]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/nfs/dir.c
Merge remote-tracking branch 'regulator/fix/max77802' into regulator-linus
[mirror_ubuntu-artful-kernel.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45
46 #include "nfstrace.h"
47
48 /* #define NFS_DEBUG_VERBOSE 1 */
49
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56
57 const struct file_operations nfs_dir_operations = {
58 .llseek = nfs_llseek_dir,
59 .read = generic_read_dir,
60 .iterate = nfs_readdir,
61 .open = nfs_opendir,
62 .release = nfs_closedir,
63 .fsync = nfs_fsync_dir,
64 };
65
66 const struct address_space_operations nfs_dir_aops = {
67 .freepage = nfs_readdir_clear_array,
68 };
69
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71 {
72 struct nfs_inode *nfsi = NFS_I(dir);
73 struct nfs_open_dir_context *ctx;
74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 if (ctx != NULL) {
76 ctx->duped = 0;
77 ctx->attr_gencount = nfsi->attr_gencount;
78 ctx->dir_cookie = 0;
79 ctx->dup_cookie = 0;
80 ctx->cred = get_rpccred(cred);
81 spin_lock(&dir->i_lock);
82 list_add(&ctx->list, &nfsi->open_files);
83 spin_unlock(&dir->i_lock);
84 return ctx;
85 }
86 return ERR_PTR(-ENOMEM);
87 }
88
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 spin_lock(&dir->i_lock);
92 list_del(&ctx->list);
93 spin_unlock(&dir->i_lock);
94 put_rpccred(ctx->cred);
95 kfree(ctx);
96 }
97
98 /*
99 * Open file
100 */
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 int res = 0;
105 struct nfs_open_dir_context *ctx;
106 struct rpc_cred *cred;
107
108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109
110 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111
112 cred = rpc_lookup_cred();
113 if (IS_ERR(cred))
114 return PTR_ERR(cred);
115 ctx = alloc_nfs_open_dir_context(inode, cred);
116 if (IS_ERR(ctx)) {
117 res = PTR_ERR(ctx);
118 goto out;
119 }
120 filp->private_data = ctx;
121 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 /* This is a mountpoint, so d_revalidate will never
123 * have been called, so we need to refresh the
124 * inode (for close-open consistency) ourselves.
125 */
126 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
127 }
128 out:
129 put_rpccred(cred);
130 return res;
131 }
132
133 static int
134 nfs_closedir(struct inode *inode, struct file *filp)
135 {
136 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
137 return 0;
138 }
139
140 struct nfs_cache_array_entry {
141 u64 cookie;
142 u64 ino;
143 struct qstr string;
144 unsigned char d_type;
145 };
146
147 struct nfs_cache_array {
148 int size;
149 int eof_index;
150 u64 last_cookie;
151 struct nfs_cache_array_entry array[0];
152 };
153
154 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
155 typedef struct {
156 struct file *file;
157 struct page *page;
158 struct dir_context *ctx;
159 unsigned long page_index;
160 u64 *dir_cookie;
161 u64 last_cookie;
162 loff_t current_index;
163 decode_dirent_t decode;
164
165 unsigned long timestamp;
166 unsigned long gencount;
167 unsigned int cache_entry_index;
168 unsigned int plus:1;
169 unsigned int eof:1;
170 } nfs_readdir_descriptor_t;
171
172 /*
173 * we are freeing strings created by nfs_add_to_readdir_array()
174 */
175 static
176 void nfs_readdir_clear_array(struct page *page)
177 {
178 struct nfs_cache_array *array;
179 int i;
180
181 array = kmap_atomic(page);
182 for (i = 0; i < array->size; i++)
183 kfree(array->array[i].string.name);
184 kunmap_atomic(array);
185 }
186
187 /*
188 * the caller is responsible for freeing qstr.name
189 * when called by nfs_readdir_add_to_array, the strings will be freed in
190 * nfs_clear_readdir_array()
191 */
192 static
193 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
194 {
195 string->len = len;
196 string->name = kmemdup(name, len, GFP_KERNEL);
197 if (string->name == NULL)
198 return -ENOMEM;
199 /*
200 * Avoid a kmemleak false positive. The pointer to the name is stored
201 * in a page cache page which kmemleak does not scan.
202 */
203 kmemleak_not_leak(string->name);
204 string->hash = full_name_hash(NULL, name, len);
205 return 0;
206 }
207
208 static
209 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
210 {
211 struct nfs_cache_array *array = kmap(page);
212 struct nfs_cache_array_entry *cache_entry;
213 int ret;
214
215 cache_entry = &array->array[array->size];
216
217 /* Check that this entry lies within the page bounds */
218 ret = -ENOSPC;
219 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
220 goto out;
221
222 cache_entry->cookie = entry->prev_cookie;
223 cache_entry->ino = entry->ino;
224 cache_entry->d_type = entry->d_type;
225 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
226 if (ret)
227 goto out;
228 array->last_cookie = entry->cookie;
229 array->size++;
230 if (entry->eof != 0)
231 array->eof_index = array->size;
232 out:
233 kunmap(page);
234 return ret;
235 }
236
237 static
238 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
239 {
240 loff_t diff = desc->ctx->pos - desc->current_index;
241 unsigned int index;
242
243 if (diff < 0)
244 goto out_eof;
245 if (diff >= array->size) {
246 if (array->eof_index >= 0)
247 goto out_eof;
248 return -EAGAIN;
249 }
250
251 index = (unsigned int)diff;
252 *desc->dir_cookie = array->array[index].cookie;
253 desc->cache_entry_index = index;
254 return 0;
255 out_eof:
256 desc->eof = 1;
257 return -EBADCOOKIE;
258 }
259
260 static bool
261 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
262 {
263 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
264 return false;
265 smp_rmb();
266 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
267 }
268
269 static
270 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
271 {
272 int i;
273 loff_t new_pos;
274 int status = -EAGAIN;
275
276 for (i = 0; i < array->size; i++) {
277 if (array->array[i].cookie == *desc->dir_cookie) {
278 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
279 struct nfs_open_dir_context *ctx = desc->file->private_data;
280
281 new_pos = desc->current_index + i;
282 if (ctx->attr_gencount != nfsi->attr_gencount ||
283 !nfs_readdir_inode_mapping_valid(nfsi)) {
284 ctx->duped = 0;
285 ctx->attr_gencount = nfsi->attr_gencount;
286 } else if (new_pos < desc->ctx->pos) {
287 if (ctx->duped > 0
288 && ctx->dup_cookie == *desc->dir_cookie) {
289 if (printk_ratelimit()) {
290 pr_notice("NFS: directory %pD2 contains a readdir loop."
291 "Please contact your server vendor. "
292 "The file: %.*s has duplicate cookie %llu\n",
293 desc->file, array->array[i].string.len,
294 array->array[i].string.name, *desc->dir_cookie);
295 }
296 status = -ELOOP;
297 goto out;
298 }
299 ctx->dup_cookie = *desc->dir_cookie;
300 ctx->duped = -1;
301 }
302 desc->ctx->pos = new_pos;
303 desc->cache_entry_index = i;
304 return 0;
305 }
306 }
307 if (array->eof_index >= 0) {
308 status = -EBADCOOKIE;
309 if (*desc->dir_cookie == array->last_cookie)
310 desc->eof = 1;
311 }
312 out:
313 return status;
314 }
315
316 static
317 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
318 {
319 struct nfs_cache_array *array;
320 int status;
321
322 array = kmap(desc->page);
323
324 if (*desc->dir_cookie == 0)
325 status = nfs_readdir_search_for_pos(array, desc);
326 else
327 status = nfs_readdir_search_for_cookie(array, desc);
328
329 if (status == -EAGAIN) {
330 desc->last_cookie = array->last_cookie;
331 desc->current_index += array->size;
332 desc->page_index++;
333 }
334 kunmap(desc->page);
335 return status;
336 }
337
338 /* Fill a page with xdr information before transferring to the cache page */
339 static
340 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
341 struct nfs_entry *entry, struct file *file, struct inode *inode)
342 {
343 struct nfs_open_dir_context *ctx = file->private_data;
344 struct rpc_cred *cred = ctx->cred;
345 unsigned long timestamp, gencount;
346 int error;
347
348 again:
349 timestamp = jiffies;
350 gencount = nfs_inc_attr_generation_counter();
351 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
352 NFS_SERVER(inode)->dtsize, desc->plus);
353 if (error < 0) {
354 /* We requested READDIRPLUS, but the server doesn't grok it */
355 if (error == -ENOTSUPP && desc->plus) {
356 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
357 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
358 desc->plus = 0;
359 goto again;
360 }
361 goto error;
362 }
363 desc->timestamp = timestamp;
364 desc->gencount = gencount;
365 error:
366 return error;
367 }
368
369 static int xdr_decode(nfs_readdir_descriptor_t *desc,
370 struct nfs_entry *entry, struct xdr_stream *xdr)
371 {
372 int error;
373
374 error = desc->decode(xdr, entry, desc->plus);
375 if (error)
376 return error;
377 entry->fattr->time_start = desc->timestamp;
378 entry->fattr->gencount = desc->gencount;
379 return 0;
380 }
381
382 /* Match file and dirent using either filehandle or fileid
383 * Note: caller is responsible for checking the fsid
384 */
385 static
386 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
387 {
388 struct inode *inode;
389 struct nfs_inode *nfsi;
390
391 if (d_really_is_negative(dentry))
392 return 0;
393
394 inode = d_inode(dentry);
395 if (is_bad_inode(inode) || NFS_STALE(inode))
396 return 0;
397
398 nfsi = NFS_I(inode);
399 if (entry->fattr->fileid != nfsi->fileid)
400 return 0;
401 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
402 return 0;
403 return 1;
404 }
405
406 static
407 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
408 {
409 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
410 return false;
411 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
412 return true;
413 if (ctx->pos == 0)
414 return true;
415 return false;
416 }
417
418 /*
419 * This function is called by the lookup and getattr code to request the
420 * use of readdirplus to accelerate any future lookups in the same
421 * directory.
422 */
423 void nfs_advise_use_readdirplus(struct inode *dir)
424 {
425 struct nfs_inode *nfsi = NFS_I(dir);
426
427 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
428 !list_empty(&nfsi->open_files))
429 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
430 }
431
432 /*
433 * This function is mainly for use by nfs_getattr().
434 *
435 * If this is an 'ls -l', we want to force use of readdirplus.
436 * Do this by checking if there is an active file descriptor
437 * and calling nfs_advise_use_readdirplus, then forcing a
438 * cache flush.
439 */
440 void nfs_force_use_readdirplus(struct inode *dir)
441 {
442 struct nfs_inode *nfsi = NFS_I(dir);
443
444 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
445 !list_empty(&nfsi->open_files)) {
446 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
447 invalidate_mapping_pages(dir->i_mapping, 0, -1);
448 }
449 }
450
451 static
452 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
453 {
454 struct qstr filename = QSTR_INIT(entry->name, entry->len);
455 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
456 struct dentry *dentry;
457 struct dentry *alias;
458 struct inode *dir = d_inode(parent);
459 struct inode *inode;
460 int status;
461
462 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
463 return;
464 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
465 return;
466 if (filename.len == 0)
467 return;
468 /* Validate that the name doesn't contain any illegal '\0' */
469 if (strnlen(filename.name, filename.len) != filename.len)
470 return;
471 /* ...or '/' */
472 if (strnchr(filename.name, filename.len, '/'))
473 return;
474 if (filename.name[0] == '.') {
475 if (filename.len == 1)
476 return;
477 if (filename.len == 2 && filename.name[1] == '.')
478 return;
479 }
480 filename.hash = full_name_hash(parent, filename.name, filename.len);
481
482 dentry = d_lookup(parent, &filename);
483 again:
484 if (!dentry) {
485 dentry = d_alloc_parallel(parent, &filename, &wq);
486 if (IS_ERR(dentry))
487 return;
488 }
489 if (!d_in_lookup(dentry)) {
490 /* Is there a mountpoint here? If so, just exit */
491 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
492 &entry->fattr->fsid))
493 goto out;
494 if (nfs_same_file(dentry, entry)) {
495 if (!entry->fh->size)
496 goto out;
497 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
498 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
499 if (!status)
500 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
501 goto out;
502 } else {
503 d_invalidate(dentry);
504 dput(dentry);
505 dentry = NULL;
506 goto again;
507 }
508 }
509 if (!entry->fh->size) {
510 d_lookup_done(dentry);
511 goto out;
512 }
513
514 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
515 alias = d_splice_alias(inode, dentry);
516 d_lookup_done(dentry);
517 if (alias) {
518 if (IS_ERR(alias))
519 goto out;
520 dput(dentry);
521 dentry = alias;
522 }
523 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
524 out:
525 dput(dentry);
526 }
527
528 /* Perform conversion from xdr to cache array */
529 static
530 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
531 struct page **xdr_pages, struct page *page, unsigned int buflen)
532 {
533 struct xdr_stream stream;
534 struct xdr_buf buf;
535 struct page *scratch;
536 struct nfs_cache_array *array;
537 unsigned int count = 0;
538 int status;
539
540 scratch = alloc_page(GFP_KERNEL);
541 if (scratch == NULL)
542 return -ENOMEM;
543
544 if (buflen == 0)
545 goto out_nopages;
546
547 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
548 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
549
550 do {
551 status = xdr_decode(desc, entry, &stream);
552 if (status != 0) {
553 if (status == -EAGAIN)
554 status = 0;
555 break;
556 }
557
558 count++;
559
560 if (desc->plus != 0)
561 nfs_prime_dcache(file_dentry(desc->file), entry);
562
563 status = nfs_readdir_add_to_array(entry, page);
564 if (status != 0)
565 break;
566 } while (!entry->eof);
567
568 out_nopages:
569 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
570 array = kmap(page);
571 array->eof_index = array->size;
572 status = 0;
573 kunmap(page);
574 }
575
576 put_page(scratch);
577 return status;
578 }
579
580 static
581 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
582 {
583 unsigned int i;
584 for (i = 0; i < npages; i++)
585 put_page(pages[i]);
586 }
587
588 /*
589 * nfs_readdir_large_page will allocate pages that must be freed with a call
590 * to nfs_readdir_free_pagearray
591 */
592 static
593 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
594 {
595 unsigned int i;
596
597 for (i = 0; i < npages; i++) {
598 struct page *page = alloc_page(GFP_KERNEL);
599 if (page == NULL)
600 goto out_freepages;
601 pages[i] = page;
602 }
603 return 0;
604
605 out_freepages:
606 nfs_readdir_free_pages(pages, i);
607 return -ENOMEM;
608 }
609
610 static
611 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
612 {
613 struct page *pages[NFS_MAX_READDIR_PAGES];
614 struct nfs_entry entry;
615 struct file *file = desc->file;
616 struct nfs_cache_array *array;
617 int status = -ENOMEM;
618 unsigned int array_size = ARRAY_SIZE(pages);
619
620 entry.prev_cookie = 0;
621 entry.cookie = desc->last_cookie;
622 entry.eof = 0;
623 entry.fh = nfs_alloc_fhandle();
624 entry.fattr = nfs_alloc_fattr();
625 entry.server = NFS_SERVER(inode);
626 if (entry.fh == NULL || entry.fattr == NULL)
627 goto out;
628
629 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
630 if (IS_ERR(entry.label)) {
631 status = PTR_ERR(entry.label);
632 goto out;
633 }
634
635 array = kmap(page);
636 memset(array, 0, sizeof(struct nfs_cache_array));
637 array->eof_index = -1;
638
639 status = nfs_readdir_alloc_pages(pages, array_size);
640 if (status < 0)
641 goto out_release_array;
642 do {
643 unsigned int pglen;
644 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
645
646 if (status < 0)
647 break;
648 pglen = status;
649 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
650 if (status < 0) {
651 if (status == -ENOSPC)
652 status = 0;
653 break;
654 }
655 } while (array->eof_index < 0);
656
657 nfs_readdir_free_pages(pages, array_size);
658 out_release_array:
659 kunmap(page);
660 nfs4_label_free(entry.label);
661 out:
662 nfs_free_fattr(entry.fattr);
663 nfs_free_fhandle(entry.fh);
664 return status;
665 }
666
667 /*
668 * Now we cache directories properly, by converting xdr information
669 * to an array that can be used for lookups later. This results in
670 * fewer cache pages, since we can store more information on each page.
671 * We only need to convert from xdr once so future lookups are much simpler
672 */
673 static
674 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
675 {
676 struct inode *inode = file_inode(desc->file);
677 int ret;
678
679 ret = nfs_readdir_xdr_to_array(desc, page, inode);
680 if (ret < 0)
681 goto error;
682 SetPageUptodate(page);
683
684 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
685 /* Should never happen */
686 nfs_zap_mapping(inode, inode->i_mapping);
687 }
688 unlock_page(page);
689 return 0;
690 error:
691 unlock_page(page);
692 return ret;
693 }
694
695 static
696 void cache_page_release(nfs_readdir_descriptor_t *desc)
697 {
698 if (!desc->page->mapping)
699 nfs_readdir_clear_array(desc->page);
700 put_page(desc->page);
701 desc->page = NULL;
702 }
703
704 static
705 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
706 {
707 return read_cache_page(desc->file->f_mapping,
708 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
709 }
710
711 /*
712 * Returns 0 if desc->dir_cookie was found on page desc->page_index
713 */
714 static
715 int find_cache_page(nfs_readdir_descriptor_t *desc)
716 {
717 int res;
718
719 desc->page = get_cache_page(desc);
720 if (IS_ERR(desc->page))
721 return PTR_ERR(desc->page);
722
723 res = nfs_readdir_search_array(desc);
724 if (res != 0)
725 cache_page_release(desc);
726 return res;
727 }
728
729 /* Search for desc->dir_cookie from the beginning of the page cache */
730 static inline
731 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
732 {
733 int res;
734
735 if (desc->page_index == 0) {
736 desc->current_index = 0;
737 desc->last_cookie = 0;
738 }
739 do {
740 res = find_cache_page(desc);
741 } while (res == -EAGAIN);
742 return res;
743 }
744
745 /*
746 * Once we've found the start of the dirent within a page: fill 'er up...
747 */
748 static
749 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
750 {
751 struct file *file = desc->file;
752 int i = 0;
753 int res = 0;
754 struct nfs_cache_array *array = NULL;
755 struct nfs_open_dir_context *ctx = file->private_data;
756
757 array = kmap(desc->page);
758 for (i = desc->cache_entry_index; i < array->size; i++) {
759 struct nfs_cache_array_entry *ent;
760
761 ent = &array->array[i];
762 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
763 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
764 desc->eof = 1;
765 break;
766 }
767 desc->ctx->pos++;
768 if (i < (array->size-1))
769 *desc->dir_cookie = array->array[i+1].cookie;
770 else
771 *desc->dir_cookie = array->last_cookie;
772 if (ctx->duped != 0)
773 ctx->duped = 1;
774 }
775 if (array->eof_index >= 0)
776 desc->eof = 1;
777
778 kunmap(desc->page);
779 cache_page_release(desc);
780 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
781 (unsigned long long)*desc->dir_cookie, res);
782 return res;
783 }
784
785 /*
786 * If we cannot find a cookie in our cache, we suspect that this is
787 * because it points to a deleted file, so we ask the server to return
788 * whatever it thinks is the next entry. We then feed this to filldir.
789 * If all goes well, we should then be able to find our way round the
790 * cache on the next call to readdir_search_pagecache();
791 *
792 * NOTE: we cannot add the anonymous page to the pagecache because
793 * the data it contains might not be page aligned. Besides,
794 * we should already have a complete representation of the
795 * directory in the page cache by the time we get here.
796 */
797 static inline
798 int uncached_readdir(nfs_readdir_descriptor_t *desc)
799 {
800 struct page *page = NULL;
801 int status;
802 struct inode *inode = file_inode(desc->file);
803 struct nfs_open_dir_context *ctx = desc->file->private_data;
804
805 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
806 (unsigned long long)*desc->dir_cookie);
807
808 page = alloc_page(GFP_HIGHUSER);
809 if (!page) {
810 status = -ENOMEM;
811 goto out;
812 }
813
814 desc->page_index = 0;
815 desc->last_cookie = *desc->dir_cookie;
816 desc->page = page;
817 ctx->duped = 0;
818
819 status = nfs_readdir_xdr_to_array(desc, page, inode);
820 if (status < 0)
821 goto out_release;
822
823 status = nfs_do_filldir(desc);
824
825 out:
826 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
827 __func__, status);
828 return status;
829 out_release:
830 cache_page_release(desc);
831 goto out;
832 }
833
834 /* The file offset position represents the dirent entry number. A
835 last cookie cache takes care of the common case of reading the
836 whole directory.
837 */
838 static int nfs_readdir(struct file *file, struct dir_context *ctx)
839 {
840 struct dentry *dentry = file_dentry(file);
841 struct inode *inode = d_inode(dentry);
842 nfs_readdir_descriptor_t my_desc,
843 *desc = &my_desc;
844 struct nfs_open_dir_context *dir_ctx = file->private_data;
845 int res = 0;
846
847 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
848 file, (long long)ctx->pos);
849 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
850
851 /*
852 * ctx->pos points to the dirent entry number.
853 * *desc->dir_cookie has the cookie for the next entry. We have
854 * to either find the entry with the appropriate number or
855 * revalidate the cookie.
856 */
857 memset(desc, 0, sizeof(*desc));
858
859 desc->file = file;
860 desc->ctx = ctx;
861 desc->dir_cookie = &dir_ctx->dir_cookie;
862 desc->decode = NFS_PROTO(inode)->decode_dirent;
863 desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
864
865 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
866 res = nfs_revalidate_mapping(inode, file->f_mapping);
867 if (res < 0)
868 goto out;
869
870 do {
871 res = readdir_search_pagecache(desc);
872
873 if (res == -EBADCOOKIE) {
874 res = 0;
875 /* This means either end of directory */
876 if (*desc->dir_cookie && desc->eof == 0) {
877 /* Or that the server has 'lost' a cookie */
878 res = uncached_readdir(desc);
879 if (res == 0)
880 continue;
881 }
882 break;
883 }
884 if (res == -ETOOSMALL && desc->plus) {
885 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
886 nfs_zap_caches(inode);
887 desc->page_index = 0;
888 desc->plus = 0;
889 desc->eof = 0;
890 continue;
891 }
892 if (res < 0)
893 break;
894
895 res = nfs_do_filldir(desc);
896 if (res < 0)
897 break;
898 } while (!desc->eof);
899 out:
900 if (res > 0)
901 res = 0;
902 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
903 return res;
904 }
905
906 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
907 {
908 struct inode *inode = file_inode(filp);
909 struct nfs_open_dir_context *dir_ctx = filp->private_data;
910
911 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
912 filp, offset, whence);
913
914 inode_lock(inode);
915 switch (whence) {
916 case 1:
917 offset += filp->f_pos;
918 case 0:
919 if (offset >= 0)
920 break;
921 default:
922 offset = -EINVAL;
923 goto out;
924 }
925 if (offset != filp->f_pos) {
926 filp->f_pos = offset;
927 dir_ctx->dir_cookie = 0;
928 dir_ctx->duped = 0;
929 }
930 out:
931 inode_unlock(inode);
932 return offset;
933 }
934
935 /*
936 * All directory operations under NFS are synchronous, so fsync()
937 * is a dummy operation.
938 */
939 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
940 int datasync)
941 {
942 struct inode *inode = file_inode(filp);
943
944 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
945
946 inode_lock(inode);
947 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
948 inode_unlock(inode);
949 return 0;
950 }
951
952 /**
953 * nfs_force_lookup_revalidate - Mark the directory as having changed
954 * @dir - pointer to directory inode
955 *
956 * This forces the revalidation code in nfs_lookup_revalidate() to do a
957 * full lookup on all child dentries of 'dir' whenever a change occurs
958 * on the server that might have invalidated our dcache.
959 *
960 * The caller should be holding dir->i_lock
961 */
962 void nfs_force_lookup_revalidate(struct inode *dir)
963 {
964 NFS_I(dir)->cache_change_attribute++;
965 }
966 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
967
968 /*
969 * A check for whether or not the parent directory has changed.
970 * In the case it has, we assume that the dentries are untrustworthy
971 * and may need to be looked up again.
972 * If rcu_walk prevents us from performing a full check, return 0.
973 */
974 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
975 int rcu_walk)
976 {
977 if (IS_ROOT(dentry))
978 return 1;
979 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
980 return 0;
981 if (!nfs_verify_change_attribute(dir, dentry->d_time))
982 return 0;
983 /* Revalidate nfsi->cache_change_attribute before we declare a match */
984 if (nfs_mapping_need_revalidate_inode(dir)) {
985 if (rcu_walk)
986 return 0;
987 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
988 return 0;
989 }
990 if (!nfs_verify_change_attribute(dir, dentry->d_time))
991 return 0;
992 return 1;
993 }
994
995 /*
996 * Use intent information to check whether or not we're going to do
997 * an O_EXCL create using this path component.
998 */
999 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1000 {
1001 if (NFS_PROTO(dir)->version == 2)
1002 return 0;
1003 return flags & LOOKUP_EXCL;
1004 }
1005
1006 /*
1007 * Inode and filehandle revalidation for lookups.
1008 *
1009 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1010 * or if the intent information indicates that we're about to open this
1011 * particular file and the "nocto" mount flag is not set.
1012 *
1013 */
1014 static
1015 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1016 {
1017 struct nfs_server *server = NFS_SERVER(inode);
1018 int ret;
1019
1020 if (IS_AUTOMOUNT(inode))
1021 return 0;
1022 /* VFS wants an on-the-wire revalidation */
1023 if (flags & LOOKUP_REVAL)
1024 goto out_force;
1025 /* This is an open(2) */
1026 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1027 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1028 goto out_force;
1029 out:
1030 return (inode->i_nlink == 0) ? -ENOENT : 0;
1031 out_force:
1032 if (flags & LOOKUP_RCU)
1033 return -ECHILD;
1034 ret = __nfs_revalidate_inode(server, inode);
1035 if (ret != 0)
1036 return ret;
1037 goto out;
1038 }
1039
1040 /*
1041 * We judge how long we want to trust negative
1042 * dentries by looking at the parent inode mtime.
1043 *
1044 * If parent mtime has changed, we revalidate, else we wait for a
1045 * period corresponding to the parent's attribute cache timeout value.
1046 *
1047 * If LOOKUP_RCU prevents us from performing a full check, return 1
1048 * suggesting a reval is needed.
1049 */
1050 static inline
1051 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1052 unsigned int flags)
1053 {
1054 /* Don't revalidate a negative dentry if we're creating a new file */
1055 if (flags & LOOKUP_CREATE)
1056 return 0;
1057 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1058 return 1;
1059 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1060 }
1061
1062 /*
1063 * This is called every time the dcache has a lookup hit,
1064 * and we should check whether we can really trust that
1065 * lookup.
1066 *
1067 * NOTE! The hit can be a negative hit too, don't assume
1068 * we have an inode!
1069 *
1070 * If the parent directory is seen to have changed, we throw out the
1071 * cached dentry and do a new lookup.
1072 */
1073 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1074 {
1075 struct inode *dir;
1076 struct inode *inode;
1077 struct dentry *parent;
1078 struct nfs_fh *fhandle = NULL;
1079 struct nfs_fattr *fattr = NULL;
1080 struct nfs4_label *label = NULL;
1081 int error;
1082
1083 if (flags & LOOKUP_RCU) {
1084 parent = ACCESS_ONCE(dentry->d_parent);
1085 dir = d_inode_rcu(parent);
1086 if (!dir)
1087 return -ECHILD;
1088 } else {
1089 parent = dget_parent(dentry);
1090 dir = d_inode(parent);
1091 }
1092 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1093 inode = d_inode(dentry);
1094
1095 if (!inode) {
1096 if (nfs_neg_need_reval(dir, dentry, flags)) {
1097 if (flags & LOOKUP_RCU)
1098 return -ECHILD;
1099 goto out_bad;
1100 }
1101 goto out_valid;
1102 }
1103
1104 if (is_bad_inode(inode)) {
1105 if (flags & LOOKUP_RCU)
1106 return -ECHILD;
1107 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1108 __func__, dentry);
1109 goto out_bad;
1110 }
1111
1112 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1113 goto out_set_verifier;
1114
1115 /* Force a full look up iff the parent directory has changed */
1116 if (!nfs_is_exclusive_create(dir, flags) &&
1117 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1118
1119 if (nfs_lookup_verify_inode(inode, flags)) {
1120 if (flags & LOOKUP_RCU)
1121 return -ECHILD;
1122 goto out_zap_parent;
1123 }
1124 nfs_advise_use_readdirplus(dir);
1125 goto out_valid;
1126 }
1127
1128 if (flags & LOOKUP_RCU)
1129 return -ECHILD;
1130
1131 if (NFS_STALE(inode))
1132 goto out_bad;
1133
1134 error = -ENOMEM;
1135 fhandle = nfs_alloc_fhandle();
1136 fattr = nfs_alloc_fattr();
1137 if (fhandle == NULL || fattr == NULL)
1138 goto out_error;
1139
1140 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1141 if (IS_ERR(label))
1142 goto out_error;
1143
1144 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1145 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1146 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1147 if (error)
1148 goto out_bad;
1149 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1150 goto out_bad;
1151 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1152 goto out_bad;
1153
1154 nfs_setsecurity(inode, fattr, label);
1155
1156 nfs_free_fattr(fattr);
1157 nfs_free_fhandle(fhandle);
1158 nfs4_label_free(label);
1159
1160 /* set a readdirplus hint that we had a cache miss */
1161 nfs_force_use_readdirplus(dir);
1162
1163 out_set_verifier:
1164 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1165 out_valid:
1166 if (flags & LOOKUP_RCU) {
1167 if (parent != ACCESS_ONCE(dentry->d_parent))
1168 return -ECHILD;
1169 } else
1170 dput(parent);
1171 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1172 __func__, dentry);
1173 return 1;
1174 out_zap_parent:
1175 nfs_zap_caches(dir);
1176 out_bad:
1177 WARN_ON(flags & LOOKUP_RCU);
1178 nfs_free_fattr(fattr);
1179 nfs_free_fhandle(fhandle);
1180 nfs4_label_free(label);
1181 nfs_mark_for_revalidate(dir);
1182 if (inode && S_ISDIR(inode->i_mode)) {
1183 /* Purge readdir caches. */
1184 nfs_zap_caches(inode);
1185 /*
1186 * We can't d_drop the root of a disconnected tree:
1187 * its d_hash is on the s_anon list and d_drop() would hide
1188 * it from shrink_dcache_for_unmount(), leading to busy
1189 * inodes on unmount and further oopses.
1190 */
1191 if (IS_ROOT(dentry))
1192 goto out_valid;
1193 }
1194 dput(parent);
1195 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1196 __func__, dentry);
1197 return 0;
1198 out_error:
1199 WARN_ON(flags & LOOKUP_RCU);
1200 nfs_free_fattr(fattr);
1201 nfs_free_fhandle(fhandle);
1202 nfs4_label_free(label);
1203 dput(parent);
1204 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1205 __func__, dentry, error);
1206 return error;
1207 }
1208
1209 /*
1210 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1211 * when we don't really care about the dentry name. This is called when a
1212 * pathwalk ends on a dentry that was not found via a normal lookup in the
1213 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1214 *
1215 * In this situation, we just want to verify that the inode itself is OK
1216 * since the dentry might have changed on the server.
1217 */
1218 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1219 {
1220 struct inode *inode = d_inode(dentry);
1221 int error = 0;
1222
1223 /*
1224 * I believe we can only get a negative dentry here in the case of a
1225 * procfs-style symlink. Just assume it's correct for now, but we may
1226 * eventually need to do something more here.
1227 */
1228 if (!inode) {
1229 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1230 __func__, dentry);
1231 return 1;
1232 }
1233
1234 if (is_bad_inode(inode)) {
1235 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1236 __func__, dentry);
1237 return 0;
1238 }
1239
1240 if (nfs_mapping_need_revalidate_inode(inode))
1241 error = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
1242 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1243 __func__, inode->i_ino, error ? "invalid" : "valid");
1244 return !error;
1245 }
1246
1247 /*
1248 * This is called from dput() when d_count is going to 0.
1249 */
1250 static int nfs_dentry_delete(const struct dentry *dentry)
1251 {
1252 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1253 dentry, dentry->d_flags);
1254
1255 /* Unhash any dentry with a stale inode */
1256 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1257 return 1;
1258
1259 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1260 /* Unhash it, so that ->d_iput() would be called */
1261 return 1;
1262 }
1263 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1264 /* Unhash it, so that ancestors of killed async unlink
1265 * files will be cleaned up during umount */
1266 return 1;
1267 }
1268 return 0;
1269
1270 }
1271
1272 /* Ensure that we revalidate inode->i_nlink */
1273 static void nfs_drop_nlink(struct inode *inode)
1274 {
1275 spin_lock(&inode->i_lock);
1276 /* drop the inode if we're reasonably sure this is the last link */
1277 if (inode->i_nlink == 1)
1278 clear_nlink(inode);
1279 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1280 spin_unlock(&inode->i_lock);
1281 }
1282
1283 /*
1284 * Called when the dentry loses inode.
1285 * We use it to clean up silly-renamed files.
1286 */
1287 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1288 {
1289 if (S_ISDIR(inode->i_mode))
1290 /* drop any readdir cache as it could easily be old */
1291 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1292
1293 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1294 nfs_complete_unlink(dentry, inode);
1295 nfs_drop_nlink(inode);
1296 }
1297 iput(inode);
1298 }
1299
1300 static void nfs_d_release(struct dentry *dentry)
1301 {
1302 /* free cached devname value, if it survived that far */
1303 if (unlikely(dentry->d_fsdata)) {
1304 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1305 WARN_ON(1);
1306 else
1307 kfree(dentry->d_fsdata);
1308 }
1309 }
1310
1311 const struct dentry_operations nfs_dentry_operations = {
1312 .d_revalidate = nfs_lookup_revalidate,
1313 .d_weak_revalidate = nfs_weak_revalidate,
1314 .d_delete = nfs_dentry_delete,
1315 .d_iput = nfs_dentry_iput,
1316 .d_automount = nfs_d_automount,
1317 .d_release = nfs_d_release,
1318 };
1319 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1320
1321 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1322 {
1323 struct dentry *res;
1324 struct inode *inode = NULL;
1325 struct nfs_fh *fhandle = NULL;
1326 struct nfs_fattr *fattr = NULL;
1327 struct nfs4_label *label = NULL;
1328 int error;
1329
1330 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1331 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1332
1333 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1334 return ERR_PTR(-ENAMETOOLONG);
1335
1336 /*
1337 * If we're doing an exclusive create, optimize away the lookup
1338 * but don't hash the dentry.
1339 */
1340 if (nfs_is_exclusive_create(dir, flags))
1341 return NULL;
1342
1343 res = ERR_PTR(-ENOMEM);
1344 fhandle = nfs_alloc_fhandle();
1345 fattr = nfs_alloc_fattr();
1346 if (fhandle == NULL || fattr == NULL)
1347 goto out;
1348
1349 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1350 if (IS_ERR(label))
1351 goto out;
1352
1353 trace_nfs_lookup_enter(dir, dentry, flags);
1354 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1355 if (error == -ENOENT)
1356 goto no_entry;
1357 if (error < 0) {
1358 res = ERR_PTR(error);
1359 goto out_label;
1360 }
1361 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1362 res = ERR_CAST(inode);
1363 if (IS_ERR(res))
1364 goto out_label;
1365
1366 /* Notify readdir to use READDIRPLUS */
1367 nfs_force_use_readdirplus(dir);
1368
1369 no_entry:
1370 res = d_splice_alias(inode, dentry);
1371 if (res != NULL) {
1372 if (IS_ERR(res))
1373 goto out_label;
1374 dentry = res;
1375 }
1376 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1377 out_label:
1378 trace_nfs_lookup_exit(dir, dentry, flags, error);
1379 nfs4_label_free(label);
1380 out:
1381 nfs_free_fattr(fattr);
1382 nfs_free_fhandle(fhandle);
1383 return res;
1384 }
1385 EXPORT_SYMBOL_GPL(nfs_lookup);
1386
1387 #if IS_ENABLED(CONFIG_NFS_V4)
1388 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1389
1390 const struct dentry_operations nfs4_dentry_operations = {
1391 .d_revalidate = nfs4_lookup_revalidate,
1392 .d_delete = nfs_dentry_delete,
1393 .d_iput = nfs_dentry_iput,
1394 .d_automount = nfs_d_automount,
1395 .d_release = nfs_d_release,
1396 };
1397 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1398
1399 static fmode_t flags_to_mode(int flags)
1400 {
1401 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1402 if ((flags & O_ACCMODE) != O_WRONLY)
1403 res |= FMODE_READ;
1404 if ((flags & O_ACCMODE) != O_RDONLY)
1405 res |= FMODE_WRITE;
1406 return res;
1407 }
1408
1409 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1410 {
1411 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1412 }
1413
1414 static int do_open(struct inode *inode, struct file *filp)
1415 {
1416 nfs_fscache_open_file(inode, filp);
1417 return 0;
1418 }
1419
1420 static int nfs_finish_open(struct nfs_open_context *ctx,
1421 struct dentry *dentry,
1422 struct file *file, unsigned open_flags,
1423 int *opened)
1424 {
1425 int err;
1426
1427 err = finish_open(file, dentry, do_open, opened);
1428 if (err)
1429 goto out;
1430 nfs_file_set_open_context(file, ctx);
1431
1432 out:
1433 return err;
1434 }
1435
1436 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1437 struct file *file, unsigned open_flags,
1438 umode_t mode, int *opened)
1439 {
1440 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1441 struct nfs_open_context *ctx;
1442 struct dentry *res;
1443 struct iattr attr = { .ia_valid = ATTR_OPEN };
1444 struct inode *inode;
1445 unsigned int lookup_flags = 0;
1446 bool switched = false;
1447 int err;
1448
1449 /* Expect a negative dentry */
1450 BUG_ON(d_inode(dentry));
1451
1452 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1453 dir->i_sb->s_id, dir->i_ino, dentry);
1454
1455 err = nfs_check_flags(open_flags);
1456 if (err)
1457 return err;
1458
1459 /* NFS only supports OPEN on regular files */
1460 if ((open_flags & O_DIRECTORY)) {
1461 if (!d_in_lookup(dentry)) {
1462 /*
1463 * Hashed negative dentry with O_DIRECTORY: dentry was
1464 * revalidated and is fine, no need to perform lookup
1465 * again
1466 */
1467 return -ENOENT;
1468 }
1469 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1470 goto no_open;
1471 }
1472
1473 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1474 return -ENAMETOOLONG;
1475
1476 if (open_flags & O_CREAT) {
1477 struct nfs_server *server = NFS_SERVER(dir);
1478
1479 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1480 mode &= ~current_umask();
1481
1482 attr.ia_valid |= ATTR_MODE;
1483 attr.ia_mode = mode;
1484 }
1485 if (open_flags & O_TRUNC) {
1486 attr.ia_valid |= ATTR_SIZE;
1487 attr.ia_size = 0;
1488 }
1489
1490 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1491 d_drop(dentry);
1492 switched = true;
1493 dentry = d_alloc_parallel(dentry->d_parent,
1494 &dentry->d_name, &wq);
1495 if (IS_ERR(dentry))
1496 return PTR_ERR(dentry);
1497 if (unlikely(!d_in_lookup(dentry)))
1498 return finish_no_open(file, dentry);
1499 }
1500
1501 ctx = create_nfs_open_context(dentry, open_flags, file);
1502 err = PTR_ERR(ctx);
1503 if (IS_ERR(ctx))
1504 goto out;
1505
1506 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1507 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1508 if (IS_ERR(inode)) {
1509 err = PTR_ERR(inode);
1510 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1511 put_nfs_open_context(ctx);
1512 d_drop(dentry);
1513 switch (err) {
1514 case -ENOENT:
1515 d_add(dentry, NULL);
1516 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1517 break;
1518 case -EISDIR:
1519 case -ENOTDIR:
1520 goto no_open;
1521 case -ELOOP:
1522 if (!(open_flags & O_NOFOLLOW))
1523 goto no_open;
1524 break;
1525 /* case -EINVAL: */
1526 default:
1527 break;
1528 }
1529 goto out;
1530 }
1531
1532 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1533 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1534 put_nfs_open_context(ctx);
1535 out:
1536 if (unlikely(switched)) {
1537 d_lookup_done(dentry);
1538 dput(dentry);
1539 }
1540 return err;
1541
1542 no_open:
1543 res = nfs_lookup(dir, dentry, lookup_flags);
1544 if (switched) {
1545 d_lookup_done(dentry);
1546 if (!res)
1547 res = dentry;
1548 else
1549 dput(dentry);
1550 }
1551 if (IS_ERR(res))
1552 return PTR_ERR(res);
1553 return finish_no_open(file, res);
1554 }
1555 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1556
1557 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1558 {
1559 struct inode *inode;
1560 int ret = 0;
1561
1562 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1563 goto no_open;
1564 if (d_mountpoint(dentry))
1565 goto no_open;
1566 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1567 goto no_open;
1568
1569 inode = d_inode(dentry);
1570
1571 /* We can't create new files in nfs_open_revalidate(), so we
1572 * optimize away revalidation of negative dentries.
1573 */
1574 if (inode == NULL) {
1575 struct dentry *parent;
1576 struct inode *dir;
1577
1578 if (flags & LOOKUP_RCU) {
1579 parent = ACCESS_ONCE(dentry->d_parent);
1580 dir = d_inode_rcu(parent);
1581 if (!dir)
1582 return -ECHILD;
1583 } else {
1584 parent = dget_parent(dentry);
1585 dir = d_inode(parent);
1586 }
1587 if (!nfs_neg_need_reval(dir, dentry, flags))
1588 ret = 1;
1589 else if (flags & LOOKUP_RCU)
1590 ret = -ECHILD;
1591 if (!(flags & LOOKUP_RCU))
1592 dput(parent);
1593 else if (parent != ACCESS_ONCE(dentry->d_parent))
1594 return -ECHILD;
1595 goto out;
1596 }
1597
1598 /* NFS only supports OPEN on regular files */
1599 if (!S_ISREG(inode->i_mode))
1600 goto no_open;
1601 /* We cannot do exclusive creation on a positive dentry */
1602 if (flags & LOOKUP_EXCL)
1603 goto no_open;
1604
1605 /* Let f_op->open() actually open (and revalidate) the file */
1606 ret = 1;
1607
1608 out:
1609 return ret;
1610
1611 no_open:
1612 return nfs_lookup_revalidate(dentry, flags);
1613 }
1614
1615 #endif /* CONFIG_NFSV4 */
1616
1617 /*
1618 * Code common to create, mkdir, and mknod.
1619 */
1620 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1621 struct nfs_fattr *fattr,
1622 struct nfs4_label *label)
1623 {
1624 struct dentry *parent = dget_parent(dentry);
1625 struct inode *dir = d_inode(parent);
1626 struct inode *inode;
1627 int error = -EACCES;
1628
1629 d_drop(dentry);
1630
1631 /* We may have been initialized further down */
1632 if (d_really_is_positive(dentry))
1633 goto out;
1634 if (fhandle->size == 0) {
1635 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1636 if (error)
1637 goto out_error;
1638 }
1639 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1640 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1641 struct nfs_server *server = NFS_SB(dentry->d_sb);
1642 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1643 if (error < 0)
1644 goto out_error;
1645 }
1646 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1647 error = PTR_ERR(inode);
1648 if (IS_ERR(inode))
1649 goto out_error;
1650 d_add(dentry, inode);
1651 out:
1652 dput(parent);
1653 return 0;
1654 out_error:
1655 nfs_mark_for_revalidate(dir);
1656 dput(parent);
1657 return error;
1658 }
1659 EXPORT_SYMBOL_GPL(nfs_instantiate);
1660
1661 /*
1662 * Following a failed create operation, we drop the dentry rather
1663 * than retain a negative dentry. This avoids a problem in the event
1664 * that the operation succeeded on the server, but an error in the
1665 * reply path made it appear to have failed.
1666 */
1667 int nfs_create(struct inode *dir, struct dentry *dentry,
1668 umode_t mode, bool excl)
1669 {
1670 struct iattr attr;
1671 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1672 int error;
1673
1674 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1675 dir->i_sb->s_id, dir->i_ino, dentry);
1676
1677 attr.ia_mode = mode;
1678 attr.ia_valid = ATTR_MODE;
1679
1680 trace_nfs_create_enter(dir, dentry, open_flags);
1681 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1682 trace_nfs_create_exit(dir, dentry, open_flags, error);
1683 if (error != 0)
1684 goto out_err;
1685 return 0;
1686 out_err:
1687 d_drop(dentry);
1688 return error;
1689 }
1690 EXPORT_SYMBOL_GPL(nfs_create);
1691
1692 /*
1693 * See comments for nfs_proc_create regarding failed operations.
1694 */
1695 int
1696 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1697 {
1698 struct iattr attr;
1699 int status;
1700
1701 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1702 dir->i_sb->s_id, dir->i_ino, dentry);
1703
1704 attr.ia_mode = mode;
1705 attr.ia_valid = ATTR_MODE;
1706
1707 trace_nfs_mknod_enter(dir, dentry);
1708 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1709 trace_nfs_mknod_exit(dir, dentry, status);
1710 if (status != 0)
1711 goto out_err;
1712 return 0;
1713 out_err:
1714 d_drop(dentry);
1715 return status;
1716 }
1717 EXPORT_SYMBOL_GPL(nfs_mknod);
1718
1719 /*
1720 * See comments for nfs_proc_create regarding failed operations.
1721 */
1722 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1723 {
1724 struct iattr attr;
1725 int error;
1726
1727 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1728 dir->i_sb->s_id, dir->i_ino, dentry);
1729
1730 attr.ia_valid = ATTR_MODE;
1731 attr.ia_mode = mode | S_IFDIR;
1732
1733 trace_nfs_mkdir_enter(dir, dentry);
1734 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1735 trace_nfs_mkdir_exit(dir, dentry, error);
1736 if (error != 0)
1737 goto out_err;
1738 return 0;
1739 out_err:
1740 d_drop(dentry);
1741 return error;
1742 }
1743 EXPORT_SYMBOL_GPL(nfs_mkdir);
1744
1745 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1746 {
1747 if (simple_positive(dentry))
1748 d_delete(dentry);
1749 }
1750
1751 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1752 {
1753 int error;
1754
1755 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1756 dir->i_sb->s_id, dir->i_ino, dentry);
1757
1758 trace_nfs_rmdir_enter(dir, dentry);
1759 if (d_really_is_positive(dentry)) {
1760 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1761 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1762 /* Ensure the VFS deletes this inode */
1763 switch (error) {
1764 case 0:
1765 clear_nlink(d_inode(dentry));
1766 break;
1767 case -ENOENT:
1768 nfs_dentry_handle_enoent(dentry);
1769 }
1770 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1771 } else
1772 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1773 trace_nfs_rmdir_exit(dir, dentry, error);
1774
1775 return error;
1776 }
1777 EXPORT_SYMBOL_GPL(nfs_rmdir);
1778
1779 /*
1780 * Remove a file after making sure there are no pending writes,
1781 * and after checking that the file has only one user.
1782 *
1783 * We invalidate the attribute cache and free the inode prior to the operation
1784 * to avoid possible races if the server reuses the inode.
1785 */
1786 static int nfs_safe_remove(struct dentry *dentry)
1787 {
1788 struct inode *dir = d_inode(dentry->d_parent);
1789 struct inode *inode = d_inode(dentry);
1790 int error = -EBUSY;
1791
1792 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1793
1794 /* If the dentry was sillyrenamed, we simply call d_delete() */
1795 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1796 error = 0;
1797 goto out;
1798 }
1799
1800 trace_nfs_remove_enter(dir, dentry);
1801 if (inode != NULL) {
1802 NFS_PROTO(inode)->return_delegation(inode);
1803 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1804 if (error == 0)
1805 nfs_drop_nlink(inode);
1806 } else
1807 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1808 if (error == -ENOENT)
1809 nfs_dentry_handle_enoent(dentry);
1810 trace_nfs_remove_exit(dir, dentry, error);
1811 out:
1812 return error;
1813 }
1814
1815 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1816 * belongs to an active ".nfs..." file and we return -EBUSY.
1817 *
1818 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1819 */
1820 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1821 {
1822 int error;
1823 int need_rehash = 0;
1824
1825 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1826 dir->i_ino, dentry);
1827
1828 trace_nfs_unlink_enter(dir, dentry);
1829 spin_lock(&dentry->d_lock);
1830 if (d_count(dentry) > 1) {
1831 spin_unlock(&dentry->d_lock);
1832 /* Start asynchronous writeout of the inode */
1833 write_inode_now(d_inode(dentry), 0);
1834 error = nfs_sillyrename(dir, dentry);
1835 goto out;
1836 }
1837 if (!d_unhashed(dentry)) {
1838 __d_drop(dentry);
1839 need_rehash = 1;
1840 }
1841 spin_unlock(&dentry->d_lock);
1842 error = nfs_safe_remove(dentry);
1843 if (!error || error == -ENOENT) {
1844 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1845 } else if (need_rehash)
1846 d_rehash(dentry);
1847 out:
1848 trace_nfs_unlink_exit(dir, dentry, error);
1849 return error;
1850 }
1851 EXPORT_SYMBOL_GPL(nfs_unlink);
1852
1853 /*
1854 * To create a symbolic link, most file systems instantiate a new inode,
1855 * add a page to it containing the path, then write it out to the disk
1856 * using prepare_write/commit_write.
1857 *
1858 * Unfortunately the NFS client can't create the in-core inode first
1859 * because it needs a file handle to create an in-core inode (see
1860 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1861 * symlink request has completed on the server.
1862 *
1863 * So instead we allocate a raw page, copy the symname into it, then do
1864 * the SYMLINK request with the page as the buffer. If it succeeds, we
1865 * now have a new file handle and can instantiate an in-core NFS inode
1866 * and move the raw page into its mapping.
1867 */
1868 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1869 {
1870 struct page *page;
1871 char *kaddr;
1872 struct iattr attr;
1873 unsigned int pathlen = strlen(symname);
1874 int error;
1875
1876 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1877 dir->i_ino, dentry, symname);
1878
1879 if (pathlen > PAGE_SIZE)
1880 return -ENAMETOOLONG;
1881
1882 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1883 attr.ia_valid = ATTR_MODE;
1884
1885 page = alloc_page(GFP_USER);
1886 if (!page)
1887 return -ENOMEM;
1888
1889 kaddr = page_address(page);
1890 memcpy(kaddr, symname, pathlen);
1891 if (pathlen < PAGE_SIZE)
1892 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1893
1894 trace_nfs_symlink_enter(dir, dentry);
1895 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1896 trace_nfs_symlink_exit(dir, dentry, error);
1897 if (error != 0) {
1898 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1899 dir->i_sb->s_id, dir->i_ino,
1900 dentry, symname, error);
1901 d_drop(dentry);
1902 __free_page(page);
1903 return error;
1904 }
1905
1906 /*
1907 * No big deal if we can't add this page to the page cache here.
1908 * READLINK will get the missing page from the server if needed.
1909 */
1910 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1911 GFP_KERNEL)) {
1912 SetPageUptodate(page);
1913 unlock_page(page);
1914 /*
1915 * add_to_page_cache_lru() grabs an extra page refcount.
1916 * Drop it here to avoid leaking this page later.
1917 */
1918 put_page(page);
1919 } else
1920 __free_page(page);
1921
1922 return 0;
1923 }
1924 EXPORT_SYMBOL_GPL(nfs_symlink);
1925
1926 int
1927 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1928 {
1929 struct inode *inode = d_inode(old_dentry);
1930 int error;
1931
1932 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1933 old_dentry, dentry);
1934
1935 trace_nfs_link_enter(inode, dir, dentry);
1936 NFS_PROTO(inode)->return_delegation(inode);
1937
1938 d_drop(dentry);
1939 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1940 if (error == 0) {
1941 ihold(inode);
1942 d_add(dentry, inode);
1943 }
1944 trace_nfs_link_exit(inode, dir, dentry, error);
1945 return error;
1946 }
1947 EXPORT_SYMBOL_GPL(nfs_link);
1948
1949 /*
1950 * RENAME
1951 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1952 * different file handle for the same inode after a rename (e.g. when
1953 * moving to a different directory). A fail-safe method to do so would
1954 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1955 * rename the old file using the sillyrename stuff. This way, the original
1956 * file in old_dir will go away when the last process iput()s the inode.
1957 *
1958 * FIXED.
1959 *
1960 * It actually works quite well. One needs to have the possibility for
1961 * at least one ".nfs..." file in each directory the file ever gets
1962 * moved or linked to which happens automagically with the new
1963 * implementation that only depends on the dcache stuff instead of
1964 * using the inode layer
1965 *
1966 * Unfortunately, things are a little more complicated than indicated
1967 * above. For a cross-directory move, we want to make sure we can get
1968 * rid of the old inode after the operation. This means there must be
1969 * no pending writes (if it's a file), and the use count must be 1.
1970 * If these conditions are met, we can drop the dentries before doing
1971 * the rename.
1972 */
1973 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1974 struct inode *new_dir, struct dentry *new_dentry,
1975 unsigned int flags)
1976 {
1977 struct inode *old_inode = d_inode(old_dentry);
1978 struct inode *new_inode = d_inode(new_dentry);
1979 struct dentry *dentry = NULL, *rehash = NULL;
1980 struct rpc_task *task;
1981 int error = -EBUSY;
1982
1983 if (flags)
1984 return -EINVAL;
1985
1986 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
1987 old_dentry, new_dentry,
1988 d_count(new_dentry));
1989
1990 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
1991 /*
1992 * For non-directories, check whether the target is busy and if so,
1993 * make a copy of the dentry and then do a silly-rename. If the
1994 * silly-rename succeeds, the copied dentry is hashed and becomes
1995 * the new target.
1996 */
1997 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1998 /*
1999 * To prevent any new references to the target during the
2000 * rename, we unhash the dentry in advance.
2001 */
2002 if (!d_unhashed(new_dentry)) {
2003 d_drop(new_dentry);
2004 rehash = new_dentry;
2005 }
2006
2007 if (d_count(new_dentry) > 2) {
2008 int err;
2009
2010 /* copy the target dentry's name */
2011 dentry = d_alloc(new_dentry->d_parent,
2012 &new_dentry->d_name);
2013 if (!dentry)
2014 goto out;
2015
2016 /* silly-rename the existing target ... */
2017 err = nfs_sillyrename(new_dir, new_dentry);
2018 if (err)
2019 goto out;
2020
2021 new_dentry = dentry;
2022 rehash = NULL;
2023 new_inode = NULL;
2024 }
2025 }
2026
2027 NFS_PROTO(old_inode)->return_delegation(old_inode);
2028 if (new_inode != NULL)
2029 NFS_PROTO(new_inode)->return_delegation(new_inode);
2030
2031 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2032 if (IS_ERR(task)) {
2033 error = PTR_ERR(task);
2034 goto out;
2035 }
2036
2037 error = rpc_wait_for_completion_task(task);
2038 if (error == 0)
2039 error = task->tk_status;
2040 rpc_put_task(task);
2041 nfs_mark_for_revalidate(old_inode);
2042 out:
2043 if (rehash)
2044 d_rehash(rehash);
2045 trace_nfs_rename_exit(old_dir, old_dentry,
2046 new_dir, new_dentry, error);
2047 if (!error) {
2048 if (new_inode != NULL)
2049 nfs_drop_nlink(new_inode);
2050 /*
2051 * The d_move() should be here instead of in an async RPC completion
2052 * handler because we need the proper locks to move the dentry. If
2053 * we're interrupted by a signal, the async RPC completion handler
2054 * should mark the directories for revalidation.
2055 */
2056 d_move(old_dentry, new_dentry);
2057 nfs_set_verifier(new_dentry,
2058 nfs_save_change_attribute(new_dir));
2059 } else if (error == -ENOENT)
2060 nfs_dentry_handle_enoent(old_dentry);
2061
2062 /* new dentry created? */
2063 if (dentry)
2064 dput(dentry);
2065 return error;
2066 }
2067 EXPORT_SYMBOL_GPL(nfs_rename);
2068
2069 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2070 static LIST_HEAD(nfs_access_lru_list);
2071 static atomic_long_t nfs_access_nr_entries;
2072
2073 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2074 module_param(nfs_access_max_cachesize, ulong, 0644);
2075 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2076
2077 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2078 {
2079 put_rpccred(entry->cred);
2080 kfree_rcu(entry, rcu_head);
2081 smp_mb__before_atomic();
2082 atomic_long_dec(&nfs_access_nr_entries);
2083 smp_mb__after_atomic();
2084 }
2085
2086 static void nfs_access_free_list(struct list_head *head)
2087 {
2088 struct nfs_access_entry *cache;
2089
2090 while (!list_empty(head)) {
2091 cache = list_entry(head->next, struct nfs_access_entry, lru);
2092 list_del(&cache->lru);
2093 nfs_access_free_entry(cache);
2094 }
2095 }
2096
2097 static unsigned long
2098 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2099 {
2100 LIST_HEAD(head);
2101 struct nfs_inode *nfsi, *next;
2102 struct nfs_access_entry *cache;
2103 long freed = 0;
2104
2105 spin_lock(&nfs_access_lru_lock);
2106 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2107 struct inode *inode;
2108
2109 if (nr_to_scan-- == 0)
2110 break;
2111 inode = &nfsi->vfs_inode;
2112 spin_lock(&inode->i_lock);
2113 if (list_empty(&nfsi->access_cache_entry_lru))
2114 goto remove_lru_entry;
2115 cache = list_entry(nfsi->access_cache_entry_lru.next,
2116 struct nfs_access_entry, lru);
2117 list_move(&cache->lru, &head);
2118 rb_erase(&cache->rb_node, &nfsi->access_cache);
2119 freed++;
2120 if (!list_empty(&nfsi->access_cache_entry_lru))
2121 list_move_tail(&nfsi->access_cache_inode_lru,
2122 &nfs_access_lru_list);
2123 else {
2124 remove_lru_entry:
2125 list_del_init(&nfsi->access_cache_inode_lru);
2126 smp_mb__before_atomic();
2127 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2128 smp_mb__after_atomic();
2129 }
2130 spin_unlock(&inode->i_lock);
2131 }
2132 spin_unlock(&nfs_access_lru_lock);
2133 nfs_access_free_list(&head);
2134 return freed;
2135 }
2136
2137 unsigned long
2138 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2139 {
2140 int nr_to_scan = sc->nr_to_scan;
2141 gfp_t gfp_mask = sc->gfp_mask;
2142
2143 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2144 return SHRINK_STOP;
2145 return nfs_do_access_cache_scan(nr_to_scan);
2146 }
2147
2148
2149 unsigned long
2150 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2151 {
2152 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2153 }
2154
2155 static void
2156 nfs_access_cache_enforce_limit(void)
2157 {
2158 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2159 unsigned long diff;
2160 unsigned int nr_to_scan;
2161
2162 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2163 return;
2164 nr_to_scan = 100;
2165 diff = nr_entries - nfs_access_max_cachesize;
2166 if (diff < nr_to_scan)
2167 nr_to_scan = diff;
2168 nfs_do_access_cache_scan(nr_to_scan);
2169 }
2170
2171 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2172 {
2173 struct rb_root *root_node = &nfsi->access_cache;
2174 struct rb_node *n;
2175 struct nfs_access_entry *entry;
2176
2177 /* Unhook entries from the cache */
2178 while ((n = rb_first(root_node)) != NULL) {
2179 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2180 rb_erase(n, root_node);
2181 list_move(&entry->lru, head);
2182 }
2183 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2184 }
2185
2186 void nfs_access_zap_cache(struct inode *inode)
2187 {
2188 LIST_HEAD(head);
2189
2190 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2191 return;
2192 /* Remove from global LRU init */
2193 spin_lock(&nfs_access_lru_lock);
2194 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2195 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2196
2197 spin_lock(&inode->i_lock);
2198 __nfs_access_zap_cache(NFS_I(inode), &head);
2199 spin_unlock(&inode->i_lock);
2200 spin_unlock(&nfs_access_lru_lock);
2201 nfs_access_free_list(&head);
2202 }
2203 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2204
2205 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2206 {
2207 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2208 struct nfs_access_entry *entry;
2209
2210 while (n != NULL) {
2211 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2212
2213 if (cred < entry->cred)
2214 n = n->rb_left;
2215 else if (cred > entry->cred)
2216 n = n->rb_right;
2217 else
2218 return entry;
2219 }
2220 return NULL;
2221 }
2222
2223 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res, bool may_block)
2224 {
2225 struct nfs_inode *nfsi = NFS_I(inode);
2226 struct nfs_access_entry *cache;
2227 bool retry = true;
2228 int err;
2229
2230 spin_lock(&inode->i_lock);
2231 for(;;) {
2232 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2233 goto out_zap;
2234 cache = nfs_access_search_rbtree(inode, cred);
2235 err = -ENOENT;
2236 if (cache == NULL)
2237 goto out;
2238 /* Found an entry, is our attribute cache valid? */
2239 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2240 break;
2241 err = -ECHILD;
2242 if (!may_block)
2243 goto out;
2244 if (!retry)
2245 goto out_zap;
2246 spin_unlock(&inode->i_lock);
2247 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2248 if (err)
2249 return err;
2250 spin_lock(&inode->i_lock);
2251 retry = false;
2252 }
2253 res->jiffies = cache->jiffies;
2254 res->cred = cache->cred;
2255 res->mask = cache->mask;
2256 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2257 err = 0;
2258 out:
2259 spin_unlock(&inode->i_lock);
2260 return err;
2261 out_zap:
2262 spin_unlock(&inode->i_lock);
2263 nfs_access_zap_cache(inode);
2264 return -ENOENT;
2265 }
2266
2267 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2268 {
2269 /* Only check the most recently returned cache entry,
2270 * but do it without locking.
2271 */
2272 struct nfs_inode *nfsi = NFS_I(inode);
2273 struct nfs_access_entry *cache;
2274 int err = -ECHILD;
2275 struct list_head *lh;
2276
2277 rcu_read_lock();
2278 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2279 goto out;
2280 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2281 cache = list_entry(lh, struct nfs_access_entry, lru);
2282 if (lh == &nfsi->access_cache_entry_lru ||
2283 cred != cache->cred)
2284 cache = NULL;
2285 if (cache == NULL)
2286 goto out;
2287 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2288 goto out;
2289 res->jiffies = cache->jiffies;
2290 res->cred = cache->cred;
2291 res->mask = cache->mask;
2292 err = 0;
2293 out:
2294 rcu_read_unlock();
2295 return err;
2296 }
2297
2298 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2299 {
2300 struct nfs_inode *nfsi = NFS_I(inode);
2301 struct rb_root *root_node = &nfsi->access_cache;
2302 struct rb_node **p = &root_node->rb_node;
2303 struct rb_node *parent = NULL;
2304 struct nfs_access_entry *entry;
2305
2306 spin_lock(&inode->i_lock);
2307 while (*p != NULL) {
2308 parent = *p;
2309 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2310
2311 if (set->cred < entry->cred)
2312 p = &parent->rb_left;
2313 else if (set->cred > entry->cred)
2314 p = &parent->rb_right;
2315 else
2316 goto found;
2317 }
2318 rb_link_node(&set->rb_node, parent, p);
2319 rb_insert_color(&set->rb_node, root_node);
2320 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2321 spin_unlock(&inode->i_lock);
2322 return;
2323 found:
2324 rb_replace_node(parent, &set->rb_node, root_node);
2325 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2326 list_del(&entry->lru);
2327 spin_unlock(&inode->i_lock);
2328 nfs_access_free_entry(entry);
2329 }
2330
2331 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2332 {
2333 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2334 if (cache == NULL)
2335 return;
2336 RB_CLEAR_NODE(&cache->rb_node);
2337 cache->jiffies = set->jiffies;
2338 cache->cred = get_rpccred(set->cred);
2339 cache->mask = set->mask;
2340
2341 /* The above field assignments must be visible
2342 * before this item appears on the lru. We cannot easily
2343 * use rcu_assign_pointer, so just force the memory barrier.
2344 */
2345 smp_wmb();
2346 nfs_access_add_rbtree(inode, cache);
2347
2348 /* Update accounting */
2349 smp_mb__before_atomic();
2350 atomic_long_inc(&nfs_access_nr_entries);
2351 smp_mb__after_atomic();
2352
2353 /* Add inode to global LRU list */
2354 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2355 spin_lock(&nfs_access_lru_lock);
2356 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2357 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2358 &nfs_access_lru_list);
2359 spin_unlock(&nfs_access_lru_lock);
2360 }
2361 nfs_access_cache_enforce_limit();
2362 }
2363 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2364
2365 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2366 {
2367 entry->mask = 0;
2368 if (access_result & NFS4_ACCESS_READ)
2369 entry->mask |= MAY_READ;
2370 if (access_result &
2371 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2372 entry->mask |= MAY_WRITE;
2373 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2374 entry->mask |= MAY_EXEC;
2375 }
2376 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2377
2378 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2379 {
2380 struct nfs_access_entry cache;
2381 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2382 int status;
2383
2384 trace_nfs_access_enter(inode);
2385
2386 status = nfs_access_get_cached_rcu(inode, cred, &cache);
2387 if (status != 0)
2388 status = nfs_access_get_cached(inode, cred, &cache, may_block);
2389 if (status == 0)
2390 goto out_cached;
2391
2392 status = -ECHILD;
2393 if (!may_block)
2394 goto out;
2395
2396 /* Be clever: ask server to check for all possible rights */
2397 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2398 cache.cred = cred;
2399 cache.jiffies = jiffies;
2400 status = NFS_PROTO(inode)->access(inode, &cache);
2401 if (status != 0) {
2402 if (status == -ESTALE) {
2403 nfs_zap_caches(inode);
2404 if (!S_ISDIR(inode->i_mode))
2405 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2406 }
2407 goto out;
2408 }
2409 nfs_access_add_cache(inode, &cache);
2410 out_cached:
2411 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2412 status = -EACCES;
2413 out:
2414 trace_nfs_access_exit(inode, status);
2415 return status;
2416 }
2417
2418 static int nfs_open_permission_mask(int openflags)
2419 {
2420 int mask = 0;
2421
2422 if (openflags & __FMODE_EXEC) {
2423 /* ONLY check exec rights */
2424 mask = MAY_EXEC;
2425 } else {
2426 if ((openflags & O_ACCMODE) != O_WRONLY)
2427 mask |= MAY_READ;
2428 if ((openflags & O_ACCMODE) != O_RDONLY)
2429 mask |= MAY_WRITE;
2430 }
2431
2432 return mask;
2433 }
2434
2435 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2436 {
2437 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2438 }
2439 EXPORT_SYMBOL_GPL(nfs_may_open);
2440
2441 static int nfs_execute_ok(struct inode *inode, int mask)
2442 {
2443 struct nfs_server *server = NFS_SERVER(inode);
2444 int ret = 0;
2445
2446 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) {
2447 if (mask & MAY_NOT_BLOCK)
2448 return -ECHILD;
2449 ret = __nfs_revalidate_inode(server, inode);
2450 }
2451 if (ret == 0 && !execute_ok(inode))
2452 ret = -EACCES;
2453 return ret;
2454 }
2455
2456 int nfs_permission(struct inode *inode, int mask)
2457 {
2458 struct rpc_cred *cred;
2459 int res = 0;
2460
2461 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2462
2463 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2464 goto out;
2465 /* Is this sys_access() ? */
2466 if (mask & (MAY_ACCESS | MAY_CHDIR))
2467 goto force_lookup;
2468
2469 switch (inode->i_mode & S_IFMT) {
2470 case S_IFLNK:
2471 goto out;
2472 case S_IFREG:
2473 if ((mask & MAY_OPEN) &&
2474 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2475 return 0;
2476 break;
2477 case S_IFDIR:
2478 /*
2479 * Optimize away all write operations, since the server
2480 * will check permissions when we perform the op.
2481 */
2482 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2483 goto out;
2484 }
2485
2486 force_lookup:
2487 if (!NFS_PROTO(inode)->access)
2488 goto out_notsup;
2489
2490 /* Always try fast lookups first */
2491 rcu_read_lock();
2492 cred = rpc_lookup_cred_nonblock();
2493 if (!IS_ERR(cred))
2494 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2495 else
2496 res = PTR_ERR(cred);
2497 rcu_read_unlock();
2498 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2499 /* Fast lookup failed, try the slow way */
2500 cred = rpc_lookup_cred();
2501 if (!IS_ERR(cred)) {
2502 res = nfs_do_access(inode, cred, mask);
2503 put_rpccred(cred);
2504 } else
2505 res = PTR_ERR(cred);
2506 }
2507 out:
2508 if (!res && (mask & MAY_EXEC))
2509 res = nfs_execute_ok(inode, mask);
2510
2511 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2512 inode->i_sb->s_id, inode->i_ino, mask, res);
2513 return res;
2514 out_notsup:
2515 if (mask & MAY_NOT_BLOCK)
2516 return -ECHILD;
2517
2518 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2519 if (res == 0)
2520 res = generic_permission(inode, mask);
2521 goto out;
2522 }
2523 EXPORT_SYMBOL_GPL(nfs_permission);
2524
2525 /*
2526 * Local variables:
2527 * version-control: t
2528 * kept-new-versions: 5
2529 * End:
2530 */