]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/nfs/dir.c
[PATCH] mark struct inode_operations const 2
[mirror_ubuntu-bionic-kernel.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36
37 #include "nfs4_fs.h"
38 #include "delegation.h"
39 #include "iostat.h"
40
41 #define NFS_PARANOIA 1
42 /* #define NFS_DEBUG_VERBOSE 1 */
43
44 static int nfs_opendir(struct inode *, struct file *);
45 static int nfs_readdir(struct file *, void *, filldir_t);
46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
48 static int nfs_mkdir(struct inode *, struct dentry *, int);
49 static int nfs_rmdir(struct inode *, struct dentry *);
50 static int nfs_unlink(struct inode *, struct dentry *);
51 static int nfs_symlink(struct inode *, struct dentry *, const char *);
52 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
54 static int nfs_rename(struct inode *, struct dentry *,
55 struct inode *, struct dentry *);
56 static int nfs_fsync_dir(struct file *, struct dentry *, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58
59 const struct file_operations nfs_dir_operations = {
60 .llseek = nfs_llseek_dir,
61 .read = generic_read_dir,
62 .readdir = nfs_readdir,
63 .open = nfs_opendir,
64 .release = nfs_release,
65 .fsync = nfs_fsync_dir,
66 };
67
68 const struct inode_operations nfs_dir_inode_operations = {
69 .create = nfs_create,
70 .lookup = nfs_lookup,
71 .link = nfs_link,
72 .unlink = nfs_unlink,
73 .symlink = nfs_symlink,
74 .mkdir = nfs_mkdir,
75 .rmdir = nfs_rmdir,
76 .mknod = nfs_mknod,
77 .rename = nfs_rename,
78 .permission = nfs_permission,
79 .getattr = nfs_getattr,
80 .setattr = nfs_setattr,
81 };
82
83 #ifdef CONFIG_NFS_V3
84 const struct inode_operations nfs3_dir_inode_operations = {
85 .create = nfs_create,
86 .lookup = nfs_lookup,
87 .link = nfs_link,
88 .unlink = nfs_unlink,
89 .symlink = nfs_symlink,
90 .mkdir = nfs_mkdir,
91 .rmdir = nfs_rmdir,
92 .mknod = nfs_mknod,
93 .rename = nfs_rename,
94 .permission = nfs_permission,
95 .getattr = nfs_getattr,
96 .setattr = nfs_setattr,
97 .listxattr = nfs3_listxattr,
98 .getxattr = nfs3_getxattr,
99 .setxattr = nfs3_setxattr,
100 .removexattr = nfs3_removexattr,
101 };
102 #endif /* CONFIG_NFS_V3 */
103
104 #ifdef CONFIG_NFS_V4
105
106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
107 const struct inode_operations nfs4_dir_inode_operations = {
108 .create = nfs_create,
109 .lookup = nfs_atomic_lookup,
110 .link = nfs_link,
111 .unlink = nfs_unlink,
112 .symlink = nfs_symlink,
113 .mkdir = nfs_mkdir,
114 .rmdir = nfs_rmdir,
115 .mknod = nfs_mknod,
116 .rename = nfs_rename,
117 .permission = nfs_permission,
118 .getattr = nfs_getattr,
119 .setattr = nfs_setattr,
120 .getxattr = nfs4_getxattr,
121 .setxattr = nfs4_setxattr,
122 .listxattr = nfs4_listxattr,
123 };
124
125 #endif /* CONFIG_NFS_V4 */
126
127 /*
128 * Open file
129 */
130 static int
131 nfs_opendir(struct inode *inode, struct file *filp)
132 {
133 int res;
134
135 dfprintk(VFS, "NFS: opendir(%s/%ld)\n",
136 inode->i_sb->s_id, inode->i_ino);
137
138 lock_kernel();
139 /* Call generic open code in order to cache credentials */
140 res = nfs_open(inode, filp);
141 unlock_kernel();
142 return res;
143 }
144
145 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
146 typedef struct {
147 struct file *file;
148 struct page *page;
149 unsigned long page_index;
150 __be32 *ptr;
151 u64 *dir_cookie;
152 loff_t current_index;
153 struct nfs_entry *entry;
154 decode_dirent_t decode;
155 int plus;
156 int error;
157 } nfs_readdir_descriptor_t;
158
159 /* Now we cache directories properly, by stuffing the dirent
160 * data directly in the page cache.
161 *
162 * Inode invalidation due to refresh etc. takes care of
163 * _everything_, no sloppy entry flushing logic, no extraneous
164 * copying, network direct to page cache, the way it was meant
165 * to be.
166 *
167 * NOTE: Dirent information verification is done always by the
168 * page-in of the RPC reply, nowhere else, this simplies
169 * things substantially.
170 */
171 static
172 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
173 {
174 struct file *file = desc->file;
175 struct inode *inode = file->f_path.dentry->d_inode;
176 struct rpc_cred *cred = nfs_file_cred(file);
177 unsigned long timestamp;
178 int error;
179
180 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
181 __FUNCTION__, (long long)desc->entry->cookie,
182 page->index);
183
184 again:
185 timestamp = jiffies;
186 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
187 NFS_SERVER(inode)->dtsize, desc->plus);
188 if (error < 0) {
189 /* We requested READDIRPLUS, but the server doesn't grok it */
190 if (error == -ENOTSUPP && desc->plus) {
191 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
192 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
193 desc->plus = 0;
194 goto again;
195 }
196 goto error;
197 }
198 SetPageUptodate(page);
199 spin_lock(&inode->i_lock);
200 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
201 spin_unlock(&inode->i_lock);
202 /* Ensure consistent page alignment of the data.
203 * Note: assumes we have exclusive access to this mapping either
204 * through inode->i_mutex or some other mechanism.
205 */
206 if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) {
207 /* Should never happen */
208 nfs_zap_mapping(inode, inode->i_mapping);
209 }
210 unlock_page(page);
211 return 0;
212 error:
213 SetPageError(page);
214 unlock_page(page);
215 nfs_zap_caches(inode);
216 desc->error = error;
217 return -EIO;
218 }
219
220 static inline
221 int dir_decode(nfs_readdir_descriptor_t *desc)
222 {
223 __be32 *p = desc->ptr;
224 p = desc->decode(p, desc->entry, desc->plus);
225 if (IS_ERR(p))
226 return PTR_ERR(p);
227 desc->ptr = p;
228 return 0;
229 }
230
231 static inline
232 void dir_page_release(nfs_readdir_descriptor_t *desc)
233 {
234 kunmap(desc->page);
235 page_cache_release(desc->page);
236 desc->page = NULL;
237 desc->ptr = NULL;
238 }
239
240 /*
241 * Given a pointer to a buffer that has already been filled by a call
242 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
243 *
244 * If the end of the buffer has been reached, return -EAGAIN, if not,
245 * return the offset within the buffer of the next entry to be
246 * read.
247 */
248 static inline
249 int find_dirent(nfs_readdir_descriptor_t *desc)
250 {
251 struct nfs_entry *entry = desc->entry;
252 int loop_count = 0,
253 status;
254
255 while((status = dir_decode(desc)) == 0) {
256 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
257 __FUNCTION__, (unsigned long long)entry->cookie);
258 if (entry->prev_cookie == *desc->dir_cookie)
259 break;
260 if (loop_count++ > 200) {
261 loop_count = 0;
262 schedule();
263 }
264 }
265 return status;
266 }
267
268 /*
269 * Given a pointer to a buffer that has already been filled by a call
270 * to readdir, find the entry at offset 'desc->file->f_pos'.
271 *
272 * If the end of the buffer has been reached, return -EAGAIN, if not,
273 * return the offset within the buffer of the next entry to be
274 * read.
275 */
276 static inline
277 int find_dirent_index(nfs_readdir_descriptor_t *desc)
278 {
279 struct nfs_entry *entry = desc->entry;
280 int loop_count = 0,
281 status;
282
283 for(;;) {
284 status = dir_decode(desc);
285 if (status)
286 break;
287
288 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
289 (unsigned long long)entry->cookie, desc->current_index);
290
291 if (desc->file->f_pos == desc->current_index) {
292 *desc->dir_cookie = entry->cookie;
293 break;
294 }
295 desc->current_index++;
296 if (loop_count++ > 200) {
297 loop_count = 0;
298 schedule();
299 }
300 }
301 return status;
302 }
303
304 /*
305 * Find the given page, and call find_dirent() or find_dirent_index in
306 * order to try to return the next entry.
307 */
308 static inline
309 int find_dirent_page(nfs_readdir_descriptor_t *desc)
310 {
311 struct inode *inode = desc->file->f_path.dentry->d_inode;
312 struct page *page;
313 int status;
314
315 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
316 __FUNCTION__, desc->page_index,
317 (long long) *desc->dir_cookie);
318
319 page = read_cache_page(inode->i_mapping, desc->page_index,
320 (filler_t *)nfs_readdir_filler, desc);
321 if (IS_ERR(page)) {
322 status = PTR_ERR(page);
323 goto out;
324 }
325 if (!PageUptodate(page))
326 goto read_error;
327
328 /* NOTE: Someone else may have changed the READDIRPLUS flag */
329 desc->page = page;
330 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
331 if (*desc->dir_cookie != 0)
332 status = find_dirent(desc);
333 else
334 status = find_dirent_index(desc);
335 if (status < 0)
336 dir_page_release(desc);
337 out:
338 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status);
339 return status;
340 read_error:
341 page_cache_release(page);
342 return -EIO;
343 }
344
345 /*
346 * Recurse through the page cache pages, and return a
347 * filled nfs_entry structure of the next directory entry if possible.
348 *
349 * The target for the search is '*desc->dir_cookie' if non-0,
350 * 'desc->file->f_pos' otherwise
351 */
352 static inline
353 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
354 {
355 int loop_count = 0;
356 int res;
357
358 /* Always search-by-index from the beginning of the cache */
359 if (*desc->dir_cookie == 0) {
360 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
361 (long long)desc->file->f_pos);
362 desc->page_index = 0;
363 desc->entry->cookie = desc->entry->prev_cookie = 0;
364 desc->entry->eof = 0;
365 desc->current_index = 0;
366 } else
367 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
368 (unsigned long long)*desc->dir_cookie);
369
370 for (;;) {
371 res = find_dirent_page(desc);
372 if (res != -EAGAIN)
373 break;
374 /* Align to beginning of next page */
375 desc->page_index ++;
376 if (loop_count++ > 200) {
377 loop_count = 0;
378 schedule();
379 }
380 }
381
382 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res);
383 return res;
384 }
385
386 static inline unsigned int dt_type(struct inode *inode)
387 {
388 return (inode->i_mode >> 12) & 15;
389 }
390
391 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
392
393 /*
394 * Once we've found the start of the dirent within a page: fill 'er up...
395 */
396 static
397 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
398 filldir_t filldir)
399 {
400 struct file *file = desc->file;
401 struct nfs_entry *entry = desc->entry;
402 struct dentry *dentry = NULL;
403 unsigned long fileid;
404 int loop_count = 0,
405 res;
406
407 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
408 (unsigned long long)entry->cookie);
409
410 for(;;) {
411 unsigned d_type = DT_UNKNOWN;
412 /* Note: entry->prev_cookie contains the cookie for
413 * retrieving the current dirent on the server */
414 fileid = nfs_fileid_to_ino_t(entry->ino);
415
416 /* Get a dentry if we have one */
417 if (dentry != NULL)
418 dput(dentry);
419 dentry = nfs_readdir_lookup(desc);
420
421 /* Use readdirplus info */
422 if (dentry != NULL && dentry->d_inode != NULL) {
423 d_type = dt_type(dentry->d_inode);
424 fileid = dentry->d_inode->i_ino;
425 }
426
427 res = filldir(dirent, entry->name, entry->len,
428 file->f_pos, fileid, d_type);
429 if (res < 0)
430 break;
431 file->f_pos++;
432 *desc->dir_cookie = entry->cookie;
433 if (dir_decode(desc) != 0) {
434 desc->page_index ++;
435 break;
436 }
437 if (loop_count++ > 200) {
438 loop_count = 0;
439 schedule();
440 }
441 }
442 dir_page_release(desc);
443 if (dentry != NULL)
444 dput(dentry);
445 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
446 (unsigned long long)*desc->dir_cookie, res);
447 return res;
448 }
449
450 /*
451 * If we cannot find a cookie in our cache, we suspect that this is
452 * because it points to a deleted file, so we ask the server to return
453 * whatever it thinks is the next entry. We then feed this to filldir.
454 * If all goes well, we should then be able to find our way round the
455 * cache on the next call to readdir_search_pagecache();
456 *
457 * NOTE: we cannot add the anonymous page to the pagecache because
458 * the data it contains might not be page aligned. Besides,
459 * we should already have a complete representation of the
460 * directory in the page cache by the time we get here.
461 */
462 static inline
463 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
464 filldir_t filldir)
465 {
466 struct file *file = desc->file;
467 struct inode *inode = file->f_path.dentry->d_inode;
468 struct rpc_cred *cred = nfs_file_cred(file);
469 struct page *page = NULL;
470 int status;
471
472 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
473 (unsigned long long)*desc->dir_cookie);
474
475 page = alloc_page(GFP_HIGHUSER);
476 if (!page) {
477 status = -ENOMEM;
478 goto out;
479 }
480 desc->error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, *desc->dir_cookie,
481 page,
482 NFS_SERVER(inode)->dtsize,
483 desc->plus);
484 spin_lock(&inode->i_lock);
485 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
486 spin_unlock(&inode->i_lock);
487 desc->page = page;
488 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
489 if (desc->error >= 0) {
490 if ((status = dir_decode(desc)) == 0)
491 desc->entry->prev_cookie = *desc->dir_cookie;
492 } else
493 status = -EIO;
494 if (status < 0)
495 goto out_release;
496
497 status = nfs_do_filldir(desc, dirent, filldir);
498
499 /* Reset read descriptor so it searches the page cache from
500 * the start upon the next call to readdir_search_pagecache() */
501 desc->page_index = 0;
502 desc->entry->cookie = desc->entry->prev_cookie = 0;
503 desc->entry->eof = 0;
504 out:
505 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
506 __FUNCTION__, status);
507 return status;
508 out_release:
509 dir_page_release(desc);
510 goto out;
511 }
512
513 /* The file offset position represents the dirent entry number. A
514 last cookie cache takes care of the common case of reading the
515 whole directory.
516 */
517 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
518 {
519 struct dentry *dentry = filp->f_path.dentry;
520 struct inode *inode = dentry->d_inode;
521 nfs_readdir_descriptor_t my_desc,
522 *desc = &my_desc;
523 struct nfs_entry my_entry;
524 struct nfs_fh fh;
525 struct nfs_fattr fattr;
526 long res;
527
528 dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
529 dentry->d_parent->d_name.name, dentry->d_name.name,
530 (long long)filp->f_pos);
531 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
532
533 lock_kernel();
534
535 res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
536 if (res < 0) {
537 unlock_kernel();
538 return res;
539 }
540
541 /*
542 * filp->f_pos points to the dirent entry number.
543 * *desc->dir_cookie has the cookie for the next entry. We have
544 * to either find the entry with the appropriate number or
545 * revalidate the cookie.
546 */
547 memset(desc, 0, sizeof(*desc));
548
549 desc->file = filp;
550 desc->dir_cookie = &((struct nfs_open_context *)filp->private_data)->dir_cookie;
551 desc->decode = NFS_PROTO(inode)->decode_dirent;
552 desc->plus = NFS_USE_READDIRPLUS(inode);
553
554 my_entry.cookie = my_entry.prev_cookie = 0;
555 my_entry.eof = 0;
556 my_entry.fh = &fh;
557 my_entry.fattr = &fattr;
558 nfs_fattr_init(&fattr);
559 desc->entry = &my_entry;
560
561 while(!desc->entry->eof) {
562 res = readdir_search_pagecache(desc);
563
564 if (res == -EBADCOOKIE) {
565 /* This means either end of directory */
566 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
567 /* Or that the server has 'lost' a cookie */
568 res = uncached_readdir(desc, dirent, filldir);
569 if (res >= 0)
570 continue;
571 }
572 res = 0;
573 break;
574 }
575 if (res == -ETOOSMALL && desc->plus) {
576 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
577 nfs_zap_caches(inode);
578 desc->plus = 0;
579 desc->entry->eof = 0;
580 continue;
581 }
582 if (res < 0)
583 break;
584
585 res = nfs_do_filldir(desc, dirent, filldir);
586 if (res < 0) {
587 res = 0;
588 break;
589 }
590 }
591 unlock_kernel();
592 if (res > 0)
593 res = 0;
594 dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n",
595 dentry->d_parent->d_name.name, dentry->d_name.name,
596 res);
597 return res;
598 }
599
600 loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
601 {
602 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
603 switch (origin) {
604 case 1:
605 offset += filp->f_pos;
606 case 0:
607 if (offset >= 0)
608 break;
609 default:
610 offset = -EINVAL;
611 goto out;
612 }
613 if (offset != filp->f_pos) {
614 filp->f_pos = offset;
615 ((struct nfs_open_context *)filp->private_data)->dir_cookie = 0;
616 }
617 out:
618 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
619 return offset;
620 }
621
622 /*
623 * All directory operations under NFS are synchronous, so fsync()
624 * is a dummy operation.
625 */
626 int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
627 {
628 dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n",
629 dentry->d_parent->d_name.name, dentry->d_name.name,
630 datasync);
631
632 return 0;
633 }
634
635 /*
636 * A check for whether or not the parent directory has changed.
637 * In the case it has, we assume that the dentries are untrustworthy
638 * and may need to be looked up again.
639 */
640 static inline int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
641 {
642 if (IS_ROOT(dentry))
643 return 1;
644 if ((NFS_I(dir)->cache_validity & NFS_INO_INVALID_ATTR) != 0
645 || nfs_attribute_timeout(dir))
646 return 0;
647 return nfs_verify_change_attribute(dir, (unsigned long)dentry->d_fsdata);
648 }
649
650 static inline void nfs_set_verifier(struct dentry * dentry, unsigned long verf)
651 {
652 dentry->d_fsdata = (void *)verf;
653 }
654
655 /*
656 * Whenever an NFS operation succeeds, we know that the dentry
657 * is valid, so we update the revalidation timestamp.
658 */
659 static inline void nfs_renew_times(struct dentry * dentry)
660 {
661 dentry->d_time = jiffies;
662 }
663
664 /*
665 * Return the intent data that applies to this particular path component
666 *
667 * Note that the current set of intents only apply to the very last
668 * component of the path.
669 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
670 */
671 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
672 {
673 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
674 return 0;
675 return nd->flags & mask;
676 }
677
678 /*
679 * Inode and filehandle revalidation for lookups.
680 *
681 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
682 * or if the intent information indicates that we're about to open this
683 * particular file and the "nocto" mount flag is not set.
684 *
685 */
686 static inline
687 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
688 {
689 struct nfs_server *server = NFS_SERVER(inode);
690
691 if (nd != NULL) {
692 /* VFS wants an on-the-wire revalidation */
693 if (nd->flags & LOOKUP_REVAL)
694 goto out_force;
695 /* This is an open(2) */
696 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
697 !(server->flags & NFS_MOUNT_NOCTO) &&
698 (S_ISREG(inode->i_mode) ||
699 S_ISDIR(inode->i_mode)))
700 goto out_force;
701 }
702 return nfs_revalidate_inode(server, inode);
703 out_force:
704 return __nfs_revalidate_inode(server, inode);
705 }
706
707 /*
708 * We judge how long we want to trust negative
709 * dentries by looking at the parent inode mtime.
710 *
711 * If parent mtime has changed, we revalidate, else we wait for a
712 * period corresponding to the parent's attribute cache timeout value.
713 */
714 static inline
715 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
716 struct nameidata *nd)
717 {
718 /* Don't revalidate a negative dentry if we're creating a new file */
719 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
720 return 0;
721 return !nfs_check_verifier(dir, dentry);
722 }
723
724 /*
725 * This is called every time the dcache has a lookup hit,
726 * and we should check whether we can really trust that
727 * lookup.
728 *
729 * NOTE! The hit can be a negative hit too, don't assume
730 * we have an inode!
731 *
732 * If the parent directory is seen to have changed, we throw out the
733 * cached dentry and do a new lookup.
734 */
735 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
736 {
737 struct inode *dir;
738 struct inode *inode;
739 struct dentry *parent;
740 int error;
741 struct nfs_fh fhandle;
742 struct nfs_fattr fattr;
743 unsigned long verifier;
744
745 parent = dget_parent(dentry);
746 lock_kernel();
747 dir = parent->d_inode;
748 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
749 inode = dentry->d_inode;
750
751 if (!inode) {
752 if (nfs_neg_need_reval(dir, dentry, nd))
753 goto out_bad;
754 goto out_valid;
755 }
756
757 if (is_bad_inode(inode)) {
758 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
759 __FUNCTION__, dentry->d_parent->d_name.name,
760 dentry->d_name.name);
761 goto out_bad;
762 }
763
764 /* Revalidate parent directory attribute cache */
765 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
766 goto out_zap_parent;
767
768 /* Force a full look up iff the parent directory has changed */
769 if (nfs_check_verifier(dir, dentry)) {
770 if (nfs_lookup_verify_inode(inode, nd))
771 goto out_zap_parent;
772 goto out_valid;
773 }
774
775 if (NFS_STALE(inode))
776 goto out_bad;
777
778 verifier = nfs_save_change_attribute(dir);
779 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
780 if (error)
781 goto out_bad;
782 if (nfs_compare_fh(NFS_FH(inode), &fhandle))
783 goto out_bad;
784 if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
785 goto out_bad;
786
787 nfs_renew_times(dentry);
788 nfs_set_verifier(dentry, verifier);
789 out_valid:
790 unlock_kernel();
791 dput(parent);
792 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
793 __FUNCTION__, dentry->d_parent->d_name.name,
794 dentry->d_name.name);
795 return 1;
796 out_zap_parent:
797 nfs_zap_caches(dir);
798 out_bad:
799 NFS_CACHEINV(dir);
800 if (inode && S_ISDIR(inode->i_mode)) {
801 /* Purge readdir caches. */
802 nfs_zap_caches(inode);
803 /* If we have submounts, don't unhash ! */
804 if (have_submounts(dentry))
805 goto out_valid;
806 shrink_dcache_parent(dentry);
807 }
808 d_drop(dentry);
809 unlock_kernel();
810 dput(parent);
811 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
812 __FUNCTION__, dentry->d_parent->d_name.name,
813 dentry->d_name.name);
814 return 0;
815 }
816
817 /*
818 * This is called from dput() when d_count is going to 0.
819 */
820 static int nfs_dentry_delete(struct dentry *dentry)
821 {
822 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
823 dentry->d_parent->d_name.name, dentry->d_name.name,
824 dentry->d_flags);
825
826 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
827 /* Unhash it, so that ->d_iput() would be called */
828 return 1;
829 }
830 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
831 /* Unhash it, so that ancestors of killed async unlink
832 * files will be cleaned up during umount */
833 return 1;
834 }
835 return 0;
836
837 }
838
839 /*
840 * Called when the dentry loses inode.
841 * We use it to clean up silly-renamed files.
842 */
843 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
844 {
845 nfs_inode_return_delegation(inode);
846 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
847 lock_kernel();
848 drop_nlink(inode);
849 nfs_complete_unlink(dentry);
850 unlock_kernel();
851 }
852 /* When creating a negative dentry, we want to renew d_time */
853 nfs_renew_times(dentry);
854 iput(inode);
855 }
856
857 struct dentry_operations nfs_dentry_operations = {
858 .d_revalidate = nfs_lookup_revalidate,
859 .d_delete = nfs_dentry_delete,
860 .d_iput = nfs_dentry_iput,
861 };
862
863 /*
864 * Use intent information to check whether or not we're going to do
865 * an O_EXCL create using this path component.
866 */
867 static inline
868 int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
869 {
870 if (NFS_PROTO(dir)->version == 2)
871 return 0;
872 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
873 return 0;
874 return (nd->intent.open.flags & O_EXCL) != 0;
875 }
876
877 static inline int nfs_reval_fsid(struct vfsmount *mnt, struct inode *dir,
878 struct nfs_fh *fh, struct nfs_fattr *fattr)
879 {
880 struct nfs_server *server = NFS_SERVER(dir);
881
882 if (!nfs_fsid_equal(&server->fsid, &fattr->fsid))
883 /* Revalidate fsid on root dir */
884 return __nfs_revalidate_inode(server, mnt->mnt_root->d_inode);
885 return 0;
886 }
887
888 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
889 {
890 struct dentry *res;
891 struct inode *inode = NULL;
892 int error;
893 struct nfs_fh fhandle;
894 struct nfs_fattr fattr;
895
896 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
897 dentry->d_parent->d_name.name, dentry->d_name.name);
898 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
899
900 res = ERR_PTR(-ENAMETOOLONG);
901 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
902 goto out;
903
904 res = ERR_PTR(-ENOMEM);
905 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
906
907 lock_kernel();
908
909 /*
910 * If we're doing an exclusive create, optimize away the lookup
911 * but don't hash the dentry.
912 */
913 if (nfs_is_exclusive_create(dir, nd)) {
914 d_instantiate(dentry, NULL);
915 res = NULL;
916 goto out_unlock;
917 }
918
919 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
920 if (error == -ENOENT)
921 goto no_entry;
922 if (error < 0) {
923 res = ERR_PTR(error);
924 goto out_unlock;
925 }
926 error = nfs_reval_fsid(nd->mnt, dir, &fhandle, &fattr);
927 if (error < 0) {
928 res = ERR_PTR(error);
929 goto out_unlock;
930 }
931 inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
932 res = (struct dentry *)inode;
933 if (IS_ERR(res))
934 goto out_unlock;
935
936 no_entry:
937 res = d_materialise_unique(dentry, inode);
938 if (res != NULL) {
939 struct dentry *parent;
940 if (IS_ERR(res))
941 goto out_unlock;
942 /* Was a directory renamed! */
943 parent = dget_parent(res);
944 if (!IS_ROOT(parent))
945 nfs_mark_for_revalidate(parent->d_inode);
946 dput(parent);
947 dentry = res;
948 }
949 nfs_renew_times(dentry);
950 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
951 out_unlock:
952 unlock_kernel();
953 out:
954 return res;
955 }
956
957 #ifdef CONFIG_NFS_V4
958 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
959
960 struct dentry_operations nfs4_dentry_operations = {
961 .d_revalidate = nfs_open_revalidate,
962 .d_delete = nfs_dentry_delete,
963 .d_iput = nfs_dentry_iput,
964 };
965
966 /*
967 * Use intent information to determine whether we need to substitute
968 * the NFSv4-style stateful OPEN for the LOOKUP call
969 */
970 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
971 {
972 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
973 return 0;
974 /* NFS does not (yet) have a stateful open for directories */
975 if (nd->flags & LOOKUP_DIRECTORY)
976 return 0;
977 /* Are we trying to write to a read only partition? */
978 if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
979 return 0;
980 return 1;
981 }
982
983 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
984 {
985 struct dentry *res = NULL;
986 int error;
987
988 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
989 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
990
991 /* Check that we are indeed trying to open this file */
992 if (!is_atomic_open(dir, nd))
993 goto no_open;
994
995 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
996 res = ERR_PTR(-ENAMETOOLONG);
997 goto out;
998 }
999 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1000
1001 /* Let vfs_create() deal with O_EXCL */
1002 if (nd->intent.open.flags & O_EXCL) {
1003 d_add(dentry, NULL);
1004 goto out;
1005 }
1006
1007 /* Open the file on the server */
1008 lock_kernel();
1009 /* Revalidate parent directory attribute cache */
1010 error = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1011 if (error < 0) {
1012 res = ERR_PTR(error);
1013 unlock_kernel();
1014 goto out;
1015 }
1016
1017 if (nd->intent.open.flags & O_CREAT) {
1018 nfs_begin_data_update(dir);
1019 res = nfs4_atomic_open(dir, dentry, nd);
1020 nfs_end_data_update(dir);
1021 } else
1022 res = nfs4_atomic_open(dir, dentry, nd);
1023 unlock_kernel();
1024 if (IS_ERR(res)) {
1025 error = PTR_ERR(res);
1026 switch (error) {
1027 /* Make a negative dentry */
1028 case -ENOENT:
1029 res = NULL;
1030 goto out;
1031 /* This turned out not to be a regular file */
1032 case -EISDIR:
1033 case -ENOTDIR:
1034 goto no_open;
1035 case -ELOOP:
1036 if (!(nd->intent.open.flags & O_NOFOLLOW))
1037 goto no_open;
1038 /* case -EINVAL: */
1039 default:
1040 goto out;
1041 }
1042 } else if (res != NULL)
1043 dentry = res;
1044 nfs_renew_times(dentry);
1045 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1046 out:
1047 return res;
1048 no_open:
1049 return nfs_lookup(dir, dentry, nd);
1050 }
1051
1052 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1053 {
1054 struct dentry *parent = NULL;
1055 struct inode *inode = dentry->d_inode;
1056 struct inode *dir;
1057 unsigned long verifier;
1058 int openflags, ret = 0;
1059
1060 parent = dget_parent(dentry);
1061 dir = parent->d_inode;
1062 if (!is_atomic_open(dir, nd))
1063 goto no_open;
1064 /* We can't create new files in nfs_open_revalidate(), so we
1065 * optimize away revalidation of negative dentries.
1066 */
1067 if (inode == NULL)
1068 goto out;
1069 /* NFS only supports OPEN on regular files */
1070 if (!S_ISREG(inode->i_mode))
1071 goto no_open;
1072 openflags = nd->intent.open.flags;
1073 /* We cannot do exclusive creation on a positive dentry */
1074 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1075 goto no_open;
1076 /* We can't create new files, or truncate existing ones here */
1077 openflags &= ~(O_CREAT|O_TRUNC);
1078
1079 /*
1080 * Note: we're not holding inode->i_mutex and so may be racing with
1081 * operations that change the directory. We therefore save the
1082 * change attribute *before* we do the RPC call.
1083 */
1084 lock_kernel();
1085 verifier = nfs_save_change_attribute(dir);
1086 ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1087 if (!ret)
1088 nfs_set_verifier(dentry, verifier);
1089 unlock_kernel();
1090 out:
1091 dput(parent);
1092 if (!ret)
1093 d_drop(dentry);
1094 return ret;
1095 no_open:
1096 dput(parent);
1097 if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1098 return 1;
1099 return nfs_lookup_revalidate(dentry, nd);
1100 }
1101 #endif /* CONFIG_NFSV4 */
1102
1103 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1104 {
1105 struct dentry *parent = desc->file->f_path.dentry;
1106 struct inode *dir = parent->d_inode;
1107 struct nfs_entry *entry = desc->entry;
1108 struct dentry *dentry, *alias;
1109 struct qstr name = {
1110 .name = entry->name,
1111 .len = entry->len,
1112 };
1113 struct inode *inode;
1114
1115 switch (name.len) {
1116 case 2:
1117 if (name.name[0] == '.' && name.name[1] == '.')
1118 return dget_parent(parent);
1119 break;
1120 case 1:
1121 if (name.name[0] == '.')
1122 return dget(parent);
1123 }
1124 name.hash = full_name_hash(name.name, name.len);
1125 dentry = d_lookup(parent, &name);
1126 if (dentry != NULL)
1127 return dentry;
1128 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1129 return NULL;
1130 /* Note: caller is already holding the dir->i_mutex! */
1131 dentry = d_alloc(parent, &name);
1132 if (dentry == NULL)
1133 return NULL;
1134 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1135 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1136 if (IS_ERR(inode)) {
1137 dput(dentry);
1138 return NULL;
1139 }
1140
1141 alias = d_materialise_unique(dentry, inode);
1142 if (alias != NULL) {
1143 dput(dentry);
1144 if (IS_ERR(alias))
1145 return NULL;
1146 dentry = alias;
1147 }
1148
1149 nfs_renew_times(dentry);
1150 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1151 return dentry;
1152 }
1153
1154 /*
1155 * Code common to create, mkdir, and mknod.
1156 */
1157 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1158 struct nfs_fattr *fattr)
1159 {
1160 struct inode *inode;
1161 int error = -EACCES;
1162
1163 /* We may have been initialized further down */
1164 if (dentry->d_inode)
1165 return 0;
1166 if (fhandle->size == 0) {
1167 struct inode *dir = dentry->d_parent->d_inode;
1168 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1169 if (error)
1170 return error;
1171 }
1172 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1173 struct nfs_server *server = NFS_SB(dentry->d_sb);
1174 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1175 if (error < 0)
1176 return error;
1177 }
1178 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1179 error = PTR_ERR(inode);
1180 if (IS_ERR(inode))
1181 return error;
1182 d_instantiate(dentry, inode);
1183 if (d_unhashed(dentry))
1184 d_rehash(dentry);
1185 return 0;
1186 }
1187
1188 /*
1189 * Following a failed create operation, we drop the dentry rather
1190 * than retain a negative dentry. This avoids a problem in the event
1191 * that the operation succeeded on the server, but an error in the
1192 * reply path made it appear to have failed.
1193 */
1194 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1195 struct nameidata *nd)
1196 {
1197 struct iattr attr;
1198 int error;
1199 int open_flags = 0;
1200
1201 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1202 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1203
1204 attr.ia_mode = mode;
1205 attr.ia_valid = ATTR_MODE;
1206
1207 if (nd && (nd->flags & LOOKUP_CREATE))
1208 open_flags = nd->intent.open.flags;
1209
1210 lock_kernel();
1211 nfs_begin_data_update(dir);
1212 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1213 nfs_end_data_update(dir);
1214 if (error != 0)
1215 goto out_err;
1216 nfs_renew_times(dentry);
1217 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1218 unlock_kernel();
1219 return 0;
1220 out_err:
1221 unlock_kernel();
1222 d_drop(dentry);
1223 return error;
1224 }
1225
1226 /*
1227 * See comments for nfs_proc_create regarding failed operations.
1228 */
1229 static int
1230 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1231 {
1232 struct iattr attr;
1233 int status;
1234
1235 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1236 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1237
1238 if (!new_valid_dev(rdev))
1239 return -EINVAL;
1240
1241 attr.ia_mode = mode;
1242 attr.ia_valid = ATTR_MODE;
1243
1244 lock_kernel();
1245 nfs_begin_data_update(dir);
1246 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1247 nfs_end_data_update(dir);
1248 if (status != 0)
1249 goto out_err;
1250 nfs_renew_times(dentry);
1251 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1252 unlock_kernel();
1253 return 0;
1254 out_err:
1255 unlock_kernel();
1256 d_drop(dentry);
1257 return status;
1258 }
1259
1260 /*
1261 * See comments for nfs_proc_create regarding failed operations.
1262 */
1263 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1264 {
1265 struct iattr attr;
1266 int error;
1267
1268 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1269 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1270
1271 attr.ia_valid = ATTR_MODE;
1272 attr.ia_mode = mode | S_IFDIR;
1273
1274 lock_kernel();
1275 nfs_begin_data_update(dir);
1276 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1277 nfs_end_data_update(dir);
1278 if (error != 0)
1279 goto out_err;
1280 nfs_renew_times(dentry);
1281 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1282 unlock_kernel();
1283 return 0;
1284 out_err:
1285 d_drop(dentry);
1286 unlock_kernel();
1287 return error;
1288 }
1289
1290 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1291 {
1292 int error;
1293
1294 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1295 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1296
1297 lock_kernel();
1298 nfs_begin_data_update(dir);
1299 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1300 /* Ensure the VFS deletes this inode */
1301 if (error == 0 && dentry->d_inode != NULL)
1302 clear_nlink(dentry->d_inode);
1303 nfs_end_data_update(dir);
1304 unlock_kernel();
1305
1306 return error;
1307 }
1308
1309 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1310 {
1311 static unsigned int sillycounter;
1312 const int i_inosize = sizeof(dir->i_ino)*2;
1313 const int countersize = sizeof(sillycounter)*2;
1314 const int slen = sizeof(".nfs") + i_inosize + countersize - 1;
1315 char silly[slen+1];
1316 struct qstr qsilly;
1317 struct dentry *sdentry;
1318 int error = -EIO;
1319
1320 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1321 dentry->d_parent->d_name.name, dentry->d_name.name,
1322 atomic_read(&dentry->d_count));
1323 nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1324
1325 #ifdef NFS_PARANOIA
1326 if (!dentry->d_inode)
1327 printk("NFS: silly-renaming %s/%s, negative dentry??\n",
1328 dentry->d_parent->d_name.name, dentry->d_name.name);
1329 #endif
1330 /*
1331 * We don't allow a dentry to be silly-renamed twice.
1332 */
1333 error = -EBUSY;
1334 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1335 goto out;
1336
1337 sprintf(silly, ".nfs%*.*lx",
1338 i_inosize, i_inosize, dentry->d_inode->i_ino);
1339
1340 /* Return delegation in anticipation of the rename */
1341 nfs_inode_return_delegation(dentry->d_inode);
1342
1343 sdentry = NULL;
1344 do {
1345 char *suffix = silly + slen - countersize;
1346
1347 dput(sdentry);
1348 sillycounter++;
1349 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1350
1351 dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1352 dentry->d_name.name, silly);
1353
1354 sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1355 /*
1356 * N.B. Better to return EBUSY here ... it could be
1357 * dangerous to delete the file while it's in use.
1358 */
1359 if (IS_ERR(sdentry))
1360 goto out;
1361 } while(sdentry->d_inode != NULL); /* need negative lookup */
1362
1363 qsilly.name = silly;
1364 qsilly.len = strlen(silly);
1365 nfs_begin_data_update(dir);
1366 if (dentry->d_inode) {
1367 nfs_begin_data_update(dentry->d_inode);
1368 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1369 dir, &qsilly);
1370 nfs_mark_for_revalidate(dentry->d_inode);
1371 nfs_end_data_update(dentry->d_inode);
1372 } else
1373 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1374 dir, &qsilly);
1375 nfs_end_data_update(dir);
1376 if (!error) {
1377 nfs_renew_times(dentry);
1378 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1379 d_move(dentry, sdentry);
1380 error = nfs_async_unlink(dentry);
1381 /* If we return 0 we don't unlink */
1382 }
1383 dput(sdentry);
1384 out:
1385 return error;
1386 }
1387
1388 /*
1389 * Remove a file after making sure there are no pending writes,
1390 * and after checking that the file has only one user.
1391 *
1392 * We invalidate the attribute cache and free the inode prior to the operation
1393 * to avoid possible races if the server reuses the inode.
1394 */
1395 static int nfs_safe_remove(struct dentry *dentry)
1396 {
1397 struct inode *dir = dentry->d_parent->d_inode;
1398 struct inode *inode = dentry->d_inode;
1399 int error = -EBUSY;
1400
1401 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1402 dentry->d_parent->d_name.name, dentry->d_name.name);
1403
1404 /* If the dentry was sillyrenamed, we simply call d_delete() */
1405 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1406 error = 0;
1407 goto out;
1408 }
1409
1410 nfs_begin_data_update(dir);
1411 if (inode != NULL) {
1412 nfs_inode_return_delegation(inode);
1413 nfs_begin_data_update(inode);
1414 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1415 /* The VFS may want to delete this inode */
1416 if (error == 0)
1417 drop_nlink(inode);
1418 nfs_mark_for_revalidate(inode);
1419 nfs_end_data_update(inode);
1420 } else
1421 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1422 nfs_end_data_update(dir);
1423 out:
1424 return error;
1425 }
1426
1427 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1428 * belongs to an active ".nfs..." file and we return -EBUSY.
1429 *
1430 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1431 */
1432 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1433 {
1434 int error;
1435 int need_rehash = 0;
1436
1437 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1438 dir->i_ino, dentry->d_name.name);
1439
1440 lock_kernel();
1441 spin_lock(&dcache_lock);
1442 spin_lock(&dentry->d_lock);
1443 if (atomic_read(&dentry->d_count) > 1) {
1444 spin_unlock(&dentry->d_lock);
1445 spin_unlock(&dcache_lock);
1446 error = nfs_sillyrename(dir, dentry);
1447 unlock_kernel();
1448 return error;
1449 }
1450 if (!d_unhashed(dentry)) {
1451 __d_drop(dentry);
1452 need_rehash = 1;
1453 }
1454 spin_unlock(&dentry->d_lock);
1455 spin_unlock(&dcache_lock);
1456 error = nfs_safe_remove(dentry);
1457 if (!error) {
1458 nfs_renew_times(dentry);
1459 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1460 } else if (need_rehash)
1461 d_rehash(dentry);
1462 unlock_kernel();
1463 return error;
1464 }
1465
1466 /*
1467 * To create a symbolic link, most file systems instantiate a new inode,
1468 * add a page to it containing the path, then write it out to the disk
1469 * using prepare_write/commit_write.
1470 *
1471 * Unfortunately the NFS client can't create the in-core inode first
1472 * because it needs a file handle to create an in-core inode (see
1473 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1474 * symlink request has completed on the server.
1475 *
1476 * So instead we allocate a raw page, copy the symname into it, then do
1477 * the SYMLINK request with the page as the buffer. If it succeeds, we
1478 * now have a new file handle and can instantiate an in-core NFS inode
1479 * and move the raw page into its mapping.
1480 */
1481 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1482 {
1483 struct pagevec lru_pvec;
1484 struct page *page;
1485 char *kaddr;
1486 struct iattr attr;
1487 unsigned int pathlen = strlen(symname);
1488 int error;
1489
1490 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1491 dir->i_ino, dentry->d_name.name, symname);
1492
1493 if (pathlen > PAGE_SIZE)
1494 return -ENAMETOOLONG;
1495
1496 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1497 attr.ia_valid = ATTR_MODE;
1498
1499 lock_kernel();
1500
1501 page = alloc_page(GFP_KERNEL);
1502 if (!page) {
1503 unlock_kernel();
1504 return -ENOMEM;
1505 }
1506
1507 kaddr = kmap_atomic(page, KM_USER0);
1508 memcpy(kaddr, symname, pathlen);
1509 if (pathlen < PAGE_SIZE)
1510 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1511 kunmap_atomic(kaddr, KM_USER0);
1512
1513 nfs_begin_data_update(dir);
1514 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1515 nfs_end_data_update(dir);
1516 if (error != 0) {
1517 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1518 dir->i_sb->s_id, dir->i_ino,
1519 dentry->d_name.name, symname, error);
1520 d_drop(dentry);
1521 __free_page(page);
1522 unlock_kernel();
1523 return error;
1524 }
1525
1526 /*
1527 * No big deal if we can't add this page to the page cache here.
1528 * READLINK will get the missing page from the server if needed.
1529 */
1530 pagevec_init(&lru_pvec, 0);
1531 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1532 GFP_KERNEL)) {
1533 pagevec_add(&lru_pvec, page);
1534 pagevec_lru_add(&lru_pvec);
1535 SetPageUptodate(page);
1536 unlock_page(page);
1537 } else
1538 __free_page(page);
1539
1540 unlock_kernel();
1541 return 0;
1542 }
1543
1544 static int
1545 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1546 {
1547 struct inode *inode = old_dentry->d_inode;
1548 int error;
1549
1550 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1551 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1552 dentry->d_parent->d_name.name, dentry->d_name.name);
1553
1554 lock_kernel();
1555 nfs_begin_data_update(dir);
1556 nfs_begin_data_update(inode);
1557 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1558 if (error == 0) {
1559 atomic_inc(&inode->i_count);
1560 d_instantiate(dentry, inode);
1561 }
1562 nfs_end_data_update(inode);
1563 nfs_end_data_update(dir);
1564 unlock_kernel();
1565 return error;
1566 }
1567
1568 /*
1569 * RENAME
1570 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1571 * different file handle for the same inode after a rename (e.g. when
1572 * moving to a different directory). A fail-safe method to do so would
1573 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1574 * rename the old file using the sillyrename stuff. This way, the original
1575 * file in old_dir will go away when the last process iput()s the inode.
1576 *
1577 * FIXED.
1578 *
1579 * It actually works quite well. One needs to have the possibility for
1580 * at least one ".nfs..." file in each directory the file ever gets
1581 * moved or linked to which happens automagically with the new
1582 * implementation that only depends on the dcache stuff instead of
1583 * using the inode layer
1584 *
1585 * Unfortunately, things are a little more complicated than indicated
1586 * above. For a cross-directory move, we want to make sure we can get
1587 * rid of the old inode after the operation. This means there must be
1588 * no pending writes (if it's a file), and the use count must be 1.
1589 * If these conditions are met, we can drop the dentries before doing
1590 * the rename.
1591 */
1592 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1593 struct inode *new_dir, struct dentry *new_dentry)
1594 {
1595 struct inode *old_inode = old_dentry->d_inode;
1596 struct inode *new_inode = new_dentry->d_inode;
1597 struct dentry *dentry = NULL, *rehash = NULL;
1598 int error = -EBUSY;
1599
1600 /*
1601 * To prevent any new references to the target during the rename,
1602 * we unhash the dentry and free the inode in advance.
1603 */
1604 lock_kernel();
1605 if (!d_unhashed(new_dentry)) {
1606 d_drop(new_dentry);
1607 rehash = new_dentry;
1608 }
1609
1610 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1611 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1612 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1613 atomic_read(&new_dentry->d_count));
1614
1615 /*
1616 * First check whether the target is busy ... we can't
1617 * safely do _any_ rename if the target is in use.
1618 *
1619 * For files, make a copy of the dentry and then do a
1620 * silly-rename. If the silly-rename succeeds, the
1621 * copied dentry is hashed and becomes the new target.
1622 */
1623 if (!new_inode)
1624 goto go_ahead;
1625 if (S_ISDIR(new_inode->i_mode)) {
1626 error = -EISDIR;
1627 if (!S_ISDIR(old_inode->i_mode))
1628 goto out;
1629 } else if (atomic_read(&new_dentry->d_count) > 2) {
1630 int err;
1631 /* copy the target dentry's name */
1632 dentry = d_alloc(new_dentry->d_parent,
1633 &new_dentry->d_name);
1634 if (!dentry)
1635 goto out;
1636
1637 /* silly-rename the existing target ... */
1638 err = nfs_sillyrename(new_dir, new_dentry);
1639 if (!err) {
1640 new_dentry = rehash = dentry;
1641 new_inode = NULL;
1642 /* instantiate the replacement target */
1643 d_instantiate(new_dentry, NULL);
1644 } else if (atomic_read(&new_dentry->d_count) > 1) {
1645 /* dentry still busy? */
1646 #ifdef NFS_PARANOIA
1647 printk("nfs_rename: target %s/%s busy, d_count=%d\n",
1648 new_dentry->d_parent->d_name.name,
1649 new_dentry->d_name.name,
1650 atomic_read(&new_dentry->d_count));
1651 #endif
1652 goto out;
1653 }
1654 } else
1655 drop_nlink(new_inode);
1656
1657 go_ahead:
1658 /*
1659 * ... prune child dentries and writebacks if needed.
1660 */
1661 if (atomic_read(&old_dentry->d_count) > 1) {
1662 nfs_wb_all(old_inode);
1663 shrink_dcache_parent(old_dentry);
1664 }
1665 nfs_inode_return_delegation(old_inode);
1666
1667 if (new_inode != NULL) {
1668 nfs_inode_return_delegation(new_inode);
1669 d_delete(new_dentry);
1670 }
1671
1672 nfs_begin_data_update(old_dir);
1673 nfs_begin_data_update(new_dir);
1674 nfs_begin_data_update(old_inode);
1675 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1676 new_dir, &new_dentry->d_name);
1677 nfs_mark_for_revalidate(old_inode);
1678 nfs_end_data_update(old_inode);
1679 nfs_end_data_update(new_dir);
1680 nfs_end_data_update(old_dir);
1681 out:
1682 if (rehash)
1683 d_rehash(rehash);
1684 if (!error) {
1685 d_move(old_dentry, new_dentry);
1686 nfs_renew_times(new_dentry);
1687 nfs_set_verifier(new_dentry, nfs_save_change_attribute(new_dir));
1688 }
1689
1690 /* new dentry created? */
1691 if (dentry)
1692 dput(dentry);
1693 unlock_kernel();
1694 return error;
1695 }
1696
1697 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1698 static LIST_HEAD(nfs_access_lru_list);
1699 static atomic_long_t nfs_access_nr_entries;
1700
1701 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1702 {
1703 put_rpccred(entry->cred);
1704 kfree(entry);
1705 smp_mb__before_atomic_dec();
1706 atomic_long_dec(&nfs_access_nr_entries);
1707 smp_mb__after_atomic_dec();
1708 }
1709
1710 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1711 {
1712 LIST_HEAD(head);
1713 struct nfs_inode *nfsi;
1714 struct nfs_access_entry *cache;
1715
1716 spin_lock(&nfs_access_lru_lock);
1717 restart:
1718 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1719 struct inode *inode;
1720
1721 if (nr_to_scan-- == 0)
1722 break;
1723 inode = igrab(&nfsi->vfs_inode);
1724 if (inode == NULL)
1725 continue;
1726 spin_lock(&inode->i_lock);
1727 if (list_empty(&nfsi->access_cache_entry_lru))
1728 goto remove_lru_entry;
1729 cache = list_entry(nfsi->access_cache_entry_lru.next,
1730 struct nfs_access_entry, lru);
1731 list_move(&cache->lru, &head);
1732 rb_erase(&cache->rb_node, &nfsi->access_cache);
1733 if (!list_empty(&nfsi->access_cache_entry_lru))
1734 list_move_tail(&nfsi->access_cache_inode_lru,
1735 &nfs_access_lru_list);
1736 else {
1737 remove_lru_entry:
1738 list_del_init(&nfsi->access_cache_inode_lru);
1739 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1740 }
1741 spin_unlock(&inode->i_lock);
1742 iput(inode);
1743 goto restart;
1744 }
1745 spin_unlock(&nfs_access_lru_lock);
1746 while (!list_empty(&head)) {
1747 cache = list_entry(head.next, struct nfs_access_entry, lru);
1748 list_del(&cache->lru);
1749 nfs_access_free_entry(cache);
1750 }
1751 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1752 }
1753
1754 static void __nfs_access_zap_cache(struct inode *inode)
1755 {
1756 struct nfs_inode *nfsi = NFS_I(inode);
1757 struct rb_root *root_node = &nfsi->access_cache;
1758 struct rb_node *n, *dispose = NULL;
1759 struct nfs_access_entry *entry;
1760
1761 /* Unhook entries from the cache */
1762 while ((n = rb_first(root_node)) != NULL) {
1763 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1764 rb_erase(n, root_node);
1765 list_del(&entry->lru);
1766 n->rb_left = dispose;
1767 dispose = n;
1768 }
1769 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1770 spin_unlock(&inode->i_lock);
1771
1772 /* Now kill them all! */
1773 while (dispose != NULL) {
1774 n = dispose;
1775 dispose = n->rb_left;
1776 nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1777 }
1778 }
1779
1780 void nfs_access_zap_cache(struct inode *inode)
1781 {
1782 /* Remove from global LRU init */
1783 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1784 spin_lock(&nfs_access_lru_lock);
1785 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1786 spin_unlock(&nfs_access_lru_lock);
1787 }
1788
1789 spin_lock(&inode->i_lock);
1790 /* This will release the spinlock */
1791 __nfs_access_zap_cache(inode);
1792 }
1793
1794 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1795 {
1796 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1797 struct nfs_access_entry *entry;
1798
1799 while (n != NULL) {
1800 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1801
1802 if (cred < entry->cred)
1803 n = n->rb_left;
1804 else if (cred > entry->cred)
1805 n = n->rb_right;
1806 else
1807 return entry;
1808 }
1809 return NULL;
1810 }
1811
1812 int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1813 {
1814 struct nfs_inode *nfsi = NFS_I(inode);
1815 struct nfs_access_entry *cache;
1816 int err = -ENOENT;
1817
1818 spin_lock(&inode->i_lock);
1819 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1820 goto out_zap;
1821 cache = nfs_access_search_rbtree(inode, cred);
1822 if (cache == NULL)
1823 goto out;
1824 if (time_after(jiffies, cache->jiffies + NFS_ATTRTIMEO(inode)))
1825 goto out_stale;
1826 res->jiffies = cache->jiffies;
1827 res->cred = cache->cred;
1828 res->mask = cache->mask;
1829 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1830 err = 0;
1831 out:
1832 spin_unlock(&inode->i_lock);
1833 return err;
1834 out_stale:
1835 rb_erase(&cache->rb_node, &nfsi->access_cache);
1836 list_del(&cache->lru);
1837 spin_unlock(&inode->i_lock);
1838 nfs_access_free_entry(cache);
1839 return -ENOENT;
1840 out_zap:
1841 /* This will release the spinlock */
1842 __nfs_access_zap_cache(inode);
1843 return -ENOENT;
1844 }
1845
1846 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1847 {
1848 struct nfs_inode *nfsi = NFS_I(inode);
1849 struct rb_root *root_node = &nfsi->access_cache;
1850 struct rb_node **p = &root_node->rb_node;
1851 struct rb_node *parent = NULL;
1852 struct nfs_access_entry *entry;
1853
1854 spin_lock(&inode->i_lock);
1855 while (*p != NULL) {
1856 parent = *p;
1857 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1858
1859 if (set->cred < entry->cred)
1860 p = &parent->rb_left;
1861 else if (set->cred > entry->cred)
1862 p = &parent->rb_right;
1863 else
1864 goto found;
1865 }
1866 rb_link_node(&set->rb_node, parent, p);
1867 rb_insert_color(&set->rb_node, root_node);
1868 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1869 spin_unlock(&inode->i_lock);
1870 return;
1871 found:
1872 rb_replace_node(parent, &set->rb_node, root_node);
1873 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1874 list_del(&entry->lru);
1875 spin_unlock(&inode->i_lock);
1876 nfs_access_free_entry(entry);
1877 }
1878
1879 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1880 {
1881 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1882 if (cache == NULL)
1883 return;
1884 RB_CLEAR_NODE(&cache->rb_node);
1885 cache->jiffies = set->jiffies;
1886 cache->cred = get_rpccred(set->cred);
1887 cache->mask = set->mask;
1888
1889 nfs_access_add_rbtree(inode, cache);
1890
1891 /* Update accounting */
1892 smp_mb__before_atomic_inc();
1893 atomic_long_inc(&nfs_access_nr_entries);
1894 smp_mb__after_atomic_inc();
1895
1896 /* Add inode to global LRU list */
1897 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1898 spin_lock(&nfs_access_lru_lock);
1899 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1900 spin_unlock(&nfs_access_lru_lock);
1901 }
1902 }
1903
1904 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1905 {
1906 struct nfs_access_entry cache;
1907 int status;
1908
1909 status = nfs_access_get_cached(inode, cred, &cache);
1910 if (status == 0)
1911 goto out;
1912
1913 /* Be clever: ask server to check for all possible rights */
1914 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1915 cache.cred = cred;
1916 cache.jiffies = jiffies;
1917 status = NFS_PROTO(inode)->access(inode, &cache);
1918 if (status != 0)
1919 return status;
1920 nfs_access_add_cache(inode, &cache);
1921 out:
1922 if ((cache.mask & mask) == mask)
1923 return 0;
1924 return -EACCES;
1925 }
1926
1927 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
1928 {
1929 struct rpc_cred *cred;
1930 int res = 0;
1931
1932 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1933
1934 if (mask == 0)
1935 goto out;
1936 /* Is this sys_access() ? */
1937 if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
1938 goto force_lookup;
1939
1940 switch (inode->i_mode & S_IFMT) {
1941 case S_IFLNK:
1942 goto out;
1943 case S_IFREG:
1944 /* NFSv4 has atomic_open... */
1945 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1946 && nd != NULL
1947 && (nd->flags & LOOKUP_OPEN))
1948 goto out;
1949 break;
1950 case S_IFDIR:
1951 /*
1952 * Optimize away all write operations, since the server
1953 * will check permissions when we perform the op.
1954 */
1955 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1956 goto out;
1957 }
1958
1959 force_lookup:
1960 lock_kernel();
1961
1962 if (!NFS_PROTO(inode)->access)
1963 goto out_notsup;
1964
1965 cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1966 if (!IS_ERR(cred)) {
1967 res = nfs_do_access(inode, cred, mask);
1968 put_rpccred(cred);
1969 } else
1970 res = PTR_ERR(cred);
1971 unlock_kernel();
1972 out:
1973 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1974 inode->i_sb->s_id, inode->i_ino, mask, res);
1975 return res;
1976 out_notsup:
1977 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1978 if (res == 0)
1979 res = generic_permission(inode, mask, NULL);
1980 unlock_kernel();
1981 goto out;
1982 }
1983
1984 /*
1985 * Local variables:
1986 * version-control: t
1987 * kept-new-versions: 5
1988 * End:
1989 */