags = 0;
1499 bool switched = false;
1500 int created = 0;
1501 int err;
1502
1503 /* Expect a negative dentry */
1504 BUG_ON(d_inode(dentry));
1505
1506 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1507 dir->i_sb->s_id, dir->i_ino, dentry);
1508
1509 err = nfs_check_flags(open_flags);
1510 if (err)
1511 return err;
1512
1513 /* NFS only supports OPEN on regular files */
1514 if ((open_flags & O_DIRECTORY)) {
1515 if (!d_in_lookup(dentry)) {
1516 /*
1517 * Hashed negative dentry with O_DIRECTORY: dentry was
1518 * revalidated and is fine, no need to perform lookup
1519 * again
1520 */
1521 return -ENOENT;
1522 }
1523 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1524 goto no_open;
1525 }
1526
1527 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1528 return -ENAMETOOLONG;
1529
1530 if (open_flags & O_CREAT) {
1531 struct nfs_server *server = NFS_SERVER(dir);
1532
1533 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1534 mode &= ~current_umask();
1535
1536 attr.ia_valid |= ATTR_MODE;
1537 attr.ia_mode = mode;
1538 }
1539 if (open_flags & O_TRUNC) {
1540 attr.ia_valid |= ATTR_SIZE;
1541 attr.ia_size = 0;
1542 }
1543
1544 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1545 d_drop(dentry);
1546 switched = true;
1547 dentry = d_alloc_parallel(dentry->d_parent,
1548 &dentry->d_name, &wq);
1549 if (IS_ERR(dentry))
1550 return PTR_ERR(dentry);
1551 if (unlikely(!d_in_lookup(dentry)))
1552 return finish_no_open(file, dentry);
1553 }
1554
1555 ctx = create_nfs_open_context(dentry, open_flags, file);
1556 err = PTR_ERR(ctx);
1557 if (IS_ERR(ctx))
1558 goto out;
1559
1560 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1561 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1562 if (created)
1563 file->f_mode |= FMODE_CREATED;
1564 if (IS_ERR(inode)) {
1565 err = PTR_ERR(inode);
1566 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1567 put_nfs_open_context(ctx);
1568 d_drop(dentry);
1569 switch (err) {
1570 case -ENOENT:
1571 d_splice_alias(NULL, dentry);
1572 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1573 break;
1574 case -EISDIR:
1575 case -ENOTDIR:
1576 goto no_open;
1577 case -ELOOP:
1578 if (!(open_flags & O_NOFOLLOW))
1579 goto no_open;
1580 break;
1581 /* case -EINVAL: */
1582 default:
1583 break;
1584 }
1585 goto out;
1586 }
1587
1588 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1589 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1590 put_nfs_open_context(ctx);
1591 out:
1592 if (unlikely(switched)) {
1593 d_lookup_done(dentry);
1594 dput(dentry);
1595 }
1596 return err;
1597
1598 no_open:
1599 res = nfs_lookup(dir, dentry, lookup_flags);
1600 if (switched) {
1601 d_lookup_done(dentry);
1602 if (!res)
1603 res = dentry;
1604 else
1605 dput(dentry);
1606 }
1607 if (IS_ERR(res))
1608 return PTR_ERR(res);
1609 return finish_no_open(file, res);
1610 }
1611 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1612
1613 static int
1614 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1615 unsigned int flags)
1616 {
1617 struct inode *inode;
1618
1619 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1620 goto full_reval;
1621 if (d_mountpoint(dentry))
1622 goto full_reval;
1623
1624 inode = d_inode(dentry);
1625
1626 /* We can't create new files in nfs_open_revalidate(), so we
1627 * optimize away revalidation of negative dentries.
1628 */
1629 if (inode == NULL)
1630 goto full_reval;
1631
1632 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1633 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1634
1635 /* NFS only supports OPEN on regular files */
1636 if (!S_ISREG(inode->i_mode))
1637 goto full_reval;
1638
1639 /* We cannot do exclusive creation on a positive dentry */
1640 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1641 goto reval_dentry;
1642
1643 /* Check if the directory changed */
1644 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1645 goto reval_dentry;
1646
1647 /* Let f_op->open() actually open (and revalidate) the file */
1648 return 1;
1649 reval_dentry:
1650 if (flags & LOOKUP_RCU)
1651 return -ECHILD;
1652 return nfs_lookup_revalidate_dentry(dir, dentry, inode);;
1653
1654 full_reval:
1655 return nfs_do_lookup_revalidate(dir, dentry, flags);
1656 }
1657
1658 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1659 {
1660 return __nfs_lookup_revalidate(dentry, flags,
1661 nfs4_do_lookup_revalidate);
1662 }
1663
1664 #endif /* CONFIG_NFSV4 */
1665
1666 /*
1667 * Code common to create, mkdir, and mknod.
1668 */
1669 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1670 struct nfs_fattr *fattr,
1671 struct nfs4_label *label)
1672 {
1673 struct dentry *parent = dget_parent(dentry);
1674 struct inode *dir = d_inode(parent);
1675 struct inode *inode;
1676 struct dentry *d;
1677 int error = -EACCES;
1678
1679 d_drop(dentry);
1680
1681 /* We may have been initialized further down */
1682 if (d_really_is_positive(dentry))
1683 goto out;
1684 if (fhandle->size == 0) {
1685 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1686 if (error)
1687 goto out_error;
1688 }
1689 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1690 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1691 struct nfs_server *server = NFS_SB(dentry->d_sb);
1692 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1693 fattr, NULL, NULL);
1694 if (error < 0)
1695 goto out_error;
1696 }
1697 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1698 d = d_splice_alias(inode, dentry);
1699 if (IS_ERR(d)) {
1700 error = PTR_ERR(d);
1701 goto out_error;
1702 }
1703 dput(d);
1704 out:
1705 dput(parent);
1706 return 0;
1707 out_error:
1708 nfs_mark_for_revalidate(dir);
1709 dput(parent);
1710 return error;
1711 }
1712 EXPORT_SYMBOL_GPL(nfs_instantiate);
1713
1714 /*
1715 * Following a failed create operation, we drop the dentry rather
1716 * than retain a negative dentry. This avoids a problem in the event
1717 * that the operation succeeded on the server, but an error in the
1718 * reply path made it appear to have failed.
1719 */
1720 int nfs_create(struct inode *dir, struct dentry *dentry,
1721 umode_t mode, bool excl)
1722 {
1723 struct iattr attr;
1724 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1725 int error;
1726
1727 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1728 dir->i_sb->s_id, dir->i_ino, dentry);
1729
1730 attr.ia_mode = mode;
1731 attr.ia_valid = ATTR_MODE;
1732
1733 trace_nfs_create_enter(dir, dentry, open_flags);
1734 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1735 trace_nfs_create_exit(dir, dentry, open_flags, error);
1736 if (error != 0)
1737 goto out_err;
1738 return 0;
1739 out_err:
1740 d_drop(dentry);
1741 return error;
1742 }
1743 EXPORT_SYMBOL_GPL(nfs_create);
1744
1745 /*
1746 * See comments for nfs_proc_create regarding failed operations.
1747 */
1748 int
1749 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1750 {
1751 struct iattr attr;
1752 int status;
1753
1754 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1755 dir->i_sb->s_id, dir->i_ino, dentry);
1756
1757 attr.ia_mode = mode;
1758 attr.ia_valid = ATTR_MODE;
1759
1760 trace_nfs_mknod_enter(dir, dentry);
1761 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1762 trace_nfs_mknod_exit(dir, dentry, status);
1763 if (status != 0)
1764 goto out_err;
1765 return 0;
1766 out_err:
1767 d_drop(dentry);
1768 return status;
1769 }
1770 EXPORT_SYMBOL_GPL(nfs_mknod);
1771
1772 /*
1773 * See comments for nfs_proc_create regarding failed operations.
1774 */
1775 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1776 {
1777 struct iattr attr;
1778 int error;
1779
1780 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1781 dir->i_sb->s_id, dir->i_ino, dentry);
1782
1783 attr.ia_valid = ATTR_MODE;
1784 attr.ia_mode = mode | S_IFDIR;
1785
1786 trace_nfs_mkdir_enter(dir, dentry);
1787 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1788 trace_nfs_mkdir_exit(dir, dentry, error);
1789 if (error != 0)
1790 goto out_err;
1791 return 0;
1792 out_err:
1793 d_drop(dentry);
1794 return error;
1795 }
1796 EXPORT_SYMBOL_GPL(nfs_mkdir);
1797
1798 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1799 {
1800 if (simple_positive(dentry))
1801 d_delete(dentry);
1802 }
1803
1804 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1805 {
1806 int error;
1807
1808 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1809 dir->i_sb->s_id, dir->i_ino, dentry);
1810
1811 trace_nfs_rmdir_enter(dir, dentry);
1812 if (d_really_is_positive(dentry)) {
1813 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1814 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1815 /* Ensure the VFS deletes this inode */
1816 switch (error) {
1817 case 0:
1818 clear_nlink(d_inode(dentry));
1819 break;
1820 case -ENOENT:
1821 nfs_dentry_handle_enoent(dentry);
1822 }
1823 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1824 } else
1825 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1826 trace_nfs_rmdir_exit(dir, dentry, error);
1827
1828 return error;
1829 }
1830 EXPORT_SYMBOL_GPL(nfs_rmdir);
1831
1832 /*
1833 * Remove a file after making sure there are no pending writes,
1834 * and after checking that the file has only one user.
1835 *
1836 * We invalidate the attribute cache and free the inode prior to the operation
1837 * to avoid possible races if the server reuses the inode.
1838 */
1839 static int nfs_safe_remove(struct dentry *dentry)
1840 {
1841 struct inode *dir = d_inode(dentry->d_parent);
1842 struct inode *inode = d_inode(dentry);
1843 int error = -EBUSY;
1844
1845 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1846
1847 /* If the dentry was sillyrenamed, we simply call d_delete() */
1848 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1849 error = 0;
1850 goto out;
1851 }
1852
1853 trace_nfs_remove_enter(dir, dentry);
1854 if (inode != NULL) {
1855 error = NFS_PROTO(dir)->remove(dir, dentry);
1856 if (error == 0)
1857 nfs_drop_nlink(inode);
1858 } else
1859 error = NFS_PROTO(dir)->remove(dir, dentry);
1860 if (error == -ENOENT)
1861 nfs_dentry_handle_enoent(dentry);
1862 trace_nfs_remove_exit(dir, dentry, error);
1863 out:
1864 return error;
1865 }
1866
1867 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1868 * belongs to an active ".nfs..." file and we return -EBUSY.
1869 *
1870 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1871 */
1872 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1873 {
1874 int error;
1875 int need_rehash = 0;
1876
1877 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1878 dir->i_ino, dentry);
1879
1880 trace_nfs_unlink_enter(dir, dentry);
1881 spin_lock(&dentry->d_lock);
1882 if (d_count(dentry) > 1) {
1883 spin_unlock(&dentry->d_lock);
1884 /* Start asynchronous writeout of the inode */
1885 write_inode_now(d_inode(dentry), 0);
1886 error = nfs_sillyrename(dir, dentry);
1887 goto out;
1888 }
1889 if (!d_unhashed(dentry)) {
1890 __d_drop(dentry);
1891 need_rehash = 1;
1892 }
1893 spin_unlock(&dentry->d_lock);
1894 error = nfs_safe_remove(dentry);
1895 if (!error || error == -ENOENT) {
1896 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1897 } else if (need_rehash)
1898 d_rehash(dentry);
1899 out:
1900 trace_nfs_unlink_exit(dir, dentry, error);
1901 return error;
1902 }
1903 EXPORT_SYMBOL_GPL(nfs_unlink);
1904
1905 /*
1906 * To create a symbolic link, most file systems instantiate a new inode,
1907 * add a page to it containing the path, then write it out to the disk
1908 * using prepare_write/commit_write.
1909 *
1910 * Unfortunately the NFS client can't create the in-core inode first
1911 * because it needs a file handle to create an in-core inode (see
1912 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1913 * symlink request has completed on the server.
1914 *
1915 * So instead we allocate a raw page, copy the symname into it, then do
1916 * the SYMLINK request with the page as the buffer. If it succeeds, we
1917 * now have a new file handle and can instantiate an in-core NFS inode
1918 * and move the raw page into its mapping.
1919 */
1920 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1921 {
1922 struct page *page;
1923 char *kaddr;
1924 struct iattr attr;
1925 unsigned int pathlen = strlen(symname);
1926 int error;
1927
1928 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1929 dir->i_ino, dentry, symname);
1930
1931 if (pathlen > PAGE_SIZE)
1932 return -ENAMETOOLONG;
1933
1934 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1935 attr.ia_valid = ATTR_MODE;
1936
1937 page = alloc_page(GFP_USER);
1938 if (!page)
1939 return -ENOMEM;
1940
1941 kaddr = page_address(page);
1942 memcpy(kaddr, symname, pathlen);
1943 if (pathlen < PAGE_SIZE)
1944 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1945
1946 trace_nfs_symlink_enter(dir, dentry);
1947 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1948 trace_nfs_symlink_exit(dir, dentry, error);
1949 if (error != 0) {
1950 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1951 dir->i_sb->s_id, dir->i_ino,
1952 dentry, symname, error);
1953 d_drop(dentry);
1954 __free_page(page);
1955 return error;
1956 }
1957
1958 /*
1959 * No big deal if we can't add this page to the page cache here.
1960 * READLINK will get the missing page from the server if needed.
1961 */
1962 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1963 GFP_KERNEL)) {
1964 SetPageUptodate(page);
1965 unlock_page(page);
1966 /*
1967 * add_to_page_cache_lru() grabs an extra page refcount.
1968 * Drop it here to avoid leaking this page later.
1969 */
1970 put_page(page);
1971 } else
1972 __free_page(page);
1973
1974 return 0;
1975 }
1976 EXPORT_SYMBOL_GPL(nfs_symlink);
1977
1978 int
1979 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1980 {
1981 struct inode *inode = d_inode(old_dentry);
1982 int error;
1983
1984 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1985 old_dentry, dentry);
1986
1987 trace_nfs_link_enter(inode, dir, dentry);
1988 d_drop(dentry);
1989 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1990 if (error == 0) {
1991 ihold(inode);
1992 d_add(dentry, inode);
1993 }
1994 trace_nfs_link_exit(inode, dir, dentry, error);
1995 return error;
1996 }
1997 EXPORT_SYMBOL_GPL(nfs_link);
1998
1999 /*
2000 * RENAME
2001 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2002 * different file handle for the same inode after a rename (e.g. when
2003 * moving to a different directory). A fail-safe method to do so would
2004 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2005 * rename the old file using the sillyrename stuff. This way, the original
2006 * file in old_dir will go away when the last process iput()s the inode.
2007 *
2008 * FIXED.
2009 *
2010 * It actually works quite well. One needs to have the possibility for
2011 * at least one ".nfs..." file in each directory the file ever gets
2012 * moved or linked to which happens automagically with the new
2013 * implementation that only depends on the dcache stuff instead of
2014 * using the inode layer
2015 *
2016 * Unfortunately, things are a little more complicated than indicated
2017 * above. For a cross-directory move, we want to make sure we can get
2018 * rid of the old inode after the operation. This means there must be
2019 * no pending writes (if it's a file), and the use count must be 1.
2020 * If these conditions are met, we can drop the dentries before doing
2021 * the rename.
2022 */
2023 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2024 struct inode *new_dir, struct dentry *new_dentry,
2025 unsigned int flags)
2026 {
2027 struct inode *old_inode = d_inode(old_dentry);
2028 struct inode *new_inode = d_inode(new_dentry);
2029 struct dentry *dentry = NULL, *rehash = NULL;
2030 struct rpc_task *task;
2031 int error = -EBUSY;
2032
2033 if (flags)
2034 return -EINVAL;
2035
2036 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2037 old_dentry, new_dentry,
2038 d_count(new_dentry));
2039
2040 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2041 /*
2042 * For non-directories, check whether the target is busy and if so,
2043 * make a copy of the dentry and then do a silly-rename. If the
2044 * silly-rename succeeds, the copied dentry is hashed and becomes
2045 * the new target.
2046 */
2047 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2048 /*
2049 * To prevent any new references to the target during the
2050 * rename, we unhash the dentry in advance.
2051 */
2052 if (!d_unhashed(new_dentry)) {
2053 d_drop(new_dentry);
2054 rehash = new_dentry;
2055 }
2056
2057 if (d_count(new_dentry) > 2) {
2058 int err;
2059
2060 /* copy the target dentry's name */
2061 dentry = d_alloc(new_dentry->d_parent,
2062 &new_dentry->d_name);
2063 if (!dentry)
2064 goto out;
2065
2066 /* silly-rename the existing target ... */
2067 err = nfs_sillyrename(new_dir, new_dentry);
2068 if (err)
2069 goto out;
2070
2071 new_dentry = dentry;
2072 rehash = NULL;
2073 new_inode = NULL;
2074 }
2075 }
2076
2077 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2078 if (IS_ERR(task)) {
2079 error = PTR_ERR(task);
2080 goto out;
2081 }
2082
2083 error = rpc_wait_for_completion_task(task);
2084 if (error != 0) {
2085 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2086 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2087 smp_wmb();
2088 } else
2089 error = task->tk_status;
2090 rpc_put_task(task);
2091 /* Ensure the inode attributes are revalidated */
2092 if (error == 0) {
2093 spin_lock(&old_inode->i_lock);
2094 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2095 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2096 | NFS_INO_INVALID_CTIME
2097 | NFS_INO_REVAL_FORCED;
2098 spin_unlock(&old_inode->i_lock);
2099 }
2100 out:
2101 if (rehash)
2102 d_rehash(rehash);
2103 trace_nfs_rename_exit(old_dir, old_dentry,
2104 new_dir, new_dentry, error);
2105 if (!error) {
2106 if (new_inode != NULL)
2107 nfs_drop_nlink(new_inode);
2108 /*
2109 * The d_move() should be here instead of in an async RPC completion
2110 * handler because we need the proper locks to move the dentry. If
2111 * we're interrupted by a signal, the async RPC completion handler
2112 * should mark the directories for revalidation.
2113 */
2114 d_move(old_dentry, new_dentry);
2115 nfs_set_verifier(old_dentry,
2116 nfs_save_change_attribute(new_dir));
2117 } else if (error == -ENOENT)
2118 nfs_dentry_handle_enoent(old_dentry);
2119
2120 /* new dentry created? */
2121 if (dentry)
2122 dput(dentry);
2123 return error;
2124 }
2125 EXPORT_SYMBOL_GPL(nfs_rename);
2126
2127 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2128 static LIST_HEAD(nfs_access_lru_list);
2129 static atomic_long_t nfs_access_nr_entries;
2130
2131 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2132 module_param(nfs_access_max_cachesize, ulong, 0644);
2133 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2134
2135 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2136 {
2137 put_cred(entry->cred);
2138 kfree_rcu(entry, rcu_head);
2139 smp_mb__before_atomic();
2140 atomic_long_dec(&nfs_access_nr_entries);
2141 smp_mb__after_atomic();
2142 }
2143
2144 static void nfs_access_free_list(struct list_head *head)
2145 {
2146 struct nfs_access_entry *cache;
2147
2148 while (!list_empty(head)) {
2149 cache = list_entry(head->next, struct nfs_access_entry, lru);
2150 list_del(&cache->lru);
2151 nfs_access_free_entry(cache);
2152 }
2153 }
2154
2155 static unsigned long
2156 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2157 {
2158 LIST_HEAD(head);
2159 struct nfs_inode *nfsi, *next;
2160 struct nfs_access_entry *cache;
2161 long freed = 0;
2162
2163 spin_lock(&nfs_access_lru_lock);
2164 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2165 struct inode *inode;
2166
2167 if (nr_to_scan-- == 0)
2168 break;
2169 inode = &nfsi->vfs_inode;
2170 spin_lock(&inode->i_lock);
2171 if (list_empty(&nfsi->access_cache_entry_lru))
2172 goto remove_lru_entry;
2173 cache = list_entry(nfsi->access_cache_entry_lru.next,
2174 struct nfs_access_entry, lru);
2175 list_move(&cache->lru, &head);
2176 rb_erase(&cache->rb_node, &nfsi->access_cache);
2177 freed++;
2178 if (!list_empty(&nfsi->access_cache_entry_lru))
2179 list_move_tail(&nfsi->access_cache_inode_lru,
2180 &nfs_access_lru_list);
2181 else {
2182 remove_lru_entry:
2183 list_del_init(&nfsi->access_cache_inode_lru);
2184 smp_mb__before_atomic();
2185 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2186 smp_mb__after_atomic();
2187 }
2188 spin_unlock(&inode->i_lock);
2189 }
2190 spin_unlock(&nfs_access_lru_lock);
2191 nfs_access_free_list(&head);
2192 return freed;
2193 }
2194
2195 unsigned long
2196 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2197 {
2198 int nr_to_scan = sc->nr_to_scan;
2199 gfp_t gfp_mask = sc->gfp_mask;
2200
2201 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2202 return SHRINK_STOP;
2203 return nfs_do_access_cache_scan(nr_to_scan);
2204 }
2205
2206
2207 unsigned long
2208 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2209 {
2210 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2211 }
2212
2213 static void
2214 nfs_access_cache_enforce_limit(void)
2215 {
2216 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2217 unsigned long diff;
2218 unsigned int nr_to_scan;
2219
2220 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2221 return;
2222 nr_to_scan = 100;
2223 diff = nr_entries - nfs_access_max_cachesize;
2224 if (diff < nr_to_scan)
2225 nr_to_scan = diff;
2226 nfs_do_access_cache_scan(nr_to_scan);
2227 }
2228
2229 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2230 {
2231 struct rb_root *root_node = &nfsi->access_cache;
2232 struct rb_node *n;
2233 struct nfs_access_entry *entry;
2234
2235 /* Unhook entries from the cache */
2236 while ((n = rb_first(root_node)) != NULL) {
2237 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2238 rb_erase(n, root_node);
2239 list_move(&entry->lru, head);
2240 }
2241 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2242 }
2243
2244 void nfs_access_zap_cache(struct inode *inode)
2245 {
2246 LIST_HEAD(head);
2247
2248 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2249 return;
2250 /* Remove from global LRU init */
2251 spin_lock(&nfs_access_lru_lock);
2252 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2253 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2254
2255 spin_lock(&inode->i_lock);
2256 __nfs_access_zap_cache(NFS_I(inode), &head);
2257 spin_unlock(&inode->i_lock);
2258 spin_unlock(&nfs_access_lru_lock);
2259 nfs_access_free_list(&head);
2260 }
2261 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2262
2263 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2264 {
2265 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2266
2267 while (n != NULL) {
2268 struct nfs_access_entry *entry =
2269 rb_entry(n, struct nfs_access_entry, rb_node);
2270 int cmp = cred_fscmp(cred, entry->cred);
2271
2272 if (cmp < 0)
2273 n = n->rb_left;
2274 else if (cmp > 0)
2275 n = n->rb_right;
2276 else
2277 return entry;
2278 }
2279 return NULL;
2280 }
2281
2282 static int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2283 {
2284 struct nfs_inode *nfsi = NFS_I(inode);
2285 struct nfs_access_entry *cache;
2286 bool retry = true;
2287 int err;
2288
2289 spin_lock(&inode->i_lock);
2290 for(;;) {
2291 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2292 goto out_zap;
2293 cache = nfs_access_search_rbtree(inode, cred);
2294 err = -ENOENT;
2295 if (cache == NULL)
2296 goto out;
2297 /* Found an entry, is our attribute cache valid? */
2298 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2299 break;
2300 err = -ECHILD;
2301 if (!may_block)
2302 goto out;
2303 if (!retry)
2304 goto out_zap;
2305 spin_unlock(&inode->i_lock);
2306 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2307 if (err)
2308 return err;
2309 spin_lock(&inode->i_lock);
2310 retry = false;
2311 }
2312 res->cred = cache->cred;
2313 res->mask = cache->mask;
2314 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2315 err = 0;
2316 out:
2317 spin_unlock(&inode->i_lock);
2318 return err;
2319 out_zap:
2320 spin_unlock(&inode->i_lock);
2321 nfs_access_zap_cache(inode);
2322 return -ENOENT;
2323 }
2324
2325 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2326 {
2327 /* Only check the most recently returned cache entry,
2328 * but do it without locking.
2329 */
2330 struct nfs_inode *nfsi = NFS_I(inode);
2331 struct nfs_access_entry *cache;
2332 int err = -ECHILD;
2333 struct list_head *lh;
2334
2335 rcu_read_lock();
2336 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2337 goto out;
2338 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2339 cache = list_entry(lh, struct nfs_access_entry, lru);
2340 if (lh == &nfsi->access_cache_entry_lru ||
2341 cred != cache->cred)
2342 cache = NULL;
2343 if (cache == NULL)
2344 goto out;
2345 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2346 goto out;
2347 res->cred = cache->cred;
2348 res->mask = cache->mask;
2349 err = 0;
2350 out:
2351 rcu_read_unlock();
2352 return err;
2353 }
2354
2355 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2356 {
2357 struct nfs_inode *nfsi = NFS_I(inode);
2358 struct rb_root *root_node = &nfsi->access_cache;
2359 struct rb_node **p = &root_node->rb_node;
2360 struct rb_node *parent = NULL;
2361 struct nfs_access_entry *entry;
2362 int cmp;
2363
2364 spin_lock(&inode->i_lock);
2365 while (*p != NULL) {
2366 parent = *p;
2367 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2368 cmp = cred_fscmp(set->cred, entry->cred);
2369
2370 if (cmp < 0)
2371 p = &parent->rb_left;
2372 else if (cmp > 0)
2373 p = &parent->rb_right;
2374 else
2375 goto found;
2376 }
2377 rb_link_node(&set->rb_node, parent, p);
2378 rb_insert_color(&set->rb_node, root_node);
2379 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2380 spin_unlock(&inode->i_lock);
2381 return;
2382 found:
2383 rb_replace_node(parent, &set->rb_node, root_node);
2384 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2385 list_del(&entry->lru);
2386 spin_unlock(&inode->i_lock);
2387 nfs_access_free_entry(entry);
2388 }
2389
2390 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2391 {
2392 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2393 if (cache == NULL)
2394 return;
2395 RB_CLEAR_NODE(&cache->rb_node);
2396 cache->cred = get_cred(set->cred);
2397 cache->mask = set->mask;
2398
2399 /* The above field assignments must be visible
2400 * before this item appears on the lru. We cannot easily
2401 * use rcu_assign_pointer, so just force the memory barrier.
2402 */
2403 smp_wmb();
2404 nfs_access_add_rbtree(inode, cache);
2405
2406 /* Update accounting */
2407 smp_mb__before_atomic();
2408 atomic_long_inc(&nfs_access_nr_entries);
2409 smp_mb__after_atomic();
2410
2411 /* Add inode to global LRU list */
2412 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2413 spin_lock(&nfs_access_lru_lock);
2414 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2415 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2416 &nfs_access_lru_list);
2417 spin_unlock(&nfs_access_lru_lock);
2418 }
2419 nfs_access_cache_enforce_limit();
2420 }
2421 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2422
2423 #define NFS_MAY_READ (NFS_ACCESS_READ)
2424 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2425 NFS_ACCESS_EXTEND | \
2426 NFS_ACCESS_DELETE)
2427 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2428 NFS_ACCESS_EXTEND)
2429 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2430 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2431 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2432 static int
2433 nfs_access_calc_mask(u32 access_result, umode_t umode)
2434 {
2435 int mask = 0;
2436
2437 if (access_result & NFS_MAY_READ)
2438 mask |= MAY_READ;
2439 if (S_ISDIR(umode)) {
2440 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2441 mask |= MAY_WRITE;
2442 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2443 mask |= MAY_EXEC;
2444 } else if (S_ISREG(umode)) {
2445 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2446 mask |= MAY_WRITE;
2447 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2448 mask |= MAY_EXEC;
2449 } else if (access_result & NFS_MAY_WRITE)
2450 mask |= MAY_WRITE;
2451 return mask;
2452 }
2453
2454 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2455 {
2456 entry->mask = access_result;
2457 }
2458 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2459
2460 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2461 {
2462 struct nfs_access_entry cache;
2463 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2464 int cache_mask;
2465 int status;
2466
2467 trace_nfs_access_enter(inode);
2468
2469 status = nfs_access_get_cached_rcu(inode, cred, &cache);
2470 if (status != 0)
2471 status = nfs_access_get_cached(inode, cred, &cache, may_block);
2472 if (status == 0)
2473 goto out_cached;
2474
2475 status = -ECHILD;
2476 if (!may_block)
2477 goto out;
2478
2479 /*
2480 * Determine which access bits we want to ask for...
2481 */
2482 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2483 if (S_ISDIR(inode->i_mode))
2484 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2485 else
2486 cache.mask |= NFS_ACCESS_EXECUTE;
2487 cache.cred = cred;
2488 status = NFS_PROTO(inode)->access(inode, &cache);
2489 if (status != 0) {
2490 if (status == -ESTALE) {
2491 nfs_zap_caches(inode);
2492 if (!S_ISDIR(inode->i_mode))
2493 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2494 }
2495 goto out;
2496 }
2497 nfs_access_add_cache(inode, &cache);
2498 out_cached:
2499 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2500 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2501 status = -EACCES;
2502 out:
2503 trace_nfs_access_exit(inode, status);
2504 return status;
2505 }
2506
2507 static int nfs_open_permission_mask(int openflags)
2508 {
2509 int mask = 0;
2510
2511 if (openflags & __FMODE_EXEC) {
2512 /* ONLY check exec rights */
2513 mask = MAY_EXEC;
2514 } else {
2515 if ((openflags & O_ACCMODE) != O_WRONLY)
2516 mask |= MAY_READ;
2517 if ((openflags & O_ACCMODE) != O_RDONLY)
2518 mask |= MAY_WRITE;
2519 }
2520
2521 return mask;
2522 }
2523
2524 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2525 {
2526 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2527 }
2528 EXPORT_SYMBOL_GPL(nfs_may_open);
2529
2530 static int nfs_execute_ok(struct inode *inode, int mask)
2531 {
2532 struct nfs_server *server = NFS_SERVER(inode);
2533 int ret = 0;
2534
2535 if (S_ISDIR(inode->i_mode))
2536 return 0;
2537 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2538 if (mask & MAY_NOT_BLOCK)
2539 return -ECHILD;
2540 ret = __nfs_revalidate_inode(server, inode);
2541 }
2542 if (ret == 0 && !execute_ok(inode))
2543 ret = -EACCES;
2544 return ret;
2545 }
2546
2547 int nfs_permission(struct inode *inode, int mask)
2548 {
2549 const struct cred *cred = current_cred();
2550 int res = 0;
2551
2552 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2553
2554 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2555 goto out;
2556 /* Is this sys_access() ? */
2557 if (mask & (MAY_ACCESS | MAY_CHDIR))
2558 goto force_lookup;
2559
2560 switch (inode->i_mode & S_IFMT) {
2561 case S_IFLNK:
2562 goto out;
2563 case S_IFREG:
2564 if ((mask & MAY_OPEN) &&
2565 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2566 return 0;
2567 break;
2568 case S_IFDIR:
2569 /*
2570 * Optimize away all write operations, since the server
2571 * will check permissions when we perform the op.
2572 */
2573 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2574 goto out;
2575 }
2576
2577 force_lookup:
2578 if (!NFS_PROTO(inode)->access)
2579 goto out_notsup;
2580
2581 /* Always try fast lookups first */
2582 rcu_read_lock();
2583 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2584 rcu_read_unlock();
2585 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2586 /* Fast lookup failed, try the slow way */
2587 res = nfs_do_access(inode, cred, mask);
2588 }
2589 out:
2590 if (!res && (mask & MAY_EXEC))
2591 res = nfs_execute_ok(inode, mask);
2592
2593 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2594 inode->i_sb->s_id, inode->i_ino, mask, res);
2595 return res;
2596 out_notsup:
2597 if (mask & MAY_NOT_BLOCK)
2598 return -ECHILD;
2599
2600 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2601 if (res == 0)
2602 res = generic_permission(inode, mask);
2603 goto out;
2604 }
2605 EXPORT_SYMBOL_GPL(nfs_permission);
2606
2607 /*
2608 * Local variables:
2609 * version-control: t
2610 * kept-new-versions: 5
2611 * End:
2612 */