]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/nfs/dir.c
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
[mirror_ubuntu-artful-kernel.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45
46 #include "nfstrace.h"
47
48 /* #define NFS_DEBUG_VERBOSE 1 */
49
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56
57 const struct file_operations nfs_dir_operations = {
58 .llseek = nfs_llseek_dir,
59 .read = generic_read_dir,
60 .iterate = nfs_readdir,
61 .open = nfs_opendir,
62 .release = nfs_closedir,
63 .fsync = nfs_fsync_dir,
64 };
65
66 const struct address_space_operations nfs_dir_aops = {
67 .freepage = nfs_readdir_clear_array,
68 };
69
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71 {
72 struct nfs_inode *nfsi = NFS_I(dir);
73 struct nfs_open_dir_context *ctx;
74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 if (ctx != NULL) {
76 ctx->duped = 0;
77 ctx->attr_gencount = nfsi->attr_gencount;
78 ctx->dir_cookie = 0;
79 ctx->dup_cookie = 0;
80 ctx->cred = get_rpccred(cred);
81 spin_lock(&dir->i_lock);
82 list_add(&ctx->list, &nfsi->open_files);
83 spin_unlock(&dir->i_lock);
84 return ctx;
85 }
86 return ERR_PTR(-ENOMEM);
87 }
88
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 spin_lock(&dir->i_lock);
92 list_del(&ctx->list);
93 spin_unlock(&dir->i_lock);
94 put_rpccred(ctx->cred);
95 kfree(ctx);
96 }
97
98 /*
99 * Open file
100 */
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 int res = 0;
105 struct nfs_open_dir_context *ctx;
106 struct rpc_cred *cred;
107
108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109
110 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111
112 cred = rpc_lookup_cred();
113 if (IS_ERR(cred))
114 return PTR_ERR(cred);
115 ctx = alloc_nfs_open_dir_context(inode, cred);
116 if (IS_ERR(ctx)) {
117 res = PTR_ERR(ctx);
118 goto out;
119 }
120 filp->private_data = ctx;
121 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 /* This is a mountpoint, so d_revalidate will never
123 * have been called, so we need to refresh the
124 * inode (for close-open consistency) ourselves.
125 */
126 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
127 }
128 out:
129 put_rpccred(cred);
130 return res;
131 }
132
133 static int
134 nfs_closedir(struct inode *inode, struct file *filp)
135 {
136 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
137 return 0;
138 }
139
140 struct nfs_cache_array_entry {
141 u64 cookie;
142 u64 ino;
143 struct qstr string;
144 unsigned char d_type;
145 };
146
147 struct nfs_cache_array {
148 int size;
149 int eof_index;
150 u64 last_cookie;
151 struct nfs_cache_array_entry array[0];
152 };
153
154 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
155 typedef struct {
156 struct file *file;
157 struct page *page;
158 struct dir_context *ctx;
159 unsigned long page_index;
160 u64 *dir_cookie;
161 u64 last_cookie;
162 loff_t current_index;
163 decode_dirent_t decode;
164
165 unsigned long timestamp;
166 unsigned long gencount;
167 unsigned int cache_entry_index;
168 unsigned int plus:1;
169 unsigned int eof:1;
170 } nfs_readdir_descriptor_t;
171
172 /*
173 * The caller is responsible for calling nfs_readdir_release_array(page)
174 */
175 static
176 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
177 {
178 void *ptr;
179 if (page == NULL)
180 return ERR_PTR(-EIO);
181 ptr = kmap(page);
182 if (ptr == NULL)
183 return ERR_PTR(-ENOMEM);
184 return ptr;
185 }
186
187 static
188 void nfs_readdir_release_array(struct page *page)
189 {
190 kunmap(page);
191 }
192
193 /*
194 * we are freeing strings created by nfs_add_to_readdir_array()
195 */
196 static
197 void nfs_readdir_clear_array(struct page *page)
198 {
199 struct nfs_cache_array *array;
200 int i;
201
202 array = kmap_atomic(page);
203 for (i = 0; i < array->size; i++)
204 kfree(array->array[i].string.name);
205 kunmap_atomic(array);
206 }
207
208 /*
209 * the caller is responsible for freeing qstr.name
210 * when called by nfs_readdir_add_to_array, the strings will be freed in
211 * nfs_clear_readdir_array()
212 */
213 static
214 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
215 {
216 string->len = len;
217 string->name = kmemdup(name, len, GFP_KERNEL);
218 if (string->name == NULL)
219 return -ENOMEM;
220 /*
221 * Avoid a kmemleak false positive. The pointer to the name is stored
222 * in a page cache page which kmemleak does not scan.
223 */
224 kmemleak_not_leak(string->name);
225 string->hash = full_name_hash(name, len);
226 return 0;
227 }
228
229 static
230 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
231 {
232 struct nfs_cache_array *array = nfs_readdir_get_array(page);
233 struct nfs_cache_array_entry *cache_entry;
234 int ret;
235
236 if (IS_ERR(array))
237 return PTR_ERR(array);
238
239 cache_entry = &array->array[array->size];
240
241 /* Check that this entry lies within the page bounds */
242 ret = -ENOSPC;
243 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
244 goto out;
245
246 cache_entry->cookie = entry->prev_cookie;
247 cache_entry->ino = entry->ino;
248 cache_entry->d_type = entry->d_type;
249 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
250 if (ret)
251 goto out;
252 array->last_cookie = entry->cookie;
253 array->size++;
254 if (entry->eof != 0)
255 array->eof_index = array->size;
256 out:
257 nfs_readdir_release_array(page);
258 return ret;
259 }
260
261 static
262 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
263 {
264 loff_t diff = desc->ctx->pos - desc->current_index;
265 unsigned int index;
266
267 if (diff < 0)
268 goto out_eof;
269 if (diff >= array->size) {
270 if (array->eof_index >= 0)
271 goto out_eof;
272 return -EAGAIN;
273 }
274
275 index = (unsigned int)diff;
276 *desc->dir_cookie = array->array[index].cookie;
277 desc->cache_entry_index = index;
278 return 0;
279 out_eof:
280 desc->eof = 1;
281 return -EBADCOOKIE;
282 }
283
284 static bool
285 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
286 {
287 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
288 return false;
289 smp_rmb();
290 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
291 }
292
293 static
294 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
295 {
296 int i;
297 loff_t new_pos;
298 int status = -EAGAIN;
299
300 for (i = 0; i < array->size; i++) {
301 if (array->array[i].cookie == *desc->dir_cookie) {
302 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
303 struct nfs_open_dir_context *ctx = desc->file->private_data;
304
305 new_pos = desc->current_index + i;
306 if (ctx->attr_gencount != nfsi->attr_gencount ||
307 !nfs_readdir_inode_mapping_valid(nfsi)) {
308 ctx->duped = 0;
309 ctx->attr_gencount = nfsi->attr_gencount;
310 } else if (new_pos < desc->ctx->pos) {
311 if (ctx->duped > 0
312 && ctx->dup_cookie == *desc->dir_cookie) {
313 if (printk_ratelimit()) {
314 pr_notice("NFS: directory %pD2 contains a readdir loop."
315 "Please contact your server vendor. "
316 "The file: %.*s has duplicate cookie %llu\n",
317 desc->file, array->array[i].string.len,
318 array->array[i].string.name, *desc->dir_cookie);
319 }
320 status = -ELOOP;
321 goto out;
322 }
323 ctx->dup_cookie = *desc->dir_cookie;
324 ctx->duped = -1;
325 }
326 desc->ctx->pos = new_pos;
327 desc->cache_entry_index = i;
328 return 0;
329 }
330 }
331 if (array->eof_index >= 0) {
332 status = -EBADCOOKIE;
333 if (*desc->dir_cookie == array->last_cookie)
334 desc->eof = 1;
335 }
336 out:
337 return status;
338 }
339
340 static
341 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
342 {
343 struct nfs_cache_array *array;
344 int status;
345
346 array = nfs_readdir_get_array(desc->page);
347 if (IS_ERR(array)) {
348 status = PTR_ERR(array);
349 goto out;
350 }
351
352 if (*desc->dir_cookie == 0)
353 status = nfs_readdir_search_for_pos(array, desc);
354 else
355 status = nfs_readdir_search_for_cookie(array, desc);
356
357 if (status == -EAGAIN) {
358 desc->last_cookie = array->last_cookie;
359 desc->current_index += array->size;
360 desc->page_index++;
361 }
362 nfs_readdir_release_array(desc->page);
363 out:
364 return status;
365 }
366
367 /* Fill a page with xdr information before transferring to the cache page */
368 static
369 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
370 struct nfs_entry *entry, struct file *file, struct inode *inode)
371 {
372 struct nfs_open_dir_context *ctx = file->private_data;
373 struct rpc_cred *cred = ctx->cred;
374 unsigned long timestamp, gencount;
375 int error;
376
377 again:
378 timestamp = jiffies;
379 gencount = nfs_inc_attr_generation_counter();
380 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
381 NFS_SERVER(inode)->dtsize, desc->plus);
382 if (error < 0) {
383 /* We requested READDIRPLUS, but the server doesn't grok it */
384 if (error == -ENOTSUPP && desc->plus) {
385 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
386 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
387 desc->plus = 0;
388 goto again;
389 }
390 goto error;
391 }
392 desc->timestamp = timestamp;
393 desc->gencount = gencount;
394 error:
395 return error;
396 }
397
398 static int xdr_decode(nfs_readdir_descriptor_t *desc,
399 struct nfs_entry *entry, struct xdr_stream *xdr)
400 {
401 int error;
402
403 error = desc->decode(xdr, entry, desc->plus);
404 if (error)
405 return error;
406 entry->fattr->time_start = desc->timestamp;
407 entry->fattr->gencount = desc->gencount;
408 return 0;
409 }
410
411 /* Match file and dirent using either filehandle or fileid
412 * Note: caller is responsible for checking the fsid
413 */
414 static
415 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
416 {
417 struct nfs_inode *nfsi;
418
419 if (d_really_is_negative(dentry))
420 return 0;
421
422 nfsi = NFS_I(d_inode(dentry));
423 if (entry->fattr->fileid == nfsi->fileid)
424 return 1;
425 if (nfs_compare_fh(entry->fh, &nfsi->fh) == 0)
426 return 1;
427 return 0;
428 }
429
430 static
431 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
432 {
433 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
434 return false;
435 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
436 return true;
437 if (ctx->pos == 0)
438 return true;
439 return false;
440 }
441
442 /*
443 * This function is called by the lookup code to request the use of
444 * readdirplus to accelerate any future lookups in the same
445 * directory.
446 */
447 static
448 void nfs_advise_use_readdirplus(struct inode *dir)
449 {
450 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
451 }
452
453 /*
454 * This function is mainly for use by nfs_getattr().
455 *
456 * If this is an 'ls -l', we want to force use of readdirplus.
457 * Do this by checking if there is an active file descriptor
458 * and calling nfs_advise_use_readdirplus, then forcing a
459 * cache flush.
460 */
461 void nfs_force_use_readdirplus(struct inode *dir)
462 {
463 if (!list_empty(&NFS_I(dir)->open_files)) {
464 nfs_advise_use_readdirplus(dir);
465 nfs_zap_mapping(dir, dir->i_mapping);
466 }
467 }
468
469 static
470 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
471 {
472 struct qstr filename = QSTR_INIT(entry->name, entry->len);
473 struct dentry *dentry;
474 struct dentry *alias;
475 struct inode *dir = d_inode(parent);
476 struct inode *inode;
477 int status;
478
479 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
480 return;
481 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
482 return;
483 if (filename.name[0] == '.') {
484 if (filename.len == 1)
485 return;
486 if (filename.len == 2 && filename.name[1] == '.')
487 return;
488 }
489 filename.hash = full_name_hash(filename.name, filename.len);
490
491 dentry = d_lookup(parent, &filename);
492 if (dentry != NULL) {
493 /* Is there a mountpoint here? If so, just exit */
494 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
495 &entry->fattr->fsid))
496 goto out;
497 if (nfs_same_file(dentry, entry)) {
498 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
499 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
500 if (!status)
501 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
502 goto out;
503 } else {
504 d_invalidate(dentry);
505 dput(dentry);
506 }
507 }
508
509 dentry = d_alloc(parent, &filename);
510 if (dentry == NULL)
511 return;
512
513 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
514 if (IS_ERR(inode))
515 goto out;
516
517 alias = d_splice_alias(inode, dentry);
518 if (IS_ERR(alias))
519 goto out;
520 else if (alias) {
521 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
522 dput(alias);
523 } else
524 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
525
526 out:
527 dput(dentry);
528 }
529
530 /* Perform conversion from xdr to cache array */
531 static
532 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
533 struct page **xdr_pages, struct page *page, unsigned int buflen)
534 {
535 struct xdr_stream stream;
536 struct xdr_buf buf;
537 struct page *scratch;
538 struct nfs_cache_array *array;
539 unsigned int count = 0;
540 int status;
541
542 scratch = alloc_page(GFP_KERNEL);
543 if (scratch == NULL)
544 return -ENOMEM;
545
546 if (buflen == 0)
547 goto out_nopages;
548
549 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
550 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
551
552 do {
553 status = xdr_decode(desc, entry, &stream);
554 if (status != 0) {
555 if (status == -EAGAIN)
556 status = 0;
557 break;
558 }
559
560 count++;
561
562 if (desc->plus != 0)
563 nfs_prime_dcache(desc->file->f_path.dentry, entry);
564
565 status = nfs_readdir_add_to_array(entry, page);
566 if (status != 0)
567 break;
568 } while (!entry->eof);
569
570 out_nopages:
571 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
572 array = nfs_readdir_get_array(page);
573 if (!IS_ERR(array)) {
574 array->eof_index = array->size;
575 status = 0;
576 nfs_readdir_release_array(page);
577 } else
578 status = PTR_ERR(array);
579 }
580
581 put_page(scratch);
582 return status;
583 }
584
585 static
586 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
587 {
588 unsigned int i;
589 for (i = 0; i < npages; i++)
590 put_page(pages[i]);
591 }
592
593 /*
594 * nfs_readdir_large_page will allocate pages that must be freed with a call
595 * to nfs_readdir_free_pagearray
596 */
597 static
598 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
599 {
600 unsigned int i;
601
602 for (i = 0; i < npages; i++) {
603 struct page *page = alloc_page(GFP_KERNEL);
604 if (page == NULL)
605 goto out_freepages;
606 pages[i] = page;
607 }
608 return 0;
609
610 out_freepages:
611 nfs_readdir_free_pages(pages, i);
612 return -ENOMEM;
613 }
614
615 static
616 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
617 {
618 struct page *pages[NFS_MAX_READDIR_PAGES];
619 struct nfs_entry entry;
620 struct file *file = desc->file;
621 struct nfs_cache_array *array;
622 int status = -ENOMEM;
623 unsigned int array_size = ARRAY_SIZE(pages);
624
625 entry.prev_cookie = 0;
626 entry.cookie = desc->last_cookie;
627 entry.eof = 0;
628 entry.fh = nfs_alloc_fhandle();
629 entry.fattr = nfs_alloc_fattr();
630 entry.server = NFS_SERVER(inode);
631 if (entry.fh == NULL || entry.fattr == NULL)
632 goto out;
633
634 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
635 if (IS_ERR(entry.label)) {
636 status = PTR_ERR(entry.label);
637 goto out;
638 }
639
640 array = nfs_readdir_get_array(page);
641 if (IS_ERR(array)) {
642 status = PTR_ERR(array);
643 goto out_label_free;
644 }
645 memset(array, 0, sizeof(struct nfs_cache_array));
646 array->eof_index = -1;
647
648 status = nfs_readdir_alloc_pages(pages, array_size);
649 if (status < 0)
650 goto out_release_array;
651 do {
652 unsigned int pglen;
653 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
654
655 if (status < 0)
656 break;
657 pglen = status;
658 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
659 if (status < 0) {
660 if (status == -ENOSPC)
661 status = 0;
662 break;
663 }
664 } while (array->eof_index < 0);
665
666 nfs_readdir_free_pages(pages, array_size);
667 out_release_array:
668 nfs_readdir_release_array(page);
669 out_label_free:
670 nfs4_label_free(entry.label);
671 out:
672 nfs_free_fattr(entry.fattr);
673 nfs_free_fhandle(entry.fh);
674 return status;
675 }
676
677 /*
678 * Now we cache directories properly, by converting xdr information
679 * to an array that can be used for lookups later. This results in
680 * fewer cache pages, since we can store more information on each page.
681 * We only need to convert from xdr once so future lookups are much simpler
682 */
683 static
684 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
685 {
686 struct inode *inode = file_inode(desc->file);
687 int ret;
688
689 ret = nfs_readdir_xdr_to_array(desc, page, inode);
690 if (ret < 0)
691 goto error;
692 SetPageUptodate(page);
693
694 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
695 /* Should never happen */
696 nfs_zap_mapping(inode, inode->i_mapping);
697 }
698 unlock_page(page);
699 return 0;
700 error:
701 unlock_page(page);
702 return ret;
703 }
704
705 static
706 void cache_page_release(nfs_readdir_descriptor_t *desc)
707 {
708 if (!desc->page->mapping)
709 nfs_readdir_clear_array(desc->page);
710 put_page(desc->page);
711 desc->page = NULL;
712 }
713
714 static
715 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
716 {
717 return read_cache_page(file_inode(desc->file)->i_mapping,
718 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
719 }
720
721 /*
722 * Returns 0 if desc->dir_cookie was found on page desc->page_index
723 */
724 static
725 int find_cache_page(nfs_readdir_descriptor_t *desc)
726 {
727 int res;
728
729 desc->page = get_cache_page(desc);
730 if (IS_ERR(desc->page))
731 return PTR_ERR(desc->page);
732
733 res = nfs_readdir_search_array(desc);
734 if (res != 0)
735 cache_page_release(desc);
736 return res;
737 }
738
739 /* Search for desc->dir_cookie from the beginning of the page cache */
740 static inline
741 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
742 {
743 int res;
744
745 if (desc->page_index == 0) {
746 desc->current_index = 0;
747 desc->last_cookie = 0;
748 }
749 do {
750 res = find_cache_page(desc);
751 } while (res == -EAGAIN);
752 return res;
753 }
754
755 /*
756 * Once we've found the start of the dirent within a page: fill 'er up...
757 */
758 static
759 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
760 {
761 struct file *file = desc->file;
762 int i = 0;
763 int res = 0;
764 struct nfs_cache_array *array = NULL;
765 struct nfs_open_dir_context *ctx = file->private_data;
766
767 array = nfs_readdir_get_array(desc->page);
768 if (IS_ERR(array)) {
769 res = PTR_ERR(array);
770 goto out;
771 }
772
773 for (i = desc->cache_entry_index; i < array->size; i++) {
774 struct nfs_cache_array_entry *ent;
775
776 ent = &array->array[i];
777 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
778 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
779 desc->eof = 1;
780 break;
781 }
782 desc->ctx->pos++;
783 if (i < (array->size-1))
784 *desc->dir_cookie = array->array[i+1].cookie;
785 else
786 *desc->dir_cookie = array->last_cookie;
787 if (ctx->duped != 0)
788 ctx->duped = 1;
789 }
790 if (array->eof_index >= 0)
791 desc->eof = 1;
792
793 nfs_readdir_release_array(desc->page);
794 out:
795 cache_page_release(desc);
796 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
797 (unsigned long long)*desc->dir_cookie, res);
798 return res;
799 }
800
801 /*
802 * If we cannot find a cookie in our cache, we suspect that this is
803 * because it points to a deleted file, so we ask the server to return
804 * whatever it thinks is the next entry. We then feed this to filldir.
805 * If all goes well, we should then be able to find our way round the
806 * cache on the next call to readdir_search_pagecache();
807 *
808 * NOTE: we cannot add the anonymous page to the pagecache because
809 * the data it contains might not be page aligned. Besides,
810 * we should already have a complete representation of the
811 * directory in the page cache by the time we get here.
812 */
813 static inline
814 int uncached_readdir(nfs_readdir_descriptor_t *desc)
815 {
816 struct page *page = NULL;
817 int status;
818 struct inode *inode = file_inode(desc->file);
819 struct nfs_open_dir_context *ctx = desc->file->private_data;
820
821 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
822 (unsigned long long)*desc->dir_cookie);
823
824 page = alloc_page(GFP_HIGHUSER);
825 if (!page) {
826 status = -ENOMEM;
827 goto out;
828 }
829
830 desc->page_index = 0;
831 desc->last_cookie = *desc->dir_cookie;
832 desc->page = page;
833 ctx->duped = 0;
834
835 status = nfs_readdir_xdr_to_array(desc, page, inode);
836 if (status < 0)
837 goto out_release;
838
839 status = nfs_do_filldir(desc);
840
841 out:
842 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
843 __func__, status);
844 return status;
845 out_release:
846 cache_page_release(desc);
847 goto out;
848 }
849
850 static bool nfs_dir_mapping_need_revalidate(struct inode *dir)
851 {
852 struct nfs_inode *nfsi = NFS_I(dir);
853
854 if (nfs_attribute_cache_expired(dir))
855 return true;
856 if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
857 return true;
858 return false;
859 }
860
861 /* The file offset position represents the dirent entry number. A
862 last cookie cache takes care of the common case of reading the
863 whole directory.
864 */
865 static int nfs_readdir(struct file *file, struct dir_context *ctx)
866 {
867 struct dentry *dentry = file->f_path.dentry;
868 struct inode *inode = d_inode(dentry);
869 nfs_readdir_descriptor_t my_desc,
870 *desc = &my_desc;
871 struct nfs_open_dir_context *dir_ctx = file->private_data;
872 int res = 0;
873
874 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
875 file, (long long)ctx->pos);
876 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
877
878 /*
879 * ctx->pos points to the dirent entry number.
880 * *desc->dir_cookie has the cookie for the next entry. We have
881 * to either find the entry with the appropriate number or
882 * revalidate the cookie.
883 */
884 memset(desc, 0, sizeof(*desc));
885
886 desc->file = file;
887 desc->ctx = ctx;
888 desc->dir_cookie = &dir_ctx->dir_cookie;
889 desc->decode = NFS_PROTO(inode)->decode_dirent;
890 desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
891
892 nfs_block_sillyrename(dentry);
893 if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode))
894 res = nfs_revalidate_mapping(inode, file->f_mapping);
895 if (res < 0)
896 goto out;
897
898 do {
899 res = readdir_search_pagecache(desc);
900
901 if (res == -EBADCOOKIE) {
902 res = 0;
903 /* This means either end of directory */
904 if (*desc->dir_cookie && desc->eof == 0) {
905 /* Or that the server has 'lost' a cookie */
906 res = uncached_readdir(desc);
907 if (res == 0)
908 continue;
909 }
910 break;
911 }
912 if (res == -ETOOSMALL && desc->plus) {
913 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
914 nfs_zap_caches(inode);
915 desc->page_index = 0;
916 desc->plus = 0;
917 desc->eof = 0;
918 continue;
919 }
920 if (res < 0)
921 break;
922
923 res = nfs_do_filldir(desc);
924 if (res < 0)
925 break;
926 } while (!desc->eof);
927 out:
928 nfs_unblock_sillyrename(dentry);
929 if (res > 0)
930 res = 0;
931 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
932 return res;
933 }
934
935 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
936 {
937 struct inode *inode = file_inode(filp);
938 struct nfs_open_dir_context *dir_ctx = filp->private_data;
939
940 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
941 filp, offset, whence);
942
943 inode_lock(inode);
944 switch (whence) {
945 case 1:
946 offset += filp->f_pos;
947 case 0:
948 if (offset >= 0)
949 break;
950 default:
951 offset = -EINVAL;
952 goto out;
953 }
954 if (offset != filp->f_pos) {
955 filp->f_pos = offset;
956 dir_ctx->dir_cookie = 0;
957 dir_ctx->duped = 0;
958 }
959 out:
960 inode_unlock(inode);
961 return offset;
962 }
963
964 /*
965 * All directory operations under NFS are synchronous, so fsync()
966 * is a dummy operation.
967 */
968 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
969 int datasync)
970 {
971 struct inode *inode = file_inode(filp);
972
973 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
974
975 inode_lock(inode);
976 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
977 inode_unlock(inode);
978 return 0;
979 }
980
981 /**
982 * nfs_force_lookup_revalidate - Mark the directory as having changed
983 * @dir - pointer to directory inode
984 *
985 * This forces the revalidation code in nfs_lookup_revalidate() to do a
986 * full lookup on all child dentries of 'dir' whenever a change occurs
987 * on the server that might have invalidated our dcache.
988 *
989 * The caller should be holding dir->i_lock
990 */
991 void nfs_force_lookup_revalidate(struct inode *dir)
992 {
993 NFS_I(dir)->cache_change_attribute++;
994 }
995 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
996
997 /*
998 * A check for whether or not the parent directory has changed.
999 * In the case it has, we assume that the dentries are untrustworthy
1000 * and may need to be looked up again.
1001 * If rcu_walk prevents us from performing a full check, return 0.
1002 */
1003 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1004 int rcu_walk)
1005 {
1006 int ret;
1007
1008 if (IS_ROOT(dentry))
1009 return 1;
1010 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1011 return 0;
1012 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1013 return 0;
1014 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1015 if (rcu_walk)
1016 ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir);
1017 else
1018 ret = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1019 if (ret < 0)
1020 return 0;
1021 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1022 return 0;
1023 return 1;
1024 }
1025
1026 /*
1027 * Use intent information to check whether or not we're going to do
1028 * an O_EXCL create using this path component.
1029 */
1030 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1031 {
1032 if (NFS_PROTO(dir)->version == 2)
1033 return 0;
1034 return flags & LOOKUP_EXCL;
1035 }
1036
1037 /*
1038 * Inode and filehandle revalidation for lookups.
1039 *
1040 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1041 * or if the intent information indicates that we're about to open this
1042 * particular file and the "nocto" mount flag is not set.
1043 *
1044 */
1045 static
1046 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1047 {
1048 struct nfs_server *server = NFS_SERVER(inode);
1049 int ret;
1050
1051 if (IS_AUTOMOUNT(inode))
1052 return 0;
1053 /* VFS wants an on-the-wire revalidation */
1054 if (flags & LOOKUP_REVAL)
1055 goto out_force;
1056 /* This is an open(2) */
1057 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1058 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1059 goto out_force;
1060 out:
1061 return (inode->i_nlink == 0) ? -ENOENT : 0;
1062 out_force:
1063 if (flags & LOOKUP_RCU)
1064 return -ECHILD;
1065 ret = __nfs_revalidate_inode(server, inode);
1066 if (ret != 0)
1067 return ret;
1068 goto out;
1069 }
1070
1071 /*
1072 * We judge how long we want to trust negative
1073 * dentries by looking at the parent inode mtime.
1074 *
1075 * If parent mtime has changed, we revalidate, else we wait for a
1076 * period corresponding to the parent's attribute cache timeout value.
1077 *
1078 * If LOOKUP_RCU prevents us from performing a full check, return 1
1079 * suggesting a reval is needed.
1080 */
1081 static inline
1082 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1083 unsigned int flags)
1084 {
1085 /* Don't revalidate a negative dentry if we're creating a new file */
1086 if (flags & LOOKUP_CREATE)
1087 return 0;
1088 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1089 return 1;
1090 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1091 }
1092
1093 /*
1094 * This is called every time the dcache has a lookup hit,
1095 * and we should check whether we can really trust that
1096 * lookup.
1097 *
1098 * NOTE! The hit can be a negative hit too, don't assume
1099 * we have an inode!
1100 *
1101 * If the parent directory is seen to have changed, we throw out the
1102 * cached dentry and do a new lookup.
1103 */
1104 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1105 {
1106 struct inode *dir;
1107 struct inode *inode;
1108 struct dentry *parent;
1109 struct nfs_fh *fhandle = NULL;
1110 struct nfs_fattr *fattr = NULL;
1111 struct nfs4_label *label = NULL;
1112 int error;
1113
1114 if (flags & LOOKUP_RCU) {
1115 parent = ACCESS_ONCE(dentry->d_parent);
1116 dir = d_inode_rcu(parent);
1117 if (!dir)
1118 return -ECHILD;
1119 } else {
1120 parent = dget_parent(dentry);
1121 dir = d_inode(parent);
1122 }
1123 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1124 inode = d_inode(dentry);
1125
1126 if (!inode) {
1127 if (nfs_neg_need_reval(dir, dentry, flags)) {
1128 if (flags & LOOKUP_RCU)
1129 return -ECHILD;
1130 goto out_bad;
1131 }
1132 goto out_valid_noent;
1133 }
1134
1135 if (is_bad_inode(inode)) {
1136 if (flags & LOOKUP_RCU)
1137 return -ECHILD;
1138 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1139 __func__, dentry);
1140 goto out_bad;
1141 }
1142
1143 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1144 goto out_set_verifier;
1145
1146 /* Force a full look up iff the parent directory has changed */
1147 if (!nfs_is_exclusive_create(dir, flags) &&
1148 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1149
1150 if (nfs_lookup_verify_inode(inode, flags)) {
1151 if (flags & LOOKUP_RCU)
1152 return -ECHILD;
1153 goto out_zap_parent;
1154 }
1155 goto out_valid;
1156 }
1157
1158 if (flags & LOOKUP_RCU)
1159 return -ECHILD;
1160
1161 if (NFS_STALE(inode))
1162 goto out_bad;
1163
1164 error = -ENOMEM;
1165 fhandle = nfs_alloc_fhandle();
1166 fattr = nfs_alloc_fattr();
1167 if (fhandle == NULL || fattr == NULL)
1168 goto out_error;
1169
1170 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1171 if (IS_ERR(label))
1172 goto out_error;
1173
1174 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1175 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1176 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1177 if (error)
1178 goto out_bad;
1179 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1180 goto out_bad;
1181 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1182 goto out_bad;
1183
1184 nfs_setsecurity(inode, fattr, label);
1185
1186 nfs_free_fattr(fattr);
1187 nfs_free_fhandle(fhandle);
1188 nfs4_label_free(label);
1189
1190 out_set_verifier:
1191 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1192 out_valid:
1193 /* Success: notify readdir to use READDIRPLUS */
1194 nfs_advise_use_readdirplus(dir);
1195 out_valid_noent:
1196 if (flags & LOOKUP_RCU) {
1197 if (parent != ACCESS_ONCE(dentry->d_parent))
1198 return -ECHILD;
1199 } else
1200 dput(parent);
1201 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1202 __func__, dentry);
1203 return 1;
1204 out_zap_parent:
1205 nfs_zap_caches(dir);
1206 out_bad:
1207 WARN_ON(flags & LOOKUP_RCU);
1208 nfs_free_fattr(fattr);
1209 nfs_free_fhandle(fhandle);
1210 nfs4_label_free(label);
1211 nfs_mark_for_revalidate(dir);
1212 if (inode && S_ISDIR(inode->i_mode)) {
1213 /* Purge readdir caches. */
1214 nfs_zap_caches(inode);
1215 /*
1216 * We can't d_drop the root of a disconnected tree:
1217 * its d_hash is on the s_anon list and d_drop() would hide
1218 * it from shrink_dcache_for_unmount(), leading to busy
1219 * inodes on unmount and further oopses.
1220 */
1221 if (IS_ROOT(dentry))
1222 goto out_valid;
1223 }
1224 dput(parent);
1225 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1226 __func__, dentry);
1227 return 0;
1228 out_error:
1229 WARN_ON(flags & LOOKUP_RCU);
1230 nfs_free_fattr(fattr);
1231 nfs_free_fhandle(fhandle);
1232 nfs4_label_free(label);
1233 dput(parent);
1234 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1235 __func__, dentry, error);
1236 return error;
1237 }
1238
1239 /*
1240 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1241 * when we don't really care about the dentry name. This is called when a
1242 * pathwalk ends on a dentry that was not found via a normal lookup in the
1243 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1244 *
1245 * In this situation, we just want to verify that the inode itself is OK
1246 * since the dentry might have changed on the server.
1247 */
1248 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1249 {
1250 int error;
1251 struct inode *inode = d_inode(dentry);
1252
1253 /*
1254 * I believe we can only get a negative dentry here in the case of a
1255 * procfs-style symlink. Just assume it's correct for now, but we may
1256 * eventually need to do something more here.
1257 */
1258 if (!inode) {
1259 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1260 __func__, dentry);
1261 return 1;
1262 }
1263
1264 if (is_bad_inode(inode)) {
1265 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1266 __func__, dentry);
1267 return 0;
1268 }
1269
1270 error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1271 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1272 __func__, inode->i_ino, error ? "invalid" : "valid");
1273 return !error;
1274 }
1275
1276 /*
1277 * This is called from dput() when d_count is going to 0.
1278 */
1279 static int nfs_dentry_delete(const struct dentry *dentry)
1280 {
1281 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1282 dentry, dentry->d_flags);
1283
1284 /* Unhash any dentry with a stale inode */
1285 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1286 return 1;
1287
1288 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1289 /* Unhash it, so that ->d_iput() would be called */
1290 return 1;
1291 }
1292 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1293 /* Unhash it, so that ancestors of killed async unlink
1294 * files will be cleaned up during umount */
1295 return 1;
1296 }
1297 return 0;
1298
1299 }
1300
1301 /* Ensure that we revalidate inode->i_nlink */
1302 static void nfs_drop_nlink(struct inode *inode)
1303 {
1304 spin_lock(&inode->i_lock);
1305 /* drop the inode if we're reasonably sure this is the last link */
1306 if (inode->i_nlink == 1)
1307 clear_nlink(inode);
1308 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1309 spin_unlock(&inode->i_lock);
1310 }
1311
1312 /*
1313 * Called when the dentry loses inode.
1314 * We use it to clean up silly-renamed files.
1315 */
1316 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1317 {
1318 if (S_ISDIR(inode->i_mode))
1319 /* drop any readdir cache as it could easily be old */
1320 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1321
1322 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1323 nfs_complete_unlink(dentry, inode);
1324 nfs_drop_nlink(inode);
1325 }
1326 iput(inode);
1327 }
1328
1329 static void nfs_d_release(struct dentry *dentry)
1330 {
1331 /* free cached devname value, if it survived that far */
1332 if (unlikely(dentry->d_fsdata)) {
1333 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1334 WARN_ON(1);
1335 else
1336 kfree(dentry->d_fsdata);
1337 }
1338 }
1339
1340 const struct dentry_operations nfs_dentry_operations = {
1341 .d_revalidate = nfs_lookup_revalidate,
1342 .d_weak_revalidate = nfs_weak_revalidate,
1343 .d_delete = nfs_dentry_delete,
1344 .d_iput = nfs_dentry_iput,
1345 .d_automount = nfs_d_automount,
1346 .d_release = nfs_d_release,
1347 };
1348 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1349
1350 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1351 {
1352 struct dentry *res;
1353 struct dentry *parent;
1354 struct inode *inode = NULL;
1355 struct nfs_fh *fhandle = NULL;
1356 struct nfs_fattr *fattr = NULL;
1357 struct nfs4_label *label = NULL;
1358 int error;
1359
1360 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1361 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1362
1363 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1364 return ERR_PTR(-ENAMETOOLONG);
1365
1366 /*
1367 * If we're doing an exclusive create, optimize away the lookup
1368 * but don't hash the dentry.
1369 */
1370 if (nfs_is_exclusive_create(dir, flags))
1371 return NULL;
1372
1373 res = ERR_PTR(-ENOMEM);
1374 fhandle = nfs_alloc_fhandle();
1375 fattr = nfs_alloc_fattr();
1376 if (fhandle == NULL || fattr == NULL)
1377 goto out;
1378
1379 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1380 if (IS_ERR(label))
1381 goto out;
1382
1383 parent = dentry->d_parent;
1384 /* Protect against concurrent sillydeletes */
1385 trace_nfs_lookup_enter(dir, dentry, flags);
1386 nfs_block_sillyrename(parent);
1387 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1388 if (error == -ENOENT)
1389 goto no_entry;
1390 if (error < 0) {
1391 res = ERR_PTR(error);
1392 goto out_unblock_sillyrename;
1393 }
1394 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1395 res = ERR_CAST(inode);
1396 if (IS_ERR(res))
1397 goto out_unblock_sillyrename;
1398
1399 /* Success: notify readdir to use READDIRPLUS */
1400 nfs_advise_use_readdirplus(dir);
1401
1402 no_entry:
1403 res = d_splice_alias(inode, dentry);
1404 if (res != NULL) {
1405 if (IS_ERR(res))
1406 goto out_unblock_sillyrename;
1407 dentry = res;
1408 }
1409 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1410 out_unblock_sillyrename:
1411 nfs_unblock_sillyrename(parent);
1412 trace_nfs_lookup_exit(dir, dentry, flags, error);
1413 nfs4_label_free(label);
1414 out:
1415 nfs_free_fattr(fattr);
1416 nfs_free_fhandle(fhandle);
1417 return res;
1418 }
1419 EXPORT_SYMBOL_GPL(nfs_lookup);
1420
1421 #if IS_ENABLED(CONFIG_NFS_V4)
1422 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1423
1424 const struct dentry_operations nfs4_dentry_operations = {
1425 .d_revalidate = nfs4_lookup_revalidate,
1426 .d_delete = nfs_dentry_delete,
1427 .d_iput = nfs_dentry_iput,
1428 .d_automount = nfs_d_automount,
1429 .d_release = nfs_d_release,
1430 };
1431 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1432
1433 static fmode_t flags_to_mode(int flags)
1434 {
1435 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1436 if ((flags & O_ACCMODE) != O_WRONLY)
1437 res |= FMODE_READ;
1438 if ((flags & O_ACCMODE) != O_RDONLY)
1439 res |= FMODE_WRITE;
1440 return res;
1441 }
1442
1443 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1444 {
1445 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1446 }
1447
1448 static int do_open(struct inode *inode, struct file *filp)
1449 {
1450 nfs_fscache_open_file(inode, filp);
1451 return 0;
1452 }
1453
1454 static int nfs_finish_open(struct nfs_open_context *ctx,
1455 struct dentry *dentry,
1456 struct file *file, unsigned open_flags,
1457 int *opened)
1458 {
1459 int err;
1460
1461 err = finish_open(file, dentry, do_open, opened);
1462 if (err)
1463 goto out;
1464 nfs_file_set_open_context(file, ctx);
1465
1466 out:
1467 return err;
1468 }
1469
1470 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1471 struct file *file, unsigned open_flags,
1472 umode_t mode, int *opened)
1473 {
1474 struct nfs_open_context *ctx;
1475 struct dentry *res;
1476 struct iattr attr = { .ia_valid = ATTR_OPEN };
1477 struct inode *inode;
1478 unsigned int lookup_flags = 0;
1479 int err;
1480
1481 /* Expect a negative dentry */
1482 BUG_ON(d_inode(dentry));
1483
1484 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1485 dir->i_sb->s_id, dir->i_ino, dentry);
1486
1487 err = nfs_check_flags(open_flags);
1488 if (err)
1489 return err;
1490
1491 /* NFS only supports OPEN on regular files */
1492 if ((open_flags & O_DIRECTORY)) {
1493 if (!d_unhashed(dentry)) {
1494 /*
1495 * Hashed negative dentry with O_DIRECTORY: dentry was
1496 * revalidated and is fine, no need to perform lookup
1497 * again
1498 */
1499 return -ENOENT;
1500 }
1501 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1502 goto no_open;
1503 }
1504
1505 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1506 return -ENAMETOOLONG;
1507
1508 if (open_flags & O_CREAT) {
1509 attr.ia_valid |= ATTR_MODE;
1510 attr.ia_mode = mode & ~current_umask();
1511 }
1512 if (open_flags & O_TRUNC) {
1513 attr.ia_valid |= ATTR_SIZE;
1514 attr.ia_size = 0;
1515 }
1516
1517 ctx = create_nfs_open_context(dentry, open_flags);
1518 err = PTR_ERR(ctx);
1519 if (IS_ERR(ctx))
1520 goto out;
1521
1522 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1523 nfs_block_sillyrename(dentry->d_parent);
1524 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1525 nfs_unblock_sillyrename(dentry->d_parent);
1526 if (IS_ERR(inode)) {
1527 err = PTR_ERR(inode);
1528 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1529 put_nfs_open_context(ctx);
1530 switch (err) {
1531 case -ENOENT:
1532 d_drop(dentry);
1533 d_add(dentry, NULL);
1534 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1535 break;
1536 case -EISDIR:
1537 case -ENOTDIR:
1538 goto no_open;
1539 case -ELOOP:
1540 if (!(open_flags & O_NOFOLLOW))
1541 goto no_open;
1542 break;
1543 /* case -EINVAL: */
1544 default:
1545 break;
1546 }
1547 goto out;
1548 }
1549
1550 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1551 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1552 put_nfs_open_context(ctx);
1553 out:
1554 return err;
1555
1556 no_open:
1557 res = nfs_lookup(dir, dentry, lookup_flags);
1558 err = PTR_ERR(res);
1559 if (IS_ERR(res))
1560 goto out;
1561
1562 return finish_no_open(file, res);
1563 }
1564 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1565
1566 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1567 {
1568 struct inode *inode;
1569 int ret = 0;
1570
1571 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1572 goto no_open;
1573 if (d_mountpoint(dentry))
1574 goto no_open;
1575 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1576 goto no_open;
1577
1578 inode = d_inode(dentry);
1579
1580 /* We can't create new files in nfs_open_revalidate(), so we
1581 * optimize away revalidation of negative dentries.
1582 */
1583 if (inode == NULL) {
1584 struct dentry *parent;
1585 struct inode *dir;
1586
1587 if (flags & LOOKUP_RCU) {
1588 parent = ACCESS_ONCE(dentry->d_parent);
1589 dir = d_inode_rcu(parent);
1590 if (!dir)
1591 return -ECHILD;
1592 } else {
1593 parent = dget_parent(dentry);
1594 dir = d_inode(parent);
1595 }
1596 if (!nfs_neg_need_reval(dir, dentry, flags))
1597 ret = 1;
1598 else if (flags & LOOKUP_RCU)
1599 ret = -ECHILD;
1600 if (!(flags & LOOKUP_RCU))
1601 dput(parent);
1602 else if (parent != ACCESS_ONCE(dentry->d_parent))
1603 return -ECHILD;
1604 goto out;
1605 }
1606
1607 /* NFS only supports OPEN on regular files */
1608 if (!S_ISREG(inode->i_mode))
1609 goto no_open;
1610 /* We cannot do exclusive creation on a positive dentry */
1611 if (flags & LOOKUP_EXCL)
1612 goto no_open;
1613
1614 /* Let f_op->open() actually open (and revalidate) the file */
1615 ret = 1;
1616
1617 out:
1618 return ret;
1619
1620 no_open:
1621 return nfs_lookup_revalidate(dentry, flags);
1622 }
1623
1624 #endif /* CONFIG_NFSV4 */
1625
1626 /*
1627 * Code common to create, mkdir, and mknod.
1628 */
1629 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1630 struct nfs_fattr *fattr,
1631 struct nfs4_label *label)
1632 {
1633 struct dentry *parent = dget_parent(dentry);
1634 struct inode *dir = d_inode(parent);
1635 struct inode *inode;
1636 int error = -EACCES;
1637
1638 d_drop(dentry);
1639
1640 /* We may have been initialized further down */
1641 if (d_really_is_positive(dentry))
1642 goto out;
1643 if (fhandle->size == 0) {
1644 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1645 if (error)
1646 goto out_error;
1647 }
1648 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1649 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1650 struct nfs_server *server = NFS_SB(dentry->d_sb);
1651 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1652 if (error < 0)
1653 goto out_error;
1654 }
1655 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1656 error = PTR_ERR(inode);
1657 if (IS_ERR(inode))
1658 goto out_error;
1659 d_add(dentry, inode);
1660 out:
1661 dput(parent);
1662 return 0;
1663 out_error:
1664 nfs_mark_for_revalidate(dir);
1665 dput(parent);
1666 return error;
1667 }
1668 EXPORT_SYMBOL_GPL(nfs_instantiate);
1669
1670 /*
1671 * Following a failed create operation, we drop the dentry rather
1672 * than retain a negative dentry. This avoids a problem in the event
1673 * that the operation succeeded on the server, but an error in the
1674 * reply path made it appear to have failed.
1675 */
1676 int nfs_create(struct inode *dir, struct dentry *dentry,
1677 umode_t mode, bool excl)
1678 {
1679 struct iattr attr;
1680 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1681 int error;
1682
1683 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1684 dir->i_sb->s_id, dir->i_ino, dentry);
1685
1686 attr.ia_mode = mode;
1687 attr.ia_valid = ATTR_MODE;
1688
1689 trace_nfs_create_enter(dir, dentry, open_flags);
1690 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1691 trace_nfs_create_exit(dir, dentry, open_flags, error);
1692 if (error != 0)
1693 goto out_err;
1694 return 0;
1695 out_err:
1696 d_drop(dentry);
1697 return error;
1698 }
1699 EXPORT_SYMBOL_GPL(nfs_create);
1700
1701 /*
1702 * See comments for nfs_proc_create regarding failed operations.
1703 */
1704 int
1705 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1706 {
1707 struct iattr attr;
1708 int status;
1709
1710 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1711 dir->i_sb->s_id, dir->i_ino, dentry);
1712
1713 attr.ia_mode = mode;
1714 attr.ia_valid = ATTR_MODE;
1715
1716 trace_nfs_mknod_enter(dir, dentry);
1717 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1718 trace_nfs_mknod_exit(dir, dentry, status);
1719 if (status != 0)
1720 goto out_err;
1721 return 0;
1722 out_err:
1723 d_drop(dentry);
1724 return status;
1725 }
1726 EXPORT_SYMBOL_GPL(nfs_mknod);
1727
1728 /*
1729 * See comments for nfs_proc_create regarding failed operations.
1730 */
1731 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1732 {
1733 struct iattr attr;
1734 int error;
1735
1736 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1737 dir->i_sb->s_id, dir->i_ino, dentry);
1738
1739 attr.ia_valid = ATTR_MODE;
1740 attr.ia_mode = mode | S_IFDIR;
1741
1742 trace_nfs_mkdir_enter(dir, dentry);
1743 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1744 trace_nfs_mkdir_exit(dir, dentry, error);
1745 if (error != 0)
1746 goto out_err;
1747 return 0;
1748 out_err:
1749 d_drop(dentry);
1750 return error;
1751 }
1752 EXPORT_SYMBOL_GPL(nfs_mkdir);
1753
1754 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1755 {
1756 if (simple_positive(dentry))
1757 d_delete(dentry);
1758 }
1759
1760 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1761 {
1762 int error;
1763
1764 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1765 dir->i_sb->s_id, dir->i_ino, dentry);
1766
1767 trace_nfs_rmdir_enter(dir, dentry);
1768 if (d_really_is_positive(dentry)) {
1769 nfs_wait_on_sillyrename(dentry);
1770 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1771 /* Ensure the VFS deletes this inode */
1772 switch (error) {
1773 case 0:
1774 clear_nlink(d_inode(dentry));
1775 break;
1776 case -ENOENT:
1777 nfs_dentry_handle_enoent(dentry);
1778 }
1779 } else
1780 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1781 trace_nfs_rmdir_exit(dir, dentry, error);
1782
1783 return error;
1784 }
1785 EXPORT_SYMBOL_GPL(nfs_rmdir);
1786
1787 /*
1788 * Remove a file after making sure there are no pending writes,
1789 * and after checking that the file has only one user.
1790 *
1791 * We invalidate the attribute cache and free the inode prior to the operation
1792 * to avoid possible races if the server reuses the inode.
1793 */
1794 static int nfs_safe_remove(struct dentry *dentry)
1795 {
1796 struct inode *dir = d_inode(dentry->d_parent);
1797 struct inode *inode = d_inode(dentry);
1798 int error = -EBUSY;
1799
1800 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1801
1802 /* If the dentry was sillyrenamed, we simply call d_delete() */
1803 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1804 error = 0;
1805 goto out;
1806 }
1807
1808 trace_nfs_remove_enter(dir, dentry);
1809 if (inode != NULL) {
1810 NFS_PROTO(inode)->return_delegation(inode);
1811 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1812 if (error == 0)
1813 nfs_drop_nlink(inode);
1814 } else
1815 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1816 if (error == -ENOENT)
1817 nfs_dentry_handle_enoent(dentry);
1818 trace_nfs_remove_exit(dir, dentry, error);
1819 out:
1820 return error;
1821 }
1822
1823 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1824 * belongs to an active ".nfs..." file and we return -EBUSY.
1825 *
1826 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1827 */
1828 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1829 {
1830 int error;
1831 int need_rehash = 0;
1832
1833 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1834 dir->i_ino, dentry);
1835
1836 trace_nfs_unlink_enter(dir, dentry);
1837 spin_lock(&dentry->d_lock);
1838 if (d_count(dentry) > 1) {
1839 spin_unlock(&dentry->d_lock);
1840 /* Start asynchronous writeout of the inode */
1841 write_inode_now(d_inode(dentry), 0);
1842 error = nfs_sillyrename(dir, dentry);
1843 goto out;
1844 }
1845 if (!d_unhashed(dentry)) {
1846 __d_drop(dentry);
1847 need_rehash = 1;
1848 }
1849 spin_unlock(&dentry->d_lock);
1850 error = nfs_safe_remove(dentry);
1851 if (!error || error == -ENOENT) {
1852 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1853 } else if (need_rehash)
1854 d_rehash(dentry);
1855 out:
1856 trace_nfs_unlink_exit(dir, dentry, error);
1857 return error;
1858 }
1859 EXPORT_SYMBOL_GPL(nfs_unlink);
1860
1861 /*
1862 * To create a symbolic link, most file systems instantiate a new inode,
1863 * add a page to it containing the path, then write it out to the disk
1864 * using prepare_write/commit_write.
1865 *
1866 * Unfortunately the NFS client can't create the in-core inode first
1867 * because it needs a file handle to create an in-core inode (see
1868 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1869 * symlink request has completed on the server.
1870 *
1871 * So instead we allocate a raw page, copy the symname into it, then do
1872 * the SYMLINK request with the page as the buffer. If it succeeds, we
1873 * now have a new file handle and can instantiate an in-core NFS inode
1874 * and move the raw page into its mapping.
1875 */
1876 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1877 {
1878 struct page *page;
1879 char *kaddr;
1880 struct iattr attr;
1881 unsigned int pathlen = strlen(symname);
1882 int error;
1883
1884 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1885 dir->i_ino, dentry, symname);
1886
1887 if (pathlen > PAGE_SIZE)
1888 return -ENAMETOOLONG;
1889
1890 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1891 attr.ia_valid = ATTR_MODE;
1892
1893 page = alloc_page(GFP_USER);
1894 if (!page)
1895 return -ENOMEM;
1896
1897 kaddr = page_address(page);
1898 memcpy(kaddr, symname, pathlen);
1899 if (pathlen < PAGE_SIZE)
1900 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1901
1902 trace_nfs_symlink_enter(dir, dentry);
1903 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1904 trace_nfs_symlink_exit(dir, dentry, error);
1905 if (error != 0) {
1906 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1907 dir->i_sb->s_id, dir->i_ino,
1908 dentry, symname, error);
1909 d_drop(dentry);
1910 __free_page(page);
1911 return error;
1912 }
1913
1914 /*
1915 * No big deal if we can't add this page to the page cache here.
1916 * READLINK will get the missing page from the server if needed.
1917 */
1918 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1919 GFP_KERNEL)) {
1920 SetPageUptodate(page);
1921 unlock_page(page);
1922 /*
1923 * add_to_page_cache_lru() grabs an extra page refcount.
1924 * Drop it here to avoid leaking this page later.
1925 */
1926 put_page(page);
1927 } else
1928 __free_page(page);
1929
1930 return 0;
1931 }
1932 EXPORT_SYMBOL_GPL(nfs_symlink);
1933
1934 int
1935 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1936 {
1937 struct inode *inode = d_inode(old_dentry);
1938 int error;
1939
1940 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1941 old_dentry, dentry);
1942
1943 trace_nfs_link_enter(inode, dir, dentry);
1944 NFS_PROTO(inode)->return_delegation(inode);
1945
1946 d_drop(dentry);
1947 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1948 if (error == 0) {
1949 ihold(inode);
1950 d_add(dentry, inode);
1951 }
1952 trace_nfs_link_exit(inode, dir, dentry, error);
1953 return error;
1954 }
1955 EXPORT_SYMBOL_GPL(nfs_link);
1956
1957 /*
1958 * RENAME
1959 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1960 * different file handle for the same inode after a rename (e.g. when
1961 * moving to a different directory). A fail-safe method to do so would
1962 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1963 * rename the old file using the sillyrename stuff. This way, the original
1964 * file in old_dir will go away when the last process iput()s the inode.
1965 *
1966 * FIXED.
1967 *
1968 * It actually works quite well. One needs to have the possibility for
1969 * at least one ".nfs..." file in each directory the file ever gets
1970 * moved or linked to which happens automagically with the new
1971 * implementation that only depends on the dcache stuff instead of
1972 * using the inode layer
1973 *
1974 * Unfortunately, things are a little more complicated than indicated
1975 * above. For a cross-directory move, we want to make sure we can get
1976 * rid of the old inode after the operation. This means there must be
1977 * no pending writes (if it's a file), and the use count must be 1.
1978 * If these conditions are met, we can drop the dentries before doing
1979 * the rename.
1980 */
1981 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1982 struct inode *new_dir, struct dentry *new_dentry)
1983 {
1984 struct inode *old_inode = d_inode(old_dentry);
1985 struct inode *new_inode = d_inode(new_dentry);
1986 struct dentry *dentry = NULL, *rehash = NULL;
1987 struct rpc_task *task;
1988 int error = -EBUSY;
1989
1990 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
1991 old_dentry, new_dentry,
1992 d_count(new_dentry));
1993
1994 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
1995 /*
1996 * For non-directories, check whether the target is busy and if so,
1997 * make a copy of the dentry and then do a silly-rename. If the
1998 * silly-rename succeeds, the copied dentry is hashed and becomes
1999 * the new target.
2000 */
2001 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2002 /*
2003 * To prevent any new references to the target during the
2004 * rename, we unhash the dentry in advance.
2005 */
2006 if (!d_unhashed(new_dentry)) {
2007 d_drop(new_dentry);
2008 rehash = new_dentry;
2009 }
2010
2011 if (d_count(new_dentry) > 2) {
2012 int err;
2013
2014 /* copy the target dentry's name */
2015 dentry = d_alloc(new_dentry->d_parent,
2016 &new_dentry->d_name);
2017 if (!dentry)
2018 goto out;
2019
2020 /* silly-rename the existing target ... */
2021 err = nfs_sillyrename(new_dir, new_dentry);
2022 if (err)
2023 goto out;
2024
2025 new_dentry = dentry;
2026 rehash = NULL;
2027 new_inode = NULL;
2028 }
2029 }
2030
2031 NFS_PROTO(old_inode)->return_delegation(old_inode);
2032 if (new_inode != NULL)
2033 NFS_PROTO(new_inode)->return_delegation(new_inode);
2034
2035 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2036 if (IS_ERR(task)) {
2037 error = PTR_ERR(task);
2038 goto out;
2039 }
2040
2041 error = rpc_wait_for_completion_task(task);
2042 if (error == 0)
2043 error = task->tk_status;
2044 rpc_put_task(task);
2045 nfs_mark_for_revalidate(old_inode);
2046 out:
2047 if (rehash)
2048 d_rehash(rehash);
2049 trace_nfs_rename_exit(old_dir, old_dentry,
2050 new_dir, new_dentry, error);
2051 if (!error) {
2052 if (new_inode != NULL)
2053 nfs_drop_nlink(new_inode);
2054 d_move(old_dentry, new_dentry);
2055 nfs_set_verifier(new_dentry,
2056 nfs_save_change_attribute(new_dir));
2057 } else if (error == -ENOENT)
2058 nfs_dentry_handle_enoent(old_dentry);
2059
2060 /* new dentry created? */
2061 if (dentry)
2062 dput(dentry);
2063 return error;
2064 }
2065 EXPORT_SYMBOL_GPL(nfs_rename);
2066
2067 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2068 static LIST_HEAD(nfs_access_lru_list);
2069 static atomic_long_t nfs_access_nr_entries;
2070
2071 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2072 module_param(nfs_access_max_cachesize, ulong, 0644);
2073 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2074
2075 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2076 {
2077 put_rpccred(entry->cred);
2078 kfree_rcu(entry, rcu_head);
2079 smp_mb__before_atomic();
2080 atomic_long_dec(&nfs_access_nr_entries);
2081 smp_mb__after_atomic();
2082 }
2083
2084 static void nfs_access_free_list(struct list_head *head)
2085 {
2086 struct nfs_access_entry *cache;
2087
2088 while (!list_empty(head)) {
2089 cache = list_entry(head->next, struct nfs_access_entry, lru);
2090 list_del(&cache->lru);
2091 nfs_access_free_entry(cache);
2092 }
2093 }
2094
2095 static unsigned long
2096 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2097 {
2098 LIST_HEAD(head);
2099 struct nfs_inode *nfsi, *next;
2100 struct nfs_access_entry *cache;
2101 long freed = 0;
2102
2103 spin_lock(&nfs_access_lru_lock);
2104 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2105 struct inode *inode;
2106
2107 if (nr_to_scan-- == 0)
2108 break;
2109 inode = &nfsi->vfs_inode;
2110 spin_lock(&inode->i_lock);
2111 if (list_empty(&nfsi->access_cache_entry_lru))
2112 goto remove_lru_entry;
2113 cache = list_entry(nfsi->access_cache_entry_lru.next,
2114 struct nfs_access_entry, lru);
2115 list_move(&cache->lru, &head);
2116 rb_erase(&cache->rb_node, &nfsi->access_cache);
2117 freed++;
2118 if (!list_empty(&nfsi->access_cache_entry_lru))
2119 list_move_tail(&nfsi->access_cache_inode_lru,
2120 &nfs_access_lru_list);
2121 else {
2122 remove_lru_entry:
2123 list_del_init(&nfsi->access_cache_inode_lru);
2124 smp_mb__before_atomic();
2125 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2126 smp_mb__after_atomic();
2127 }
2128 spin_unlock(&inode->i_lock);
2129 }
2130 spin_unlock(&nfs_access_lru_lock);
2131 nfs_access_free_list(&head);
2132 return freed;
2133 }
2134
2135 unsigned long
2136 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2137 {
2138 int nr_to_scan = sc->nr_to_scan;
2139 gfp_t gfp_mask = sc->gfp_mask;
2140
2141 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2142 return SHRINK_STOP;
2143 return nfs_do_access_cache_scan(nr_to_scan);
2144 }
2145
2146
2147 unsigned long
2148 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2149 {
2150 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2151 }
2152
2153 static void
2154 nfs_access_cache_enforce_limit(void)
2155 {
2156 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2157 unsigned long diff;
2158 unsigned int nr_to_scan;
2159
2160 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2161 return;
2162 nr_to_scan = 100;
2163 diff = nr_entries - nfs_access_max_cachesize;
2164 if (diff < nr_to_scan)
2165 nr_to_scan = diff;
2166 nfs_do_access_cache_scan(nr_to_scan);
2167 }
2168
2169 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2170 {
2171 struct rb_root *root_node = &nfsi->access_cache;
2172 struct rb_node *n;
2173 struct nfs_access_entry *entry;
2174
2175 /* Unhook entries from the cache */
2176 while ((n = rb_first(root_node)) != NULL) {
2177 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2178 rb_erase(n, root_node);
2179 list_move(&entry->lru, head);
2180 }
2181 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2182 }
2183
2184 void nfs_access_zap_cache(struct inode *inode)
2185 {
2186 LIST_HEAD(head);
2187
2188 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2189 return;
2190 /* Remove from global LRU init */
2191 spin_lock(&nfs_access_lru_lock);
2192 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2193 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2194
2195 spin_lock(&inode->i_lock);
2196 __nfs_access_zap_cache(NFS_I(inode), &head);
2197 spin_unlock(&inode->i_lock);
2198 spin_unlock(&nfs_access_lru_lock);
2199 nfs_access_free_list(&head);
2200 }
2201 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2202
2203 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2204 {
2205 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2206 struct nfs_access_entry *entry;
2207
2208 while (n != NULL) {
2209 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2210
2211 if (cred < entry->cred)
2212 n = n->rb_left;
2213 else if (cred > entry->cred)
2214 n = n->rb_right;
2215 else
2216 return entry;
2217 }
2218 return NULL;
2219 }
2220
2221 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2222 {
2223 struct nfs_inode *nfsi = NFS_I(inode);
2224 struct nfs_access_entry *cache;
2225 int err = -ENOENT;
2226
2227 spin_lock(&inode->i_lock);
2228 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2229 goto out_zap;
2230 cache = nfs_access_search_rbtree(inode, cred);
2231 if (cache == NULL)
2232 goto out;
2233 if (!nfs_have_delegated_attributes(inode) &&
2234 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2235 goto out_stale;
2236 res->jiffies = cache->jiffies;
2237 res->cred = cache->cred;
2238 res->mask = cache->mask;
2239 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2240 err = 0;
2241 out:
2242 spin_unlock(&inode->i_lock);
2243 return err;
2244 out_stale:
2245 rb_erase(&cache->rb_node, &nfsi->access_cache);
2246 list_del(&cache->lru);
2247 spin_unlock(&inode->i_lock);
2248 nfs_access_free_entry(cache);
2249 return -ENOENT;
2250 out_zap:
2251 spin_unlock(&inode->i_lock);
2252 nfs_access_zap_cache(inode);
2253 return -ENOENT;
2254 }
2255
2256 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2257 {
2258 /* Only check the most recently returned cache entry,
2259 * but do it without locking.
2260 */
2261 struct nfs_inode *nfsi = NFS_I(inode);
2262 struct nfs_access_entry *cache;
2263 int err = -ECHILD;
2264 struct list_head *lh;
2265
2266 rcu_read_lock();
2267 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2268 goto out;
2269 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2270 cache = list_entry(lh, struct nfs_access_entry, lru);
2271 if (lh == &nfsi->access_cache_entry_lru ||
2272 cred != cache->cred)
2273 cache = NULL;
2274 if (cache == NULL)
2275 goto out;
2276 if (!nfs_have_delegated_attributes(inode) &&
2277 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2278 goto out;
2279 res->jiffies = cache->jiffies;
2280 res->cred = cache->cred;
2281 res->mask = cache->mask;
2282 err = 0;
2283 out:
2284 rcu_read_unlock();
2285 return err;
2286 }
2287
2288 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2289 {
2290 struct nfs_inode *nfsi = NFS_I(inode);
2291 struct rb_root *root_node = &nfsi->access_cache;
2292 struct rb_node **p = &root_node->rb_node;
2293 struct rb_node *parent = NULL;
2294 struct nfs_access_entry *entry;
2295
2296 spin_lock(&inode->i_lock);
2297 while (*p != NULL) {
2298 parent = *p;
2299 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2300
2301 if (set->cred < entry->cred)
2302 p = &parent->rb_left;
2303 else if (set->cred > entry->cred)
2304 p = &parent->rb_right;
2305 else
2306 goto found;
2307 }
2308 rb_link_node(&set->rb_node, parent, p);
2309 rb_insert_color(&set->rb_node, root_node);
2310 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2311 spin_unlock(&inode->i_lock);
2312 return;
2313 found:
2314 rb_replace_node(parent, &set->rb_node, root_node);
2315 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2316 list_del(&entry->lru);
2317 spin_unlock(&inode->i_lock);
2318 nfs_access_free_entry(entry);
2319 }
2320
2321 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2322 {
2323 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2324 if (cache == NULL)
2325 return;
2326 RB_CLEAR_NODE(&cache->rb_node);
2327 cache->jiffies = set->jiffies;
2328 cache->cred = get_rpccred(set->cred);
2329 cache->mask = set->mask;
2330
2331 /* The above field assignments must be visible
2332 * before this item appears on the lru. We cannot easily
2333 * use rcu_assign_pointer, so just force the memory barrier.
2334 */
2335 smp_wmb();
2336 nfs_access_add_rbtree(inode, cache);
2337
2338 /* Update accounting */
2339 smp_mb__before_atomic();
2340 atomic_long_inc(&nfs_access_nr_entries);
2341 smp_mb__after_atomic();
2342
2343 /* Add inode to global LRU list */
2344 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2345 spin_lock(&nfs_access_lru_lock);
2346 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2347 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2348 &nfs_access_lru_list);
2349 spin_unlock(&nfs_access_lru_lock);
2350 }
2351 nfs_access_cache_enforce_limit();
2352 }
2353 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2354
2355 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2356 {
2357 entry->mask = 0;
2358 if (access_result & NFS4_ACCESS_READ)
2359 entry->mask |= MAY_READ;
2360 if (access_result &
2361 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2362 entry->mask |= MAY_WRITE;
2363 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2364 entry->mask |= MAY_EXEC;
2365 }
2366 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2367
2368 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2369 {
2370 struct nfs_access_entry cache;
2371 int status;
2372
2373 trace_nfs_access_enter(inode);
2374
2375 status = nfs_access_get_cached_rcu(inode, cred, &cache);
2376 if (status != 0)
2377 status = nfs_access_get_cached(inode, cred, &cache);
2378 if (status == 0)
2379 goto out_cached;
2380
2381 status = -ECHILD;
2382 if (mask & MAY_NOT_BLOCK)
2383 goto out;
2384
2385 /* Be clever: ask server to check for all possible rights */
2386 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2387 cache.cred = cred;
2388 cache.jiffies = jiffies;
2389 status = NFS_PROTO(inode)->access(inode, &cache);
2390 if (status != 0) {
2391 if (status == -ESTALE) {
2392 nfs_zap_caches(inode);
2393 if (!S_ISDIR(inode->i_mode))
2394 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2395 }
2396 goto out;
2397 }
2398 nfs_access_add_cache(inode, &cache);
2399 out_cached:
2400 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2401 status = -EACCES;
2402 out:
2403 trace_nfs_access_exit(inode, status);
2404 return status;
2405 }
2406
2407 static int nfs_open_permission_mask(int openflags)
2408 {
2409 int mask = 0;
2410
2411 if (openflags & __FMODE_EXEC) {
2412 /* ONLY check exec rights */
2413 mask = MAY_EXEC;
2414 } else {
2415 if ((openflags & O_ACCMODE) != O_WRONLY)
2416 mask |= MAY_READ;
2417 if ((openflags & O_ACCMODE) != O_RDONLY)
2418 mask |= MAY_WRITE;
2419 }
2420
2421 return mask;
2422 }
2423
2424 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2425 {
2426 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2427 }
2428 EXPORT_SYMBOL_GPL(nfs_may_open);
2429
2430 static int nfs_execute_ok(struct inode *inode, int mask)
2431 {
2432 struct nfs_server *server = NFS_SERVER(inode);
2433 int ret;
2434
2435 if (mask & MAY_NOT_BLOCK)
2436 ret = nfs_revalidate_inode_rcu(server, inode);
2437 else
2438 ret = nfs_revalidate_inode(server, inode);
2439 if (ret == 0 && !execute_ok(inode))
2440 ret = -EACCES;
2441 return ret;
2442 }
2443
2444 int nfs_permission(struct inode *inode, int mask)
2445 {
2446 struct rpc_cred *cred;
2447 int res = 0;
2448
2449 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2450
2451 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2452 goto out;
2453 /* Is this sys_access() ? */
2454 if (mask & (MAY_ACCESS | MAY_CHDIR))
2455 goto force_lookup;
2456
2457 switch (inode->i_mode & S_IFMT) {
2458 case S_IFLNK:
2459 goto out;
2460 case S_IFREG:
2461 if ((mask & MAY_OPEN) &&
2462 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2463 return 0;
2464 break;
2465 case S_IFDIR:
2466 /*
2467 * Optimize away all write operations, since the server
2468 * will check permissions when we perform the op.
2469 */
2470 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2471 goto out;
2472 }
2473
2474 force_lookup:
2475 if (!NFS_PROTO(inode)->access)
2476 goto out_notsup;
2477
2478 /* Always try fast lookups first */
2479 rcu_read_lock();
2480 cred = rpc_lookup_cred_nonblock();
2481 if (!IS_ERR(cred))
2482 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2483 else
2484 res = PTR_ERR(cred);
2485 rcu_read_unlock();
2486 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2487 /* Fast lookup failed, try the slow way */
2488 cred = rpc_lookup_cred();
2489 if (!IS_ERR(cred)) {
2490 res = nfs_do_access(inode, cred, mask);
2491 put_rpccred(cred);
2492 } else
2493 res = PTR_ERR(cred);
2494 }
2495 out:
2496 if (!res && (mask & MAY_EXEC))
2497 res = nfs_execute_ok(inode, mask);
2498
2499 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2500 inode->i_sb->s_id, inode->i_ino, mask, res);
2501 return res;
2502 out_notsup:
2503 if (mask & MAY_NOT_BLOCK)
2504 return -ECHILD;
2505
2506 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2507 if (res == 0)
2508 res = generic_permission(inode, mask);
2509 goto out;
2510 }
2511 EXPORT_SYMBOL_GPL(nfs_permission);
2512
2513 /*
2514 * Local variables:
2515 * version-control: t
2516 * kept-new-versions: 5
2517 * End:
2518 */