]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/nfs/dir.c
ef827ae193d22266b3bbdcea344714e1f7ea69ca
[mirror_ubuntu-hirsute-kernel.git] / fs / nfs / dir.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/nfs/dir.c
4 *
5 * Copyright (C) 1992 Rick Sladkey
6 *
7 * nfs directory handling functions
8 *
9 * 10 Apr 1996 Added silly rename for unlink --okir
10 * 28 Sep 1996 Improved directory cache --okir
11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
12 * Re-implemented silly rename for unlink, newly implemented
13 * silly rename for nfs_rename() following the suggestions
14 * of Olaf Kirch (okir) found in this file.
15 * Following Linus comments on my original hack, this version
16 * depends only on the dcache stuff and doesn't touch the inode
17 * layer (iput() and friends).
18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
19 */
20
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
41
42 #include "delegation.h"
43 #include "iostat.h"
44 #include "internal.h"
45 #include "fscache.h"
46
47 #include "nfstrace.h"
48
49 /* #define NFS_DEBUG_VERBOSE 1 */
50
51 static int nfs_opendir(struct inode *, struct file *);
52 static int nfs_closedir(struct inode *, struct file *);
53 static int nfs_readdir(struct file *, struct dir_context *);
54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56 static void nfs_readdir_clear_array(struct page*);
57
58 const struct file_operations nfs_dir_operations = {
59 .llseek = nfs_llseek_dir,
60 .read = generic_read_dir,
61 .iterate_shared = nfs_readdir,
62 .open = nfs_opendir,
63 .release = nfs_closedir,
64 .fsync = nfs_fsync_dir,
65 };
66
67 const struct address_space_operations nfs_dir_aops = {
68 .freepage = nfs_readdir_clear_array,
69 };
70
71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir)
72 {
73 struct nfs_inode *nfsi = NFS_I(dir);
74 struct nfs_open_dir_context *ctx;
75 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76 if (ctx != NULL) {
77 ctx->duped = 0;
78 ctx->attr_gencount = nfsi->attr_gencount;
79 ctx->dir_cookie = 0;
80 ctx->dup_cookie = 0;
81 spin_lock(&dir->i_lock);
82 if (list_empty(&nfsi->open_files) &&
83 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
84 nfsi->cache_validity |= NFS_INO_INVALID_DATA |
85 NFS_INO_REVAL_FORCED;
86 list_add(&ctx->list, &nfsi->open_files);
87 spin_unlock(&dir->i_lock);
88 return ctx;
89 }
90 return ERR_PTR(-ENOMEM);
91 }
92
93 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
94 {
95 spin_lock(&dir->i_lock);
96 list_del(&ctx->list);
97 spin_unlock(&dir->i_lock);
98 kfree(ctx);
99 }
100
101 /*
102 * Open file
103 */
104 static int
105 nfs_opendir(struct inode *inode, struct file *filp)
106 {
107 int res = 0;
108 struct nfs_open_dir_context *ctx;
109
110 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
111
112 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
113
114 ctx = alloc_nfs_open_dir_context(inode);
115 if (IS_ERR(ctx)) {
116 res = PTR_ERR(ctx);
117 goto out;
118 }
119 filp->private_data = ctx;
120 out:
121 return res;
122 }
123
124 static int
125 nfs_closedir(struct inode *inode, struct file *filp)
126 {
127 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
128 return 0;
129 }
130
131 struct nfs_cache_array_entry {
132 u64 cookie;
133 u64 ino;
134 const char *name;
135 unsigned int name_len;
136 unsigned char d_type;
137 };
138
139 struct nfs_cache_array {
140 u64 last_cookie;
141 unsigned int size;
142 unsigned char page_full : 1,
143 page_is_eof : 1,
144 cookies_are_ordered : 1;
145 struct nfs_cache_array_entry array[];
146 };
147
148 struct nfs_readdir_descriptor {
149 struct file *file;
150 struct page *page;
151 struct dir_context *ctx;
152 pgoff_t page_index;
153 u64 dir_cookie;
154 u64 last_cookie;
155 u64 dup_cookie;
156 loff_t current_index;
157 loff_t prev_index;
158
159 __be32 verf[NFS_DIR_VERIFIER_SIZE];
160 unsigned long dir_verifier;
161 unsigned long timestamp;
162 unsigned long gencount;
163 unsigned long attr_gencount;
164 unsigned int cache_entry_index;
165 signed char duped;
166 bool plus;
167 bool eof;
168 };
169
170 static void nfs_readdir_array_init(struct nfs_cache_array *array)
171 {
172 memset(array, 0, sizeof(struct nfs_cache_array));
173 }
174
175 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie)
176 {
177 struct nfs_cache_array *array;
178
179 array = kmap_atomic(page);
180 nfs_readdir_array_init(array);
181 array->last_cookie = last_cookie;
182 array->cookies_are_ordered = 1;
183 kunmap_atomic(array);
184 }
185
186 /*
187 * we are freeing strings created by nfs_add_to_readdir_array()
188 */
189 static
190 void nfs_readdir_clear_array(struct page *page)
191 {
192 struct nfs_cache_array *array;
193 int i;
194
195 array = kmap_atomic(page);
196 for (i = 0; i < array->size; i++)
197 kfree(array->array[i].name);
198 nfs_readdir_array_init(array);
199 kunmap_atomic(array);
200 }
201
202 static struct page *
203 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
204 {
205 struct page *page = alloc_page(gfp_flags);
206 if (page)
207 nfs_readdir_page_init_array(page, last_cookie);
208 return page;
209 }
210
211 static void nfs_readdir_page_array_free(struct page *page)
212 {
213 if (page) {
214 nfs_readdir_clear_array(page);
215 put_page(page);
216 }
217 }
218
219 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
220 {
221 array->page_is_eof = 1;
222 array->page_full = 1;
223 }
224
225 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
226 {
227 return array->page_full;
228 }
229
230 /*
231 * the caller is responsible for freeing qstr.name
232 * when called by nfs_readdir_add_to_array, the strings will be freed in
233 * nfs_clear_readdir_array()
234 */
235 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
236 {
237 const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
238
239 /*
240 * Avoid a kmemleak false positive. The pointer to the name is stored
241 * in a page cache page which kmemleak does not scan.
242 */
243 if (ret != NULL)
244 kmemleak_not_leak(ret);
245 return ret;
246 }
247
248 /*
249 * Check that the next array entry lies entirely within the page bounds
250 */
251 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
252 {
253 struct nfs_cache_array_entry *cache_entry;
254
255 if (array->page_full)
256 return -ENOSPC;
257 cache_entry = &array->array[array->size + 1];
258 if ((char *)cache_entry - (char *)array > PAGE_SIZE) {
259 array->page_full = 1;
260 return -ENOSPC;
261 }
262 return 0;
263 }
264
265 static
266 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
267 {
268 struct nfs_cache_array *array;
269 struct nfs_cache_array_entry *cache_entry;
270 const char *name;
271 int ret;
272
273 name = nfs_readdir_copy_name(entry->name, entry->len);
274 if (!name)
275 return -ENOMEM;
276
277 array = kmap_atomic(page);
278 ret = nfs_readdir_array_can_expand(array);
279 if (ret) {
280 kfree(name);
281 goto out;
282 }
283
284 cache_entry = &array->array[array->size];
285 cache_entry->cookie = entry->prev_cookie;
286 cache_entry->ino = entry->ino;
287 cache_entry->d_type = entry->d_type;
288 cache_entry->name_len = entry->len;
289 cache_entry->name = name;
290 array->last_cookie = entry->cookie;
291 if (array->last_cookie <= cache_entry->cookie)
292 array->cookies_are_ordered = 0;
293 array->size++;
294 if (entry->eof != 0)
295 nfs_readdir_array_set_eof(array);
296 out:
297 kunmap_atomic(array);
298 return ret;
299 }
300
301 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
302 pgoff_t index, u64 last_cookie)
303 {
304 struct page *page;
305
306 page = grab_cache_page(mapping, index);
307 if (page && !PageUptodate(page)) {
308 nfs_readdir_page_init_array(page, last_cookie);
309 if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0)
310 nfs_zap_mapping(mapping->host, mapping);
311 SetPageUptodate(page);
312 }
313
314 return page;
315 }
316
317 static u64 nfs_readdir_page_last_cookie(struct page *page)
318 {
319 struct nfs_cache_array *array;
320 u64 ret;
321
322 array = kmap_atomic(page);
323 ret = array->last_cookie;
324 kunmap_atomic(array);
325 return ret;
326 }
327
328 static bool nfs_readdir_page_needs_filling(struct page *page)
329 {
330 struct nfs_cache_array *array;
331 bool ret;
332
333 array = kmap_atomic(page);
334 ret = !nfs_readdir_array_is_full(array);
335 kunmap_atomic(array);
336 return ret;
337 }
338
339 static void nfs_readdir_page_set_eof(struct page *page)
340 {
341 struct nfs_cache_array *array;
342
343 array = kmap_atomic(page);
344 nfs_readdir_array_set_eof(array);
345 kunmap_atomic(array);
346 }
347
348 static void nfs_readdir_page_unlock_and_put(struct page *page)
349 {
350 unlock_page(page);
351 put_page(page);
352 }
353
354 static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
355 pgoff_t index, u64 cookie)
356 {
357 struct page *page;
358
359 page = nfs_readdir_page_get_locked(mapping, index, cookie);
360 if (page) {
361 if (nfs_readdir_page_last_cookie(page) == cookie)
362 return page;
363 nfs_readdir_page_unlock_and_put(page);
364 }
365 return NULL;
366 }
367
368 static inline
369 int is_32bit_api(void)
370 {
371 #ifdef CONFIG_COMPAT
372 return in_compat_syscall();
373 #else
374 return (BITS_PER_LONG == 32);
375 #endif
376 }
377
378 static
379 bool nfs_readdir_use_cookie(const struct file *filp)
380 {
381 if ((filp->f_mode & FMODE_32BITHASH) ||
382 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
383 return false;
384 return true;
385 }
386
387 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
388 struct nfs_readdir_descriptor *desc)
389 {
390 loff_t diff = desc->ctx->pos - desc->current_index;
391 unsigned int index;
392
393 if (diff < 0)
394 goto out_eof;
395 if (diff >= array->size) {
396 if (array->page_is_eof)
397 goto out_eof;
398 return -EAGAIN;
399 }
400
401 index = (unsigned int)diff;
402 desc->dir_cookie = array->array[index].cookie;
403 desc->cache_entry_index = index;
404 return 0;
405 out_eof:
406 desc->eof = true;
407 return -EBADCOOKIE;
408 }
409
410 static bool
411 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
412 {
413 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
414 return false;
415 smp_rmb();
416 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
417 }
418
419 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
420 u64 cookie)
421 {
422 if (!array->cookies_are_ordered)
423 return true;
424 /* Optimisation for monotonically increasing cookies */
425 if (cookie >= array->last_cookie)
426 return false;
427 if (array->size && cookie < array->array[0].cookie)
428 return false;
429 return true;
430 }
431
432 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
433 struct nfs_readdir_descriptor *desc)
434 {
435 int i;
436 loff_t new_pos;
437 int status = -EAGAIN;
438
439 if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
440 goto check_eof;
441
442 for (i = 0; i < array->size; i++) {
443 if (array->array[i].cookie == desc->dir_cookie) {
444 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
445
446 new_pos = desc->current_index + i;
447 if (desc->attr_gencount != nfsi->attr_gencount ||
448 !nfs_readdir_inode_mapping_valid(nfsi)) {
449 desc->duped = 0;
450 desc->attr_gencount = nfsi->attr_gencount;
451 } else if (new_pos < desc->prev_index) {
452 if (desc->duped > 0
453 && desc->dup_cookie == desc->dir_cookie) {
454 if (printk_ratelimit()) {
455 pr_notice("NFS: directory %pD2 contains a readdir loop."
456 "Please contact your server vendor. "
457 "The file: %s has duplicate cookie %llu\n",
458 desc->file, array->array[i].name, desc->dir_cookie);
459 }
460 status = -ELOOP;
461 goto out;
462 }
463 desc->dup_cookie = desc->dir_cookie;
464 desc->duped = -1;
465 }
466 if (nfs_readdir_use_cookie(desc->file))
467 desc->ctx->pos = desc->dir_cookie;
468 else
469 desc->ctx->pos = new_pos;
470 desc->prev_index = new_pos;
471 desc->cache_entry_index = i;
472 return 0;
473 }
474 }
475 check_eof:
476 if (array->page_is_eof) {
477 status = -EBADCOOKIE;
478 if (desc->dir_cookie == array->last_cookie)
479 desc->eof = true;
480 }
481 out:
482 return status;
483 }
484
485 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
486 {
487 struct nfs_cache_array *array;
488 int status;
489
490 array = kmap_atomic(desc->page);
491
492 if (desc->dir_cookie == 0)
493 status = nfs_readdir_search_for_pos(array, desc);
494 else
495 status = nfs_readdir_search_for_cookie(array, desc);
496
497 if (status == -EAGAIN) {
498 desc->last_cookie = array->last_cookie;
499 desc->current_index += array->size;
500 desc->page_index++;
501 }
502 kunmap_atomic(array);
503 return status;
504 }
505
506 /* Fill a page with xdr information before transferring to the cache page */
507 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
508 __be32 *verf, u64 cookie,
509 struct page **pages, size_t bufsize,
510 __be32 *verf_res)
511 {
512 struct inode *inode = file_inode(desc->file);
513 struct nfs_readdir_arg arg = {
514 .dentry = file_dentry(desc->file),
515 .cred = desc->file->f_cred,
516 .verf = verf,
517 .cookie = cookie,
518 .pages = pages,
519 .page_len = bufsize,
520 .plus = desc->plus,
521 };
522 struct nfs_readdir_res res = {
523 .verf = verf_res,
524 };
525 unsigned long timestamp, gencount;
526 int error;
527
528 again:
529 timestamp = jiffies;
530 gencount = nfs_inc_attr_generation_counter();
531 desc->dir_verifier = nfs_save_change_attribute(inode);
532 error = NFS_PROTO(inode)->readdir(&arg, &res);
533 if (error < 0) {
534 /* We requested READDIRPLUS, but the server doesn't grok it */
535 if (error == -ENOTSUPP && desc->plus) {
536 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
537 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
538 desc->plus = arg.plus = false;
539 goto again;
540 }
541 goto error;
542 }
543 desc->timestamp = timestamp;
544 desc->gencount = gencount;
545 error:
546 return error;
547 }
548
549 static int xdr_decode(struct nfs_readdir_descriptor *desc,
550 struct nfs_entry *entry, struct xdr_stream *xdr)
551 {
552 struct inode *inode = file_inode(desc->file);
553 int error;
554
555 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
556 if (error)
557 return error;
558 entry->fattr->time_start = desc->timestamp;
559 entry->fattr->gencount = desc->gencount;
560 return 0;
561 }
562
563 /* Match file and dirent using either filehandle or fileid
564 * Note: caller is responsible for checking the fsid
565 */
566 static
567 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
568 {
569 struct inode *inode;
570 struct nfs_inode *nfsi;
571
572 if (d_really_is_negative(dentry))
573 return 0;
574
575 inode = d_inode(dentry);
576 if (is_bad_inode(inode) || NFS_STALE(inode))
577 return 0;
578
579 nfsi = NFS_I(inode);
580 if (entry->fattr->fileid != nfsi->fileid)
581 return 0;
582 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
583 return 0;
584 return 1;
585 }
586
587 static
588 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
589 {
590 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
591 return false;
592 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
593 return true;
594 if (ctx->pos == 0)
595 return true;
596 return false;
597 }
598
599 /*
600 * This function is called by the lookup and getattr code to request the
601 * use of readdirplus to accelerate any future lookups in the same
602 * directory.
603 */
604 void nfs_advise_use_readdirplus(struct inode *dir)
605 {
606 struct nfs_inode *nfsi = NFS_I(dir);
607
608 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
609 !list_empty(&nfsi->open_files))
610 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
611 }
612
613 /*
614 * This function is mainly for use by nfs_getattr().
615 *
616 * If this is an 'ls -l', we want to force use of readdirplus.
617 * Do this by checking if there is an active file descriptor
618 * and calling nfs_advise_use_readdirplus, then forcing a
619 * cache flush.
620 */
621 void nfs_force_use_readdirplus(struct inode *dir)
622 {
623 struct nfs_inode *nfsi = NFS_I(dir);
624
625 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
626 !list_empty(&nfsi->open_files)) {
627 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
628 invalidate_mapping_pages(dir->i_mapping,
629 nfsi->page_index + 1, -1);
630 }
631 }
632
633 static
634 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
635 unsigned long dir_verifier)
636 {
637 struct qstr filename = QSTR_INIT(entry->name, entry->len);
638 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
639 struct dentry *dentry;
640 struct dentry *alias;
641 struct inode *inode;
642 int status;
643
644 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
645 return;
646 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
647 return;
648 if (filename.len == 0)
649 return;
650 /* Validate that the name doesn't contain any illegal '\0' */
651 if (strnlen(filename.name, filename.len) != filename.len)
652 return;
653 /* ...or '/' */
654 if (strnchr(filename.name, filename.len, '/'))
655 return;
656 if (filename.name[0] == '.') {
657 if (filename.len == 1)
658 return;
659 if (filename.len == 2 && filename.name[1] == '.')
660 return;
661 }
662 filename.hash = full_name_hash(parent, filename.name, filename.len);
663
664 dentry = d_lookup(parent, &filename);
665 again:
666 if (!dentry) {
667 dentry = d_alloc_parallel(parent, &filename, &wq);
668 if (IS_ERR(dentry))
669 return;
670 }
671 if (!d_in_lookup(dentry)) {
672 /* Is there a mountpoint here? If so, just exit */
673 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
674 &entry->fattr->fsid))
675 goto out;
676 if (nfs_same_file(dentry, entry)) {
677 if (!entry->fh->size)
678 goto out;
679 nfs_set_verifier(dentry, dir_verifier);
680 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
681 if (!status)
682 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
683 goto out;
684 } else {
685 d_invalidate(dentry);
686 dput(dentry);
687 dentry = NULL;
688 goto again;
689 }
690 }
691 if (!entry->fh->size) {
692 d_lookup_done(dentry);
693 goto out;
694 }
695
696 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
697 alias = d_splice_alias(inode, dentry);
698 d_lookup_done(dentry);
699 if (alias) {
700 if (IS_ERR(alias))
701 goto out;
702 dput(dentry);
703 dentry = alias;
704 }
705 nfs_set_verifier(dentry, dir_verifier);
706 out:
707 dput(dentry);
708 }
709
710 /* Perform conversion from xdr to cache array */
711 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
712 struct nfs_entry *entry,
713 struct page **xdr_pages,
714 unsigned int buflen,
715 struct page **arrays,
716 size_t narrays)
717 {
718 struct address_space *mapping = desc->file->f_mapping;
719 struct xdr_stream stream;
720 struct xdr_buf buf;
721 struct page *scratch, *new, *page = *arrays;
722 int status;
723
724 scratch = alloc_page(GFP_KERNEL);
725 if (scratch == NULL)
726 return -ENOMEM;
727
728 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
729 xdr_set_scratch_page(&stream, scratch);
730
731 do {
732 if (entry->label)
733 entry->label->len = NFS4_MAXLABELLEN;
734
735 status = xdr_decode(desc, entry, &stream);
736 if (status != 0)
737 break;
738
739 if (desc->plus)
740 nfs_prime_dcache(file_dentry(desc->file), entry,
741 desc->dir_verifier);
742
743 status = nfs_readdir_add_to_array(entry, page);
744 if (status != -ENOSPC)
745 continue;
746
747 if (page->mapping != mapping) {
748 if (!--narrays)
749 break;
750 new = nfs_readdir_page_array_alloc(entry->prev_cookie,
751 GFP_KERNEL);
752 if (!new)
753 break;
754 arrays++;
755 *arrays = page = new;
756 } else {
757 new = nfs_readdir_page_get_next(mapping,
758 page->index + 1,
759 entry->prev_cookie);
760 if (!new)
761 break;
762 if (page != *arrays)
763 nfs_readdir_page_unlock_and_put(page);
764 page = new;
765 }
766 status = nfs_readdir_add_to_array(entry, page);
767 } while (!status && !entry->eof);
768
769 switch (status) {
770 case -EBADCOOKIE:
771 if (entry->eof) {
772 nfs_readdir_page_set_eof(page);
773 status = 0;
774 }
775 break;
776 case -ENOSPC:
777 case -EAGAIN:
778 status = 0;
779 break;
780 }
781
782 if (page != *arrays)
783 nfs_readdir_page_unlock_and_put(page);
784
785 put_page(scratch);
786 return status;
787 }
788
789 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
790 {
791 while (npages--)
792 put_page(pages[npages]);
793 kfree(pages);
794 }
795
796 /*
797 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
798 * to nfs_readdir_free_pages()
799 */
800 static struct page **nfs_readdir_alloc_pages(size_t npages)
801 {
802 struct page **pages;
803 size_t i;
804
805 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
806 if (!pages)
807 return NULL;
808 for (i = 0; i < npages; i++) {
809 struct page *page = alloc_page(GFP_KERNEL);
810 if (page == NULL)
811 goto out_freepages;
812 pages[i] = page;
813 }
814 return pages;
815
816 out_freepages:
817 nfs_readdir_free_pages(pages, i);
818 return NULL;
819 }
820
821 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
822 __be32 *verf_arg, __be32 *verf_res,
823 struct page **arrays, size_t narrays)
824 {
825 struct page **pages;
826 struct page *page = *arrays;
827 struct nfs_entry *entry;
828 size_t array_size;
829 struct inode *inode = file_inode(desc->file);
830 size_t dtsize = NFS_SERVER(inode)->dtsize;
831 int status = -ENOMEM;
832
833 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
834 if (!entry)
835 return -ENOMEM;
836 entry->cookie = nfs_readdir_page_last_cookie(page);
837 entry->fh = nfs_alloc_fhandle();
838 entry->fattr = nfs_alloc_fattr();
839 entry->server = NFS_SERVER(inode);
840 if (entry->fh == NULL || entry->fattr == NULL)
841 goto out;
842
843 entry->label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
844 if (IS_ERR(entry->label)) {
845 status = PTR_ERR(entry->label);
846 goto out;
847 }
848
849 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
850 pages = nfs_readdir_alloc_pages(array_size);
851 if (!pages)
852 goto out_release_label;
853
854 do {
855 unsigned int pglen;
856 status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie,
857 pages, dtsize,
858 verf_res);
859 if (status < 0)
860 break;
861
862 pglen = status;
863 if (pglen == 0) {
864 nfs_readdir_page_set_eof(page);
865 break;
866 }
867
868 status = nfs_readdir_page_filler(desc, entry, pages, pglen,
869 arrays, narrays);
870 } while (!status && nfs_readdir_page_needs_filling(page));
871
872 nfs_readdir_free_pages(pages, array_size);
873 out_release_label:
874 nfs4_label_free(entry->label);
875 out:
876 nfs_free_fattr(entry->fattr);
877 nfs_free_fhandle(entry->fh);
878 kfree(entry);
879 return status;
880 }
881
882 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
883 {
884 put_page(desc->page);
885 desc->page = NULL;
886 }
887
888 static void
889 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
890 {
891 unlock_page(desc->page);
892 nfs_readdir_page_put(desc);
893 }
894
895 static struct page *
896 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
897 {
898 return nfs_readdir_page_get_locked(desc->file->f_mapping,
899 desc->page_index,
900 desc->last_cookie);
901 }
902
903 /*
904 * Returns 0 if desc->dir_cookie was found on page desc->page_index
905 * and locks the page to prevent removal from the page cache.
906 */
907 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
908 {
909 struct inode *inode = file_inode(desc->file);
910 struct nfs_inode *nfsi = NFS_I(inode);
911 __be32 verf[NFS_DIR_VERIFIER_SIZE];
912 int res;
913
914 desc->page = nfs_readdir_page_get_cached(desc);
915 if (!desc->page)
916 return -ENOMEM;
917 if (nfs_readdir_page_needs_filling(desc->page)) {
918 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
919 &desc->page, 1);
920 if (res < 0) {
921 nfs_readdir_page_unlock_and_put_cached(desc);
922 if (res == -EBADCOOKIE || res == -ENOTSYNC) {
923 invalidate_inode_pages2(desc->file->f_mapping);
924 desc->page_index = 0;
925 return -EAGAIN;
926 }
927 return res;
928 }
929 memcpy(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf));
930 }
931 res = nfs_readdir_search_array(desc);
932 if (res == 0) {
933 nfsi->page_index = desc->page_index;
934 return 0;
935 }
936 nfs_readdir_page_unlock_and_put_cached(desc);
937 return res;
938 }
939
940 static bool nfs_readdir_dont_search_cache(struct nfs_readdir_descriptor *desc)
941 {
942 struct address_space *mapping = desc->file->f_mapping;
943 struct inode *dir = file_inode(desc->file);
944 unsigned int dtsize = NFS_SERVER(dir)->dtsize;
945 loff_t size = i_size_read(dir);
946
947 /*
948 * Default to uncached readdir if the page cache is empty, and
949 * we're looking for a non-zero cookie in a large directory.
950 */
951 return desc->dir_cookie != 0 && mapping->nrpages == 0 && size > dtsize;
952 }
953
954 /* Search for desc->dir_cookie from the beginning of the page cache */
955 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
956 {
957 int res;
958
959 if (nfs_readdir_dont_search_cache(desc))
960 return -EBADCOOKIE;
961
962 do {
963 if (desc->page_index == 0) {
964 desc->current_index = 0;
965 desc->prev_index = 0;
966 desc->last_cookie = 0;
967 }
968 res = find_and_lock_cache_page(desc);
969 } while (res == -EAGAIN);
970 return res;
971 }
972
973 /*
974 * Once we've found the start of the dirent within a page: fill 'er up...
975 */
976 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc)
977 {
978 struct file *file = desc->file;
979 struct nfs_inode *nfsi = NFS_I(file_inode(file));
980 struct nfs_cache_array *array;
981 unsigned int i = 0;
982
983 array = kmap(desc->page);
984 for (i = desc->cache_entry_index; i < array->size; i++) {
985 struct nfs_cache_array_entry *ent;
986
987 ent = &array->array[i];
988 if (!dir_emit(desc->ctx, ent->name, ent->name_len,
989 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
990 desc->eof = true;
991 break;
992 }
993 memcpy(desc->verf, nfsi->cookieverf, sizeof(desc->verf));
994 if (i < (array->size-1))
995 desc->dir_cookie = array->array[i+1].cookie;
996 else
997 desc->dir_cookie = array->last_cookie;
998 if (nfs_readdir_use_cookie(file))
999 desc->ctx->pos = desc->dir_cookie;
1000 else
1001 desc->ctx->pos++;
1002 if (desc->duped != 0)
1003 desc->duped = 1;
1004 }
1005 if (array->page_is_eof)
1006 desc->eof = true;
1007
1008 kunmap(desc->page);
1009 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1010 (unsigned long long)desc->dir_cookie);
1011 }
1012
1013 /*
1014 * If we cannot find a cookie in our cache, we suspect that this is
1015 * because it points to a deleted file, so we ask the server to return
1016 * whatever it thinks is the next entry. We then feed this to filldir.
1017 * If all goes well, we should then be able to find our way round the
1018 * cache on the next call to readdir_search_pagecache();
1019 *
1020 * NOTE: we cannot add the anonymous page to the pagecache because
1021 * the data it contains might not be page aligned. Besides,
1022 * we should already have a complete representation of the
1023 * directory in the page cache by the time we get here.
1024 */
1025 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1026 {
1027 struct page **arrays;
1028 size_t i, sz = 512;
1029 __be32 verf[NFS_DIR_VERIFIER_SIZE];
1030 int status = -ENOMEM;
1031
1032 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1033 (unsigned long long)desc->dir_cookie);
1034
1035 arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1036 if (!arrays)
1037 goto out;
1038 arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1039 if (!arrays[0])
1040 goto out;
1041
1042 desc->page_index = 0;
1043 desc->last_cookie = desc->dir_cookie;
1044 desc->duped = 0;
1045
1046 status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1047
1048 for (i = 0; !desc->eof && i < sz && arrays[i]; i++) {
1049 desc->page = arrays[i];
1050 nfs_do_filldir(desc);
1051 }
1052 desc->page = NULL;
1053
1054
1055 for (i = 0; i < sz && arrays[i]; i++)
1056 nfs_readdir_page_array_free(arrays[i]);
1057 out:
1058 kfree(arrays);
1059 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1060 return status;
1061 }
1062
1063 /* The file offset position represents the dirent entry number. A
1064 last cookie cache takes care of the common case of reading the
1065 whole directory.
1066 */
1067 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1068 {
1069 struct dentry *dentry = file_dentry(file);
1070 struct inode *inode = d_inode(dentry);
1071 struct nfs_open_dir_context *dir_ctx = file->private_data;
1072 struct nfs_readdir_descriptor *desc;
1073 int res;
1074
1075 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1076 file, (long long)ctx->pos);
1077 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1078
1079 /*
1080 * ctx->pos points to the dirent entry number.
1081 * *desc->dir_cookie has the cookie for the next entry. We have
1082 * to either find the entry with the appropriate number or
1083 * revalidate the cookie.
1084 */
1085 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) {
1086 res = nfs_revalidate_mapping(inode, file->f_mapping);
1087 if (res < 0)
1088 goto out;
1089 }
1090
1091 res = -ENOMEM;
1092 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1093 if (!desc)
1094 goto out;
1095 desc->file = file;
1096 desc->ctx = ctx;
1097 desc->plus = nfs_use_readdirplus(inode, ctx);
1098
1099 spin_lock(&file->f_lock);
1100 desc->dir_cookie = dir_ctx->dir_cookie;
1101 desc->dup_cookie = dir_ctx->dup_cookie;
1102 desc->duped = dir_ctx->duped;
1103 desc->attr_gencount = dir_ctx->attr_gencount;
1104 memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1105 spin_unlock(&file->f_lock);
1106
1107 do {
1108 res = readdir_search_pagecache(desc);
1109
1110 if (res == -EBADCOOKIE) {
1111 res = 0;
1112 /* This means either end of directory */
1113 if (desc->dir_cookie && !desc->eof) {
1114 /* Or that the server has 'lost' a cookie */
1115 res = uncached_readdir(desc);
1116 if (res == 0)
1117 continue;
1118 if (res == -EBADCOOKIE || res == -ENOTSYNC)
1119 res = 0;
1120 }
1121 break;
1122 }
1123 if (res == -ETOOSMALL && desc->plus) {
1124 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
1125 nfs_zap_caches(inode);
1126 desc->page_index = 0;
1127 desc->plus = false;
1128 desc->eof = false;
1129 continue;
1130 }
1131 if (res < 0)
1132 break;
1133
1134 nfs_do_filldir(desc);
1135 nfs_readdir_page_unlock_and_put_cached(desc);
1136 } while (!desc->eof);
1137
1138 spin_lock(&file->f_lock);
1139 dir_ctx->dir_cookie = desc->dir_cookie;
1140 dir_ctx->dup_cookie = desc->dup_cookie;
1141 dir_ctx->duped = desc->duped;
1142 dir_ctx->attr_gencount = desc->attr_gencount;
1143 memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1144 spin_unlock(&file->f_lock);
1145
1146 kfree(desc);
1147
1148 out:
1149 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1150 return res;
1151 }
1152
1153 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1154 {
1155 struct nfs_open_dir_context *dir_ctx = filp->private_data;
1156
1157 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1158 filp, offset, whence);
1159
1160 switch (whence) {
1161 default:
1162 return -EINVAL;
1163 case SEEK_SET:
1164 if (offset < 0)
1165 return -EINVAL;
1166 spin_lock(&filp->f_lock);
1167 break;
1168 case SEEK_CUR:
1169 if (offset == 0)
1170 return filp->f_pos;
1171 spin_lock(&filp->f_lock);
1172 offset += filp->f_pos;
1173 if (offset < 0) {
1174 spin_unlock(&filp->f_lock);
1175 return -EINVAL;
1176 }
1177 }
1178 if (offset != filp->f_pos) {
1179 filp->f_pos = offset;
1180 if (nfs_readdir_use_cookie(filp))
1181 dir_ctx->dir_cookie = offset;
1182 else
1183 dir_ctx->dir_cookie = 0;
1184 if (offset == 0)
1185 memset(dir_ctx->verf, 0, sizeof(dir_ctx->verf));
1186 dir_ctx->duped = 0;
1187 }
1188 spin_unlock(&filp->f_lock);
1189 return offset;
1190 }
1191
1192 /*
1193 * All directory operations under NFS are synchronous, so fsync()
1194 * is a dummy operation.
1195 */
1196 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1197 int datasync)
1198 {
1199 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1200
1201 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1202 return 0;
1203 }
1204
1205 /**
1206 * nfs_force_lookup_revalidate - Mark the directory as having changed
1207 * @dir: pointer to directory inode
1208 *
1209 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1210 * full lookup on all child dentries of 'dir' whenever a change occurs
1211 * on the server that might have invalidated our dcache.
1212 *
1213 * Note that we reserve bit '0' as a tag to let us know when a dentry
1214 * was revalidated while holding a delegation on its inode.
1215 *
1216 * The caller should be holding dir->i_lock
1217 */
1218 void nfs_force_lookup_revalidate(struct inode *dir)
1219 {
1220 NFS_I(dir)->cache_change_attribute += 2;
1221 }
1222 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1223
1224 /**
1225 * nfs_verify_change_attribute - Detects NFS remote directory changes
1226 * @dir: pointer to parent directory inode
1227 * @verf: previously saved change attribute
1228 *
1229 * Return "false" if the verifiers doesn't match the change attribute.
1230 * This would usually indicate that the directory contents have changed on
1231 * the server, and that any dentries need revalidating.
1232 */
1233 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1234 {
1235 return (verf & ~1UL) == nfs_save_change_attribute(dir);
1236 }
1237
1238 static void nfs_set_verifier_delegated(unsigned long *verf)
1239 {
1240 *verf |= 1UL;
1241 }
1242
1243 #if IS_ENABLED(CONFIG_NFS_V4)
1244 static void nfs_unset_verifier_delegated(unsigned long *verf)
1245 {
1246 *verf &= ~1UL;
1247 }
1248 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1249
1250 static bool nfs_test_verifier_delegated(unsigned long verf)
1251 {
1252 return verf & 1;
1253 }
1254
1255 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1256 {
1257 return nfs_test_verifier_delegated(dentry->d_time);
1258 }
1259
1260 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1261 {
1262 struct inode *inode = d_inode(dentry);
1263
1264 if (!nfs_verifier_is_delegated(dentry) &&
1265 !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf))
1266 goto out;
1267 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1268 nfs_set_verifier_delegated(&verf);
1269 out:
1270 dentry->d_time = verf;
1271 }
1272
1273 /**
1274 * nfs_set_verifier - save a parent directory verifier in the dentry
1275 * @dentry: pointer to dentry
1276 * @verf: verifier to save
1277 *
1278 * Saves the parent directory verifier in @dentry. If the inode has
1279 * a delegation, we also tag the dentry as having been revalidated
1280 * while holding a delegation so that we know we don't have to
1281 * look it up again after a directory change.
1282 */
1283 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1284 {
1285
1286 spin_lock(&dentry->d_lock);
1287 nfs_set_verifier_locked(dentry, verf);
1288 spin_unlock(&dentry->d_lock);
1289 }
1290 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1291
1292 #if IS_ENABLED(CONFIG_NFS_V4)
1293 /**
1294 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1295 * @inode: pointer to inode
1296 *
1297 * Iterates through the dentries in the inode alias list and clears
1298 * the tag used to indicate that the dentry has been revalidated
1299 * while holding a delegation.
1300 * This function is intended for use when the delegation is being
1301 * returned or revoked.
1302 */
1303 void nfs_clear_verifier_delegated(struct inode *inode)
1304 {
1305 struct dentry *alias;
1306
1307 if (!inode)
1308 return;
1309 spin_lock(&inode->i_lock);
1310 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1311 spin_lock(&alias->d_lock);
1312 nfs_unset_verifier_delegated(&alias->d_time);
1313 spin_unlock(&alias->d_lock);
1314 }
1315 spin_unlock(&inode->i_lock);
1316 }
1317 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1318 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1319
1320 /*
1321 * A check for whether or not the parent directory has changed.
1322 * In the case it has, we assume that the dentries are untrustworthy
1323 * and may need to be looked up again.
1324 * If rcu_walk prevents us from performing a full check, return 0.
1325 */
1326 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1327 int rcu_walk)
1328 {
1329 if (IS_ROOT(dentry))
1330 return 1;
1331 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1332 return 0;
1333 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1334 return 0;
1335 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1336 if (nfs_mapping_need_revalidate_inode(dir)) {
1337 if (rcu_walk)
1338 return 0;
1339 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1340 return 0;
1341 }
1342 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1343 return 0;
1344 return 1;
1345 }
1346
1347 /*
1348 * Use intent information to check whether or not we're going to do
1349 * an O_EXCL create using this path component.
1350 */
1351 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1352 {
1353 if (NFS_PROTO(dir)->version == 2)
1354 return 0;
1355 return flags & LOOKUP_EXCL;
1356 }
1357
1358 /*
1359 * Inode and filehandle revalidation for lookups.
1360 *
1361 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1362 * or if the intent information indicates that we're about to open this
1363 * particular file and the "nocto" mount flag is not set.
1364 *
1365 */
1366 static
1367 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1368 {
1369 struct nfs_server *server = NFS_SERVER(inode);
1370 int ret;
1371
1372 if (IS_AUTOMOUNT(inode))
1373 return 0;
1374
1375 if (flags & LOOKUP_OPEN) {
1376 switch (inode->i_mode & S_IFMT) {
1377 case S_IFREG:
1378 /* A NFSv4 OPEN will revalidate later */
1379 if (server->caps & NFS_CAP_ATOMIC_OPEN)
1380 goto out;
1381 fallthrough;
1382 case S_IFDIR:
1383 if (server->flags & NFS_MOUNT_NOCTO)
1384 break;
1385 /* NFS close-to-open cache consistency validation */
1386 goto out_force;
1387 }
1388 }
1389
1390 /* VFS wants an on-the-wire revalidation */
1391 if (flags & LOOKUP_REVAL)
1392 goto out_force;
1393 out:
1394 return (inode->i_nlink == 0) ? -ESTALE : 0;
1395 out_force:
1396 if (flags & LOOKUP_RCU)
1397 return -ECHILD;
1398 ret = __nfs_revalidate_inode(server, inode);
1399 if (ret != 0)
1400 return ret;
1401 goto out;
1402 }
1403
1404 /*
1405 * We judge how long we want to trust negative
1406 * dentries by looking at the parent inode mtime.
1407 *
1408 * If parent mtime has changed, we revalidate, else we wait for a
1409 * period corresponding to the parent's attribute cache timeout value.
1410 *
1411 * If LOOKUP_RCU prevents us from performing a full check, return 1
1412 * suggesting a reval is needed.
1413 *
1414 * Note that when creating a new file, or looking up a rename target,
1415 * then it shouldn't be necessary to revalidate a negative dentry.
1416 */
1417 static inline
1418 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1419 unsigned int flags)
1420 {
1421 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1422 return 0;
1423 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1424 return 1;
1425 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1426 }
1427
1428 static int
1429 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1430 struct inode *inode, int error)
1431 {
1432 switch (error) {
1433 case 1:
1434 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1435 __func__, dentry);
1436 return 1;
1437 case 0:
1438 nfs_mark_for_revalidate(dir);
1439 if (inode && S_ISDIR(inode->i_mode)) {
1440 /* Purge readdir caches. */
1441 nfs_zap_caches(inode);
1442 /*
1443 * We can't d_drop the root of a disconnected tree:
1444 * its d_hash is on the s_anon list and d_drop() would hide
1445 * it from shrink_dcache_for_unmount(), leading to busy
1446 * inodes on unmount and further oopses.
1447 */
1448 if (IS_ROOT(dentry))
1449 return 1;
1450 }
1451 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1452 __func__, dentry);
1453 return 0;
1454 }
1455 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1456 __func__, dentry, error);
1457 return error;
1458 }
1459
1460 static int
1461 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1462 unsigned int flags)
1463 {
1464 int ret = 1;
1465 if (nfs_neg_need_reval(dir, dentry, flags)) {
1466 if (flags & LOOKUP_RCU)
1467 return -ECHILD;
1468 ret = 0;
1469 }
1470 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1471 }
1472
1473 static int
1474 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1475 struct inode *inode)
1476 {
1477 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1478 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1479 }
1480
1481 static int
1482 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1483 struct inode *inode)
1484 {
1485 struct nfs_fh *fhandle;
1486 struct nfs_fattr *fattr;
1487 struct nfs4_label *label;
1488 unsigned long dir_verifier;
1489 int ret;
1490
1491 ret = -ENOMEM;
1492 fhandle = nfs_alloc_fhandle();
1493 fattr = nfs_alloc_fattr();
1494 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1495 if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1496 goto out;
1497
1498 dir_verifier = nfs_save_change_attribute(dir);
1499 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1500 if (ret < 0) {
1501 switch (ret) {
1502 case -ESTALE:
1503 case -ENOENT:
1504 ret = 0;
1505 break;
1506 case -ETIMEDOUT:
1507 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1508 ret = 1;
1509 }
1510 goto out;
1511 }
1512 ret = 0;
1513 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1514 goto out;
1515 if (nfs_refresh_inode(inode, fattr) < 0)
1516 goto out;
1517
1518 nfs_setsecurity(inode, fattr, label);
1519 nfs_set_verifier(dentry, dir_verifier);
1520
1521 /* set a readdirplus hint that we had a cache miss */
1522 nfs_force_use_readdirplus(dir);
1523 ret = 1;
1524 out:
1525 nfs_free_fattr(fattr);
1526 nfs_free_fhandle(fhandle);
1527 nfs4_label_free(label);
1528 return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1529 }
1530
1531 /*
1532 * This is called every time the dcache has a lookup hit,
1533 * and we should check whether we can really trust that
1534 * lookup.
1535 *
1536 * NOTE! The hit can be a negative hit too, don't assume
1537 * we have an inode!
1538 *
1539 * If the parent directory is seen to have changed, we throw out the
1540 * cached dentry and do a new lookup.
1541 */
1542 static int
1543 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1544 unsigned int flags)
1545 {
1546 struct inode *inode;
1547 int error;
1548
1549 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1550 inode = d_inode(dentry);
1551
1552 if (!inode)
1553 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1554
1555 if (is_bad_inode(inode)) {
1556 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1557 __func__, dentry);
1558 goto out_bad;
1559 }
1560
1561 if (nfs_verifier_is_delegated(dentry))
1562 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1563
1564 /* Force a full look up iff the parent directory has changed */
1565 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1566 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1567 error = nfs_lookup_verify_inode(inode, flags);
1568 if (error) {
1569 if (error == -ESTALE)
1570 nfs_zap_caches(dir);
1571 goto out_bad;
1572 }
1573 nfs_advise_use_readdirplus(dir);
1574 goto out_valid;
1575 }
1576
1577 if (flags & LOOKUP_RCU)
1578 return -ECHILD;
1579
1580 if (NFS_STALE(inode))
1581 goto out_bad;
1582
1583 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1584 error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1585 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1586 return error;
1587 out_valid:
1588 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1589 out_bad:
1590 if (flags & LOOKUP_RCU)
1591 return -ECHILD;
1592 return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1593 }
1594
1595 static int
1596 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1597 int (*reval)(struct inode *, struct dentry *, unsigned int))
1598 {
1599 struct dentry *parent;
1600 struct inode *dir;
1601 int ret;
1602
1603 if (flags & LOOKUP_RCU) {
1604 parent = READ_ONCE(dentry->d_parent);
1605 dir = d_inode_rcu(parent);
1606 if (!dir)
1607 return -ECHILD;
1608 ret = reval(dir, dentry, flags);
1609 if (parent != READ_ONCE(dentry->d_parent))
1610 return -ECHILD;
1611 } else {
1612 parent = dget_parent(dentry);
1613 ret = reval(d_inode(parent), dentry, flags);
1614 dput(parent);
1615 }
1616 return ret;
1617 }
1618
1619 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1620 {
1621 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1622 }
1623
1624 /*
1625 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1626 * when we don't really care about the dentry name. This is called when a
1627 * pathwalk ends on a dentry that was not found via a normal lookup in the
1628 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1629 *
1630 * In this situation, we just want to verify that the inode itself is OK
1631 * since the dentry might have changed on the server.
1632 */
1633 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1634 {
1635 struct inode *inode = d_inode(dentry);
1636 int error = 0;
1637
1638 /*
1639 * I believe we can only get a negative dentry here in the case of a
1640 * procfs-style symlink. Just assume it's correct for now, but we may
1641 * eventually need to do something more here.
1642 */
1643 if (!inode) {
1644 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1645 __func__, dentry);
1646 return 1;
1647 }
1648
1649 if (is_bad_inode(inode)) {
1650 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1651 __func__, dentry);
1652 return 0;
1653 }
1654
1655 error = nfs_lookup_verify_inode(inode, flags);
1656 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1657 __func__, inode->i_ino, error ? "invalid" : "valid");
1658 return !error;
1659 }
1660
1661 /*
1662 * This is called from dput() when d_count is going to 0.
1663 */
1664 static int nfs_dentry_delete(const struct dentry *dentry)
1665 {
1666 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1667 dentry, dentry->d_flags);
1668
1669 /* Unhash any dentry with a stale inode */
1670 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1671 return 1;
1672
1673 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1674 /* Unhash it, so that ->d_iput() would be called */
1675 return 1;
1676 }
1677 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1678 /* Unhash it, so that ancestors of killed async unlink
1679 * files will be cleaned up during umount */
1680 return 1;
1681 }
1682 return 0;
1683
1684 }
1685
1686 /* Ensure that we revalidate inode->i_nlink */
1687 static void nfs_drop_nlink(struct inode *inode)
1688 {
1689 spin_lock(&inode->i_lock);
1690 /* drop the inode if we're reasonably sure this is the last link */
1691 if (inode->i_nlink > 0)
1692 drop_nlink(inode);
1693 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1694 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1695 | NFS_INO_INVALID_CTIME
1696 | NFS_INO_INVALID_OTHER
1697 | NFS_INO_REVAL_FORCED;
1698 spin_unlock(&inode->i_lock);
1699 }
1700
1701 /*
1702 * Called when the dentry loses inode.
1703 * We use it to clean up silly-renamed files.
1704 */
1705 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1706 {
1707 if (S_ISDIR(inode->i_mode))
1708 /* drop any readdir cache as it could easily be old */
1709 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1710
1711 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1712 nfs_complete_unlink(dentry, inode);
1713 nfs_drop_nlink(inode);
1714 }
1715 iput(inode);
1716 }
1717
1718 static void nfs_d_release(struct dentry *dentry)
1719 {
1720 /* free cached devname value, if it survived that far */
1721 if (unlikely(dentry->d_fsdata)) {
1722 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1723 WARN_ON(1);
1724 else
1725 kfree(dentry->d_fsdata);
1726 }
1727 }
1728
1729 const struct dentry_operations nfs_dentry_operations = {
1730 .d_revalidate = nfs_lookup_revalidate,
1731 .d_weak_revalidate = nfs_weak_revalidate,
1732 .d_delete = nfs_dentry_delete,
1733 .d_iput = nfs_dentry_iput,
1734 .d_automount = nfs_d_automount,
1735 .d_release = nfs_d_release,
1736 };
1737 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1738
1739 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1740 {
1741 struct dentry *res;
1742 struct inode *inode = NULL;
1743 struct nfs_fh *fhandle = NULL;
1744 struct nfs_fattr *fattr = NULL;
1745 struct nfs4_label *label = NULL;
1746 unsigned long dir_verifier;
1747 int error;
1748
1749 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1750 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1751
1752 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1753 return ERR_PTR(-ENAMETOOLONG);
1754
1755 /*
1756 * If we're doing an exclusive create, optimize away the lookup
1757 * but don't hash the dentry.
1758 */
1759 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1760 return NULL;
1761
1762 res = ERR_PTR(-ENOMEM);
1763 fhandle = nfs_alloc_fhandle();
1764 fattr = nfs_alloc_fattr();
1765 if (fhandle == NULL || fattr == NULL)
1766 goto out;
1767
1768 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1769 if (IS_ERR(label))
1770 goto out;
1771
1772 dir_verifier = nfs_save_change_attribute(dir);
1773 trace_nfs_lookup_enter(dir, dentry, flags);
1774 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1775 if (error == -ENOENT)
1776 goto no_entry;
1777 if (error < 0) {
1778 res = ERR_PTR(error);
1779 goto out_label;
1780 }
1781 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1782 res = ERR_CAST(inode);
1783 if (IS_ERR(res))
1784 goto out_label;
1785
1786 /* Notify readdir to use READDIRPLUS */
1787 nfs_force_use_readdirplus(dir);
1788
1789 no_entry:
1790 res = d_splice_alias(inode, dentry);
1791 if (res != NULL) {
1792 if (IS_ERR(res))
1793 goto out_label;
1794 dentry = res;
1795 }
1796 nfs_set_verifier(dentry, dir_verifier);
1797 out_label:
1798 trace_nfs_lookup_exit(dir, dentry, flags, error);
1799 nfs4_label_free(label);
1800 out:
1801 nfs_free_fattr(fattr);
1802 nfs_free_fhandle(fhandle);
1803 return res;
1804 }
1805 EXPORT_SYMBOL_GPL(nfs_lookup);
1806
1807 #if IS_ENABLED(CONFIG_NFS_V4)
1808 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1809
1810 const struct dentry_operations nfs4_dentry_operations = {
1811 .d_revalidate = nfs4_lookup_revalidate,
1812 .d_weak_revalidate = nfs_weak_revalidate,
1813 .d_delete = nfs_dentry_delete,
1814 .d_iput = nfs_dentry_iput,
1815 .d_automount = nfs_d_automount,
1816 .d_release = nfs_d_release,
1817 };
1818 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1819
1820 static fmode_t flags_to_mode(int flags)
1821 {
1822 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1823 if ((flags & O_ACCMODE) != O_WRONLY)
1824 res |= FMODE_READ;
1825 if ((flags & O_ACCMODE) != O_RDONLY)
1826 res |= FMODE_WRITE;
1827 return res;
1828 }
1829
1830 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1831 {
1832 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1833 }
1834
1835 static int do_open(struct inode *inode, struct file *filp)
1836 {
1837 nfs_fscache_open_file(inode, filp);
1838 return 0;
1839 }
1840
1841 static int nfs_finish_open(struct nfs_open_context *ctx,
1842 struct dentry *dentry,
1843 struct file *file, unsigned open_flags)
1844 {
1845 int err;
1846
1847 err = finish_open(file, dentry, do_open);
1848 if (err)
1849 goto out;
1850 if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1851 nfs_file_set_open_context(file, ctx);
1852 else
1853 err = -EOPENSTALE;
1854 out:
1855 return err;
1856 }
1857
1858 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1859 struct file *file, unsigned open_flags,
1860 umode_t mode)
1861 {
1862 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1863 struct nfs_open_context *ctx;
1864 struct dentry *res;
1865 struct iattr attr = { .ia_valid = ATTR_OPEN };
1866 struct inode *inode;
1867 unsigned int lookup_flags = 0;
1868 bool switched = false;
1869 int created = 0;
1870 int err;
1871
1872 /* Expect a negative dentry */
1873 BUG_ON(d_inode(dentry));
1874
1875 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1876 dir->i_sb->s_id, dir->i_ino, dentry);
1877
1878 err = nfs_check_flags(open_flags);
1879 if (err)
1880 return err;
1881
1882 /* NFS only supports OPEN on regular files */
1883 if ((open_flags & O_DIRECTORY)) {
1884 if (!d_in_lookup(dentry)) {
1885 /*
1886 * Hashed negative dentry with O_DIRECTORY: dentry was
1887 * revalidated and is fine, no need to perform lookup
1888 * again
1889 */
1890 return -ENOENT;
1891 }
1892 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1893 goto no_open;
1894 }
1895
1896 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1897 return -ENAMETOOLONG;
1898
1899 if (open_flags & O_CREAT) {
1900 struct nfs_server *server = NFS_SERVER(dir);
1901
1902 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1903 mode &= ~current_umask();
1904
1905 attr.ia_valid |= ATTR_MODE;
1906 attr.ia_mode = mode;
1907 }
1908 if (open_flags & O_TRUNC) {
1909 attr.ia_valid |= ATTR_SIZE;
1910 attr.ia_size = 0;
1911 }
1912
1913 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1914 d_drop(dentry);
1915 switched = true;
1916 dentry = d_alloc_parallel(dentry->d_parent,
1917 &dentry->d_name, &wq);
1918 if (IS_ERR(dentry))
1919 return PTR_ERR(dentry);
1920 if (unlikely(!d_in_lookup(dentry)))
1921 return finish_no_open(file, dentry);
1922 }
1923
1924 ctx = create_nfs_open_context(dentry, open_flags, file);
1925 err = PTR_ERR(ctx);
1926 if (IS_ERR(ctx))
1927 goto out;
1928
1929 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1930 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1931 if (created)
1932 file->f_mode |= FMODE_CREATED;
1933 if (IS_ERR(inode)) {
1934 err = PTR_ERR(inode);
1935 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1936 put_nfs_open_context(ctx);
1937 d_drop(dentry);
1938 switch (err) {
1939 case -ENOENT:
1940 d_splice_alias(NULL, dentry);
1941 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1942 break;
1943 case -EISDIR:
1944 case -ENOTDIR:
1945 goto no_open;
1946 case -ELOOP:
1947 if (!(open_flags & O_NOFOLLOW))
1948 goto no_open;
1949 break;
1950 /* case -EINVAL: */
1951 default:
1952 break;
1953 }
1954 goto out;
1955 }
1956
1957 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1958 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1959 put_nfs_open_context(ctx);
1960 out:
1961 if (unlikely(switched)) {
1962 d_lookup_done(dentry);
1963 dput(dentry);
1964 }
1965 return err;
1966
1967 no_open:
1968 res = nfs_lookup(dir, dentry, lookup_flags);
1969 if (switched) {
1970 d_lookup_done(dentry);
1971 if (!res)
1972 res = dentry;
1973 else
1974 dput(dentry);
1975 }
1976 if (IS_ERR(res))
1977 return PTR_ERR(res);
1978 return finish_no_open(file, res);
1979 }
1980 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1981
1982 static int
1983 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1984 unsigned int flags)
1985 {
1986 struct inode *inode;
1987
1988 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1989 goto full_reval;
1990 if (d_mountpoint(dentry))
1991 goto full_reval;
1992
1993 inode = d_inode(dentry);
1994
1995 /* We can't create new files in nfs_open_revalidate(), so we
1996 * optimize away revalidation of negative dentries.
1997 */
1998 if (inode == NULL)
1999 goto full_reval;
2000
2001 if (nfs_verifier_is_delegated(dentry))
2002 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2003
2004 /* NFS only supports OPEN on regular files */
2005 if (!S_ISREG(inode->i_mode))
2006 goto full_reval;
2007
2008 /* We cannot do exclusive creation on a positive dentry */
2009 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2010 goto reval_dentry;
2011
2012 /* Check if the directory changed */
2013 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2014 goto reval_dentry;
2015
2016 /* Let f_op->open() actually open (and revalidate) the file */
2017 return 1;
2018 reval_dentry:
2019 if (flags & LOOKUP_RCU)
2020 return -ECHILD;
2021 return nfs_lookup_revalidate_dentry(dir, dentry, inode);
2022
2023 full_reval:
2024 return nfs_do_lookup_revalidate(dir, dentry, flags);
2025 }
2026
2027 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2028 {
2029 return __nfs_lookup_revalidate(dentry, flags,
2030 nfs4_do_lookup_revalidate);
2031 }
2032
2033 #endif /* CONFIG_NFSV4 */
2034
2035 struct dentry *
2036 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2037 struct nfs_fattr *fattr,
2038 struct nfs4_label *label)
2039 {
2040 struct dentry *parent = dget_parent(dentry);
2041 struct inode *dir = d_inode(parent);
2042 struct inode *inode;
2043 struct dentry *d;
2044 int error;
2045
2046 d_drop(dentry);
2047
2048 if (fhandle->size == 0) {
2049 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
2050 if (error)
2051 goto out_error;
2052 }
2053 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2054 if (!(fattr->valid & NFS_ATTR_FATTR)) {
2055 struct nfs_server *server = NFS_SB(dentry->d_sb);
2056 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2057 fattr, NULL, NULL);
2058 if (error < 0)
2059 goto out_error;
2060 }
2061 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
2062 d = d_splice_alias(inode, dentry);
2063 out:
2064 dput(parent);
2065 return d;
2066 out_error:
2067 nfs_mark_for_revalidate(dir);
2068 d = ERR_PTR(error);
2069 goto out;
2070 }
2071 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2072
2073 /*
2074 * Code common to create, mkdir, and mknod.
2075 */
2076 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2077 struct nfs_fattr *fattr,
2078 struct nfs4_label *label)
2079 {
2080 struct dentry *d;
2081
2082 d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
2083 if (IS_ERR(d))
2084 return PTR_ERR(d);
2085
2086 /* Callers don't care */
2087 dput(d);
2088 return 0;
2089 }
2090 EXPORT_SYMBOL_GPL(nfs_instantiate);
2091
2092 /*
2093 * Following a failed create operation, we drop the dentry rather
2094 * than retain a negative dentry. This avoids a problem in the event
2095 * that the operation succeeded on the server, but an error in the
2096 * reply path made it appear to have failed.
2097 */
2098 int nfs_create(struct inode *dir, struct dentry *dentry,
2099 umode_t mode, bool excl)
2100 {
2101 struct iattr attr;
2102 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2103 int error;
2104
2105 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2106 dir->i_sb->s_id, dir->i_ino, dentry);
2107
2108 attr.ia_mode = mode;
2109 attr.ia_valid = ATTR_MODE;
2110
2111 trace_nfs_create_enter(dir, dentry, open_flags);
2112 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2113 trace_nfs_create_exit(dir, dentry, open_flags, error);
2114 if (error != 0)
2115 goto out_err;
2116 return 0;
2117 out_err:
2118 d_drop(dentry);
2119 return error;
2120 }
2121 EXPORT_SYMBOL_GPL(nfs_create);
2122
2123 /*
2124 * See comments for nfs_proc_create regarding failed operations.
2125 */
2126 int
2127 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
2128 {
2129 struct iattr attr;
2130 int status;
2131
2132 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2133 dir->i_sb->s_id, dir->i_ino, dentry);
2134
2135 attr.ia_mode = mode;
2136 attr.ia_valid = ATTR_MODE;
2137
2138 trace_nfs_mknod_enter(dir, dentry);
2139 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2140 trace_nfs_mknod_exit(dir, dentry, status);
2141 if (status != 0)
2142 goto out_err;
2143 return 0;
2144 out_err:
2145 d_drop(dentry);
2146 return status;
2147 }
2148 EXPORT_SYMBOL_GPL(nfs_mknod);
2149
2150 /*
2151 * See comments for nfs_proc_create regarding failed operations.
2152 */
2153 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2154 {
2155 struct iattr attr;
2156 int error;
2157
2158 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2159 dir->i_sb->s_id, dir->i_ino, dentry);
2160
2161 attr.ia_valid = ATTR_MODE;
2162 attr.ia_mode = mode | S_IFDIR;
2163
2164 trace_nfs_mkdir_enter(dir, dentry);
2165 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2166 trace_nfs_mkdir_exit(dir, dentry, error);
2167 if (error != 0)
2168 goto out_err;
2169 return 0;
2170 out_err:
2171 d_drop(dentry);
2172 return error;
2173 }
2174 EXPORT_SYMBOL_GPL(nfs_mkdir);
2175
2176 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2177 {
2178 if (simple_positive(dentry))
2179 d_delete(dentry);
2180 }
2181
2182 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2183 {
2184 int error;
2185
2186 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2187 dir->i_sb->s_id, dir->i_ino, dentry);
2188
2189 trace_nfs_rmdir_enter(dir, dentry);
2190 if (d_really_is_positive(dentry)) {
2191 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2192 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2193 /* Ensure the VFS deletes this inode */
2194 switch (error) {
2195 case 0:
2196 clear_nlink(d_inode(dentry));
2197 break;
2198 case -ENOENT:
2199 nfs_dentry_handle_enoent(dentry);
2200 }
2201 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2202 } else
2203 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2204 trace_nfs_rmdir_exit(dir, dentry, error);
2205
2206 return error;
2207 }
2208 EXPORT_SYMBOL_GPL(nfs_rmdir);
2209
2210 /*
2211 * Remove a file after making sure there are no pending writes,
2212 * and after checking that the file has only one user.
2213 *
2214 * We invalidate the attribute cache and free the inode prior to the operation
2215 * to avoid possible races if the server reuses the inode.
2216 */
2217 static int nfs_safe_remove(struct dentry *dentry)
2218 {
2219 struct inode *dir = d_inode(dentry->d_parent);
2220 struct inode *inode = d_inode(dentry);
2221 int error = -EBUSY;
2222
2223 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2224
2225 /* If the dentry was sillyrenamed, we simply call d_delete() */
2226 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2227 error = 0;
2228 goto out;
2229 }
2230
2231 trace_nfs_remove_enter(dir, dentry);
2232 if (inode != NULL) {
2233 error = NFS_PROTO(dir)->remove(dir, dentry);
2234 if (error == 0)
2235 nfs_drop_nlink(inode);
2236 } else
2237 error = NFS_PROTO(dir)->remove(dir, dentry);
2238 if (error == -ENOENT)
2239 nfs_dentry_handle_enoent(dentry);
2240 trace_nfs_remove_exit(dir, dentry, error);
2241 out:
2242 return error;
2243 }
2244
2245 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
2246 * belongs to an active ".nfs..." file and we return -EBUSY.
2247 *
2248 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
2249 */
2250 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2251 {
2252 int error;
2253 int need_rehash = 0;
2254
2255 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2256 dir->i_ino, dentry);
2257
2258 trace_nfs_unlink_enter(dir, dentry);
2259 spin_lock(&dentry->d_lock);
2260 if (d_count(dentry) > 1) {
2261 spin_unlock(&dentry->d_lock);
2262 /* Start asynchronous writeout of the inode */
2263 write_inode_now(d_inode(dentry), 0);
2264 error = nfs_sillyrename(dir, dentry);
2265 goto out;
2266 }
2267 if (!d_unhashed(dentry)) {
2268 __d_drop(dentry);
2269 need_rehash = 1;
2270 }
2271 spin_unlock(&dentry->d_lock);
2272 error = nfs_safe_remove(dentry);
2273 if (!error || error == -ENOENT) {
2274 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2275 } else if (need_rehash)
2276 d_rehash(dentry);
2277 out:
2278 trace_nfs_unlink_exit(dir, dentry, error);
2279 return error;
2280 }
2281 EXPORT_SYMBOL_GPL(nfs_unlink);
2282
2283 /*
2284 * To create a symbolic link, most file systems instantiate a new inode,
2285 * add a page to it containing the path, then write it out to the disk
2286 * using prepare_write/commit_write.
2287 *
2288 * Unfortunately the NFS client can't create the in-core inode first
2289 * because it needs a file handle to create an in-core inode (see
2290 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
2291 * symlink request has completed on the server.
2292 *
2293 * So instead we allocate a raw page, copy the symname into it, then do
2294 * the SYMLINK request with the page as the buffer. If it succeeds, we
2295 * now have a new file handle and can instantiate an in-core NFS inode
2296 * and move the raw page into its mapping.
2297 */
2298 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2299 {
2300 struct page *page;
2301 char *kaddr;
2302 struct iattr attr;
2303 unsigned int pathlen = strlen(symname);
2304 int error;
2305
2306 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2307 dir->i_ino, dentry, symname);
2308
2309 if (pathlen > PAGE_SIZE)
2310 return -ENAMETOOLONG;
2311
2312 attr.ia_mode = S_IFLNK | S_IRWXUGO;
2313 attr.ia_valid = ATTR_MODE;
2314
2315 page = alloc_page(GFP_USER);
2316 if (!page)
2317 return -ENOMEM;
2318
2319 kaddr = page_address(page);
2320 memcpy(kaddr, symname, pathlen);
2321 if (pathlen < PAGE_SIZE)
2322 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2323
2324 trace_nfs_symlink_enter(dir, dentry);
2325 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2326 trace_nfs_symlink_exit(dir, dentry, error);
2327 if (error != 0) {
2328 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2329 dir->i_sb->s_id, dir->i_ino,
2330 dentry, symname, error);
2331 d_drop(dentry);
2332 __free_page(page);
2333 return error;
2334 }
2335
2336 /*
2337 * No big deal if we can't add this page to the page cache here.
2338 * READLINK will get the missing page from the server if needed.
2339 */
2340 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2341 GFP_KERNEL)) {
2342 SetPageUptodate(page);
2343 unlock_page(page);
2344 /*
2345 * add_to_page_cache_lru() grabs an extra page refcount.
2346 * Drop it here to avoid leaking this page later.
2347 */
2348 put_page(page);
2349 } else
2350 __free_page(page);
2351
2352 return 0;
2353 }
2354 EXPORT_SYMBOL_GPL(nfs_symlink);
2355
2356 int
2357 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2358 {
2359 struct inode *inode = d_inode(old_dentry);
2360 int error;
2361
2362 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2363 old_dentry, dentry);
2364
2365 trace_nfs_link_enter(inode, dir, dentry);
2366 d_drop(dentry);
2367 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2368 if (error == 0) {
2369 ihold(inode);
2370 d_add(dentry, inode);
2371 }
2372 trace_nfs_link_exit(inode, dir, dentry, error);
2373 return error;
2374 }
2375 EXPORT_SYMBOL_GPL(nfs_link);
2376
2377 /*
2378 * RENAME
2379 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2380 * different file handle for the same inode after a rename (e.g. when
2381 * moving to a different directory). A fail-safe method to do so would
2382 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2383 * rename the old file using the sillyrename stuff. This way, the original
2384 * file in old_dir will go away when the last process iput()s the inode.
2385 *
2386 * FIXED.
2387 *
2388 * It actually works quite well. One needs to have the possibility for
2389 * at least one ".nfs..." file in each directory the file ever gets
2390 * moved or linked to which happens automagically with the new
2391 * implementation that only depends on the dcache stuff instead of
2392 * using the inode layer
2393 *
2394 * Unfortunately, things are a little more complicated than indicated
2395 * above. For a cross-directory move, we want to make sure we can get
2396 * rid of the old inode after the operation. This means there must be
2397 * no pending writes (if it's a file), and the use count must be 1.
2398 * If these conditions are met, we can drop the dentries before doing
2399 * the rename.
2400 */
2401 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2402 struct inode *new_dir, struct dentry *new_dentry,
2403 unsigned int flags)
2404 {
2405 struct inode *old_inode = d_inode(old_dentry);
2406 struct inode *new_inode = d_inode(new_dentry);
2407 struct dentry *dentry = NULL, *rehash = NULL;
2408 struct rpc_task *task;
2409 int error = -EBUSY;
2410
2411 if (flags)
2412 return -EINVAL;
2413
2414 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2415 old_dentry, new_dentry,
2416 d_count(new_dentry));
2417
2418 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2419 /*
2420 * For non-directories, check whether the target is busy and if so,
2421 * make a copy of the dentry and then do a silly-rename. If the
2422 * silly-rename succeeds, the copied dentry is hashed and becomes
2423 * the new target.
2424 */
2425 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2426 /*
2427 * To prevent any new references to the target during the
2428 * rename, we unhash the dentry in advance.
2429 */
2430 if (!d_unhashed(new_dentry)) {
2431 d_drop(new_dentry);
2432 rehash = new_dentry;
2433 }
2434
2435 if (d_count(new_dentry) > 2) {
2436 int err;
2437
2438 /* copy the target dentry's name */
2439 dentry = d_alloc(new_dentry->d_parent,
2440 &new_dentry->d_name);
2441 if (!dentry)
2442 goto out;
2443
2444 /* silly-rename the existing target ... */
2445 err = nfs_sillyrename(new_dir, new_dentry);
2446 if (err)
2447 goto out;
2448
2449 new_dentry = dentry;
2450 rehash = NULL;
2451 new_inode = NULL;
2452 }
2453 }
2454
2455 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2456 if (IS_ERR(task)) {
2457 error = PTR_ERR(task);
2458 goto out;
2459 }
2460
2461 error = rpc_wait_for_completion_task(task);
2462 if (error != 0) {
2463 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2464 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2465 smp_wmb();
2466 } else
2467 error = task->tk_status;
2468 rpc_put_task(task);
2469 /* Ensure the inode attributes are revalidated */
2470 if (error == 0) {
2471 spin_lock(&old_inode->i_lock);
2472 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2473 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2474 | NFS_INO_INVALID_CTIME
2475 | NFS_INO_REVAL_FORCED;
2476 spin_unlock(&old_inode->i_lock);
2477 }
2478 out:
2479 if (rehash)
2480 d_rehash(rehash);
2481 trace_nfs_rename_exit(old_dir, old_dentry,
2482 new_dir, new_dentry, error);
2483 if (!error) {
2484 if (new_inode != NULL)
2485 nfs_drop_nlink(new_inode);
2486 /*
2487 * The d_move() should be here instead of in an async RPC completion
2488 * handler because we need the proper locks to move the dentry. If
2489 * we're interrupted by a signal, the async RPC completion handler
2490 * should mark the directories for revalidation.
2491 */
2492 d_move(old_dentry, new_dentry);
2493 nfs_set_verifier(old_dentry,
2494 nfs_save_change_attribute(new_dir));
2495 } else if (error == -ENOENT)
2496 nfs_dentry_handle_enoent(old_dentry);
2497
2498 /* new dentry created? */
2499 if (dentry)
2500 dput(dentry);
2501 return error;
2502 }
2503 EXPORT_SYMBOL_GPL(nfs_rename);
2504
2505 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2506 static LIST_HEAD(nfs_access_lru_list);
2507 static atomic_long_t nfs_access_nr_entries;
2508
2509 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2510 module_param(nfs_access_max_cachesize, ulong, 0644);
2511 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2512
2513 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2514 {
2515 put_cred(entry->cred);
2516 kfree_rcu(entry, rcu_head);
2517 smp_mb__before_atomic();
2518 atomic_long_dec(&nfs_access_nr_entries);
2519 smp_mb__after_atomic();
2520 }
2521
2522 static void nfs_access_free_list(struct list_head *head)
2523 {
2524 struct nfs_access_entry *cache;
2525
2526 while (!list_empty(head)) {
2527 cache = list_entry(head->next, struct nfs_access_entry, lru);
2528 list_del(&cache->lru);
2529 nfs_access_free_entry(cache);
2530 }
2531 }
2532
2533 static unsigned long
2534 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2535 {
2536 LIST_HEAD(head);
2537 struct nfs_inode *nfsi, *next;
2538 struct nfs_access_entry *cache;
2539 long freed = 0;
2540
2541 spin_lock(&nfs_access_lru_lock);
2542 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2543 struct inode *inode;
2544
2545 if (nr_to_scan-- == 0)
2546 break;
2547 inode = &nfsi->vfs_inode;
2548 spin_lock(&inode->i_lock);
2549 if (list_empty(&nfsi->access_cache_entry_lru))
2550 goto remove_lru_entry;
2551 cache = list_entry(nfsi->access_cache_entry_lru.next,
2552 struct nfs_access_entry, lru);
2553 list_move(&cache->lru, &head);
2554 rb_erase(&cache->rb_node, &nfsi->access_cache);
2555 freed++;
2556 if (!list_empty(&nfsi->access_cache_entry_lru))
2557 list_move_tail(&nfsi->access_cache_inode_lru,
2558 &nfs_access_lru_list);
2559 else {
2560 remove_lru_entry:
2561 list_del_init(&nfsi->access_cache_inode_lru);
2562 smp_mb__before_atomic();
2563 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2564 smp_mb__after_atomic();
2565 }
2566 spin_unlock(&inode->i_lock);
2567 }
2568 spin_unlock(&nfs_access_lru_lock);
2569 nfs_access_free_list(&head);
2570 return freed;
2571 }
2572
2573 unsigned long
2574 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2575 {
2576 int nr_to_scan = sc->nr_to_scan;
2577 gfp_t gfp_mask = sc->gfp_mask;
2578
2579 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2580 return SHRINK_STOP;
2581 return nfs_do_access_cache_scan(nr_to_scan);
2582 }
2583
2584
2585 unsigned long
2586 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2587 {
2588 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2589 }
2590
2591 static void
2592 nfs_access_cache_enforce_limit(void)
2593 {
2594 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2595 unsigned long diff;
2596 unsigned int nr_to_scan;
2597
2598 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2599 return;
2600 nr_to_scan = 100;
2601 diff = nr_entries - nfs_access_max_cachesize;
2602 if (diff < nr_to_scan)
2603 nr_to_scan = diff;
2604 nfs_do_access_cache_scan(nr_to_scan);
2605 }
2606
2607 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2608 {
2609 struct rb_root *root_node = &nfsi->access_cache;
2610 struct rb_node *n;
2611 struct nfs_access_entry *entry;
2612
2613 /* Unhook entries from the cache */
2614 while ((n = rb_first(root_node)) != NULL) {
2615 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2616 rb_erase(n, root_node);
2617 list_move(&entry->lru, head);
2618 }
2619 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2620 }
2621
2622 void nfs_access_zap_cache(struct inode *inode)
2623 {
2624 LIST_HEAD(head);
2625
2626 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2627 return;
2628 /* Remove from global LRU init */
2629 spin_lock(&nfs_access_lru_lock);
2630 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2631 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2632
2633 spin_lock(&inode->i_lock);
2634 __nfs_access_zap_cache(NFS_I(inode), &head);
2635 spin_unlock(&inode->i_lock);
2636 spin_unlock(&nfs_access_lru_lock);
2637 nfs_access_free_list(&head);
2638 }
2639 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2640
2641 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2642 {
2643 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2644
2645 while (n != NULL) {
2646 struct nfs_access_entry *entry =
2647 rb_entry(n, struct nfs_access_entry, rb_node);
2648 int cmp = cred_fscmp(cred, entry->cred);
2649
2650 if (cmp < 0)
2651 n = n->rb_left;
2652 else if (cmp > 0)
2653 n = n->rb_right;
2654 else
2655 return entry;
2656 }
2657 return NULL;
2658 }
2659
2660 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2661 {
2662 struct nfs_inode *nfsi = NFS_I(inode);
2663 struct nfs_access_entry *cache;
2664 bool retry = true;
2665 int err;
2666
2667 spin_lock(&inode->i_lock);
2668 for(;;) {
2669 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2670 goto out_zap;
2671 cache = nfs_access_search_rbtree(inode, cred);
2672 err = -ENOENT;
2673 if (cache == NULL)
2674 goto out;
2675 /* Found an entry, is our attribute cache valid? */
2676 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2677 break;
2678 if (!retry)
2679 break;
2680 err = -ECHILD;
2681 if (!may_block)
2682 goto out;
2683 spin_unlock(&inode->i_lock);
2684 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2685 if (err)
2686 return err;
2687 spin_lock(&inode->i_lock);
2688 retry = false;
2689 }
2690 res->cred = cache->cred;
2691 res->mask = cache->mask;
2692 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2693 err = 0;
2694 out:
2695 spin_unlock(&inode->i_lock);
2696 return err;
2697 out_zap:
2698 spin_unlock(&inode->i_lock);
2699 nfs_access_zap_cache(inode);
2700 return -ENOENT;
2701 }
2702
2703 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2704 {
2705 /* Only check the most recently returned cache entry,
2706 * but do it without locking.
2707 */
2708 struct nfs_inode *nfsi = NFS_I(inode);
2709 struct nfs_access_entry *cache;
2710 int err = -ECHILD;
2711 struct list_head *lh;
2712
2713 rcu_read_lock();
2714 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2715 goto out;
2716 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2717 cache = list_entry(lh, struct nfs_access_entry, lru);
2718 if (lh == &nfsi->access_cache_entry_lru ||
2719 cred_fscmp(cred, cache->cred) != 0)
2720 cache = NULL;
2721 if (cache == NULL)
2722 goto out;
2723 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2724 goto out;
2725 res->cred = cache->cred;
2726 res->mask = cache->mask;
2727 err = 0;
2728 out:
2729 rcu_read_unlock();
2730 return err;
2731 }
2732
2733 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct
2734 nfs_access_entry *res, bool may_block)
2735 {
2736 int status;
2737
2738 status = nfs_access_get_cached_rcu(inode, cred, res);
2739 if (status != 0)
2740 status = nfs_access_get_cached_locked(inode, cred, res,
2741 may_block);
2742
2743 return status;
2744 }
2745 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2746
2747 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2748 {
2749 struct nfs_inode *nfsi = NFS_I(inode);
2750 struct rb_root *root_node = &nfsi->access_cache;
2751 struct rb_node **p = &root_node->rb_node;
2752 struct rb_node *parent = NULL;
2753 struct nfs_access_entry *entry;
2754 int cmp;
2755
2756 spin_lock(&inode->i_lock);
2757 while (*p != NULL) {
2758 parent = *p;
2759 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2760 cmp = cred_fscmp(set->cred, entry->cred);
2761
2762 if (cmp < 0)
2763 p = &parent->rb_left;
2764 else if (cmp > 0)
2765 p = &parent->rb_right;
2766 else
2767 goto found;
2768 }
2769 rb_link_node(&set->rb_node, parent, p);
2770 rb_insert_color(&set->rb_node, root_node);
2771 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2772 spin_unlock(&inode->i_lock);
2773 return;
2774 found:
2775 rb_replace_node(parent, &set->rb_node, root_node);
2776 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2777 list_del(&entry->lru);
2778 spin_unlock(&inode->i_lock);
2779 nfs_access_free_entry(entry);
2780 }
2781
2782 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2783 {
2784 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2785 if (cache == NULL)
2786 return;
2787 RB_CLEAR_NODE(&cache->rb_node);
2788 cache->cred = get_cred(set->cred);
2789 cache->mask = set->mask;
2790
2791 /* The above field assignments must be visible
2792 * before this item appears on the lru. We cannot easily
2793 * use rcu_assign_pointer, so just force the memory barrier.
2794 */
2795 smp_wmb();
2796 nfs_access_add_rbtree(inode, cache);
2797
2798 /* Update accounting */
2799 smp_mb__before_atomic();
2800 atomic_long_inc(&nfs_access_nr_entries);
2801 smp_mb__after_atomic();
2802
2803 /* Add inode to global LRU list */
2804 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2805 spin_lock(&nfs_access_lru_lock);
2806 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2807 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2808 &nfs_access_lru_list);
2809 spin_unlock(&nfs_access_lru_lock);
2810 }
2811 nfs_access_cache_enforce_limit();
2812 }
2813 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2814
2815 #define NFS_MAY_READ (NFS_ACCESS_READ)
2816 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2817 NFS_ACCESS_EXTEND | \
2818 NFS_ACCESS_DELETE)
2819 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2820 NFS_ACCESS_EXTEND)
2821 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2822 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2823 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2824 static int
2825 nfs_access_calc_mask(u32 access_result, umode_t umode)
2826 {
2827 int mask = 0;
2828
2829 if (access_result & NFS_MAY_READ)
2830 mask |= MAY_READ;
2831 if (S_ISDIR(umode)) {
2832 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2833 mask |= MAY_WRITE;
2834 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2835 mask |= MAY_EXEC;
2836 } else if (S_ISREG(umode)) {
2837 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2838 mask |= MAY_WRITE;
2839 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2840 mask |= MAY_EXEC;
2841 } else if (access_result & NFS_MAY_WRITE)
2842 mask |= MAY_WRITE;
2843 return mask;
2844 }
2845
2846 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2847 {
2848 entry->mask = access_result;
2849 }
2850 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2851
2852 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2853 {
2854 struct nfs_access_entry cache;
2855 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2856 int cache_mask = -1;
2857 int status;
2858
2859 trace_nfs_access_enter(inode);
2860
2861 status = nfs_access_get_cached(inode, cred, &cache, may_block);
2862 if (status == 0)
2863 goto out_cached;
2864
2865 status = -ECHILD;
2866 if (!may_block)
2867 goto out;
2868
2869 /*
2870 * Determine which access bits we want to ask for...
2871 */
2872 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2873 if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2874 cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2875 NFS_ACCESS_XALIST;
2876 }
2877 if (S_ISDIR(inode->i_mode))
2878 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2879 else
2880 cache.mask |= NFS_ACCESS_EXECUTE;
2881 cache.cred = cred;
2882 status = NFS_PROTO(inode)->access(inode, &cache);
2883 if (status != 0) {
2884 if (status == -ESTALE) {
2885 if (!S_ISDIR(inode->i_mode))
2886 nfs_set_inode_stale(inode);
2887 else
2888 nfs_zap_caches(inode);
2889 }
2890 goto out;
2891 }
2892 nfs_access_add_cache(inode, &cache);
2893 out_cached:
2894 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2895 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2896 status = -EACCES;
2897 out:
2898 trace_nfs_access_exit(inode, mask, cache_mask, status);
2899 return status;
2900 }
2901
2902 static int nfs_open_permission_mask(int openflags)
2903 {
2904 int mask = 0;
2905
2906 if (openflags & __FMODE_EXEC) {
2907 /* ONLY check exec rights */
2908 mask = MAY_EXEC;
2909 } else {
2910 if ((openflags & O_ACCMODE) != O_WRONLY)
2911 mask |= MAY_READ;
2912 if ((openflags & O_ACCMODE) != O_RDONLY)
2913 mask |= MAY_WRITE;
2914 }
2915
2916 return mask;
2917 }
2918
2919 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2920 {
2921 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2922 }
2923 EXPORT_SYMBOL_GPL(nfs_may_open);
2924
2925 static int nfs_execute_ok(struct inode *inode, int mask)
2926 {
2927 struct nfs_server *server = NFS_SERVER(inode);
2928 int ret = 0;
2929
2930 if (S_ISDIR(inode->i_mode))
2931 return 0;
2932 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2933 if (mask & MAY_NOT_BLOCK)
2934 return -ECHILD;
2935 ret = __nfs_revalidate_inode(server, inode);
2936 }
2937 if (ret == 0 && !execute_ok(inode))
2938 ret = -EACCES;
2939 return ret;
2940 }
2941
2942 int nfs_permission(struct inode *inode, int mask)
2943 {
2944 const struct cred *cred = current_cred();
2945 int res = 0;
2946
2947 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2948
2949 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2950 goto out;
2951 /* Is this sys_access() ? */
2952 if (mask & (MAY_ACCESS | MAY_CHDIR))
2953 goto force_lookup;
2954
2955 switch (inode->i_mode & S_IFMT) {
2956 case S_IFLNK:
2957 goto out;
2958 case S_IFREG:
2959 if ((mask & MAY_OPEN) &&
2960 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2961 return 0;
2962 break;
2963 case S_IFDIR:
2964 /*
2965 * Optimize away all write operations, since the server
2966 * will check permissions when we perform the op.
2967 */
2968 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2969 goto out;
2970 }
2971
2972 force_lookup:
2973 if (!NFS_PROTO(inode)->access)
2974 goto out_notsup;
2975
2976 res = nfs_do_access(inode, cred, mask);
2977 out:
2978 if (!res && (mask & MAY_EXEC))
2979 res = nfs_execute_ok(inode, mask);
2980
2981 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2982 inode->i_sb->s_id, inode->i_ino, mask, res);
2983 return res;
2984 out_notsup:
2985 if (mask & MAY_NOT_BLOCK)
2986 return -ECHILD;
2987
2988 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2989 if (res == 0)
2990 res = generic_permission(inode, mask);
2991 goto out;
2992 }
2993 EXPORT_SYMBOL_GPL(nfs_permission);
2994
2995 /*
2996 * Local variables:
2997 * version-control: t
2998 * kept-new-versions: 5
2999 * End:
3000 */