]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/nfs/dir.c
vfs: make the string hashes salt the hash
[mirror_ubuntu-artful-kernel.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45
46 #include "nfstrace.h"
47
48 /* #define NFS_DEBUG_VERBOSE 1 */
49
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56
57 const struct file_operations nfs_dir_operations = {
58 .llseek = nfs_llseek_dir,
59 .read = generic_read_dir,
60 .iterate_shared = nfs_readdir,
61 .open = nfs_opendir,
62 .release = nfs_closedir,
63 .fsync = nfs_fsync_dir,
64 };
65
66 const struct address_space_operations nfs_dir_aops = {
67 .freepage = nfs_readdir_clear_array,
68 };
69
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71 {
72 struct nfs_inode *nfsi = NFS_I(dir);
73 struct nfs_open_dir_context *ctx;
74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 if (ctx != NULL) {
76 ctx->duped = 0;
77 ctx->attr_gencount = nfsi->attr_gencount;
78 ctx->dir_cookie = 0;
79 ctx->dup_cookie = 0;
80 ctx->cred = get_rpccred(cred);
81 spin_lock(&dir->i_lock);
82 list_add(&ctx->list, &nfsi->open_files);
83 spin_unlock(&dir->i_lock);
84 return ctx;
85 }
86 return ERR_PTR(-ENOMEM);
87 }
88
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 spin_lock(&dir->i_lock);
92 list_del(&ctx->list);
93 spin_unlock(&dir->i_lock);
94 put_rpccred(ctx->cred);
95 kfree(ctx);
96 }
97
98 /*
99 * Open file
100 */
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 int res = 0;
105 struct nfs_open_dir_context *ctx;
106 struct rpc_cred *cred;
107
108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109
110 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111
112 cred = rpc_lookup_cred();
113 if (IS_ERR(cred))
114 return PTR_ERR(cred);
115 ctx = alloc_nfs_open_dir_context(inode, cred);
116 if (IS_ERR(ctx)) {
117 res = PTR_ERR(ctx);
118 goto out;
119 }
120 filp->private_data = ctx;
121 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 /* This is a mountpoint, so d_revalidate will never
123 * have been called, so we need to refresh the
124 * inode (for close-open consistency) ourselves.
125 */
126 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
127 }
128 out:
129 put_rpccred(cred);
130 return res;
131 }
132
133 static int
134 nfs_closedir(struct inode *inode, struct file *filp)
135 {
136 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
137 return 0;
138 }
139
140 struct nfs_cache_array_entry {
141 u64 cookie;
142 u64 ino;
143 struct qstr string;
144 unsigned char d_type;
145 };
146
147 struct nfs_cache_array {
148 atomic_t refcount;
149 int size;
150 int eof_index;
151 u64 last_cookie;
152 struct nfs_cache_array_entry array[0];
153 };
154
155 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
156 typedef struct {
157 struct file *file;
158 struct page *page;
159 struct dir_context *ctx;
160 unsigned long page_index;
161 u64 *dir_cookie;
162 u64 last_cookie;
163 loff_t current_index;
164 decode_dirent_t decode;
165
166 unsigned long timestamp;
167 unsigned long gencount;
168 unsigned int cache_entry_index;
169 unsigned int plus:1;
170 unsigned int eof:1;
171 } nfs_readdir_descriptor_t;
172
173 /*
174 * The caller is responsible for calling nfs_readdir_release_array(page)
175 */
176 static
177 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
178 {
179 void *ptr;
180 if (page == NULL)
181 return ERR_PTR(-EIO);
182 ptr = kmap(page);
183 if (ptr == NULL)
184 return ERR_PTR(-ENOMEM);
185 return ptr;
186 }
187
188 static
189 void nfs_readdir_release_array(struct page *page)
190 {
191 kunmap(page);
192 }
193
194 /*
195 * we are freeing strings created by nfs_add_to_readdir_array()
196 */
197 static
198 void nfs_readdir_clear_array(struct page *page)
199 {
200 struct nfs_cache_array *array;
201 int i;
202
203 array = kmap_atomic(page);
204 if (atomic_dec_and_test(&array->refcount))
205 for (i = 0; i < array->size; i++)
206 kfree(array->array[i].string.name);
207 kunmap_atomic(array);
208 }
209
210 static bool grab_page(struct page *page)
211 {
212 struct nfs_cache_array *array = kmap_atomic(page);
213 bool res = atomic_inc_not_zero(&array->refcount);
214 kunmap_atomic(array);
215 return res;
216 }
217
218 /*
219 * the caller is responsible for freeing qstr.name
220 * when called by nfs_readdir_add_to_array, the strings will be freed in
221 * nfs_clear_readdir_array()
222 */
223 static
224 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
225 {
226 string->len = len;
227 string->name = kmemdup(name, len, GFP_KERNEL);
228 if (string->name == NULL)
229 return -ENOMEM;
230 /*
231 * Avoid a kmemleak false positive. The pointer to the name is stored
232 * in a page cache page which kmemleak does not scan.
233 */
234 kmemleak_not_leak(string->name);
235 string->hash = full_name_hash(NULL, name, len);
236 return 0;
237 }
238
239 static
240 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
241 {
242 struct nfs_cache_array *array = nfs_readdir_get_array(page);
243 struct nfs_cache_array_entry *cache_entry;
244 int ret;
245
246 if (IS_ERR(array))
247 return PTR_ERR(array);
248
249 cache_entry = &array->array[array->size];
250
251 /* Check that this entry lies within the page bounds */
252 ret = -ENOSPC;
253 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
254 goto out;
255
256 cache_entry->cookie = entry->prev_cookie;
257 cache_entry->ino = entry->ino;
258 cache_entry->d_type = entry->d_type;
259 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
260 if (ret)
261 goto out;
262 array->last_cookie = entry->cookie;
263 array->size++;
264 if (entry->eof != 0)
265 array->eof_index = array->size;
266 out:
267 nfs_readdir_release_array(page);
268 return ret;
269 }
270
271 static
272 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
273 {
274 loff_t diff = desc->ctx->pos - desc->current_index;
275 unsigned int index;
276
277 if (diff < 0)
278 goto out_eof;
279 if (diff >= array->size) {
280 if (array->eof_index >= 0)
281 goto out_eof;
282 return -EAGAIN;
283 }
284
285 index = (unsigned int)diff;
286 *desc->dir_cookie = array->array[index].cookie;
287 desc->cache_entry_index = index;
288 return 0;
289 out_eof:
290 desc->eof = 1;
291 return -EBADCOOKIE;
292 }
293
294 static bool
295 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
296 {
297 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
298 return false;
299 smp_rmb();
300 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
301 }
302
303 static
304 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
305 {
306 int i;
307 loff_t new_pos;
308 int status = -EAGAIN;
309
310 for (i = 0; i < array->size; i++) {
311 if (array->array[i].cookie == *desc->dir_cookie) {
312 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
313 struct nfs_open_dir_context *ctx = desc->file->private_data;
314
315 new_pos = desc->current_index + i;
316 if (ctx->attr_gencount != nfsi->attr_gencount ||
317 !nfs_readdir_inode_mapping_valid(nfsi)) {
318 ctx->duped = 0;
319 ctx->attr_gencount = nfsi->attr_gencount;
320 } else if (new_pos < desc->ctx->pos) {
321 if (ctx->duped > 0
322 && ctx->dup_cookie == *desc->dir_cookie) {
323 if (printk_ratelimit()) {
324 pr_notice("NFS: directory %pD2 contains a readdir loop."
325 "Please contact your server vendor. "
326 "The file: %.*s has duplicate cookie %llu\n",
327 desc->file, array->array[i].string.len,
328 array->array[i].string.name, *desc->dir_cookie);
329 }
330 status = -ELOOP;
331 goto out;
332 }
333 ctx->dup_cookie = *desc->dir_cookie;
334 ctx->duped = -1;
335 }
336 desc->ctx->pos = new_pos;
337 desc->cache_entry_index = i;
338 return 0;
339 }
340 }
341 if (array->eof_index >= 0) {
342 status = -EBADCOOKIE;
343 if (*desc->dir_cookie == array->last_cookie)
344 desc->eof = 1;
345 }
346 out:
347 return status;
348 }
349
350 static
351 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
352 {
353 struct nfs_cache_array *array;
354 int status;
355
356 array = nfs_readdir_get_array(desc->page);
357 if (IS_ERR(array)) {
358 status = PTR_ERR(array);
359 goto out;
360 }
361
362 if (*desc->dir_cookie == 0)
363 status = nfs_readdir_search_for_pos(array, desc);
364 else
365 status = nfs_readdir_search_for_cookie(array, desc);
366
367 if (status == -EAGAIN) {
368 desc->last_cookie = array->last_cookie;
369 desc->current_index += array->size;
370 desc->page_index++;
371 }
372 nfs_readdir_release_array(desc->page);
373 out:
374 return status;
375 }
376
377 /* Fill a page with xdr information before transferring to the cache page */
378 static
379 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
380 struct nfs_entry *entry, struct file *file, struct inode *inode)
381 {
382 struct nfs_open_dir_context *ctx = file->private_data;
383 struct rpc_cred *cred = ctx->cred;
384 unsigned long timestamp, gencount;
385 int error;
386
387 again:
388 timestamp = jiffies;
389 gencount = nfs_inc_attr_generation_counter();
390 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
391 NFS_SERVER(inode)->dtsize, desc->plus);
392 if (error < 0) {
393 /* We requested READDIRPLUS, but the server doesn't grok it */
394 if (error == -ENOTSUPP && desc->plus) {
395 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
396 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
397 desc->plus = 0;
398 goto again;
399 }
400 goto error;
401 }
402 desc->timestamp = timestamp;
403 desc->gencount = gencount;
404 error:
405 return error;
406 }
407
408 static int xdr_decode(nfs_readdir_descriptor_t *desc,
409 struct nfs_entry *entry, struct xdr_stream *xdr)
410 {
411 int error;
412
413 error = desc->decode(xdr, entry, desc->plus);
414 if (error)
415 return error;
416 entry->fattr->time_start = desc->timestamp;
417 entry->fattr->gencount = desc->gencount;
418 return 0;
419 }
420
421 /* Match file and dirent using either filehandle or fileid
422 * Note: caller is responsible for checking the fsid
423 */
424 static
425 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
426 {
427 struct nfs_inode *nfsi;
428
429 if (d_really_is_negative(dentry))
430 return 0;
431
432 nfsi = NFS_I(d_inode(dentry));
433 if (entry->fattr->fileid == nfsi->fileid)
434 return 1;
435 if (nfs_compare_fh(entry->fh, &nfsi->fh) == 0)
436 return 1;
437 return 0;
438 }
439
440 static
441 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
442 {
443 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
444 return false;
445 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
446 return true;
447 if (ctx->pos == 0)
448 return true;
449 return false;
450 }
451
452 /*
453 * This function is called by the lookup code to request the use of
454 * readdirplus to accelerate any future lookups in the same
455 * directory.
456 */
457 static
458 void nfs_advise_use_readdirplus(struct inode *dir)
459 {
460 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
461 }
462
463 /*
464 * This function is mainly for use by nfs_getattr().
465 *
466 * If this is an 'ls -l', we want to force use of readdirplus.
467 * Do this by checking if there is an active file descriptor
468 * and calling nfs_advise_use_readdirplus, then forcing a
469 * cache flush.
470 */
471 void nfs_force_use_readdirplus(struct inode *dir)
472 {
473 if (!list_empty(&NFS_I(dir)->open_files)) {
474 nfs_advise_use_readdirplus(dir);
475 nfs_zap_mapping(dir, dir->i_mapping);
476 }
477 }
478
479 static
480 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
481 {
482 struct qstr filename = QSTR_INIT(entry->name, entry->len);
483 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
484 struct dentry *dentry;
485 struct dentry *alias;
486 struct inode *dir = d_inode(parent);
487 struct inode *inode;
488 int status;
489
490 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
491 return;
492 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
493 return;
494 if (filename.name[0] == '.') {
495 if (filename.len == 1)
496 return;
497 if (filename.len == 2 && filename.name[1] == '.')
498 return;
499 }
500 filename.hash = full_name_hash(parent, filename.name, filename.len);
501
502 dentry = d_lookup(parent, &filename);
503 again:
504 if (!dentry) {
505 dentry = d_alloc_parallel(parent, &filename, &wq);
506 if (IS_ERR(dentry))
507 return;
508 }
509 if (!d_in_lookup(dentry)) {
510 /* Is there a mountpoint here? If so, just exit */
511 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
512 &entry->fattr->fsid))
513 goto out;
514 if (nfs_same_file(dentry, entry)) {
515 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
516 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
517 if (!status)
518 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
519 goto out;
520 } else {
521 d_invalidate(dentry);
522 dput(dentry);
523 dentry = NULL;
524 goto again;
525 }
526 }
527
528 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
529 alias = d_splice_alias(inode, dentry);
530 d_lookup_done(dentry);
531 if (alias) {
532 if (IS_ERR(alias))
533 goto out;
534 dput(dentry);
535 dentry = alias;
536 }
537 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
538 out:
539 dput(dentry);
540 }
541
542 /* Perform conversion from xdr to cache array */
543 static
544 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
545 struct page **xdr_pages, struct page *page, unsigned int buflen)
546 {
547 struct xdr_stream stream;
548 struct xdr_buf buf;
549 struct page *scratch;
550 struct nfs_cache_array *array;
551 unsigned int count = 0;
552 int status;
553
554 scratch = alloc_page(GFP_KERNEL);
555 if (scratch == NULL)
556 return -ENOMEM;
557
558 if (buflen == 0)
559 goto out_nopages;
560
561 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
562 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
563
564 do {
565 status = xdr_decode(desc, entry, &stream);
566 if (status != 0) {
567 if (status == -EAGAIN)
568 status = 0;
569 break;
570 }
571
572 count++;
573
574 if (desc->plus != 0)
575 nfs_prime_dcache(file_dentry(desc->file), entry);
576
577 status = nfs_readdir_add_to_array(entry, page);
578 if (status != 0)
579 break;
580 } while (!entry->eof);
581
582 out_nopages:
583 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
584 array = nfs_readdir_get_array(page);
585 if (!IS_ERR(array)) {
586 array->eof_index = array->size;
587 status = 0;
588 nfs_readdir_release_array(page);
589 } else
590 status = PTR_ERR(array);
591 }
592
593 put_page(scratch);
594 return status;
595 }
596
597 static
598 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
599 {
600 unsigned int i;
601 for (i = 0; i < npages; i++)
602 put_page(pages[i]);
603 }
604
605 /*
606 * nfs_readdir_large_page will allocate pages that must be freed with a call
607 * to nfs_readdir_free_pagearray
608 */
609 static
610 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
611 {
612 unsigned int i;
613
614 for (i = 0; i < npages; i++) {
615 struct page *page = alloc_page(GFP_KERNEL);
616 if (page == NULL)
617 goto out_freepages;
618 pages[i] = page;
619 }
620 return 0;
621
622 out_freepages:
623 nfs_readdir_free_pages(pages, i);
624 return -ENOMEM;
625 }
626
627 static
628 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
629 {
630 struct page *pages[NFS_MAX_READDIR_PAGES];
631 struct nfs_entry entry;
632 struct file *file = desc->file;
633 struct nfs_cache_array *array;
634 int status = -ENOMEM;
635 unsigned int array_size = ARRAY_SIZE(pages);
636
637 entry.prev_cookie = 0;
638 entry.cookie = desc->last_cookie;
639 entry.eof = 0;
640 entry.fh = nfs_alloc_fhandle();
641 entry.fattr = nfs_alloc_fattr();
642 entry.server = NFS_SERVER(inode);
643 if (entry.fh == NULL || entry.fattr == NULL)
644 goto out;
645
646 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
647 if (IS_ERR(entry.label)) {
648 status = PTR_ERR(entry.label);
649 goto out;
650 }
651
652 array = nfs_readdir_get_array(page);
653 if (IS_ERR(array)) {
654 status = PTR_ERR(array);
655 goto out_label_free;
656 }
657 memset(array, 0, sizeof(struct nfs_cache_array));
658 atomic_set(&array->refcount, 1);
659 array->eof_index = -1;
660
661 status = nfs_readdir_alloc_pages(pages, array_size);
662 if (status < 0)
663 goto out_release_array;
664 do {
665 unsigned int pglen;
666 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
667
668 if (status < 0)
669 break;
670 pglen = status;
671 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
672 if (status < 0) {
673 if (status == -ENOSPC)
674 status = 0;
675 break;
676 }
677 } while (array->eof_index < 0);
678
679 nfs_readdir_free_pages(pages, array_size);
680 out_release_array:
681 nfs_readdir_release_array(page);
682 out_label_free:
683 nfs4_label_free(entry.label);
684 out:
685 nfs_free_fattr(entry.fattr);
686 nfs_free_fhandle(entry.fh);
687 return status;
688 }
689
690 /*
691 * Now we cache directories properly, by converting xdr information
692 * to an array that can be used for lookups later. This results in
693 * fewer cache pages, since we can store more information on each page.
694 * We only need to convert from xdr once so future lookups are much simpler
695 */
696 static
697 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
698 {
699 struct inode *inode = file_inode(desc->file);
700 int ret;
701
702 ret = nfs_readdir_xdr_to_array(desc, page, inode);
703 if (ret < 0)
704 goto error;
705 SetPageUptodate(page);
706
707 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
708 /* Should never happen */
709 nfs_zap_mapping(inode, inode->i_mapping);
710 }
711 unlock_page(page);
712 return 0;
713 error:
714 unlock_page(page);
715 return ret;
716 }
717
718 static
719 void cache_page_release(nfs_readdir_descriptor_t *desc)
720 {
721 nfs_readdir_clear_array(desc->page);
722 put_page(desc->page);
723 desc->page = NULL;
724 }
725
726 static
727 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
728 {
729 struct page *page;
730
731 for (;;) {
732 page = read_cache_page(file_inode(desc->file)->i_mapping,
733 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
734 if (IS_ERR(page) || grab_page(page))
735 break;
736 put_page(page);
737 }
738 return page;
739 }
740
741 /*
742 * Returns 0 if desc->dir_cookie was found on page desc->page_index
743 */
744 static
745 int find_cache_page(nfs_readdir_descriptor_t *desc)
746 {
747 int res;
748
749 desc->page = get_cache_page(desc);
750 if (IS_ERR(desc->page))
751 return PTR_ERR(desc->page);
752
753 res = nfs_readdir_search_array(desc);
754 if (res != 0)
755 cache_page_release(desc);
756 return res;
757 }
758
759 /* Search for desc->dir_cookie from the beginning of the page cache */
760 static inline
761 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
762 {
763 int res;
764
765 if (desc->page_index == 0) {
766 desc->current_index = 0;
767 desc->last_cookie = 0;
768 }
769 do {
770 res = find_cache_page(desc);
771 } while (res == -EAGAIN);
772 return res;
773 }
774
775 /*
776 * Once we've found the start of the dirent within a page: fill 'er up...
777 */
778 static
779 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
780 {
781 struct file *file = desc->file;
782 int i = 0;
783 int res = 0;
784 struct nfs_cache_array *array = NULL;
785 struct nfs_open_dir_context *ctx = file->private_data;
786
787 array = nfs_readdir_get_array(desc->page);
788 if (IS_ERR(array)) {
789 res = PTR_ERR(array);
790 goto out;
791 }
792
793 for (i = desc->cache_entry_index; i < array->size; i++) {
794 struct nfs_cache_array_entry *ent;
795
796 ent = &array->array[i];
797 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
798 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
799 desc->eof = 1;
800 break;
801 }
802 desc->ctx->pos++;
803 if (i < (array->size-1))
804 *desc->dir_cookie = array->array[i+1].cookie;
805 else
806 *desc->dir_cookie = array->last_cookie;
807 if (ctx->duped != 0)
808 ctx->duped = 1;
809 }
810 if (array->eof_index >= 0)
811 desc->eof = 1;
812
813 nfs_readdir_release_array(desc->page);
814 out:
815 cache_page_release(desc);
816 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
817 (unsigned long long)*desc->dir_cookie, res);
818 return res;
819 }
820
821 /*
822 * If we cannot find a cookie in our cache, we suspect that this is
823 * because it points to a deleted file, so we ask the server to return
824 * whatever it thinks is the next entry. We then feed this to filldir.
825 * If all goes well, we should then be able to find our way round the
826 * cache on the next call to readdir_search_pagecache();
827 *
828 * NOTE: we cannot add the anonymous page to the pagecache because
829 * the data it contains might not be page aligned. Besides,
830 * we should already have a complete representation of the
831 * directory in the page cache by the time we get here.
832 */
833 static inline
834 int uncached_readdir(nfs_readdir_descriptor_t *desc)
835 {
836 struct page *page = NULL;
837 int status;
838 struct inode *inode = file_inode(desc->file);
839 struct nfs_open_dir_context *ctx = desc->file->private_data;
840
841 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
842 (unsigned long long)*desc->dir_cookie);
843
844 page = alloc_page(GFP_HIGHUSER);
845 if (!page) {
846 status = -ENOMEM;
847 goto out;
848 }
849
850 desc->page_index = 0;
851 desc->last_cookie = *desc->dir_cookie;
852 desc->page = page;
853 ctx->duped = 0;
854
855 status = nfs_readdir_xdr_to_array(desc, page, inode);
856 if (status < 0)
857 goto out_release;
858
859 status = nfs_do_filldir(desc);
860
861 out:
862 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
863 __func__, status);
864 return status;
865 out_release:
866 cache_page_release(desc);
867 goto out;
868 }
869
870 static bool nfs_dir_mapping_need_revalidate(struct inode *dir)
871 {
872 struct nfs_inode *nfsi = NFS_I(dir);
873
874 if (nfs_attribute_cache_expired(dir))
875 return true;
876 if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
877 return true;
878 return false;
879 }
880
881 /* The file offset position represents the dirent entry number. A
882 last cookie cache takes care of the common case of reading the
883 whole directory.
884 */
885 static int nfs_readdir(struct file *file, struct dir_context *ctx)
886 {
887 struct dentry *dentry = file_dentry(file);
888 struct inode *inode = d_inode(dentry);
889 nfs_readdir_descriptor_t my_desc,
890 *desc = &my_desc;
891 struct nfs_open_dir_context *dir_ctx = file->private_data;
892 int res = 0;
893
894 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
895 file, (long long)ctx->pos);
896 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
897
898 /*
899 * ctx->pos points to the dirent entry number.
900 * *desc->dir_cookie has the cookie for the next entry. We have
901 * to either find the entry with the appropriate number or
902 * revalidate the cookie.
903 */
904 memset(desc, 0, sizeof(*desc));
905
906 desc->file = file;
907 desc->ctx = ctx;
908 desc->dir_cookie = &dir_ctx->dir_cookie;
909 desc->decode = NFS_PROTO(inode)->decode_dirent;
910 desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
911
912 if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode))
913 res = nfs_revalidate_mapping(inode, file->f_mapping);
914 if (res < 0)
915 goto out;
916
917 do {
918 res = readdir_search_pagecache(desc);
919
920 if (res == -EBADCOOKIE) {
921 res = 0;
922 /* This means either end of directory */
923 if (*desc->dir_cookie && desc->eof == 0) {
924 /* Or that the server has 'lost' a cookie */
925 res = uncached_readdir(desc);
926 if (res == 0)
927 continue;
928 }
929 break;
930 }
931 if (res == -ETOOSMALL && desc->plus) {
932 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
933 nfs_zap_caches(inode);
934 desc->page_index = 0;
935 desc->plus = 0;
936 desc->eof = 0;
937 continue;
938 }
939 if (res < 0)
940 break;
941
942 res = nfs_do_filldir(desc);
943 if (res < 0)
944 break;
945 } while (!desc->eof);
946 out:
947 if (res > 0)
948 res = 0;
949 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
950 return res;
951 }
952
953 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
954 {
955 struct nfs_open_dir_context *dir_ctx = filp->private_data;
956
957 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
958 filp, offset, whence);
959
960 switch (whence) {
961 case 1:
962 offset += filp->f_pos;
963 case 0:
964 if (offset >= 0)
965 break;
966 default:
967 return -EINVAL;
968 }
969 if (offset != filp->f_pos) {
970 filp->f_pos = offset;
971 dir_ctx->dir_cookie = 0;
972 dir_ctx->duped = 0;
973 }
974 return offset;
975 }
976
977 /*
978 * All directory operations under NFS are synchronous, so fsync()
979 * is a dummy operation.
980 */
981 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
982 int datasync)
983 {
984 struct inode *inode = file_inode(filp);
985
986 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
987
988 inode_lock(inode);
989 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
990 inode_unlock(inode);
991 return 0;
992 }
993
994 /**
995 * nfs_force_lookup_revalidate - Mark the directory as having changed
996 * @dir - pointer to directory inode
997 *
998 * This forces the revalidation code in nfs_lookup_revalidate() to do a
999 * full lookup on all child dentries of 'dir' whenever a change occurs
1000 * on the server that might have invalidated our dcache.
1001 *
1002 * The caller should be holding dir->i_lock
1003 */
1004 void nfs_force_lookup_revalidate(struct inode *dir)
1005 {
1006 NFS_I(dir)->cache_change_attribute++;
1007 }
1008 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1009
1010 /*
1011 * A check for whether or not the parent directory has changed.
1012 * In the case it has, we assume that the dentries are untrustworthy
1013 * and may need to be looked up again.
1014 * If rcu_walk prevents us from performing a full check, return 0.
1015 */
1016 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1017 int rcu_walk)
1018 {
1019 int ret;
1020
1021 if (IS_ROOT(dentry))
1022 return 1;
1023 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1024 return 0;
1025 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1026 return 0;
1027 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1028 if (rcu_walk)
1029 ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir);
1030 else
1031 ret = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1032 if (ret < 0)
1033 return 0;
1034 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1035 return 0;
1036 return 1;
1037 }
1038
1039 /*
1040 * Use intent information to check whether or not we're going to do
1041 * an O_EXCL create using this path component.
1042 */
1043 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1044 {
1045 if (NFS_PROTO(dir)->version == 2)
1046 return 0;
1047 return flags & LOOKUP_EXCL;
1048 }
1049
1050 /*
1051 * Inode and filehandle revalidation for lookups.
1052 *
1053 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1054 * or if the intent information indicates that we're about to open this
1055 * particular file and the "nocto" mount flag is not set.
1056 *
1057 */
1058 static
1059 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1060 {
1061 struct nfs_server *server = NFS_SERVER(inode);
1062 int ret;
1063
1064 if (IS_AUTOMOUNT(inode))
1065 return 0;
1066 /* VFS wants an on-the-wire revalidation */
1067 if (flags & LOOKUP_REVAL)
1068 goto out_force;
1069 /* This is an open(2) */
1070 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1071 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1072 goto out_force;
1073 out:
1074 return (inode->i_nlink == 0) ? -ENOENT : 0;
1075 out_force:
1076 if (flags & LOOKUP_RCU)
1077 return -ECHILD;
1078 ret = __nfs_revalidate_inode(server, inode);
1079 if (ret != 0)
1080 return ret;
1081 goto out;
1082 }
1083
1084 /*
1085 * We judge how long we want to trust negative
1086 * dentries by looking at the parent inode mtime.
1087 *
1088 * If parent mtime has changed, we revalidate, else we wait for a
1089 * period corresponding to the parent's attribute cache timeout value.
1090 *
1091 * If LOOKUP_RCU prevents us from performing a full check, return 1
1092 * suggesting a reval is needed.
1093 */
1094 static inline
1095 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1096 unsigned int flags)
1097 {
1098 /* Don't revalidate a negative dentry if we're creating a new file */
1099 if (flags & LOOKUP_CREATE)
1100 return 0;
1101 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1102 return 1;
1103 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1104 }
1105
1106 /*
1107 * This is called every time the dcache has a lookup hit,
1108 * and we should check whether we can really trust that
1109 * lookup.
1110 *
1111 * NOTE! The hit can be a negative hit too, don't assume
1112 * we have an inode!
1113 *
1114 * If the parent directory is seen to have changed, we throw out the
1115 * cached dentry and do a new lookup.
1116 */
1117 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1118 {
1119 struct inode *dir;
1120 struct inode *inode;
1121 struct dentry *parent;
1122 struct nfs_fh *fhandle = NULL;
1123 struct nfs_fattr *fattr = NULL;
1124 struct nfs4_label *label = NULL;
1125 int error;
1126
1127 if (flags & LOOKUP_RCU) {
1128 parent = ACCESS_ONCE(dentry->d_parent);
1129 dir = d_inode_rcu(parent);
1130 if (!dir)
1131 return -ECHILD;
1132 } else {
1133 parent = dget_parent(dentry);
1134 dir = d_inode(parent);
1135 }
1136 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1137 inode = d_inode(dentry);
1138
1139 if (!inode) {
1140 if (nfs_neg_need_reval(dir, dentry, flags)) {
1141 if (flags & LOOKUP_RCU)
1142 return -ECHILD;
1143 goto out_bad;
1144 }
1145 goto out_valid_noent;
1146 }
1147
1148 if (is_bad_inode(inode)) {
1149 if (flags & LOOKUP_RCU)
1150 return -ECHILD;
1151 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1152 __func__, dentry);
1153 goto out_bad;
1154 }
1155
1156 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1157 goto out_set_verifier;
1158
1159 /* Force a full look up iff the parent directory has changed */
1160 if (!nfs_is_exclusive_create(dir, flags) &&
1161 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1162
1163 if (nfs_lookup_verify_inode(inode, flags)) {
1164 if (flags & LOOKUP_RCU)
1165 return -ECHILD;
1166 goto out_zap_parent;
1167 }
1168 goto out_valid;
1169 }
1170
1171 if (flags & LOOKUP_RCU)
1172 return -ECHILD;
1173
1174 if (NFS_STALE(inode))
1175 goto out_bad;
1176
1177 error = -ENOMEM;
1178 fhandle = nfs_alloc_fhandle();
1179 fattr = nfs_alloc_fattr();
1180 if (fhandle == NULL || fattr == NULL)
1181 goto out_error;
1182
1183 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1184 if (IS_ERR(label))
1185 goto out_error;
1186
1187 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1188 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1189 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1190 if (error)
1191 goto out_bad;
1192 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1193 goto out_bad;
1194 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1195 goto out_bad;
1196
1197 nfs_setsecurity(inode, fattr, label);
1198
1199 nfs_free_fattr(fattr);
1200 nfs_free_fhandle(fhandle);
1201 nfs4_label_free(label);
1202
1203 out_set_verifier:
1204 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1205 out_valid:
1206 /* Success: notify readdir to use READDIRPLUS */
1207 nfs_advise_use_readdirplus(dir);
1208 out_valid_noent:
1209 if (flags & LOOKUP_RCU) {
1210 if (parent != ACCESS_ONCE(dentry->d_parent))
1211 return -ECHILD;
1212 } else
1213 dput(parent);
1214 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1215 __func__, dentry);
1216 return 1;
1217 out_zap_parent:
1218 nfs_zap_caches(dir);
1219 out_bad:
1220 WARN_ON(flags & LOOKUP_RCU);
1221 nfs_free_fattr(fattr);
1222 nfs_free_fhandle(fhandle);
1223 nfs4_label_free(label);
1224 nfs_mark_for_revalidate(dir);
1225 if (inode && S_ISDIR(inode->i_mode)) {
1226 /* Purge readdir caches. */
1227 nfs_zap_caches(inode);
1228 /*
1229 * We can't d_drop the root of a disconnected tree:
1230 * its d_hash is on the s_anon list and d_drop() would hide
1231 * it from shrink_dcache_for_unmount(), leading to busy
1232 * inodes on unmount and further oopses.
1233 */
1234 if (IS_ROOT(dentry))
1235 goto out_valid;
1236 }
1237 dput(parent);
1238 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1239 __func__, dentry);
1240 return 0;
1241 out_error:
1242 WARN_ON(flags & LOOKUP_RCU);
1243 nfs_free_fattr(fattr);
1244 nfs_free_fhandle(fhandle);
1245 nfs4_label_free(label);
1246 dput(parent);
1247 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1248 __func__, dentry, error);
1249 return error;
1250 }
1251
1252 /*
1253 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1254 * when we don't really care about the dentry name. This is called when a
1255 * pathwalk ends on a dentry that was not found via a normal lookup in the
1256 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1257 *
1258 * In this situation, we just want to verify that the inode itself is OK
1259 * since the dentry might have changed on the server.
1260 */
1261 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1262 {
1263 int error;
1264 struct inode *inode = d_inode(dentry);
1265
1266 /*
1267 * I believe we can only get a negative dentry here in the case of a
1268 * procfs-style symlink. Just assume it's correct for now, but we may
1269 * eventually need to do something more here.
1270 */
1271 if (!inode) {
1272 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1273 __func__, dentry);
1274 return 1;
1275 }
1276
1277 if (is_bad_inode(inode)) {
1278 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1279 __func__, dentry);
1280 return 0;
1281 }
1282
1283 error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1284 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1285 __func__, inode->i_ino, error ? "invalid" : "valid");
1286 return !error;
1287 }
1288
1289 /*
1290 * This is called from dput() when d_count is going to 0.
1291 */
1292 static int nfs_dentry_delete(const struct dentry *dentry)
1293 {
1294 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1295 dentry, dentry->d_flags);
1296
1297 /* Unhash any dentry with a stale inode */
1298 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1299 return 1;
1300
1301 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1302 /* Unhash it, so that ->d_iput() would be called */
1303 return 1;
1304 }
1305 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1306 /* Unhash it, so that ancestors of killed async unlink
1307 * files will be cleaned up during umount */
1308 return 1;
1309 }
1310 return 0;
1311
1312 }
1313
1314 /* Ensure that we revalidate inode->i_nlink */
1315 static void nfs_drop_nlink(struct inode *inode)
1316 {
1317 spin_lock(&inode->i_lock);
1318 /* drop the inode if we're reasonably sure this is the last link */
1319 if (inode->i_nlink == 1)
1320 clear_nlink(inode);
1321 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1322 spin_unlock(&inode->i_lock);
1323 }
1324
1325 /*
1326 * Called when the dentry loses inode.
1327 * We use it to clean up silly-renamed files.
1328 */
1329 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1330 {
1331 if (S_ISDIR(inode->i_mode))
1332 /* drop any readdir cache as it could easily be old */
1333 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1334
1335 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1336 nfs_complete_unlink(dentry, inode);
1337 nfs_drop_nlink(inode);
1338 }
1339 iput(inode);
1340 }
1341
1342 static void nfs_d_release(struct dentry *dentry)
1343 {
1344 /* free cached devname value, if it survived that far */
1345 if (unlikely(dentry->d_fsdata)) {
1346 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1347 WARN_ON(1);
1348 else
1349 kfree(dentry->d_fsdata);
1350 }
1351 }
1352
1353 const struct dentry_operations nfs_dentry_operations = {
1354 .d_revalidate = nfs_lookup_revalidate,
1355 .d_weak_revalidate = nfs_weak_revalidate,
1356 .d_delete = nfs_dentry_delete,
1357 .d_iput = nfs_dentry_iput,
1358 .d_automount = nfs_d_automount,
1359 .d_release = nfs_d_release,
1360 };
1361 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1362
1363 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1364 {
1365 struct dentry *res;
1366 struct dentry *parent;
1367 struct inode *inode = NULL;
1368 struct nfs_fh *fhandle = NULL;
1369 struct nfs_fattr *fattr = NULL;
1370 struct nfs4_label *label = NULL;
1371 int error;
1372
1373 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1374 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1375
1376 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1377 return ERR_PTR(-ENAMETOOLONG);
1378
1379 /*
1380 * If we're doing an exclusive create, optimize away the lookup
1381 * but don't hash the dentry.
1382 */
1383 if (nfs_is_exclusive_create(dir, flags))
1384 return NULL;
1385
1386 res = ERR_PTR(-ENOMEM);
1387 fhandle = nfs_alloc_fhandle();
1388 fattr = nfs_alloc_fattr();
1389 if (fhandle == NULL || fattr == NULL)
1390 goto out;
1391
1392 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1393 if (IS_ERR(label))
1394 goto out;
1395
1396 parent = dentry->d_parent;
1397 /* Protect against concurrent sillydeletes */
1398 trace_nfs_lookup_enter(dir, dentry, flags);
1399 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1400 if (error == -ENOENT)
1401 goto no_entry;
1402 if (error < 0) {
1403 res = ERR_PTR(error);
1404 goto out_unblock_sillyrename;
1405 }
1406 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1407 res = ERR_CAST(inode);
1408 if (IS_ERR(res))
1409 goto out_unblock_sillyrename;
1410
1411 /* Success: notify readdir to use READDIRPLUS */
1412 nfs_advise_use_readdirplus(dir);
1413
1414 no_entry:
1415 res = d_splice_alias(inode, dentry);
1416 if (res != NULL) {
1417 if (IS_ERR(res))
1418 goto out_unblock_sillyrename;
1419 dentry = res;
1420 }
1421 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1422 out_unblock_sillyrename:
1423 trace_nfs_lookup_exit(dir, dentry, flags, error);
1424 nfs4_label_free(label);
1425 out:
1426 nfs_free_fattr(fattr);
1427 nfs_free_fhandle(fhandle);
1428 return res;
1429 }
1430 EXPORT_SYMBOL_GPL(nfs_lookup);
1431
1432 #if IS_ENABLED(CONFIG_NFS_V4)
1433 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1434
1435 const struct dentry_operations nfs4_dentry_operations = {
1436 .d_revalidate = nfs4_lookup_revalidate,
1437 .d_delete = nfs_dentry_delete,
1438 .d_iput = nfs_dentry_iput,
1439 .d_automount = nfs_d_automount,
1440 .d_release = nfs_d_release,
1441 };
1442 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1443
1444 static fmode_t flags_to_mode(int flags)
1445 {
1446 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1447 if ((flags & O_ACCMODE) != O_WRONLY)
1448 res |= FMODE_READ;
1449 if ((flags & O_ACCMODE) != O_RDONLY)
1450 res |= FMODE_WRITE;
1451 return res;
1452 }
1453
1454 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1455 {
1456 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1457 }
1458
1459 static int do_open(struct inode *inode, struct file *filp)
1460 {
1461 nfs_fscache_open_file(inode, filp);
1462 return 0;
1463 }
1464
1465 static int nfs_finish_open(struct nfs_open_context *ctx,
1466 struct dentry *dentry,
1467 struct file *file, unsigned open_flags,
1468 int *opened)
1469 {
1470 int err;
1471
1472 err = finish_open(file, dentry, do_open, opened);
1473 if (err)
1474 goto out;
1475 nfs_file_set_open_context(file, ctx);
1476
1477 out:
1478 return err;
1479 }
1480
1481 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1482 struct file *file, unsigned open_flags,
1483 umode_t mode, int *opened)
1484 {
1485 struct nfs_open_context *ctx;
1486 struct dentry *res;
1487 struct iattr attr = { .ia_valid = ATTR_OPEN };
1488 struct inode *inode;
1489 unsigned int lookup_flags = 0;
1490 int err;
1491
1492 /* Expect a negative dentry */
1493 BUG_ON(d_inode(dentry));
1494
1495 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1496 dir->i_sb->s_id, dir->i_ino, dentry);
1497
1498 err = nfs_check_flags(open_flags);
1499 if (err)
1500 return err;
1501
1502 /* NFS only supports OPEN on regular files */
1503 if ((open_flags & O_DIRECTORY)) {
1504 if (!d_unhashed(dentry)) {
1505 /*
1506 * Hashed negative dentry with O_DIRECTORY: dentry was
1507 * revalidated and is fine, no need to perform lookup
1508 * again
1509 */
1510 return -ENOENT;
1511 }
1512 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1513 goto no_open;
1514 }
1515
1516 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1517 return -ENAMETOOLONG;
1518
1519 if (open_flags & O_CREAT) {
1520 attr.ia_valid |= ATTR_MODE;
1521 attr.ia_mode = mode & ~current_umask();
1522 }
1523 if (open_flags & O_TRUNC) {
1524 attr.ia_valid |= ATTR_SIZE;
1525 attr.ia_size = 0;
1526 }
1527
1528 ctx = create_nfs_open_context(dentry, open_flags);
1529 err = PTR_ERR(ctx);
1530 if (IS_ERR(ctx))
1531 goto out;
1532
1533 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1534 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1535 if (IS_ERR(inode)) {
1536 err = PTR_ERR(inode);
1537 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1538 put_nfs_open_context(ctx);
1539 switch (err) {
1540 case -ENOENT:
1541 d_drop(dentry);
1542 d_add(dentry, NULL);
1543 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1544 break;
1545 case -EISDIR:
1546 case -ENOTDIR:
1547 goto no_open;
1548 case -ELOOP:
1549 if (!(open_flags & O_NOFOLLOW))
1550 goto no_open;
1551 break;
1552 /* case -EINVAL: */
1553 default:
1554 break;
1555 }
1556 goto out;
1557 }
1558
1559 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1560 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1561 put_nfs_open_context(ctx);
1562 out:
1563 return err;
1564
1565 no_open:
1566 res = nfs_lookup(dir, dentry, lookup_flags);
1567 err = PTR_ERR(res);
1568 if (IS_ERR(res))
1569 goto out;
1570
1571 return finish_no_open(file, res);
1572 }
1573 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1574
1575 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1576 {
1577 struct inode *inode;
1578 int ret = 0;
1579
1580 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1581 goto no_open;
1582 if (d_mountpoint(dentry))
1583 goto no_open;
1584 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1585 goto no_open;
1586
1587 inode = d_inode(dentry);
1588
1589 /* We can't create new files in nfs_open_revalidate(), so we
1590 * optimize away revalidation of negative dentries.
1591 */
1592 if (inode == NULL) {
1593 struct dentry *parent;
1594 struct inode *dir;
1595
1596 if (flags & LOOKUP_RCU) {
1597 parent = ACCESS_ONCE(dentry->d_parent);
1598 dir = d_inode_rcu(parent);
1599 if (!dir)
1600 return -ECHILD;
1601 } else {
1602 parent = dget_parent(dentry);
1603 dir = d_inode(parent);
1604 }
1605 if (!nfs_neg_need_reval(dir, dentry, flags))
1606 ret = 1;
1607 else if (flags & LOOKUP_RCU)
1608 ret = -ECHILD;
1609 if (!(flags & LOOKUP_RCU))
1610 dput(parent);
1611 else if (parent != ACCESS_ONCE(dentry->d_parent))
1612 return -ECHILD;
1613 goto out;
1614 }
1615
1616 /* NFS only supports OPEN on regular files */
1617 if (!S_ISREG(inode->i_mode))
1618 goto no_open;
1619 /* We cannot do exclusive creation on a positive dentry */
1620 if (flags & LOOKUP_EXCL)
1621 goto no_open;
1622
1623 /* Let f_op->open() actually open (and revalidate) the file */
1624 ret = 1;
1625
1626 out:
1627 return ret;
1628
1629 no_open:
1630 return nfs_lookup_revalidate(dentry, flags);
1631 }
1632
1633 #endif /* CONFIG_NFSV4 */
1634
1635 /*
1636 * Code common to create, mkdir, and mknod.
1637 */
1638 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1639 struct nfs_fattr *fattr,
1640 struct nfs4_label *label)
1641 {
1642 struct dentry *parent = dget_parent(dentry);
1643 struct inode *dir = d_inode(parent);
1644 struct inode *inode;
1645 int error = -EACCES;
1646
1647 d_drop(dentry);
1648
1649 /* We may have been initialized further down */
1650 if (d_really_is_positive(dentry))
1651 goto out;
1652 if (fhandle->size == 0) {
1653 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1654 if (error)
1655 goto out_error;
1656 }
1657 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1658 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1659 struct nfs_server *server = NFS_SB(dentry->d_sb);
1660 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1661 if (error < 0)
1662 goto out_error;
1663 }
1664 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1665 error = PTR_ERR(inode);
1666 if (IS_ERR(inode))
1667 goto out_error;
1668 d_add(dentry, inode);
1669 out:
1670 dput(parent);
1671 return 0;
1672 out_error:
1673 nfs_mark_for_revalidate(dir);
1674 dput(parent);
1675 return error;
1676 }
1677 EXPORT_SYMBOL_GPL(nfs_instantiate);
1678
1679 /*
1680 * Following a failed create operation, we drop the dentry rather
1681 * than retain a negative dentry. This avoids a problem in the event
1682 * that the operation succeeded on the server, but an error in the
1683 * reply path made it appear to have failed.
1684 */
1685 int nfs_create(struct inode *dir, struct dentry *dentry,
1686 umode_t mode, bool excl)
1687 {
1688 struct iattr attr;
1689 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1690 int error;
1691
1692 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1693 dir->i_sb->s_id, dir->i_ino, dentry);
1694
1695 attr.ia_mode = mode;
1696 attr.ia_valid = ATTR_MODE;
1697
1698 trace_nfs_create_enter(dir, dentry, open_flags);
1699 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1700 trace_nfs_create_exit(dir, dentry, open_flags, error);
1701 if (error != 0)
1702 goto out_err;
1703 return 0;
1704 out_err:
1705 d_drop(dentry);
1706 return error;
1707 }
1708 EXPORT_SYMBOL_GPL(nfs_create);
1709
1710 /*
1711 * See comments for nfs_proc_create regarding failed operations.
1712 */
1713 int
1714 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1715 {
1716 struct iattr attr;
1717 int status;
1718
1719 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1720 dir->i_sb->s_id, dir->i_ino, dentry);
1721
1722 attr.ia_mode = mode;
1723 attr.ia_valid = ATTR_MODE;
1724
1725 trace_nfs_mknod_enter(dir, dentry);
1726 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1727 trace_nfs_mknod_exit(dir, dentry, status);
1728 if (status != 0)
1729 goto out_err;
1730 return 0;
1731 out_err:
1732 d_drop(dentry);
1733 return status;
1734 }
1735 EXPORT_SYMBOL_GPL(nfs_mknod);
1736
1737 /*
1738 * See comments for nfs_proc_create regarding failed operations.
1739 */
1740 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1741 {
1742 struct iattr attr;
1743 int error;
1744
1745 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1746 dir->i_sb->s_id, dir->i_ino, dentry);
1747
1748 attr.ia_valid = ATTR_MODE;
1749 attr.ia_mode = mode | S_IFDIR;
1750
1751 trace_nfs_mkdir_enter(dir, dentry);
1752 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1753 trace_nfs_mkdir_exit(dir, dentry, error);
1754 if (error != 0)
1755 goto out_err;
1756 return 0;
1757 out_err:
1758 d_drop(dentry);
1759 return error;
1760 }
1761 EXPORT_SYMBOL_GPL(nfs_mkdir);
1762
1763 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1764 {
1765 if (simple_positive(dentry))
1766 d_delete(dentry);
1767 }
1768
1769 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1770 {
1771 int error;
1772
1773 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1774 dir->i_sb->s_id, dir->i_ino, dentry);
1775
1776 trace_nfs_rmdir_enter(dir, dentry);
1777 if (d_really_is_positive(dentry)) {
1778 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1779 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1780 /* Ensure the VFS deletes this inode */
1781 switch (error) {
1782 case 0:
1783 clear_nlink(d_inode(dentry));
1784 break;
1785 case -ENOENT:
1786 nfs_dentry_handle_enoent(dentry);
1787 }
1788 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1789 } else
1790 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1791 trace_nfs_rmdir_exit(dir, dentry, error);
1792
1793 return error;
1794 }
1795 EXPORT_SYMBOL_GPL(nfs_rmdir);
1796
1797 /*
1798 * Remove a file after making sure there are no pending writes,
1799 * and after checking that the file has only one user.
1800 *
1801 * We invalidate the attribute cache and free the inode prior to the operation
1802 * to avoid possible races if the server reuses the inode.
1803 */
1804 static int nfs_safe_remove(struct dentry *dentry)
1805 {
1806 struct inode *dir = d_inode(dentry->d_parent);
1807 struct inode *inode = d_inode(dentry);
1808 int error = -EBUSY;
1809
1810 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1811
1812 /* If the dentry was sillyrenamed, we simply call d_delete() */
1813 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1814 error = 0;
1815 goto out;
1816 }
1817
1818 trace_nfs_remove_enter(dir, dentry);
1819 if (inode != NULL) {
1820 NFS_PROTO(inode)->return_delegation(inode);
1821 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1822 if (error == 0)
1823 nfs_drop_nlink(inode);
1824 } else
1825 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1826 if (error == -ENOENT)
1827 nfs_dentry_handle_enoent(dentry);
1828 trace_nfs_remove_exit(dir, dentry, error);
1829 out:
1830 return error;
1831 }
1832
1833 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1834 * belongs to an active ".nfs..." file and we return -EBUSY.
1835 *
1836 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1837 */
1838 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1839 {
1840 int error;
1841 int need_rehash = 0;
1842
1843 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1844 dir->i_ino, dentry);
1845
1846 trace_nfs_unlink_enter(dir, dentry);
1847 spin_lock(&dentry->d_lock);
1848 if (d_count(dentry) > 1) {
1849 spin_unlock(&dentry->d_lock);
1850 /* Start asynchronous writeout of the inode */
1851 write_inode_now(d_inode(dentry), 0);
1852 error = nfs_sillyrename(dir, dentry);
1853 goto out;
1854 }
1855 if (!d_unhashed(dentry)) {
1856 __d_drop(dentry);
1857 need_rehash = 1;
1858 }
1859 spin_unlock(&dentry->d_lock);
1860 error = nfs_safe_remove(dentry);
1861 if (!error || error == -ENOENT) {
1862 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1863 } else if (need_rehash)
1864 d_rehash(dentry);
1865 out:
1866 trace_nfs_unlink_exit(dir, dentry, error);
1867 return error;
1868 }
1869 EXPORT_SYMBOL_GPL(nfs_unlink);
1870
1871 /*
1872 * To create a symbolic link, most file systems instantiate a new inode,
1873 * add a page to it containing the path, then write it out to the disk
1874 * using prepare_write/commit_write.
1875 *
1876 * Unfortunately the NFS client can't create the in-core inode first
1877 * because it needs a file handle to create an in-core inode (see
1878 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1879 * symlink request has completed on the server.
1880 *
1881 * So instead we allocate a raw page, copy the symname into it, then do
1882 * the SYMLINK request with the page as the buffer. If it succeeds, we
1883 * now have a new file handle and can instantiate an in-core NFS inode
1884 * and move the raw page into its mapping.
1885 */
1886 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1887 {
1888 struct page *page;
1889 char *kaddr;
1890 struct iattr attr;
1891 unsigned int pathlen = strlen(symname);
1892 int error;
1893
1894 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1895 dir->i_ino, dentry, symname);
1896
1897 if (pathlen > PAGE_SIZE)
1898 return -ENAMETOOLONG;
1899
1900 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1901 attr.ia_valid = ATTR_MODE;
1902
1903 page = alloc_page(GFP_USER);
1904 if (!page)
1905 return -ENOMEM;
1906
1907 kaddr = page_address(page);
1908 memcpy(kaddr, symname, pathlen);
1909 if (pathlen < PAGE_SIZE)
1910 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1911
1912 trace_nfs_symlink_enter(dir, dentry);
1913 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1914 trace_nfs_symlink_exit(dir, dentry, error);
1915 if (error != 0) {
1916 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1917 dir->i_sb->s_id, dir->i_ino,
1918 dentry, symname, error);
1919 d_drop(dentry);
1920 __free_page(page);
1921 return error;
1922 }
1923
1924 /*
1925 * No big deal if we can't add this page to the page cache here.
1926 * READLINK will get the missing page from the server if needed.
1927 */
1928 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1929 GFP_KERNEL)) {
1930 SetPageUptodate(page);
1931 unlock_page(page);
1932 /*
1933 * add_to_page_cache_lru() grabs an extra page refcount.
1934 * Drop it here to avoid leaking this page later.
1935 */
1936 put_page(page);
1937 } else
1938 __free_page(page);
1939
1940 return 0;
1941 }
1942 EXPORT_SYMBOL_GPL(nfs_symlink);
1943
1944 int
1945 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1946 {
1947 struct inode *inode = d_inode(old_dentry);
1948 int error;
1949
1950 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1951 old_dentry, dentry);
1952
1953 trace_nfs_link_enter(inode, dir, dentry);
1954 NFS_PROTO(inode)->return_delegation(inode);
1955
1956 d_drop(dentry);
1957 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1958 if (error == 0) {
1959 ihold(inode);
1960 d_add(dentry, inode);
1961 }
1962 trace_nfs_link_exit(inode, dir, dentry, error);
1963 return error;
1964 }
1965 EXPORT_SYMBOL_GPL(nfs_link);
1966
1967 /*
1968 * RENAME
1969 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1970 * different file handle for the same inode after a rename (e.g. when
1971 * moving to a different directory). A fail-safe method to do so would
1972 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1973 * rename the old file using the sillyrename stuff. This way, the original
1974 * file in old_dir will go away when the last process iput()s the inode.
1975 *
1976 * FIXED.
1977 *
1978 * It actually works quite well. One needs to have the possibility for
1979 * at least one ".nfs..." file in each directory the file ever gets
1980 * moved or linked to which happens automagically with the new
1981 * implementation that only depends on the dcache stuff instead of
1982 * using the inode layer
1983 *
1984 * Unfortunately, things are a little more complicated than indicated
1985 * above. For a cross-directory move, we want to make sure we can get
1986 * rid of the old inode after the operation. This means there must be
1987 * no pending writes (if it's a file), and the use count must be 1.
1988 * If these conditions are met, we can drop the dentries before doing
1989 * the rename.
1990 */
1991 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1992 struct inode *new_dir, struct dentry *new_dentry)
1993 {
1994 struct inode *old_inode = d_inode(old_dentry);
1995 struct inode *new_inode = d_inode(new_dentry);
1996 struct dentry *dentry = NULL, *rehash = NULL;
1997 struct rpc_task *task;
1998 int error = -EBUSY;
1999
2000 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2001 old_dentry, new_dentry,
2002 d_count(new_dentry));
2003
2004 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2005 /*
2006 * For non-directories, check whether the target is busy and if so,
2007 * make a copy of the dentry and then do a silly-rename. If the
2008 * silly-rename succeeds, the copied dentry is hashed and becomes
2009 * the new target.
2010 */
2011 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2012 /*
2013 * To prevent any new references to the target during the
2014 * rename, we unhash the dentry in advance.
2015 */
2016 if (!d_unhashed(new_dentry)) {
2017 d_drop(new_dentry);
2018 rehash = new_dentry;
2019 }
2020
2021 if (d_count(new_dentry) > 2) {
2022 int err;
2023
2024 /* copy the target dentry's name */
2025 dentry = d_alloc(new_dentry->d_parent,
2026 &new_dentry->d_name);
2027 if (!dentry)
2028 goto out;
2029
2030 /* silly-rename the existing target ... */
2031 err = nfs_sillyrename(new_dir, new_dentry);
2032 if (err)
2033 goto out;
2034
2035 new_dentry = dentry;
2036 rehash = NULL;
2037 new_inode = NULL;
2038 }
2039 }
2040
2041 NFS_PROTO(old_inode)->return_delegation(old_inode);
2042 if (new_inode != NULL)
2043 NFS_PROTO(new_inode)->return_delegation(new_inode);
2044
2045 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2046 if (IS_ERR(task)) {
2047 error = PTR_ERR(task);
2048 goto out;
2049 }
2050
2051 error = rpc_wait_for_completion_task(task);
2052 if (error == 0)
2053 error = task->tk_status;
2054 rpc_put_task(task);
2055 nfs_mark_for_revalidate(old_inode);
2056 out:
2057 if (rehash)
2058 d_rehash(rehash);
2059 trace_nfs_rename_exit(old_dir, old_dentry,
2060 new_dir, new_dentry, error);
2061 if (!error) {
2062 if (new_inode != NULL)
2063 nfs_drop_nlink(new_inode);
2064 d_move(old_dentry, new_dentry);
2065 nfs_set_verifier(new_dentry,
2066 nfs_save_change_attribute(new_dir));
2067 } else if (error == -ENOENT)
2068 nfs_dentry_handle_enoent(old_dentry);
2069
2070 /* new dentry created? */
2071 if (dentry)
2072 dput(dentry);
2073 return error;
2074 }
2075 EXPORT_SYMBOL_GPL(nfs_rename);
2076
2077 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2078 static LIST_HEAD(nfs_access_lru_list);
2079 static atomic_long_t nfs_access_nr_entries;
2080
2081 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2082 module_param(nfs_access_max_cachesize, ulong, 0644);
2083 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2084
2085 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2086 {
2087 put_rpccred(entry->cred);
2088 kfree_rcu(entry, rcu_head);
2089 smp_mb__before_atomic();
2090 atomic_long_dec(&nfs_access_nr_entries);
2091 smp_mb__after_atomic();
2092 }
2093
2094 static void nfs_access_free_list(struct list_head *head)
2095 {
2096 struct nfs_access_entry *cache;
2097
2098 while (!list_empty(head)) {
2099 cache = list_entry(head->next, struct nfs_access_entry, lru);
2100 list_del(&cache->lru);
2101 nfs_access_free_entry(cache);
2102 }
2103 }
2104
2105 static unsigned long
2106 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2107 {
2108 LIST_HEAD(head);
2109 struct nfs_inode *nfsi, *next;
2110 struct nfs_access_entry *cache;
2111 long freed = 0;
2112
2113 spin_lock(&nfs_access_lru_lock);
2114 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2115 struct inode *inode;
2116
2117 if (nr_to_scan-- == 0)
2118 break;
2119 inode = &nfsi->vfs_inode;
2120 spin_lock(&inode->i_lock);
2121 if (list_empty(&nfsi->access_cache_entry_lru))
2122 goto remove_lru_entry;
2123 cache = list_entry(nfsi->access_cache_entry_lru.next,
2124 struct nfs_access_entry, lru);
2125 list_move(&cache->lru, &head);
2126 rb_erase(&cache->rb_node, &nfsi->access_cache);
2127 freed++;
2128 if (!list_empty(&nfsi->access_cache_entry_lru))
2129 list_move_tail(&nfsi->access_cache_inode_lru,
2130 &nfs_access_lru_list);
2131 else {
2132 remove_lru_entry:
2133 list_del_init(&nfsi->access_cache_inode_lru);
2134 smp_mb__before_atomic();
2135 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2136 smp_mb__after_atomic();
2137 }
2138 spin_unlock(&inode->i_lock);
2139 }
2140 spin_unlock(&nfs_access_lru_lock);
2141 nfs_access_free_list(&head);
2142 return freed;
2143 }
2144
2145 unsigned long
2146 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2147 {
2148 int nr_to_scan = sc->nr_to_scan;
2149 gfp_t gfp_mask = sc->gfp_mask;
2150
2151 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2152 return SHRINK_STOP;
2153 return nfs_do_access_cache_scan(nr_to_scan);
2154 }
2155
2156
2157 unsigned long
2158 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2159 {
2160 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2161 }
2162
2163 static void
2164 nfs_access_cache_enforce_limit(void)
2165 {
2166 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2167 unsigned long diff;
2168 unsigned int nr_to_scan;
2169
2170 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2171 return;
2172 nr_to_scan = 100;
2173 diff = nr_entries - nfs_access_max_cachesize;
2174 if (diff < nr_to_scan)
2175 nr_to_scan = diff;
2176 nfs_do_access_cache_scan(nr_to_scan);
2177 }
2178
2179 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2180 {
2181 struct rb_root *root_node = &nfsi->access_cache;
2182 struct rb_node *n;
2183 struct nfs_access_entry *entry;
2184
2185 /* Unhook entries from the cache */
2186 while ((n = rb_first(root_node)) != NULL) {
2187 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2188 rb_erase(n, root_node);
2189 list_move(&entry->lru, head);
2190 }
2191 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2192 }
2193
2194 void nfs_access_zap_cache(struct inode *inode)
2195 {
2196 LIST_HEAD(head);
2197
2198 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2199 return;
2200 /* Remove from global LRU init */
2201 spin_lock(&nfs_access_lru_lock);
2202 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2203 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2204
2205 spin_lock(&inode->i_lock);
2206 __nfs_access_zap_cache(NFS_I(inode), &head);
2207 spin_unlock(&inode->i_lock);
2208 spin_unlock(&nfs_access_lru_lock);
2209 nfs_access_free_list(&head);
2210 }
2211 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2212
2213 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2214 {
2215 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2216 struct nfs_access_entry *entry;
2217
2218 while (n != NULL) {
2219 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2220
2221 if (cred < entry->cred)
2222 n = n->rb_left;
2223 else if (cred > entry->cred)
2224 n = n->rb_right;
2225 else
2226 return entry;
2227 }
2228 return NULL;
2229 }
2230
2231 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2232 {
2233 struct nfs_inode *nfsi = NFS_I(inode);
2234 struct nfs_access_entry *cache;
2235 int err = -ENOENT;
2236
2237 spin_lock(&inode->i_lock);
2238 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2239 goto out_zap;
2240 cache = nfs_access_search_rbtree(inode, cred);
2241 if (cache == NULL)
2242 goto out;
2243 if (!nfs_have_delegated_attributes(inode) &&
2244 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2245 goto out_stale;
2246 res->jiffies = cache->jiffies;
2247 res->cred = cache->cred;
2248 res->mask = cache->mask;
2249 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2250 err = 0;
2251 out:
2252 spin_unlock(&inode->i_lock);
2253 return err;
2254 out_stale:
2255 rb_erase(&cache->rb_node, &nfsi->access_cache);
2256 list_del(&cache->lru);
2257 spin_unlock(&inode->i_lock);
2258 nfs_access_free_entry(cache);
2259 return -ENOENT;
2260 out_zap:
2261 spin_unlock(&inode->i_lock);
2262 nfs_access_zap_cache(inode);
2263 return -ENOENT;
2264 }
2265
2266 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2267 {
2268 /* Only check the most recently returned cache entry,
2269 * but do it without locking.
2270 */
2271 struct nfs_inode *nfsi = NFS_I(inode);
2272 struct nfs_access_entry *cache;
2273 int err = -ECHILD;
2274 struct list_head *lh;
2275
2276 rcu_read_lock();
2277 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2278 goto out;
2279 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2280 cache = list_entry(lh, struct nfs_access_entry, lru);
2281 if (lh == &nfsi->access_cache_entry_lru ||
2282 cred != cache->cred)
2283 cache = NULL;
2284 if (cache == NULL)
2285 goto out;
2286 if (!nfs_have_delegated_attributes(inode) &&
2287 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2288 goto out;
2289 res->jiffies = cache->jiffies;
2290 res->cred = cache->cred;
2291 res->mask = cache->mask;
2292 err = 0;
2293 out:
2294 rcu_read_unlock();
2295 return err;
2296 }
2297
2298 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2299 {
2300 struct nfs_inode *nfsi = NFS_I(inode);
2301 struct rb_root *root_node = &nfsi->access_cache;
2302 struct rb_node **p = &root_node->rb_node;
2303 struct rb_node *parent = NULL;
2304 struct nfs_access_entry *entry;
2305
2306 spin_lock(&inode->i_lock);
2307 while (*p != NULL) {
2308 parent = *p;
2309 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2310
2311 if (set->cred < entry->cred)
2312 p = &parent->rb_left;
2313 else if (set->cred > entry->cred)
2314 p = &parent->rb_right;
2315 else
2316 goto found;
2317 }
2318 rb_link_node(&set->rb_node, parent, p);
2319 rb_insert_color(&set->rb_node, root_node);
2320 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2321 spin_unlock(&inode->i_lock);
2322 return;
2323 found:
2324 rb_replace_node(parent, &set->rb_node, root_node);
2325 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2326 list_del(&entry->lru);
2327 spin_unlock(&inode->i_lock);
2328 nfs_access_free_entry(entry);
2329 }
2330
2331 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2332 {
2333 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2334 if (cache == NULL)
2335 return;
2336 RB_CLEAR_NODE(&cache->rb_node);
2337 cache->jiffies = set->jiffies;
2338 cache->cred = get_rpccred(set->cred);
2339 cache->mask = set->mask;
2340
2341 /* The above field assignments must be visible
2342 * before this item appears on the lru. We cannot easily
2343 * use rcu_assign_pointer, so just force the memory barrier.
2344 */
2345 smp_wmb();
2346 nfs_access_add_rbtree(inode, cache);
2347
2348 /* Update accounting */
2349 smp_mb__before_atomic();
2350 atomic_long_inc(&nfs_access_nr_entries);
2351 smp_mb__after_atomic();
2352
2353 /* Add inode to global LRU list */
2354 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2355 spin_lock(&nfs_access_lru_lock);
2356 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2357 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2358 &nfs_access_lru_list);
2359 spin_unlock(&nfs_access_lru_lock);
2360 }
2361 nfs_access_cache_enforce_limit();
2362 }
2363 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2364
2365 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2366 {
2367 entry->mask = 0;
2368 if (access_result & NFS4_ACCESS_READ)
2369 entry->mask |= MAY_READ;
2370 if (access_result &
2371 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2372 entry->mask |= MAY_WRITE;
2373 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2374 entry->mask |= MAY_EXEC;
2375 }
2376 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2377
2378 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2379 {
2380 struct nfs_access_entry cache;
2381 int status;
2382
2383 trace_nfs_access_enter(inode);
2384
2385 status = nfs_access_get_cached_rcu(inode, cred, &cache);
2386 if (status != 0)
2387 status = nfs_access_get_cached(inode, cred, &cache);
2388 if (status == 0)
2389 goto out_cached;
2390
2391 status = -ECHILD;
2392 if (mask & MAY_NOT_BLOCK)
2393 goto out;
2394
2395 /* Be clever: ask server to check for all possible rights */
2396 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2397 cache.cred = cred;
2398 cache.jiffies = jiffies;
2399 status = NFS_PROTO(inode)->access(inode, &cache);
2400 if (status != 0) {
2401 if (status == -ESTALE) {
2402 nfs_zap_caches(inode);
2403 if (!S_ISDIR(inode->i_mode))
2404 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2405 }
2406 goto out;
2407 }
2408 nfs_access_add_cache(inode, &cache);
2409 out_cached:
2410 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2411 status = -EACCES;
2412 out:
2413 trace_nfs_access_exit(inode, status);
2414 return status;
2415 }
2416
2417 static int nfs_open_permission_mask(int openflags)
2418 {
2419 int mask = 0;
2420
2421 if (openflags & __FMODE_EXEC) {
2422 /* ONLY check exec rights */
2423 mask = MAY_EXEC;
2424 } else {
2425 if ((openflags & O_ACCMODE) != O_WRONLY)
2426 mask |= MAY_READ;
2427 if ((openflags & O_ACCMODE) != O_RDONLY)
2428 mask |= MAY_WRITE;
2429 }
2430
2431 return mask;
2432 }
2433
2434 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2435 {
2436 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2437 }
2438 EXPORT_SYMBOL_GPL(nfs_may_open);
2439
2440 static int nfs_execute_ok(struct inode *inode, int mask)
2441 {
2442 struct nfs_server *server = NFS_SERVER(inode);
2443 int ret;
2444
2445 if (mask & MAY_NOT_BLOCK)
2446 ret = nfs_revalidate_inode_rcu(server, inode);
2447 else
2448 ret = nfs_revalidate_inode(server, inode);
2449 if (ret == 0 && !execute_ok(inode))
2450 ret = -EACCES;
2451 return ret;
2452 }
2453
2454 int nfs_permission(struct inode *inode, int mask)
2455 {
2456 struct rpc_cred *cred;
2457 int res = 0;
2458
2459 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2460
2461 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2462 goto out;
2463 /* Is this sys_access() ? */
2464 if (mask & (MAY_ACCESS | MAY_CHDIR))
2465 goto force_lookup;
2466
2467 switch (inode->i_mode & S_IFMT) {
2468 case S_IFLNK:
2469 goto out;
2470 case S_IFREG:
2471 if ((mask & MAY_OPEN) &&
2472 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2473 return 0;
2474 break;
2475 case S_IFDIR:
2476 /*
2477 * Optimize away all write operations, since the server
2478 * will check permissions when we perform the op.
2479 */
2480 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2481 goto out;
2482 }
2483
2484 force_lookup:
2485 if (!NFS_PROTO(inode)->access)
2486 goto out_notsup;
2487
2488 /* Always try fast lookups first */
2489 rcu_read_lock();
2490 cred = rpc_lookup_cred_nonblock();
2491 if (!IS_ERR(cred))
2492 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2493 else
2494 res = PTR_ERR(cred);
2495 rcu_read_unlock();
2496 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2497 /* Fast lookup failed, try the slow way */
2498 cred = rpc_lookup_cred();
2499 if (!IS_ERR(cred)) {
2500 res = nfs_do_access(inode, cred, mask);
2501 put_rpccred(cred);
2502 } else
2503 res = PTR_ERR(cred);
2504 }
2505 out:
2506 if (!res && (mask & MAY_EXEC))
2507 res = nfs_execute_ok(inode, mask);
2508
2509 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2510 inode->i_sb->s_id, inode->i_ino, mask, res);
2511 return res;
2512 out_notsup:
2513 if (mask & MAY_NOT_BLOCK)
2514 return -ECHILD;
2515
2516 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2517 if (res == 0)
2518 res = generic_permission(inode, mask);
2519 goto out;
2520 }
2521 EXPORT_SYMBOL_GPL(nfs_permission);
2522
2523 /*
2524 * Local variables:
2525 * version-control: t
2526 * kept-new-versions: 5
2527 * End:
2528 */