]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/nfs/dir.c
Merge branch 'drm-core-next' of git://people.freedesktop.org/~airlied/linux
[mirror_ubuntu-bionic-kernel.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
36 #include <linux/kmemleak.h>
37 #include <linux/xattr.h>
38
39 #include "delegation.h"
40 #include "iostat.h"
41 #include "internal.h"
42 #include "fscache.h"
43
44 /* #define NFS_DEBUG_VERBOSE 1 */
45
46 static int nfs_opendir(struct inode *, struct file *);
47 static int nfs_closedir(struct inode *, struct file *);
48 static int nfs_readdir(struct file *, void *, filldir_t);
49 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
50 static int nfs_create(struct inode *, struct dentry *, umode_t, struct nameidata *);
51 static int nfs_mkdir(struct inode *, struct dentry *, umode_t);
52 static int nfs_rmdir(struct inode *, struct dentry *);
53 static int nfs_unlink(struct inode *, struct dentry *);
54 static int nfs_symlink(struct inode *, struct dentry *, const char *);
55 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
56 static int nfs_mknod(struct inode *, struct dentry *, umode_t, dev_t);
57 static int nfs_rename(struct inode *, struct dentry *,
58 struct inode *, struct dentry *);
59 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
60 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
61 static void nfs_readdir_clear_array(struct page*);
62
63 const struct file_operations nfs_dir_operations = {
64 .llseek = nfs_llseek_dir,
65 .read = generic_read_dir,
66 .readdir = nfs_readdir,
67 .open = nfs_opendir,
68 .release = nfs_closedir,
69 .fsync = nfs_fsync_dir,
70 };
71
72 const struct inode_operations nfs_dir_inode_operations = {
73 .create = nfs_create,
74 .lookup = nfs_lookup,
75 .link = nfs_link,
76 .unlink = nfs_unlink,
77 .symlink = nfs_symlink,
78 .mkdir = nfs_mkdir,
79 .rmdir = nfs_rmdir,
80 .mknod = nfs_mknod,
81 .rename = nfs_rename,
82 .permission = nfs_permission,
83 .getattr = nfs_getattr,
84 .setattr = nfs_setattr,
85 };
86
87 const struct address_space_operations nfs_dir_aops = {
88 .freepage = nfs_readdir_clear_array,
89 };
90
91 #ifdef CONFIG_NFS_V3
92 const struct inode_operations nfs3_dir_inode_operations = {
93 .create = nfs_create,
94 .lookup = nfs_lookup,
95 .link = nfs_link,
96 .unlink = nfs_unlink,
97 .symlink = nfs_symlink,
98 .mkdir = nfs_mkdir,
99 .rmdir = nfs_rmdir,
100 .mknod = nfs_mknod,
101 .rename = nfs_rename,
102 .permission = nfs_permission,
103 .getattr = nfs_getattr,
104 .setattr = nfs_setattr,
105 .listxattr = nfs3_listxattr,
106 .getxattr = nfs3_getxattr,
107 .setxattr = nfs3_setxattr,
108 .removexattr = nfs3_removexattr,
109 };
110 #endif /* CONFIG_NFS_V3 */
111
112 #ifdef CONFIG_NFS_V4
113
114 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
115 static int nfs_open_create(struct inode *dir, struct dentry *dentry, umode_t mode, struct nameidata *nd);
116 const struct inode_operations nfs4_dir_inode_operations = {
117 .create = nfs_open_create,
118 .lookup = nfs_atomic_lookup,
119 .link = nfs_link,
120 .unlink = nfs_unlink,
121 .symlink = nfs_symlink,
122 .mkdir = nfs_mkdir,
123 .rmdir = nfs_rmdir,
124 .mknod = nfs_mknod,
125 .rename = nfs_rename,
126 .permission = nfs_permission,
127 .getattr = nfs_getattr,
128 .setattr = nfs_setattr,
129 .getxattr = generic_getxattr,
130 .setxattr = generic_setxattr,
131 .listxattr = generic_listxattr,
132 .removexattr = generic_removexattr,
133 };
134
135 #endif /* CONFIG_NFS_V4 */
136
137 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
138 {
139 struct nfs_open_dir_context *ctx;
140 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
141 if (ctx != NULL) {
142 ctx->duped = 0;
143 ctx->attr_gencount = NFS_I(dir)->attr_gencount;
144 ctx->dir_cookie = 0;
145 ctx->dup_cookie = 0;
146 ctx->cred = get_rpccred(cred);
147 return ctx;
148 }
149 return ERR_PTR(-ENOMEM);
150 }
151
152 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx)
153 {
154 put_rpccred(ctx->cred);
155 kfree(ctx);
156 }
157
158 /*
159 * Open file
160 */
161 static int
162 nfs_opendir(struct inode *inode, struct file *filp)
163 {
164 int res = 0;
165 struct nfs_open_dir_context *ctx;
166 struct rpc_cred *cred;
167
168 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
169 filp->f_path.dentry->d_parent->d_name.name,
170 filp->f_path.dentry->d_name.name);
171
172 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
173
174 cred = rpc_lookup_cred();
175 if (IS_ERR(cred))
176 return PTR_ERR(cred);
177 ctx = alloc_nfs_open_dir_context(inode, cred);
178 if (IS_ERR(ctx)) {
179 res = PTR_ERR(ctx);
180 goto out;
181 }
182 filp->private_data = ctx;
183 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
184 /* This is a mountpoint, so d_revalidate will never
185 * have been called, so we need to refresh the
186 * inode (for close-open consistency) ourselves.
187 */
188 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
189 }
190 out:
191 put_rpccred(cred);
192 return res;
193 }
194
195 static int
196 nfs_closedir(struct inode *inode, struct file *filp)
197 {
198 put_nfs_open_dir_context(filp->private_data);
199 return 0;
200 }
201
202 struct nfs_cache_array_entry {
203 u64 cookie;
204 u64 ino;
205 struct qstr string;
206 unsigned char d_type;
207 };
208
209 struct nfs_cache_array {
210 int size;
211 int eof_index;
212 u64 last_cookie;
213 struct nfs_cache_array_entry array[0];
214 };
215
216 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
217 typedef struct {
218 struct file *file;
219 struct page *page;
220 unsigned long page_index;
221 u64 *dir_cookie;
222 u64 last_cookie;
223 loff_t current_index;
224 decode_dirent_t decode;
225
226 unsigned long timestamp;
227 unsigned long gencount;
228 unsigned int cache_entry_index;
229 unsigned int plus:1;
230 unsigned int eof:1;
231 } nfs_readdir_descriptor_t;
232
233 /*
234 * The caller is responsible for calling nfs_readdir_release_array(page)
235 */
236 static
237 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
238 {
239 void *ptr;
240 if (page == NULL)
241 return ERR_PTR(-EIO);
242 ptr = kmap(page);
243 if (ptr == NULL)
244 return ERR_PTR(-ENOMEM);
245 return ptr;
246 }
247
248 static
249 void nfs_readdir_release_array(struct page *page)
250 {
251 kunmap(page);
252 }
253
254 /*
255 * we are freeing strings created by nfs_add_to_readdir_array()
256 */
257 static
258 void nfs_readdir_clear_array(struct page *page)
259 {
260 struct nfs_cache_array *array;
261 int i;
262
263 array = kmap_atomic(page);
264 for (i = 0; i < array->size; i++)
265 kfree(array->array[i].string.name);
266 kunmap_atomic(array);
267 }
268
269 /*
270 * the caller is responsible for freeing qstr.name
271 * when called by nfs_readdir_add_to_array, the strings will be freed in
272 * nfs_clear_readdir_array()
273 */
274 static
275 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
276 {
277 string->len = len;
278 string->name = kmemdup(name, len, GFP_KERNEL);
279 if (string->name == NULL)
280 return -ENOMEM;
281 /*
282 * Avoid a kmemleak false positive. The pointer to the name is stored
283 * in a page cache page which kmemleak does not scan.
284 */
285 kmemleak_not_leak(string->name);
286 string->hash = full_name_hash(name, len);
287 return 0;
288 }
289
290 static
291 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
292 {
293 struct nfs_cache_array *array = nfs_readdir_get_array(page);
294 struct nfs_cache_array_entry *cache_entry;
295 int ret;
296
297 if (IS_ERR(array))
298 return PTR_ERR(array);
299
300 cache_entry = &array->array[array->size];
301
302 /* Check that this entry lies within the page bounds */
303 ret = -ENOSPC;
304 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
305 goto out;
306
307 cache_entry->cookie = entry->prev_cookie;
308 cache_entry->ino = entry->ino;
309 cache_entry->d_type = entry->d_type;
310 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
311 if (ret)
312 goto out;
313 array->last_cookie = entry->cookie;
314 array->size++;
315 if (entry->eof != 0)
316 array->eof_index = array->size;
317 out:
318 nfs_readdir_release_array(page);
319 return ret;
320 }
321
322 static
323 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
324 {
325 loff_t diff = desc->file->f_pos - desc->current_index;
326 unsigned int index;
327
328 if (diff < 0)
329 goto out_eof;
330 if (diff >= array->size) {
331 if (array->eof_index >= 0)
332 goto out_eof;
333 return -EAGAIN;
334 }
335
336 index = (unsigned int)diff;
337 *desc->dir_cookie = array->array[index].cookie;
338 desc->cache_entry_index = index;
339 return 0;
340 out_eof:
341 desc->eof = 1;
342 return -EBADCOOKIE;
343 }
344
345 static
346 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
347 {
348 int i;
349 loff_t new_pos;
350 int status = -EAGAIN;
351
352 for (i = 0; i < array->size; i++) {
353 if (array->array[i].cookie == *desc->dir_cookie) {
354 struct nfs_inode *nfsi = NFS_I(desc->file->f_path.dentry->d_inode);
355 struct nfs_open_dir_context *ctx = desc->file->private_data;
356
357 new_pos = desc->current_index + i;
358 if (ctx->attr_gencount != nfsi->attr_gencount
359 || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) {
360 ctx->duped = 0;
361 ctx->attr_gencount = nfsi->attr_gencount;
362 } else if (new_pos < desc->file->f_pos) {
363 if (ctx->duped > 0
364 && ctx->dup_cookie == *desc->dir_cookie) {
365 if (printk_ratelimit()) {
366 pr_notice("NFS: directory %s/%s contains a readdir loop."
367 "Please contact your server vendor. "
368 "The file: %s has duplicate cookie %llu\n",
369 desc->file->f_dentry->d_parent->d_name.name,
370 desc->file->f_dentry->d_name.name,
371 array->array[i].string.name,
372 *desc->dir_cookie);
373 }
374 status = -ELOOP;
375 goto out;
376 }
377 ctx->dup_cookie = *desc->dir_cookie;
378 ctx->duped = -1;
379 }
380 desc->file->f_pos = new_pos;
381 desc->cache_entry_index = i;
382 return 0;
383 }
384 }
385 if (array->eof_index >= 0) {
386 status = -EBADCOOKIE;
387 if (*desc->dir_cookie == array->last_cookie)
388 desc->eof = 1;
389 }
390 out:
391 return status;
392 }
393
394 static
395 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
396 {
397 struct nfs_cache_array *array;
398 int status;
399
400 array = nfs_readdir_get_array(desc->page);
401 if (IS_ERR(array)) {
402 status = PTR_ERR(array);
403 goto out;
404 }
405
406 if (*desc->dir_cookie == 0)
407 status = nfs_readdir_search_for_pos(array, desc);
408 else
409 status = nfs_readdir_search_for_cookie(array, desc);
410
411 if (status == -EAGAIN) {
412 desc->last_cookie = array->last_cookie;
413 desc->current_index += array->size;
414 desc->page_index++;
415 }
416 nfs_readdir_release_array(desc->page);
417 out:
418 return status;
419 }
420
421 /* Fill a page with xdr information before transferring to the cache page */
422 static
423 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
424 struct nfs_entry *entry, struct file *file, struct inode *inode)
425 {
426 struct nfs_open_dir_context *ctx = file->private_data;
427 struct rpc_cred *cred = ctx->cred;
428 unsigned long timestamp, gencount;
429 int error;
430
431 again:
432 timestamp = jiffies;
433 gencount = nfs_inc_attr_generation_counter();
434 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
435 NFS_SERVER(inode)->dtsize, desc->plus);
436 if (error < 0) {
437 /* We requested READDIRPLUS, but the server doesn't grok it */
438 if (error == -ENOTSUPP && desc->plus) {
439 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
440 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
441 desc->plus = 0;
442 goto again;
443 }
444 goto error;
445 }
446 desc->timestamp = timestamp;
447 desc->gencount = gencount;
448 error:
449 return error;
450 }
451
452 static int xdr_decode(nfs_readdir_descriptor_t *desc,
453 struct nfs_entry *entry, struct xdr_stream *xdr)
454 {
455 int error;
456
457 error = desc->decode(xdr, entry, desc->plus);
458 if (error)
459 return error;
460 entry->fattr->time_start = desc->timestamp;
461 entry->fattr->gencount = desc->gencount;
462 return 0;
463 }
464
465 static
466 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
467 {
468 if (dentry->d_inode == NULL)
469 goto different;
470 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
471 goto different;
472 return 1;
473 different:
474 return 0;
475 }
476
477 static
478 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
479 {
480 struct qstr filename = QSTR_INIT(entry->name, entry->len);
481 struct dentry *dentry;
482 struct dentry *alias;
483 struct inode *dir = parent->d_inode;
484 struct inode *inode;
485
486 if (filename.name[0] == '.') {
487 if (filename.len == 1)
488 return;
489 if (filename.len == 2 && filename.name[1] == '.')
490 return;
491 }
492 filename.hash = full_name_hash(filename.name, filename.len);
493
494 dentry = d_lookup(parent, &filename);
495 if (dentry != NULL) {
496 if (nfs_same_file(dentry, entry)) {
497 nfs_refresh_inode(dentry->d_inode, entry->fattr);
498 goto out;
499 } else {
500 d_drop(dentry);
501 dput(dentry);
502 }
503 }
504
505 dentry = d_alloc(parent, &filename);
506 if (dentry == NULL)
507 return;
508
509 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
510 if (IS_ERR(inode))
511 goto out;
512
513 alias = d_materialise_unique(dentry, inode);
514 if (IS_ERR(alias))
515 goto out;
516 else if (alias) {
517 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
518 dput(alias);
519 } else
520 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
521
522 out:
523 dput(dentry);
524 }
525
526 /* Perform conversion from xdr to cache array */
527 static
528 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
529 struct page **xdr_pages, struct page *page, unsigned int buflen)
530 {
531 struct xdr_stream stream;
532 struct xdr_buf buf;
533 struct page *scratch;
534 struct nfs_cache_array *array;
535 unsigned int count = 0;
536 int status;
537
538 scratch = alloc_page(GFP_KERNEL);
539 if (scratch == NULL)
540 return -ENOMEM;
541
542 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
543 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
544
545 do {
546 status = xdr_decode(desc, entry, &stream);
547 if (status != 0) {
548 if (status == -EAGAIN)
549 status = 0;
550 break;
551 }
552
553 count++;
554
555 if (desc->plus != 0)
556 nfs_prime_dcache(desc->file->f_path.dentry, entry);
557
558 status = nfs_readdir_add_to_array(entry, page);
559 if (status != 0)
560 break;
561 } while (!entry->eof);
562
563 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
564 array = nfs_readdir_get_array(page);
565 if (!IS_ERR(array)) {
566 array->eof_index = array->size;
567 status = 0;
568 nfs_readdir_release_array(page);
569 } else
570 status = PTR_ERR(array);
571 }
572
573 put_page(scratch);
574 return status;
575 }
576
577 static
578 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
579 {
580 unsigned int i;
581 for (i = 0; i < npages; i++)
582 put_page(pages[i]);
583 }
584
585 static
586 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
587 unsigned int npages)
588 {
589 nfs_readdir_free_pagearray(pages, npages);
590 }
591
592 /*
593 * nfs_readdir_large_page will allocate pages that must be freed with a call
594 * to nfs_readdir_free_large_page
595 */
596 static
597 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
598 {
599 unsigned int i;
600
601 for (i = 0; i < npages; i++) {
602 struct page *page = alloc_page(GFP_KERNEL);
603 if (page == NULL)
604 goto out_freepages;
605 pages[i] = page;
606 }
607 return 0;
608
609 out_freepages:
610 nfs_readdir_free_pagearray(pages, i);
611 return -ENOMEM;
612 }
613
614 static
615 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
616 {
617 struct page *pages[NFS_MAX_READDIR_PAGES];
618 void *pages_ptr = NULL;
619 struct nfs_entry entry;
620 struct file *file = desc->file;
621 struct nfs_cache_array *array;
622 int status = -ENOMEM;
623 unsigned int array_size = ARRAY_SIZE(pages);
624
625 entry.prev_cookie = 0;
626 entry.cookie = desc->last_cookie;
627 entry.eof = 0;
628 entry.fh = nfs_alloc_fhandle();
629 entry.fattr = nfs_alloc_fattr();
630 entry.server = NFS_SERVER(inode);
631 if (entry.fh == NULL || entry.fattr == NULL)
632 goto out;
633
634 array = nfs_readdir_get_array(page);
635 if (IS_ERR(array)) {
636 status = PTR_ERR(array);
637 goto out;
638 }
639 memset(array, 0, sizeof(struct nfs_cache_array));
640 array->eof_index = -1;
641
642 status = nfs_readdir_large_page(pages, array_size);
643 if (status < 0)
644 goto out_release_array;
645 do {
646 unsigned int pglen;
647 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
648
649 if (status < 0)
650 break;
651 pglen = status;
652 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
653 if (status < 0) {
654 if (status == -ENOSPC)
655 status = 0;
656 break;
657 }
658 } while (array->eof_index < 0);
659
660 nfs_readdir_free_large_page(pages_ptr, pages, array_size);
661 out_release_array:
662 nfs_readdir_release_array(page);
663 out:
664 nfs_free_fattr(entry.fattr);
665 nfs_free_fhandle(entry.fh);
666 return status;
667 }
668
669 /*
670 * Now we cache directories properly, by converting xdr information
671 * to an array that can be used for lookups later. This results in
672 * fewer cache pages, since we can store more information on each page.
673 * We only need to convert from xdr once so future lookups are much simpler
674 */
675 static
676 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
677 {
678 struct inode *inode = desc->file->f_path.dentry->d_inode;
679 int ret;
680
681 ret = nfs_readdir_xdr_to_array(desc, page, inode);
682 if (ret < 0)
683 goto error;
684 SetPageUptodate(page);
685
686 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
687 /* Should never happen */
688 nfs_zap_mapping(inode, inode->i_mapping);
689 }
690 unlock_page(page);
691 return 0;
692 error:
693 unlock_page(page);
694 return ret;
695 }
696
697 static
698 void cache_page_release(nfs_readdir_descriptor_t *desc)
699 {
700 if (!desc->page->mapping)
701 nfs_readdir_clear_array(desc->page);
702 page_cache_release(desc->page);
703 desc->page = NULL;
704 }
705
706 static
707 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
708 {
709 return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
710 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
711 }
712
713 /*
714 * Returns 0 if desc->dir_cookie was found on page desc->page_index
715 */
716 static
717 int find_cache_page(nfs_readdir_descriptor_t *desc)
718 {
719 int res;
720
721 desc->page = get_cache_page(desc);
722 if (IS_ERR(desc->page))
723 return PTR_ERR(desc->page);
724
725 res = nfs_readdir_search_array(desc);
726 if (res != 0)
727 cache_page_release(desc);
728 return res;
729 }
730
731 /* Search for desc->dir_cookie from the beginning of the page cache */
732 static inline
733 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
734 {
735 int res;
736
737 if (desc->page_index == 0) {
738 desc->current_index = 0;
739 desc->last_cookie = 0;
740 }
741 do {
742 res = find_cache_page(desc);
743 } while (res == -EAGAIN);
744 return res;
745 }
746
747 /*
748 * Once we've found the start of the dirent within a page: fill 'er up...
749 */
750 static
751 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
752 filldir_t filldir)
753 {
754 struct file *file = desc->file;
755 int i = 0;
756 int res = 0;
757 struct nfs_cache_array *array = NULL;
758 struct nfs_open_dir_context *ctx = file->private_data;
759
760 array = nfs_readdir_get_array(desc->page);
761 if (IS_ERR(array)) {
762 res = PTR_ERR(array);
763 goto out;
764 }
765
766 for (i = desc->cache_entry_index; i < array->size; i++) {
767 struct nfs_cache_array_entry *ent;
768
769 ent = &array->array[i];
770 if (filldir(dirent, ent->string.name, ent->string.len,
771 file->f_pos, nfs_compat_user_ino64(ent->ino),
772 ent->d_type) < 0) {
773 desc->eof = 1;
774 break;
775 }
776 file->f_pos++;
777 if (i < (array->size-1))
778 *desc->dir_cookie = array->array[i+1].cookie;
779 else
780 *desc->dir_cookie = array->last_cookie;
781 if (ctx->duped != 0)
782 ctx->duped = 1;
783 }
784 if (array->eof_index >= 0)
785 desc->eof = 1;
786
787 nfs_readdir_release_array(desc->page);
788 out:
789 cache_page_release(desc);
790 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
791 (unsigned long long)*desc->dir_cookie, res);
792 return res;
793 }
794
795 /*
796 * If we cannot find a cookie in our cache, we suspect that this is
797 * because it points to a deleted file, so we ask the server to return
798 * whatever it thinks is the next entry. We then feed this to filldir.
799 * If all goes well, we should then be able to find our way round the
800 * cache on the next call to readdir_search_pagecache();
801 *
802 * NOTE: we cannot add the anonymous page to the pagecache because
803 * the data it contains might not be page aligned. Besides,
804 * we should already have a complete representation of the
805 * directory in the page cache by the time we get here.
806 */
807 static inline
808 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
809 filldir_t filldir)
810 {
811 struct page *page = NULL;
812 int status;
813 struct inode *inode = desc->file->f_path.dentry->d_inode;
814 struct nfs_open_dir_context *ctx = desc->file->private_data;
815
816 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
817 (unsigned long long)*desc->dir_cookie);
818
819 page = alloc_page(GFP_HIGHUSER);
820 if (!page) {
821 status = -ENOMEM;
822 goto out;
823 }
824
825 desc->page_index = 0;
826 desc->last_cookie = *desc->dir_cookie;
827 desc->page = page;
828 ctx->duped = 0;
829
830 status = nfs_readdir_xdr_to_array(desc, page, inode);
831 if (status < 0)
832 goto out_release;
833
834 status = nfs_do_filldir(desc, dirent, filldir);
835
836 out:
837 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
838 __func__, status);
839 return status;
840 out_release:
841 cache_page_release(desc);
842 goto out;
843 }
844
845 /* The file offset position represents the dirent entry number. A
846 last cookie cache takes care of the common case of reading the
847 whole directory.
848 */
849 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
850 {
851 struct dentry *dentry = filp->f_path.dentry;
852 struct inode *inode = dentry->d_inode;
853 nfs_readdir_descriptor_t my_desc,
854 *desc = &my_desc;
855 struct nfs_open_dir_context *dir_ctx = filp->private_data;
856 int res;
857
858 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
859 dentry->d_parent->d_name.name, dentry->d_name.name,
860 (long long)filp->f_pos);
861 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
862
863 /*
864 * filp->f_pos points to the dirent entry number.
865 * *desc->dir_cookie has the cookie for the next entry. We have
866 * to either find the entry with the appropriate number or
867 * revalidate the cookie.
868 */
869 memset(desc, 0, sizeof(*desc));
870
871 desc->file = filp;
872 desc->dir_cookie = &dir_ctx->dir_cookie;
873 desc->decode = NFS_PROTO(inode)->decode_dirent;
874 desc->plus = NFS_USE_READDIRPLUS(inode);
875
876 nfs_block_sillyrename(dentry);
877 res = nfs_revalidate_mapping(inode, filp->f_mapping);
878 if (res < 0)
879 goto out;
880
881 do {
882 res = readdir_search_pagecache(desc);
883
884 if (res == -EBADCOOKIE) {
885 res = 0;
886 /* This means either end of directory */
887 if (*desc->dir_cookie && desc->eof == 0) {
888 /* Or that the server has 'lost' a cookie */
889 res = uncached_readdir(desc, dirent, filldir);
890 if (res == 0)
891 continue;
892 }
893 break;
894 }
895 if (res == -ETOOSMALL && desc->plus) {
896 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
897 nfs_zap_caches(inode);
898 desc->page_index = 0;
899 desc->plus = 0;
900 desc->eof = 0;
901 continue;
902 }
903 if (res < 0)
904 break;
905
906 res = nfs_do_filldir(desc, dirent, filldir);
907 if (res < 0)
908 break;
909 } while (!desc->eof);
910 out:
911 nfs_unblock_sillyrename(dentry);
912 if (res > 0)
913 res = 0;
914 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
915 dentry->d_parent->d_name.name, dentry->d_name.name,
916 res);
917 return res;
918 }
919
920 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
921 {
922 struct dentry *dentry = filp->f_path.dentry;
923 struct inode *inode = dentry->d_inode;
924 struct nfs_open_dir_context *dir_ctx = filp->private_data;
925
926 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
927 dentry->d_parent->d_name.name,
928 dentry->d_name.name,
929 offset, origin);
930
931 mutex_lock(&inode->i_mutex);
932 switch (origin) {
933 case 1:
934 offset += filp->f_pos;
935 case 0:
936 if (offset >= 0)
937 break;
938 default:
939 offset = -EINVAL;
940 goto out;
941 }
942 if (offset != filp->f_pos) {
943 filp->f_pos = offset;
944 dir_ctx->dir_cookie = 0;
945 dir_ctx->duped = 0;
946 }
947 out:
948 mutex_unlock(&inode->i_mutex);
949 return offset;
950 }
951
952 /*
953 * All directory operations under NFS are synchronous, so fsync()
954 * is a dummy operation.
955 */
956 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
957 int datasync)
958 {
959 struct dentry *dentry = filp->f_path.dentry;
960 struct inode *inode = dentry->d_inode;
961
962 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
963 dentry->d_parent->d_name.name, dentry->d_name.name,
964 datasync);
965
966 mutex_lock(&inode->i_mutex);
967 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
968 mutex_unlock(&inode->i_mutex);
969 return 0;
970 }
971
972 /**
973 * nfs_force_lookup_revalidate - Mark the directory as having changed
974 * @dir - pointer to directory inode
975 *
976 * This forces the revalidation code in nfs_lookup_revalidate() to do a
977 * full lookup on all child dentries of 'dir' whenever a change occurs
978 * on the server that might have invalidated our dcache.
979 *
980 * The caller should be holding dir->i_lock
981 */
982 void nfs_force_lookup_revalidate(struct inode *dir)
983 {
984 NFS_I(dir)->cache_change_attribute++;
985 }
986
987 /*
988 * A check for whether or not the parent directory has changed.
989 * In the case it has, we assume that the dentries are untrustworthy
990 * and may need to be looked up again.
991 */
992 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
993 {
994 if (IS_ROOT(dentry))
995 return 1;
996 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
997 return 0;
998 if (!nfs_verify_change_attribute(dir, dentry->d_time))
999 return 0;
1000 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1001 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1002 return 0;
1003 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1004 return 0;
1005 return 1;
1006 }
1007
1008 /*
1009 * Return the intent data that applies to this particular path component
1010 *
1011 * Note that the current set of intents only apply to the very last
1012 * component of the path and none of them is set before that last
1013 * component.
1014 */
1015 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd,
1016 unsigned int mask)
1017 {
1018 return nd->flags & mask;
1019 }
1020
1021 /*
1022 * Use intent information to check whether or not we're going to do
1023 * an O_EXCL create using this path component.
1024 */
1025 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
1026 {
1027 if (NFS_PROTO(dir)->version == 2)
1028 return 0;
1029 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
1030 }
1031
1032 /*
1033 * Inode and filehandle revalidation for lookups.
1034 *
1035 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1036 * or if the intent information indicates that we're about to open this
1037 * particular file and the "nocto" mount flag is not set.
1038 *
1039 */
1040 static inline
1041 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
1042 {
1043 struct nfs_server *server = NFS_SERVER(inode);
1044
1045 if (IS_AUTOMOUNT(inode))
1046 return 0;
1047 if (nd != NULL) {
1048 /* VFS wants an on-the-wire revalidation */
1049 if (nd->flags & LOOKUP_REVAL)
1050 goto out_force;
1051 /* This is an open(2) */
1052 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
1053 !(server->flags & NFS_MOUNT_NOCTO) &&
1054 (S_ISREG(inode->i_mode) ||
1055 S_ISDIR(inode->i_mode)))
1056 goto out_force;
1057 return 0;
1058 }
1059 return nfs_revalidate_inode(server, inode);
1060 out_force:
1061 return __nfs_revalidate_inode(server, inode);
1062 }
1063
1064 /*
1065 * We judge how long we want to trust negative
1066 * dentries by looking at the parent inode mtime.
1067 *
1068 * If parent mtime has changed, we revalidate, else we wait for a
1069 * period corresponding to the parent's attribute cache timeout value.
1070 */
1071 static inline
1072 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1073 struct nameidata *nd)
1074 {
1075 /* Don't revalidate a negative dentry if we're creating a new file */
1076 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
1077 return 0;
1078 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1079 return 1;
1080 return !nfs_check_verifier(dir, dentry);
1081 }
1082
1083 /*
1084 * This is called every time the dcache has a lookup hit,
1085 * and we should check whether we can really trust that
1086 * lookup.
1087 *
1088 * NOTE! The hit can be a negative hit too, don't assume
1089 * we have an inode!
1090 *
1091 * If the parent directory is seen to have changed, we throw out the
1092 * cached dentry and do a new lookup.
1093 */
1094 static int nfs_lookup_revalidate(struct dentry *dentry, struct nameidata *nd)
1095 {
1096 struct inode *dir;
1097 struct inode *inode;
1098 struct dentry *parent;
1099 struct nfs_fh *fhandle = NULL;
1100 struct nfs_fattr *fattr = NULL;
1101 int error;
1102
1103 if (nd->flags & LOOKUP_RCU)
1104 return -ECHILD;
1105
1106 parent = dget_parent(dentry);
1107 dir = parent->d_inode;
1108 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1109 inode = dentry->d_inode;
1110
1111 if (!inode) {
1112 if (nfs_neg_need_reval(dir, dentry, nd))
1113 goto out_bad;
1114 goto out_valid;
1115 }
1116
1117 if (is_bad_inode(inode)) {
1118 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1119 __func__, dentry->d_parent->d_name.name,
1120 dentry->d_name.name);
1121 goto out_bad;
1122 }
1123
1124 if (nfs_have_delegation(inode, FMODE_READ))
1125 goto out_set_verifier;
1126
1127 /* Force a full look up iff the parent directory has changed */
1128 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
1129 if (nfs_lookup_verify_inode(inode, nd))
1130 goto out_zap_parent;
1131 goto out_valid;
1132 }
1133
1134 if (NFS_STALE(inode))
1135 goto out_bad;
1136
1137 error = -ENOMEM;
1138 fhandle = nfs_alloc_fhandle();
1139 fattr = nfs_alloc_fattr();
1140 if (fhandle == NULL || fattr == NULL)
1141 goto out_error;
1142
1143 error = NFS_PROTO(dir)->lookup(NFS_SERVER(dir)->client, dir, &dentry->d_name, fhandle, fattr);
1144 if (error)
1145 goto out_bad;
1146 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1147 goto out_bad;
1148 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1149 goto out_bad;
1150
1151 nfs_free_fattr(fattr);
1152 nfs_free_fhandle(fhandle);
1153 out_set_verifier:
1154 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1155 out_valid:
1156 dput(parent);
1157 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1158 __func__, dentry->d_parent->d_name.name,
1159 dentry->d_name.name);
1160 return 1;
1161 out_zap_parent:
1162 nfs_zap_caches(dir);
1163 out_bad:
1164 nfs_mark_for_revalidate(dir);
1165 if (inode && S_ISDIR(inode->i_mode)) {
1166 /* Purge readdir caches. */
1167 nfs_zap_caches(inode);
1168 /* If we have submounts, don't unhash ! */
1169 if (have_submounts(dentry))
1170 goto out_valid;
1171 if (dentry->d_flags & DCACHE_DISCONNECTED)
1172 goto out_valid;
1173 shrink_dcache_parent(dentry);
1174 }
1175 d_drop(dentry);
1176 nfs_free_fattr(fattr);
1177 nfs_free_fhandle(fhandle);
1178 dput(parent);
1179 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1180 __func__, dentry->d_parent->d_name.name,
1181 dentry->d_name.name);
1182 return 0;
1183 out_error:
1184 nfs_free_fattr(fattr);
1185 nfs_free_fhandle(fhandle);
1186 dput(parent);
1187 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1188 __func__, dentry->d_parent->d_name.name,
1189 dentry->d_name.name, error);
1190 return error;
1191 }
1192
1193 /*
1194 * This is called from dput() when d_count is going to 0.
1195 */
1196 static int nfs_dentry_delete(const struct dentry *dentry)
1197 {
1198 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1199 dentry->d_parent->d_name.name, dentry->d_name.name,
1200 dentry->d_flags);
1201
1202 /* Unhash any dentry with a stale inode */
1203 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1204 return 1;
1205
1206 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1207 /* Unhash it, so that ->d_iput() would be called */
1208 return 1;
1209 }
1210 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1211 /* Unhash it, so that ancestors of killed async unlink
1212 * files will be cleaned up during umount */
1213 return 1;
1214 }
1215 return 0;
1216
1217 }
1218
1219 static void nfs_drop_nlink(struct inode *inode)
1220 {
1221 spin_lock(&inode->i_lock);
1222 if (inode->i_nlink > 0)
1223 drop_nlink(inode);
1224 spin_unlock(&inode->i_lock);
1225 }
1226
1227 /*
1228 * Called when the dentry loses inode.
1229 * We use it to clean up silly-renamed files.
1230 */
1231 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1232 {
1233 if (S_ISDIR(inode->i_mode))
1234 /* drop any readdir cache as it could easily be old */
1235 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1236
1237 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1238 drop_nlink(inode);
1239 nfs_complete_unlink(dentry, inode);
1240 }
1241 iput(inode);
1242 }
1243
1244 static void nfs_d_release(struct dentry *dentry)
1245 {
1246 /* free cached devname value, if it survived that far */
1247 if (unlikely(dentry->d_fsdata)) {
1248 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1249 WARN_ON(1);
1250 else
1251 kfree(dentry->d_fsdata);
1252 }
1253 }
1254
1255 const struct dentry_operations nfs_dentry_operations = {
1256 .d_revalidate = nfs_lookup_revalidate,
1257 .d_delete = nfs_dentry_delete,
1258 .d_iput = nfs_dentry_iput,
1259 .d_automount = nfs_d_automount,
1260 .d_release = nfs_d_release,
1261 };
1262
1263 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
1264 {
1265 struct dentry *res;
1266 struct dentry *parent;
1267 struct inode *inode = NULL;
1268 struct nfs_fh *fhandle = NULL;
1269 struct nfs_fattr *fattr = NULL;
1270 int error;
1271
1272 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1273 dentry->d_parent->d_name.name, dentry->d_name.name);
1274 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1275
1276 res = ERR_PTR(-ENAMETOOLONG);
1277 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1278 goto out;
1279
1280 /*
1281 * If we're doing an exclusive create, optimize away the lookup
1282 * but don't hash the dentry.
1283 */
1284 if (nfs_is_exclusive_create(dir, nd)) {
1285 d_instantiate(dentry, NULL);
1286 res = NULL;
1287 goto out;
1288 }
1289
1290 res = ERR_PTR(-ENOMEM);
1291 fhandle = nfs_alloc_fhandle();
1292 fattr = nfs_alloc_fattr();
1293 if (fhandle == NULL || fattr == NULL)
1294 goto out;
1295
1296 parent = dentry->d_parent;
1297 /* Protect against concurrent sillydeletes */
1298 nfs_block_sillyrename(parent);
1299 error = NFS_PROTO(dir)->lookup(NFS_SERVER(dir)->client, dir, &dentry->d_name, fhandle, fattr);
1300 if (error == -ENOENT)
1301 goto no_entry;
1302 if (error < 0) {
1303 res = ERR_PTR(error);
1304 goto out_unblock_sillyrename;
1305 }
1306 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1307 res = ERR_CAST(inode);
1308 if (IS_ERR(res))
1309 goto out_unblock_sillyrename;
1310
1311 no_entry:
1312 res = d_materialise_unique(dentry, inode);
1313 if (res != NULL) {
1314 if (IS_ERR(res))
1315 goto out_unblock_sillyrename;
1316 dentry = res;
1317 }
1318 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1319 out_unblock_sillyrename:
1320 nfs_unblock_sillyrename(parent);
1321 out:
1322 nfs_free_fattr(fattr);
1323 nfs_free_fhandle(fhandle);
1324 return res;
1325 }
1326
1327 #ifdef CONFIG_NFS_V4
1328 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
1329
1330 const struct dentry_operations nfs4_dentry_operations = {
1331 .d_revalidate = nfs_open_revalidate,
1332 .d_delete = nfs_dentry_delete,
1333 .d_iput = nfs_dentry_iput,
1334 .d_automount = nfs_d_automount,
1335 .d_release = nfs_d_release,
1336 };
1337
1338 /*
1339 * Use intent information to determine whether we need to substitute
1340 * the NFSv4-style stateful OPEN for the LOOKUP call
1341 */
1342 static int is_atomic_open(struct nameidata *nd)
1343 {
1344 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1345 return 0;
1346 /* NFS does not (yet) have a stateful open for directories */
1347 if (nd->flags & LOOKUP_DIRECTORY)
1348 return 0;
1349 /* Are we trying to write to a read only partition? */
1350 if (__mnt_is_readonly(nd->path.mnt) &&
1351 (nd->intent.open.flags & (O_CREAT|O_TRUNC|O_ACCMODE)))
1352 return 0;
1353 return 1;
1354 }
1355
1356 static fmode_t flags_to_mode(int flags)
1357 {
1358 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1359 if ((flags & O_ACCMODE) != O_WRONLY)
1360 res |= FMODE_READ;
1361 if ((flags & O_ACCMODE) != O_RDONLY)
1362 res |= FMODE_WRITE;
1363 return res;
1364 }
1365
1366 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1367 {
1368 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1369 }
1370
1371 static int do_open(struct inode *inode, struct file *filp)
1372 {
1373 nfs_fscache_set_inode_cookie(inode, filp);
1374 return 0;
1375 }
1376
1377 static int nfs_intent_set_file(struct nameidata *nd, struct nfs_open_context *ctx)
1378 {
1379 struct file *filp;
1380 int ret = 0;
1381
1382 /* If the open_intent is for execute, we have an extra check to make */
1383 if (ctx->mode & FMODE_EXEC) {
1384 ret = nfs_may_open(ctx->dentry->d_inode,
1385 ctx->cred,
1386 nd->intent.open.flags);
1387 if (ret < 0)
1388 goto out;
1389 }
1390 filp = lookup_instantiate_filp(nd, ctx->dentry, do_open);
1391 if (IS_ERR(filp))
1392 ret = PTR_ERR(filp);
1393 else
1394 nfs_file_set_open_context(filp, ctx);
1395 out:
1396 put_nfs_open_context(ctx);
1397 return ret;
1398 }
1399
1400 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1401 {
1402 struct nfs_open_context *ctx;
1403 struct iattr attr;
1404 struct dentry *res = NULL;
1405 struct inode *inode;
1406 int open_flags;
1407 int err;
1408
1409 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1410 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1411
1412 /* Check that we are indeed trying to open this file */
1413 if (!is_atomic_open(nd))
1414 goto no_open;
1415
1416 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1417 res = ERR_PTR(-ENAMETOOLONG);
1418 goto out;
1419 }
1420
1421 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1422 * the dentry. */
1423 if (nd->flags & LOOKUP_EXCL) {
1424 d_instantiate(dentry, NULL);
1425 goto out;
1426 }
1427
1428 open_flags = nd->intent.open.flags;
1429 attr.ia_valid = ATTR_OPEN;
1430
1431 ctx = create_nfs_open_context(dentry, open_flags);
1432 res = ERR_CAST(ctx);
1433 if (IS_ERR(ctx))
1434 goto out;
1435
1436 if (nd->flags & LOOKUP_CREATE) {
1437 attr.ia_mode = nd->intent.open.create_mode;
1438 attr.ia_valid |= ATTR_MODE;
1439 attr.ia_mode &= ~current_umask();
1440 } else
1441 open_flags &= ~(O_EXCL | O_CREAT);
1442
1443 if (open_flags & O_TRUNC) {
1444 attr.ia_valid |= ATTR_SIZE;
1445 attr.ia_size = 0;
1446 }
1447
1448 /* Open the file on the server */
1449 nfs_block_sillyrename(dentry->d_parent);
1450 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1451 if (IS_ERR(inode)) {
1452 nfs_unblock_sillyrename(dentry->d_parent);
1453 put_nfs_open_context(ctx);
1454 switch (PTR_ERR(inode)) {
1455 /* Make a negative dentry */
1456 case -ENOENT:
1457 d_add(dentry, NULL);
1458 res = NULL;
1459 goto out;
1460 /* This turned out not to be a regular file */
1461 case -EISDIR:
1462 case -ENOTDIR:
1463 goto no_open;
1464 case -ELOOP:
1465 if (!(nd->intent.open.flags & O_NOFOLLOW))
1466 goto no_open;
1467 /* case -EINVAL: */
1468 default:
1469 res = ERR_CAST(inode);
1470 goto out;
1471 }
1472 }
1473 res = d_add_unique(dentry, inode);
1474 nfs_unblock_sillyrename(dentry->d_parent);
1475 if (res != NULL) {
1476 dput(ctx->dentry);
1477 ctx->dentry = dget(res);
1478 dentry = res;
1479 }
1480 err = nfs_intent_set_file(nd, ctx);
1481 if (err < 0) {
1482 if (res != NULL)
1483 dput(res);
1484 return ERR_PTR(err);
1485 }
1486 out:
1487 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1488 return res;
1489 no_open:
1490 return nfs_lookup(dir, dentry, nd);
1491 }
1492
1493 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1494 {
1495 struct dentry *parent = NULL;
1496 struct inode *inode;
1497 struct inode *dir;
1498 struct nfs_open_context *ctx;
1499 struct iattr attr;
1500 int openflags, ret = 0;
1501
1502 if (nd->flags & LOOKUP_RCU)
1503 return -ECHILD;
1504
1505 inode = dentry->d_inode;
1506 if (!is_atomic_open(nd) || d_mountpoint(dentry))
1507 goto no_open;
1508
1509 parent = dget_parent(dentry);
1510 dir = parent->d_inode;
1511
1512 /* We can't create new files in nfs_open_revalidate(), so we
1513 * optimize away revalidation of negative dentries.
1514 */
1515 if (inode == NULL) {
1516 if (!nfs_neg_need_reval(dir, dentry, nd))
1517 ret = 1;
1518 goto out;
1519 }
1520
1521 /* NFS only supports OPEN on regular files */
1522 if (!S_ISREG(inode->i_mode))
1523 goto no_open_dput;
1524 openflags = nd->intent.open.flags;
1525 /* We cannot do exclusive creation on a positive dentry */
1526 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1527 goto no_open_dput;
1528 /* We can't create new files here */
1529 openflags &= ~(O_CREAT|O_EXCL);
1530
1531 ctx = create_nfs_open_context(dentry, openflags);
1532 ret = PTR_ERR(ctx);
1533 if (IS_ERR(ctx))
1534 goto out;
1535
1536 attr.ia_valid = ATTR_OPEN;
1537 if (openflags & O_TRUNC) {
1538 attr.ia_valid |= ATTR_SIZE;
1539 attr.ia_size = 0;
1540 nfs_wb_all(inode);
1541 }
1542
1543 /*
1544 * Note: we're not holding inode->i_mutex and so may be racing with
1545 * operations that change the directory. We therefore save the
1546 * change attribute *before* we do the RPC call.
1547 */
1548 inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, &attr);
1549 if (IS_ERR(inode)) {
1550 ret = PTR_ERR(inode);
1551 switch (ret) {
1552 case -EPERM:
1553 case -EACCES:
1554 case -EDQUOT:
1555 case -ENOSPC:
1556 case -EROFS:
1557 goto out_put_ctx;
1558 default:
1559 goto out_drop;
1560 }
1561 }
1562 iput(inode);
1563 if (inode != dentry->d_inode)
1564 goto out_drop;
1565
1566 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1567 ret = nfs_intent_set_file(nd, ctx);
1568 if (ret >= 0)
1569 ret = 1;
1570 out:
1571 dput(parent);
1572 return ret;
1573 out_drop:
1574 d_drop(dentry);
1575 ret = 0;
1576 out_put_ctx:
1577 put_nfs_open_context(ctx);
1578 goto out;
1579
1580 no_open_dput:
1581 dput(parent);
1582 no_open:
1583 return nfs_lookup_revalidate(dentry, nd);
1584 }
1585
1586 static int nfs_open_create(struct inode *dir, struct dentry *dentry,
1587 umode_t mode, struct nameidata *nd)
1588 {
1589 struct nfs_open_context *ctx = NULL;
1590 struct iattr attr;
1591 int error;
1592 int open_flags = O_CREAT|O_EXCL;
1593
1594 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1595 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1596
1597 attr.ia_mode = mode;
1598 attr.ia_valid = ATTR_MODE;
1599
1600 if (nd)
1601 open_flags = nd->intent.open.flags;
1602
1603 ctx = create_nfs_open_context(dentry, open_flags);
1604 error = PTR_ERR(ctx);
1605 if (IS_ERR(ctx))
1606 goto out_err_drop;
1607
1608 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, ctx);
1609 if (error != 0)
1610 goto out_put_ctx;
1611 if (nd) {
1612 error = nfs_intent_set_file(nd, ctx);
1613 if (error < 0)
1614 goto out_err;
1615 } else {
1616 put_nfs_open_context(ctx);
1617 }
1618 return 0;
1619 out_put_ctx:
1620 put_nfs_open_context(ctx);
1621 out_err_drop:
1622 d_drop(dentry);
1623 out_err:
1624 return error;
1625 }
1626
1627 #endif /* CONFIG_NFSV4 */
1628
1629 /*
1630 * Code common to create, mkdir, and mknod.
1631 */
1632 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1633 struct nfs_fattr *fattr)
1634 {
1635 struct dentry *parent = dget_parent(dentry);
1636 struct inode *dir = parent->d_inode;
1637 struct inode *inode;
1638 int error = -EACCES;
1639
1640 d_drop(dentry);
1641
1642 /* We may have been initialized further down */
1643 if (dentry->d_inode)
1644 goto out;
1645 if (fhandle->size == 0) {
1646 error = NFS_PROTO(dir)->lookup(NFS_SERVER(dir)->client, dir, &dentry->d_name, fhandle, fattr);
1647 if (error)
1648 goto out_error;
1649 }
1650 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1651 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1652 struct nfs_server *server = NFS_SB(dentry->d_sb);
1653 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1654 if (error < 0)
1655 goto out_error;
1656 }
1657 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1658 error = PTR_ERR(inode);
1659 if (IS_ERR(inode))
1660 goto out_error;
1661 d_add(dentry, inode);
1662 out:
1663 dput(parent);
1664 return 0;
1665 out_error:
1666 nfs_mark_for_revalidate(dir);
1667 dput(parent);
1668 return error;
1669 }
1670
1671 /*
1672 * Following a failed create operation, we drop the dentry rather
1673 * than retain a negative dentry. This avoids a problem in the event
1674 * that the operation succeeded on the server, but an error in the
1675 * reply path made it appear to have failed.
1676 */
1677 static int nfs_create(struct inode *dir, struct dentry *dentry,
1678 umode_t mode, struct nameidata *nd)
1679 {
1680 struct iattr attr;
1681 int error;
1682 int open_flags = O_CREAT|O_EXCL;
1683
1684 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1685 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1686
1687 attr.ia_mode = mode;
1688 attr.ia_valid = ATTR_MODE;
1689
1690 if (nd)
1691 open_flags = nd->intent.open.flags;
1692
1693 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, NULL);
1694 if (error != 0)
1695 goto out_err;
1696 return 0;
1697 out_err:
1698 d_drop(dentry);
1699 return error;
1700 }
1701
1702 /*
1703 * See comments for nfs_proc_create regarding failed operations.
1704 */
1705 static int
1706 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1707 {
1708 struct iattr attr;
1709 int status;
1710
1711 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1712 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1713
1714 if (!new_valid_dev(rdev))
1715 return -EINVAL;
1716
1717 attr.ia_mode = mode;
1718 attr.ia_valid = ATTR_MODE;
1719
1720 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1721 if (status != 0)
1722 goto out_err;
1723 return 0;
1724 out_err:
1725 d_drop(dentry);
1726 return status;
1727 }
1728
1729 /*
1730 * See comments for nfs_proc_create regarding failed operations.
1731 */
1732 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1733 {
1734 struct iattr attr;
1735 int error;
1736
1737 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1738 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1739
1740 attr.ia_valid = ATTR_MODE;
1741 attr.ia_mode = mode | S_IFDIR;
1742
1743 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1744 if (error != 0)
1745 goto out_err;
1746 return 0;
1747 out_err:
1748 d_drop(dentry);
1749 return error;
1750 }
1751
1752 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1753 {
1754 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1755 d_delete(dentry);
1756 }
1757
1758 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1759 {
1760 int error;
1761
1762 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1763 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1764
1765 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1766 /* Ensure the VFS deletes this inode */
1767 if (error == 0 && dentry->d_inode != NULL)
1768 clear_nlink(dentry->d_inode);
1769 else if (error == -ENOENT)
1770 nfs_dentry_handle_enoent(dentry);
1771
1772 return error;
1773 }
1774
1775 /*
1776 * Remove a file after making sure there are no pending writes,
1777 * and after checking that the file has only one user.
1778 *
1779 * We invalidate the attribute cache and free the inode prior to the operation
1780 * to avoid possible races if the server reuses the inode.
1781 */
1782 static int nfs_safe_remove(struct dentry *dentry)
1783 {
1784 struct inode *dir = dentry->d_parent->d_inode;
1785 struct inode *inode = dentry->d_inode;
1786 int error = -EBUSY;
1787
1788 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1789 dentry->d_parent->d_name.name, dentry->d_name.name);
1790
1791 /* If the dentry was sillyrenamed, we simply call d_delete() */
1792 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1793 error = 0;
1794 goto out;
1795 }
1796
1797 if (inode != NULL) {
1798 nfs_inode_return_delegation(inode);
1799 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1800 /* The VFS may want to delete this inode */
1801 if (error == 0)
1802 nfs_drop_nlink(inode);
1803 nfs_mark_for_revalidate(inode);
1804 } else
1805 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1806 if (error == -ENOENT)
1807 nfs_dentry_handle_enoent(dentry);
1808 out:
1809 return error;
1810 }
1811
1812 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1813 * belongs to an active ".nfs..." file and we return -EBUSY.
1814 *
1815 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1816 */
1817 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1818 {
1819 int error;
1820 int need_rehash = 0;
1821
1822 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1823 dir->i_ino, dentry->d_name.name);
1824
1825 spin_lock(&dentry->d_lock);
1826 if (dentry->d_count > 1) {
1827 spin_unlock(&dentry->d_lock);
1828 /* Start asynchronous writeout of the inode */
1829 write_inode_now(dentry->d_inode, 0);
1830 error = nfs_sillyrename(dir, dentry);
1831 return error;
1832 }
1833 if (!d_unhashed(dentry)) {
1834 __d_drop(dentry);
1835 need_rehash = 1;
1836 }
1837 spin_unlock(&dentry->d_lock);
1838 error = nfs_safe_remove(dentry);
1839 if (!error || error == -ENOENT) {
1840 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1841 } else if (need_rehash)
1842 d_rehash(dentry);
1843 return error;
1844 }
1845
1846 /*
1847 * To create a symbolic link, most file systems instantiate a new inode,
1848 * add a page to it containing the path, then write it out to the disk
1849 * using prepare_write/commit_write.
1850 *
1851 * Unfortunately the NFS client can't create the in-core inode first
1852 * because it needs a file handle to create an in-core inode (see
1853 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1854 * symlink request has completed on the server.
1855 *
1856 * So instead we allocate a raw page, copy the symname into it, then do
1857 * the SYMLINK request with the page as the buffer. If it succeeds, we
1858 * now have a new file handle and can instantiate an in-core NFS inode
1859 * and move the raw page into its mapping.
1860 */
1861 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1862 {
1863 struct pagevec lru_pvec;
1864 struct page *page;
1865 char *kaddr;
1866 struct iattr attr;
1867 unsigned int pathlen = strlen(symname);
1868 int error;
1869
1870 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1871 dir->i_ino, dentry->d_name.name, symname);
1872
1873 if (pathlen > PAGE_SIZE)
1874 return -ENAMETOOLONG;
1875
1876 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1877 attr.ia_valid = ATTR_MODE;
1878
1879 page = alloc_page(GFP_HIGHUSER);
1880 if (!page)
1881 return -ENOMEM;
1882
1883 kaddr = kmap_atomic(page);
1884 memcpy(kaddr, symname, pathlen);
1885 if (pathlen < PAGE_SIZE)
1886 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1887 kunmap_atomic(kaddr);
1888
1889 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1890 if (error != 0) {
1891 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1892 dir->i_sb->s_id, dir->i_ino,
1893 dentry->d_name.name, symname, error);
1894 d_drop(dentry);
1895 __free_page(page);
1896 return error;
1897 }
1898
1899 /*
1900 * No big deal if we can't add this page to the page cache here.
1901 * READLINK will get the missing page from the server if needed.
1902 */
1903 pagevec_init(&lru_pvec, 0);
1904 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1905 GFP_KERNEL)) {
1906 pagevec_add(&lru_pvec, page);
1907 pagevec_lru_add_file(&lru_pvec);
1908 SetPageUptodate(page);
1909 unlock_page(page);
1910 } else
1911 __free_page(page);
1912
1913 return 0;
1914 }
1915
1916 static int
1917 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1918 {
1919 struct inode *inode = old_dentry->d_inode;
1920 int error;
1921
1922 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1923 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1924 dentry->d_parent->d_name.name, dentry->d_name.name);
1925
1926 nfs_inode_return_delegation(inode);
1927
1928 d_drop(dentry);
1929 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1930 if (error == 0) {
1931 ihold(inode);
1932 d_add(dentry, inode);
1933 }
1934 return error;
1935 }
1936
1937 /*
1938 * RENAME
1939 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1940 * different file handle for the same inode after a rename (e.g. when
1941 * moving to a different directory). A fail-safe method to do so would
1942 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1943 * rename the old file using the sillyrename stuff. This way, the original
1944 * file in old_dir will go away when the last process iput()s the inode.
1945 *
1946 * FIXED.
1947 *
1948 * It actually works quite well. One needs to have the possibility for
1949 * at least one ".nfs..." file in each directory the file ever gets
1950 * moved or linked to which happens automagically with the new
1951 * implementation that only depends on the dcache stuff instead of
1952 * using the inode layer
1953 *
1954 * Unfortunately, things are a little more complicated than indicated
1955 * above. For a cross-directory move, we want to make sure we can get
1956 * rid of the old inode after the operation. This means there must be
1957 * no pending writes (if it's a file), and the use count must be 1.
1958 * If these conditions are met, we can drop the dentries before doing
1959 * the rename.
1960 */
1961 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1962 struct inode *new_dir, struct dentry *new_dentry)
1963 {
1964 struct inode *old_inode = old_dentry->d_inode;
1965 struct inode *new_inode = new_dentry->d_inode;
1966 struct dentry *dentry = NULL, *rehash = NULL;
1967 int error = -EBUSY;
1968
1969 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1970 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1971 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1972 new_dentry->d_count);
1973
1974 /*
1975 * For non-directories, check whether the target is busy and if so,
1976 * make a copy of the dentry and then do a silly-rename. If the
1977 * silly-rename succeeds, the copied dentry is hashed and becomes
1978 * the new target.
1979 */
1980 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1981 /*
1982 * To prevent any new references to the target during the
1983 * rename, we unhash the dentry in advance.
1984 */
1985 if (!d_unhashed(new_dentry)) {
1986 d_drop(new_dentry);
1987 rehash = new_dentry;
1988 }
1989
1990 if (new_dentry->d_count > 2) {
1991 int err;
1992
1993 /* copy the target dentry's name */
1994 dentry = d_alloc(new_dentry->d_parent,
1995 &new_dentry->d_name);
1996 if (!dentry)
1997 goto out;
1998
1999 /* silly-rename the existing target ... */
2000 err = nfs_sillyrename(new_dir, new_dentry);
2001 if (err)
2002 goto out;
2003
2004 new_dentry = dentry;
2005 rehash = NULL;
2006 new_inode = NULL;
2007 }
2008 }
2009
2010 nfs_inode_return_delegation(old_inode);
2011 if (new_inode != NULL)
2012 nfs_inode_return_delegation(new_inode);
2013
2014 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
2015 new_dir, &new_dentry->d_name);
2016 nfs_mark_for_revalidate(old_inode);
2017 out:
2018 if (rehash)
2019 d_rehash(rehash);
2020 if (!error) {
2021 if (new_inode != NULL)
2022 nfs_drop_nlink(new_inode);
2023 d_move(old_dentry, new_dentry);
2024 nfs_set_verifier(new_dentry,
2025 nfs_save_change_attribute(new_dir));
2026 } else if (error == -ENOENT)
2027 nfs_dentry_handle_enoent(old_dentry);
2028
2029 /* new dentry created? */
2030 if (dentry)
2031 dput(dentry);
2032 return error;
2033 }
2034
2035 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2036 static LIST_HEAD(nfs_access_lru_list);
2037 static atomic_long_t nfs_access_nr_entries;
2038
2039 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2040 {
2041 put_rpccred(entry->cred);
2042 kfree(entry);
2043 smp_mb__before_atomic_dec();
2044 atomic_long_dec(&nfs_access_nr_entries);
2045 smp_mb__after_atomic_dec();
2046 }
2047
2048 static void nfs_access_free_list(struct list_head *head)
2049 {
2050 struct nfs_access_entry *cache;
2051
2052 while (!list_empty(head)) {
2053 cache = list_entry(head->next, struct nfs_access_entry, lru);
2054 list_del(&cache->lru);
2055 nfs_access_free_entry(cache);
2056 }
2057 }
2058
2059 int nfs_access_cache_shrinker(struct shrinker *shrink,
2060 struct shrink_control *sc)
2061 {
2062 LIST_HEAD(head);
2063 struct nfs_inode *nfsi, *next;
2064 struct nfs_access_entry *cache;
2065 int nr_to_scan = sc->nr_to_scan;
2066 gfp_t gfp_mask = sc->gfp_mask;
2067
2068 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2069 return (nr_to_scan == 0) ? 0 : -1;
2070
2071 spin_lock(&nfs_access_lru_lock);
2072 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2073 struct inode *inode;
2074
2075 if (nr_to_scan-- == 0)
2076 break;
2077 inode = &nfsi->vfs_inode;
2078 spin_lock(&inode->i_lock);
2079 if (list_empty(&nfsi->access_cache_entry_lru))
2080 goto remove_lru_entry;
2081 cache = list_entry(nfsi->access_cache_entry_lru.next,
2082 struct nfs_access_entry, lru);
2083 list_move(&cache->lru, &head);
2084 rb_erase(&cache->rb_node, &nfsi->access_cache);
2085 if (!list_empty(&nfsi->access_cache_entry_lru))
2086 list_move_tail(&nfsi->access_cache_inode_lru,
2087 &nfs_access_lru_list);
2088 else {
2089 remove_lru_entry:
2090 list_del_init(&nfsi->access_cache_inode_lru);
2091 smp_mb__before_clear_bit();
2092 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2093 smp_mb__after_clear_bit();
2094 }
2095 spin_unlock(&inode->i_lock);
2096 }
2097 spin_unlock(&nfs_access_lru_lock);
2098 nfs_access_free_list(&head);
2099 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
2100 }
2101
2102 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2103 {
2104 struct rb_root *root_node = &nfsi->access_cache;
2105 struct rb_node *n;
2106 struct nfs_access_entry *entry;
2107
2108 /* Unhook entries from the cache */
2109 while ((n = rb_first(root_node)) != NULL) {
2110 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2111 rb_erase(n, root_node);
2112 list_move(&entry->lru, head);
2113 }
2114 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2115 }
2116
2117 void nfs_access_zap_cache(struct inode *inode)
2118 {
2119 LIST_HEAD(head);
2120
2121 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2122 return;
2123 /* Remove from global LRU init */
2124 spin_lock(&nfs_access_lru_lock);
2125 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2126 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2127
2128 spin_lock(&inode->i_lock);
2129 __nfs_access_zap_cache(NFS_I(inode), &head);
2130 spin_unlock(&inode->i_lock);
2131 spin_unlock(&nfs_access_lru_lock);
2132 nfs_access_free_list(&head);
2133 }
2134
2135 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2136 {
2137 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2138 struct nfs_access_entry *entry;
2139
2140 while (n != NULL) {
2141 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2142
2143 if (cred < entry->cred)
2144 n = n->rb_left;
2145 else if (cred > entry->cred)
2146 n = n->rb_right;
2147 else
2148 return entry;
2149 }
2150 return NULL;
2151 }
2152
2153 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2154 {
2155 struct nfs_inode *nfsi = NFS_I(inode);
2156 struct nfs_access_entry *cache;
2157 int err = -ENOENT;
2158
2159 spin_lock(&inode->i_lock);
2160 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2161 goto out_zap;
2162 cache = nfs_access_search_rbtree(inode, cred);
2163 if (cache == NULL)
2164 goto out;
2165 if (!nfs_have_delegated_attributes(inode) &&
2166 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2167 goto out_stale;
2168 res->jiffies = cache->jiffies;
2169 res->cred = cache->cred;
2170 res->mask = cache->mask;
2171 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2172 err = 0;
2173 out:
2174 spin_unlock(&inode->i_lock);
2175 return err;
2176 out_stale:
2177 rb_erase(&cache->rb_node, &nfsi->access_cache);
2178 list_del(&cache->lru);
2179 spin_unlock(&inode->i_lock);
2180 nfs_access_free_entry(cache);
2181 return -ENOENT;
2182 out_zap:
2183 spin_unlock(&inode->i_lock);
2184 nfs_access_zap_cache(inode);
2185 return -ENOENT;
2186 }
2187
2188 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2189 {
2190 struct nfs_inode *nfsi = NFS_I(inode);
2191 struct rb_root *root_node = &nfsi->access_cache;
2192 struct rb_node **p = &root_node->rb_node;
2193 struct rb_node *parent = NULL;
2194 struct nfs_access_entry *entry;
2195
2196 spin_lock(&inode->i_lock);
2197 while (*p != NULL) {
2198 parent = *p;
2199 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2200
2201 if (set->cred < entry->cred)
2202 p = &parent->rb_left;
2203 else if (set->cred > entry->cred)
2204 p = &parent->rb_right;
2205 else
2206 goto found;
2207 }
2208 rb_link_node(&set->rb_node, parent, p);
2209 rb_insert_color(&set->rb_node, root_node);
2210 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2211 spin_unlock(&inode->i_lock);
2212 return;
2213 found:
2214 rb_replace_node(parent, &set->rb_node, root_node);
2215 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2216 list_del(&entry->lru);
2217 spin_unlock(&inode->i_lock);
2218 nfs_access_free_entry(entry);
2219 }
2220
2221 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2222 {
2223 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2224 if (cache == NULL)
2225 return;
2226 RB_CLEAR_NODE(&cache->rb_node);
2227 cache->jiffies = set->jiffies;
2228 cache->cred = get_rpccred(set->cred);
2229 cache->mask = set->mask;
2230
2231 nfs_access_add_rbtree(inode, cache);
2232
2233 /* Update accounting */
2234 smp_mb__before_atomic_inc();
2235 atomic_long_inc(&nfs_access_nr_entries);
2236 smp_mb__after_atomic_inc();
2237
2238 /* Add inode to global LRU list */
2239 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2240 spin_lock(&nfs_access_lru_lock);
2241 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2242 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2243 &nfs_access_lru_list);
2244 spin_unlock(&nfs_access_lru_lock);
2245 }
2246 }
2247
2248 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2249 {
2250 struct nfs_access_entry cache;
2251 int status;
2252
2253 status = nfs_access_get_cached(inode, cred, &cache);
2254 if (status == 0)
2255 goto out;
2256
2257 /* Be clever: ask server to check for all possible rights */
2258 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2259 cache.cred = cred;
2260 cache.jiffies = jiffies;
2261 status = NFS_PROTO(inode)->access(inode, &cache);
2262 if (status != 0) {
2263 if (status == -ESTALE) {
2264 nfs_zap_caches(inode);
2265 if (!S_ISDIR(inode->i_mode))
2266 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2267 }
2268 return status;
2269 }
2270 nfs_access_add_cache(inode, &cache);
2271 out:
2272 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2273 return 0;
2274 return -EACCES;
2275 }
2276
2277 static int nfs_open_permission_mask(int openflags)
2278 {
2279 int mask = 0;
2280
2281 if ((openflags & O_ACCMODE) != O_WRONLY)
2282 mask |= MAY_READ;
2283 if ((openflags & O_ACCMODE) != O_RDONLY)
2284 mask |= MAY_WRITE;
2285 if (openflags & __FMODE_EXEC)
2286 mask |= MAY_EXEC;
2287 return mask;
2288 }
2289
2290 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2291 {
2292 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2293 }
2294
2295 int nfs_permission(struct inode *inode, int mask)
2296 {
2297 struct rpc_cred *cred;
2298 int res = 0;
2299
2300 if (mask & MAY_NOT_BLOCK)
2301 return -ECHILD;
2302
2303 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2304
2305 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2306 goto out;
2307 /* Is this sys_access() ? */
2308 if (mask & (MAY_ACCESS | MAY_CHDIR))
2309 goto force_lookup;
2310
2311 switch (inode->i_mode & S_IFMT) {
2312 case S_IFLNK:
2313 goto out;
2314 case S_IFREG:
2315 /* NFSv4 has atomic_open... */
2316 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2317 && (mask & MAY_OPEN)
2318 && !(mask & MAY_EXEC))
2319 goto out;
2320 break;
2321 case S_IFDIR:
2322 /*
2323 * Optimize away all write operations, since the server
2324 * will check permissions when we perform the op.
2325 */
2326 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2327 goto out;
2328 }
2329
2330 force_lookup:
2331 if (!NFS_PROTO(inode)->access)
2332 goto out_notsup;
2333
2334 cred = rpc_lookup_cred();
2335 if (!IS_ERR(cred)) {
2336 res = nfs_do_access(inode, cred, mask);
2337 put_rpccred(cred);
2338 } else
2339 res = PTR_ERR(cred);
2340 out:
2341 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2342 res = -EACCES;
2343
2344 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2345 inode->i_sb->s_id, inode->i_ino, mask, res);
2346 return res;
2347 out_notsup:
2348 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2349 if (res == 0)
2350 res = generic_permission(inode, mask);
2351 goto out;
2352 }
2353
2354 /*
2355 * Local variables:
2356 * version-control: t
2357 * kept-new-versions: 5
2358 * End:
2359 */