]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/nfs/dir.c
Merge branch 'drm-etnaviv-fixes' of git://git.pengutronix.de/lst/linux into drm-fixes
[mirror_ubuntu-artful-kernel.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45
46 #include "nfstrace.h"
47
48 /* #define NFS_DEBUG_VERBOSE 1 */
49
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56
57 const struct file_operations nfs_dir_operations = {
58 .llseek = nfs_llseek_dir,
59 .read = generic_read_dir,
60 .iterate_shared = nfs_readdir,
61 .open = nfs_opendir,
62 .release = nfs_closedir,
63 .fsync = nfs_fsync_dir,
64 };
65
66 const struct address_space_operations nfs_dir_aops = {
67 .freepage = nfs_readdir_clear_array,
68 };
69
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71 {
72 struct nfs_inode *nfsi = NFS_I(dir);
73 struct nfs_open_dir_context *ctx;
74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 if (ctx != NULL) {
76 ctx->duped = 0;
77 ctx->attr_gencount = nfsi->attr_gencount;
78 ctx->dir_cookie = 0;
79 ctx->dup_cookie = 0;
80 ctx->cred = get_rpccred(cred);
81 spin_lock(&dir->i_lock);
82 list_add(&ctx->list, &nfsi->open_files);
83 spin_unlock(&dir->i_lock);
84 return ctx;
85 }
86 return ERR_PTR(-ENOMEM);
87 }
88
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 spin_lock(&dir->i_lock);
92 list_del(&ctx->list);
93 spin_unlock(&dir->i_lock);
94 put_rpccred(ctx->cred);
95 kfree(ctx);
96 }
97
98 /*
99 * Open file
100 */
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 int res = 0;
105 struct nfs_open_dir_context *ctx;
106 struct rpc_cred *cred;
107
108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109
110 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111
112 cred = rpc_lookup_cred();
113 if (IS_ERR(cred))
114 return PTR_ERR(cred);
115 ctx = alloc_nfs_open_dir_context(inode, cred);
116 if (IS_ERR(ctx)) {
117 res = PTR_ERR(ctx);
118 goto out;
119 }
120 filp->private_data = ctx;
121 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 /* This is a mountpoint, so d_revalidate will never
123 * have been called, so we need to refresh the
124 * inode (for close-open consistency) ourselves.
125 */
126 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
127 }
128 out:
129 put_rpccred(cred);
130 return res;
131 }
132
133 static int
134 nfs_closedir(struct inode *inode, struct file *filp)
135 {
136 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
137 return 0;
138 }
139
140 struct nfs_cache_array_entry {
141 u64 cookie;
142 u64 ino;
143 struct qstr string;
144 unsigned char d_type;
145 };
146
147 struct nfs_cache_array {
148 atomic_t refcount;
149 int size;
150 int eof_index;
151 u64 last_cookie;
152 struct nfs_cache_array_entry array[0];
153 };
154
155 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
156 typedef struct {
157 struct file *file;
158 struct page *page;
159 struct dir_context *ctx;
160 unsigned long page_index;
161 u64 *dir_cookie;
162 u64 last_cookie;
163 loff_t current_index;
164 decode_dirent_t decode;
165
166 unsigned long timestamp;
167 unsigned long gencount;
168 unsigned int cache_entry_index;
169 unsigned int plus:1;
170 unsigned int eof:1;
171 } nfs_readdir_descriptor_t;
172
173 /*
174 * The caller is responsible for calling nfs_readdir_release_array(page)
175 */
176 static
177 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
178 {
179 void *ptr;
180 if (page == NULL)
181 return ERR_PTR(-EIO);
182 ptr = kmap(page);
183 if (ptr == NULL)
184 return ERR_PTR(-ENOMEM);
185 return ptr;
186 }
187
188 static
189 void nfs_readdir_release_array(struct page *page)
190 {
191 kunmap(page);
192 }
193
194 /*
195 * we are freeing strings created by nfs_add_to_readdir_array()
196 */
197 static
198 void nfs_readdir_clear_array(struct page *page)
199 {
200 struct nfs_cache_array *array;
201 int i;
202
203 array = kmap_atomic(page);
204 if (atomic_dec_and_test(&array->refcount))
205 for (i = 0; i < array->size; i++)
206 kfree(array->array[i].string.name);
207 kunmap_atomic(array);
208 }
209
210 static bool grab_page(struct page *page)
211 {
212 struct nfs_cache_array *array = kmap_atomic(page);
213 bool res = atomic_inc_not_zero(&array->refcount);
214 kunmap_atomic(array);
215 return res;
216 }
217
218 /*
219 * the caller is responsible for freeing qstr.name
220 * when called by nfs_readdir_add_to_array, the strings will be freed in
221 * nfs_clear_readdir_array()
222 */
223 static
224 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
225 {
226 string->len = len;
227 string->name = kmemdup(name, len, GFP_KERNEL);
228 if (string->name == NULL)
229 return -ENOMEM;
230 /*
231 * Avoid a kmemleak false positive. The pointer to the name is stored
232 * in a page cache page which kmemleak does not scan.
233 */
234 kmemleak_not_leak(string->name);
235 string->hash = full_name_hash(NULL, name, len);
236 return 0;
237 }
238
239 static
240 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
241 {
242 struct nfs_cache_array *array = nfs_readdir_get_array(page);
243 struct nfs_cache_array_entry *cache_entry;
244 int ret;
245
246 if (IS_ERR(array))
247 return PTR_ERR(array);
248
249 cache_entry = &array->array[array->size];
250
251 /* Check that this entry lies within the page bounds */
252 ret = -ENOSPC;
253 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
254 goto out;
255
256 cache_entry->cookie = entry->prev_cookie;
257 cache_entry->ino = entry->ino;
258 cache_entry->d_type = entry->d_type;
259 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
260 if (ret)
261 goto out;
262 array->last_cookie = entry->cookie;
263 array->size++;
264 if (entry->eof != 0)
265 array->eof_index = array->size;
266 out:
267 nfs_readdir_release_array(page);
268 return ret;
269 }
270
271 static
272 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
273 {
274 loff_t diff = desc->ctx->pos - desc->current_index;
275 unsigned int index;
276
277 if (diff < 0)
278 goto out_eof;
279 if (diff >= array->size) {
280 if (array->eof_index >= 0)
281 goto out_eof;
282 return -EAGAIN;
283 }
284
285 index = (unsigned int)diff;
286 *desc->dir_cookie = array->array[index].cookie;
287 desc->cache_entry_index = index;
288 return 0;
289 out_eof:
290 desc->eof = 1;
291 return -EBADCOOKIE;
292 }
293
294 static bool
295 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
296 {
297 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
298 return false;
299 smp_rmb();
300 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
301 }
302
303 static
304 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
305 {
306 int i;
307 loff_t new_pos;
308 int status = -EAGAIN;
309
310 for (i = 0; i < array->size; i++) {
311 if (array->array[i].cookie == *desc->dir_cookie) {
312 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
313 struct nfs_open_dir_context *ctx = desc->file->private_data;
314
315 new_pos = desc->current_index + i;
316 if (ctx->attr_gencount != nfsi->attr_gencount ||
317 !nfs_readdir_inode_mapping_valid(nfsi)) {
318 ctx->duped = 0;
319 ctx->attr_gencount = nfsi->attr_gencount;
320 } else if (new_pos < desc->ctx->pos) {
321 if (ctx->duped > 0
322 && ctx->dup_cookie == *desc->dir_cookie) {
323 if (printk_ratelimit()) {
324 pr_notice("NFS: directory %pD2 contains a readdir loop."
325 "Please contact your server vendor. "
326 "The file: %.*s has duplicate cookie %llu\n",
327 desc->file, array->array[i].string.len,
328 array->array[i].string.name, *desc->dir_cookie);
329 }
330 status = -ELOOP;
331 goto out;
332 }
333 ctx->dup_cookie = *desc->dir_cookie;
334 ctx->duped = -1;
335 }
336 desc->ctx->pos = new_pos;
337 desc->cache_entry_index = i;
338 return 0;
339 }
340 }
341 if (array->eof_index >= 0) {
342 status = -EBADCOOKIE;
343 if (*desc->dir_cookie == array->last_cookie)
344 desc->eof = 1;
345 }
346 out:
347 return status;
348 }
349
350 static
351 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
352 {
353 struct nfs_cache_array *array;
354 int status;
355
356 array = nfs_readdir_get_array(desc->page);
357 if (IS_ERR(array)) {
358 status = PTR_ERR(array);
359 goto out;
360 }
361
362 if (*desc->dir_cookie == 0)
363 status = nfs_readdir_search_for_pos(array, desc);
364 else
365 status = nfs_readdir_search_for_cookie(array, desc);
366
367 if (status == -EAGAIN) {
368 desc->last_cookie = array->last_cookie;
369 desc->current_index += array->size;
370 desc->page_index++;
371 }
372 nfs_readdir_release_array(desc->page);
373 out:
374 return status;
375 }
376
377 /* Fill a page with xdr information before transferring to the cache page */
378 static
379 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
380 struct nfs_entry *entry, struct file *file, struct inode *inode)
381 {
382 struct nfs_open_dir_context *ctx = file->private_data;
383 struct rpc_cred *cred = ctx->cred;
384 unsigned long timestamp, gencount;
385 int error;
386
387 again:
388 timestamp = jiffies;
389 gencount = nfs_inc_attr_generation_counter();
390 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
391 NFS_SERVER(inode)->dtsize, desc->plus);
392 if (error < 0) {
393 /* We requested READDIRPLUS, but the server doesn't grok it */
394 if (error == -ENOTSUPP && desc->plus) {
395 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
396 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
397 desc->plus = 0;
398 goto again;
399 }
400 goto error;
401 }
402 desc->timestamp = timestamp;
403 desc->gencount = gencount;
404 error:
405 return error;
406 }
407
408 static int xdr_decode(nfs_readdir_descriptor_t *desc,
409 struct nfs_entry *entry, struct xdr_stream *xdr)
410 {
411 int error;
412
413 error = desc->decode(xdr, entry, desc->plus);
414 if (error)
415 return error;
416 entry->fattr->time_start = desc->timestamp;
417 entry->fattr->gencount = desc->gencount;
418 return 0;
419 }
420
421 /* Match file and dirent using either filehandle or fileid
422 * Note: caller is responsible for checking the fsid
423 */
424 static
425 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
426 {
427 struct inode *inode;
428 struct nfs_inode *nfsi;
429
430 if (d_really_is_negative(dentry))
431 return 0;
432
433 inode = d_inode(dentry);
434 if (is_bad_inode(inode) || NFS_STALE(inode))
435 return 0;
436
437 nfsi = NFS_I(inode);
438 if (entry->fattr->fileid != nfsi->fileid)
439 return 0;
440 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
441 return 0;
442 return 1;
443 }
444
445 static
446 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
447 {
448 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
449 return false;
450 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
451 return true;
452 if (ctx->pos == 0)
453 return true;
454 return false;
455 }
456
457 /*
458 * This function is called by the lookup code to request the use of
459 * readdirplus to accelerate any future lookups in the same
460 * directory.
461 */
462 static
463 void nfs_advise_use_readdirplus(struct inode *dir)
464 {
465 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
466 }
467
468 /*
469 * This function is mainly for use by nfs_getattr().
470 *
471 * If this is an 'ls -l', we want to force use of readdirplus.
472 * Do this by checking if there is an active file descriptor
473 * and calling nfs_advise_use_readdirplus, then forcing a
474 * cache flush.
475 */
476 void nfs_force_use_readdirplus(struct inode *dir)
477 {
478 if (!list_empty(&NFS_I(dir)->open_files)) {
479 nfs_advise_use_readdirplus(dir);
480 nfs_zap_mapping(dir, dir->i_mapping);
481 }
482 }
483
484 static
485 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
486 {
487 struct qstr filename = QSTR_INIT(entry->name, entry->len);
488 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
489 struct dentry *dentry;
490 struct dentry *alias;
491 struct inode *dir = d_inode(parent);
492 struct inode *inode;
493 int status;
494
495 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
496 return;
497 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
498 return;
499 if (filename.len == 0)
500 return;
501 /* Validate that the name doesn't contain any illegal '\0' */
502 if (strnlen(filename.name, filename.len) != filename.len)
503 return;
504 /* ...or '/' */
505 if (strnchr(filename.name, filename.len, '/'))
506 return;
507 if (filename.name[0] == '.') {
508 if (filename.len == 1)
509 return;
510 if (filename.len == 2 && filename.name[1] == '.')
511 return;
512 }
513 filename.hash = full_name_hash(parent, filename.name, filename.len);
514
515 dentry = d_lookup(parent, &filename);
516 again:
517 if (!dentry) {
518 dentry = d_alloc_parallel(parent, &filename, &wq);
519 if (IS_ERR(dentry))
520 return;
521 }
522 if (!d_in_lookup(dentry)) {
523 /* Is there a mountpoint here? If so, just exit */
524 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
525 &entry->fattr->fsid))
526 goto out;
527 if (nfs_same_file(dentry, entry)) {
528 if (!entry->fh->size)
529 goto out;
530 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
531 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
532 if (!status)
533 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
534 goto out;
535 } else {
536 d_invalidate(dentry);
537 dput(dentry);
538 dentry = NULL;
539 goto again;
540 }
541 }
542 if (!entry->fh->size) {
543 d_lookup_done(dentry);
544 goto out;
545 }
546
547 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
548 alias = d_splice_alias(inode, dentry);
549 d_lookup_done(dentry);
550 if (alias) {
551 if (IS_ERR(alias))
552 goto out;
553 dput(dentry);
554 dentry = alias;
555 }
556 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
557 out:
558 dput(dentry);
559 }
560
561 /* Perform conversion from xdr to cache array */
562 static
563 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
564 struct page **xdr_pages, struct page *page, unsigned int buflen)
565 {
566 struct xdr_stream stream;
567 struct xdr_buf buf;
568 struct page *scratch;
569 struct nfs_cache_array *array;
570 unsigned int count = 0;
571 int status;
572
573 scratch = alloc_page(GFP_KERNEL);
574 if (scratch == NULL)
575 return -ENOMEM;
576
577 if (buflen == 0)
578 goto out_nopages;
579
580 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
581 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
582
583 do {
584 status = xdr_decode(desc, entry, &stream);
585 if (status != 0) {
586 if (status == -EAGAIN)
587 status = 0;
588 break;
589 }
590
591 count++;
592
593 if (desc->plus != 0)
594 nfs_prime_dcache(file_dentry(desc->file), entry);
595
596 status = nfs_readdir_add_to_array(entry, page);
597 if (status != 0)
598 break;
599 } while (!entry->eof);
600
601 out_nopages:
602 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
603 array = nfs_readdir_get_array(page);
604 if (!IS_ERR(array)) {
605 array->eof_index = array->size;
606 status = 0;
607 nfs_readdir_release_array(page);
608 } else
609 status = PTR_ERR(array);
610 }
611
612 put_page(scratch);
613 return status;
614 }
615
616 static
617 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
618 {
619 unsigned int i;
620 for (i = 0; i < npages; i++)
621 put_page(pages[i]);
622 }
623
624 /*
625 * nfs_readdir_large_page will allocate pages that must be freed with a call
626 * to nfs_readdir_free_pagearray
627 */
628 static
629 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
630 {
631 unsigned int i;
632
633 for (i = 0; i < npages; i++) {
634 struct page *page = alloc_page(GFP_KERNEL);
635 if (page == NULL)
636 goto out_freepages;
637 pages[i] = page;
638 }
639 return 0;
640
641 out_freepages:
642 nfs_readdir_free_pages(pages, i);
643 return -ENOMEM;
644 }
645
646 static
647 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
648 {
649 struct page *pages[NFS_MAX_READDIR_PAGES];
650 struct nfs_entry entry;
651 struct file *file = desc->file;
652 struct nfs_cache_array *array;
653 int status = -ENOMEM;
654 unsigned int array_size = ARRAY_SIZE(pages);
655
656 entry.prev_cookie = 0;
657 entry.cookie = desc->last_cookie;
658 entry.eof = 0;
659 entry.fh = nfs_alloc_fhandle();
660 entry.fattr = nfs_alloc_fattr();
661 entry.server = NFS_SERVER(inode);
662 if (entry.fh == NULL || entry.fattr == NULL)
663 goto out;
664
665 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
666 if (IS_ERR(entry.label)) {
667 status = PTR_ERR(entry.label);
668 goto out;
669 }
670
671 array = nfs_readdir_get_array(page);
672 if (IS_ERR(array)) {
673 status = PTR_ERR(array);
674 goto out_label_free;
675 }
676 memset(array, 0, sizeof(struct nfs_cache_array));
677 atomic_set(&array->refcount, 1);
678 array->eof_index = -1;
679
680 status = nfs_readdir_alloc_pages(pages, array_size);
681 if (status < 0)
682 goto out_release_array;
683 do {
684 unsigned int pglen;
685 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
686
687 if (status < 0)
688 break;
689 pglen = status;
690 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
691 if (status < 0) {
692 if (status == -ENOSPC)
693 status = 0;
694 break;
695 }
696 } while (array->eof_index < 0);
697
698 nfs_readdir_free_pages(pages, array_size);
699 out_release_array:
700 nfs_readdir_release_array(page);
701 out_label_free:
702 nfs4_label_free(entry.label);
703 out:
704 nfs_free_fattr(entry.fattr);
705 nfs_free_fhandle(entry.fh);
706 return status;
707 }
708
709 /*
710 * Now we cache directories properly, by converting xdr information
711 * to an array that can be used for lookups later. This results in
712 * fewer cache pages, since we can store more information on each page.
713 * We only need to convert from xdr once so future lookups are much simpler
714 */
715 static
716 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
717 {
718 struct inode *inode = file_inode(desc->file);
719 int ret;
720
721 ret = nfs_readdir_xdr_to_array(desc, page, inode);
722 if (ret < 0)
723 goto error;
724 SetPageUptodate(page);
725
726 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
727 /* Should never happen */
728 nfs_zap_mapping(inode, inode->i_mapping);
729 }
730 unlock_page(page);
731 return 0;
732 error:
733 unlock_page(page);
734 return ret;
735 }
736
737 static
738 void cache_page_release(nfs_readdir_descriptor_t *desc)
739 {
740 nfs_readdir_clear_array(desc->page);
741 put_page(desc->page);
742 desc->page = NULL;
743 }
744
745 static
746 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
747 {
748 struct page *page;
749
750 for (;;) {
751 page = read_cache_page(desc->file->f_mapping,
752 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
753 if (IS_ERR(page) || grab_page(page))
754 break;
755 put_page(page);
756 }
757 return page;
758 }
759
760 /*
761 * Returns 0 if desc->dir_cookie was found on page desc->page_index
762 */
763 static
764 int find_cache_page(nfs_readdir_descriptor_t *desc)
765 {
766 int res;
767
768 desc->page = get_cache_page(desc);
769 if (IS_ERR(desc->page))
770 return PTR_ERR(desc->page);
771
772 res = nfs_readdir_search_array(desc);
773 if (res != 0)
774 cache_page_release(desc);
775 return res;
776 }
777
778 /* Search for desc->dir_cookie from the beginning of the page cache */
779 static inline
780 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
781 {
782 int res;
783
784 if (desc->page_index == 0) {
785 desc->current_index = 0;
786 desc->last_cookie = 0;
787 }
788 do {
789 res = find_cache_page(desc);
790 } while (res == -EAGAIN);
791 return res;
792 }
793
794 /*
795 * Once we've found the start of the dirent within a page: fill 'er up...
796 */
797 static
798 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
799 {
800 struct file *file = desc->file;
801 int i = 0;
802 int res = 0;
803 struct nfs_cache_array *array = NULL;
804 struct nfs_open_dir_context *ctx = file->private_data;
805
806 array = nfs_readdir_get_array(desc->page);
807 if (IS_ERR(array)) {
808 res = PTR_ERR(array);
809 goto out;
810 }
811
812 for (i = desc->cache_entry_index; i < array->size; i++) {
813 struct nfs_cache_array_entry *ent;
814
815 ent = &array->array[i];
816 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
817 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
818 desc->eof = 1;
819 break;
820 }
821 desc->ctx->pos++;
822 if (i < (array->size-1))
823 *desc->dir_cookie = array->array[i+1].cookie;
824 else
825 *desc->dir_cookie = array->last_cookie;
826 if (ctx->duped != 0)
827 ctx->duped = 1;
828 }
829 if (array->eof_index >= 0)
830 desc->eof = 1;
831
832 nfs_readdir_release_array(desc->page);
833 out:
834 cache_page_release(desc);
835 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
836 (unsigned long long)*desc->dir_cookie, res);
837 return res;
838 }
839
840 /*
841 * If we cannot find a cookie in our cache, we suspect that this is
842 * because it points to a deleted file, so we ask the server to return
843 * whatever it thinks is the next entry. We then feed this to filldir.
844 * If all goes well, we should then be able to find our way round the
845 * cache on the next call to readdir_search_pagecache();
846 *
847 * NOTE: we cannot add the anonymous page to the pagecache because
848 * the data it contains might not be page aligned. Besides,
849 * we should already have a complete representation of the
850 * directory in the page cache by the time we get here.
851 */
852 static inline
853 int uncached_readdir(nfs_readdir_descriptor_t *desc)
854 {
855 struct page *page = NULL;
856 int status;
857 struct inode *inode = file_inode(desc->file);
858 struct nfs_open_dir_context *ctx = desc->file->private_data;
859
860 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
861 (unsigned long long)*desc->dir_cookie);
862
863 page = alloc_page(GFP_HIGHUSER);
864 if (!page) {
865 status = -ENOMEM;
866 goto out;
867 }
868
869 desc->page_index = 0;
870 desc->last_cookie = *desc->dir_cookie;
871 desc->page = page;
872 ctx->duped = 0;
873
874 status = nfs_readdir_xdr_to_array(desc, page, inode);
875 if (status < 0)
876 goto out_release;
877
878 status = nfs_do_filldir(desc);
879
880 out:
881 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
882 __func__, status);
883 return status;
884 out_release:
885 cache_page_release(desc);
886 goto out;
887 }
888
889 static bool nfs_dir_mapping_need_revalidate(struct inode *dir)
890 {
891 struct nfs_inode *nfsi = NFS_I(dir);
892
893 if (nfs_attribute_cache_expired(dir))
894 return true;
895 if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
896 return true;
897 return false;
898 }
899
900 /* The file offset position represents the dirent entry number. A
901 last cookie cache takes care of the common case of reading the
902 whole directory.
903 */
904 static int nfs_readdir(struct file *file, struct dir_context *ctx)
905 {
906 struct dentry *dentry = file_dentry(file);
907 struct inode *inode = d_inode(dentry);
908 nfs_readdir_descriptor_t my_desc,
909 *desc = &my_desc;
910 struct nfs_open_dir_context *dir_ctx = file->private_data;
911 int res = 0;
912
913 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
914 file, (long long)ctx->pos);
915 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
916
917 /*
918 * ctx->pos points to the dirent entry number.
919 * *desc->dir_cookie has the cookie for the next entry. We have
920 * to either find the entry with the appropriate number or
921 * revalidate the cookie.
922 */
923 memset(desc, 0, sizeof(*desc));
924
925 desc->file = file;
926 desc->ctx = ctx;
927 desc->dir_cookie = &dir_ctx->dir_cookie;
928 desc->decode = NFS_PROTO(inode)->decode_dirent;
929 desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
930
931 if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode))
932 res = nfs_revalidate_mapping(inode, file->f_mapping);
933 if (res < 0)
934 goto out;
935
936 do {
937 res = readdir_search_pagecache(desc);
938
939 if (res == -EBADCOOKIE) {
940 res = 0;
941 /* This means either end of directory */
942 if (*desc->dir_cookie && desc->eof == 0) {
943 /* Or that the server has 'lost' a cookie */
944 res = uncached_readdir(desc);
945 if (res == 0)
946 continue;
947 }
948 break;
949 }
950 if (res == -ETOOSMALL && desc->plus) {
951 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
952 nfs_zap_caches(inode);
953 desc->page_index = 0;
954 desc->plus = 0;
955 desc->eof = 0;
956 continue;
957 }
958 if (res < 0)
959 break;
960
961 res = nfs_do_filldir(desc);
962 if (res < 0)
963 break;
964 } while (!desc->eof);
965 out:
966 if (res > 0)
967 res = 0;
968 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
969 return res;
970 }
971
972 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
973 {
974 struct nfs_open_dir_context *dir_ctx = filp->private_data;
975
976 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
977 filp, offset, whence);
978
979 switch (whence) {
980 case 1:
981 offset += filp->f_pos;
982 case 0:
983 if (offset >= 0)
984 break;
985 default:
986 return -EINVAL;
987 }
988 if (offset != filp->f_pos) {
989 filp->f_pos = offset;
990 dir_ctx->dir_cookie = 0;
991 dir_ctx->duped = 0;
992 }
993 return offset;
994 }
995
996 /*
997 * All directory operations under NFS are synchronous, so fsync()
998 * is a dummy operation.
999 */
1000 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1001 int datasync)
1002 {
1003 struct inode *inode = file_inode(filp);
1004
1005 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1006
1007 inode_lock(inode);
1008 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
1009 inode_unlock(inode);
1010 return 0;
1011 }
1012
1013 /**
1014 * nfs_force_lookup_revalidate - Mark the directory as having changed
1015 * @dir - pointer to directory inode
1016 *
1017 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1018 * full lookup on all child dentries of 'dir' whenever a change occurs
1019 * on the server that might have invalidated our dcache.
1020 *
1021 * The caller should be holding dir->i_lock
1022 */
1023 void nfs_force_lookup_revalidate(struct inode *dir)
1024 {
1025 NFS_I(dir)->cache_change_attribute++;
1026 }
1027 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1028
1029 /*
1030 * A check for whether or not the parent directory has changed.
1031 * In the case it has, we assume that the dentries are untrustworthy
1032 * and may need to be looked up again.
1033 * If rcu_walk prevents us from performing a full check, return 0.
1034 */
1035 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1036 int rcu_walk)
1037 {
1038 int ret;
1039
1040 if (IS_ROOT(dentry))
1041 return 1;
1042 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1043 return 0;
1044 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1045 return 0;
1046 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1047 if (rcu_walk)
1048 ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir);
1049 else
1050 ret = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1051 if (ret < 0)
1052 return 0;
1053 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1054 return 0;
1055 return 1;
1056 }
1057
1058 /*
1059 * Use intent information to check whether or not we're going to do
1060 * an O_EXCL create using this path component.
1061 */
1062 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1063 {
1064 if (NFS_PROTO(dir)->version == 2)
1065 return 0;
1066 return flags & LOOKUP_EXCL;
1067 }
1068
1069 /*
1070 * Inode and filehandle revalidation for lookups.
1071 *
1072 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1073 * or if the intent information indicates that we're about to open this
1074 * particular file and the "nocto" mount flag is not set.
1075 *
1076 */
1077 static
1078 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1079 {
1080 struct nfs_server *server = NFS_SERVER(inode);
1081 int ret;
1082
1083 if (IS_AUTOMOUNT(inode))
1084 return 0;
1085 /* VFS wants an on-the-wire revalidation */
1086 if (flags & LOOKUP_REVAL)
1087 goto out_force;
1088 /* This is an open(2) */
1089 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1090 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1091 goto out_force;
1092 out:
1093 return (inode->i_nlink == 0) ? -ENOENT : 0;
1094 out_force:
1095 if (flags & LOOKUP_RCU)
1096 return -ECHILD;
1097 ret = __nfs_revalidate_inode(server, inode);
1098 if (ret != 0)
1099 return ret;
1100 goto out;
1101 }
1102
1103 /*
1104 * We judge how long we want to trust negative
1105 * dentries by looking at the parent inode mtime.
1106 *
1107 * If parent mtime has changed, we revalidate, else we wait for a
1108 * period corresponding to the parent's attribute cache timeout value.
1109 *
1110 * If LOOKUP_RCU prevents us from performing a full check, return 1
1111 * suggesting a reval is needed.
1112 */
1113 static inline
1114 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1115 unsigned int flags)
1116 {
1117 /* Don't revalidate a negative dentry if we're creating a new file */
1118 if (flags & LOOKUP_CREATE)
1119 return 0;
1120 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1121 return 1;
1122 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1123 }
1124
1125 /*
1126 * This is called every time the dcache has a lookup hit,
1127 * and we should check whether we can really trust that
1128 * lookup.
1129 *
1130 * NOTE! The hit can be a negative hit too, don't assume
1131 * we have an inode!
1132 *
1133 * If the parent directory is seen to have changed, we throw out the
1134 * cached dentry and do a new lookup.
1135 */
1136 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1137 {
1138 struct inode *dir;
1139 struct inode *inode;
1140 struct dentry *parent;
1141 struct nfs_fh *fhandle = NULL;
1142 struct nfs_fattr *fattr = NULL;
1143 struct nfs4_label *label = NULL;
1144 int error;
1145
1146 if (flags & LOOKUP_RCU) {
1147 parent = ACCESS_ONCE(dentry->d_parent);
1148 dir = d_inode_rcu(parent);
1149 if (!dir)
1150 return -ECHILD;
1151 } else {
1152 parent = dget_parent(dentry);
1153 dir = d_inode(parent);
1154 }
1155 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1156 inode = d_inode(dentry);
1157
1158 if (!inode) {
1159 if (nfs_neg_need_reval(dir, dentry, flags)) {
1160 if (flags & LOOKUP_RCU)
1161 return -ECHILD;
1162 goto out_bad;
1163 }
1164 goto out_valid_noent;
1165 }
1166
1167 if (is_bad_inode(inode)) {
1168 if (flags & LOOKUP_RCU)
1169 return -ECHILD;
1170 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1171 __func__, dentry);
1172 goto out_bad;
1173 }
1174
1175 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1176 goto out_set_verifier;
1177
1178 /* Force a full look up iff the parent directory has changed */
1179 if (!nfs_is_exclusive_create(dir, flags) &&
1180 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1181
1182 if (nfs_lookup_verify_inode(inode, flags)) {
1183 if (flags & LOOKUP_RCU)
1184 return -ECHILD;
1185 goto out_zap_parent;
1186 }
1187 goto out_valid;
1188 }
1189
1190 if (flags & LOOKUP_RCU)
1191 return -ECHILD;
1192
1193 if (NFS_STALE(inode))
1194 goto out_bad;
1195
1196 error = -ENOMEM;
1197 fhandle = nfs_alloc_fhandle();
1198 fattr = nfs_alloc_fattr();
1199 if (fhandle == NULL || fattr == NULL)
1200 goto out_error;
1201
1202 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1203 if (IS_ERR(label))
1204 goto out_error;
1205
1206 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1207 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1208 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1209 if (error)
1210 goto out_bad;
1211 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1212 goto out_bad;
1213 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1214 goto out_bad;
1215
1216 nfs_setsecurity(inode, fattr, label);
1217
1218 nfs_free_fattr(fattr);
1219 nfs_free_fhandle(fhandle);
1220 nfs4_label_free(label);
1221
1222 out_set_verifier:
1223 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1224 out_valid:
1225 /* Success: notify readdir to use READDIRPLUS */
1226 nfs_advise_use_readdirplus(dir);
1227 out_valid_noent:
1228 if (flags & LOOKUP_RCU) {
1229 if (parent != ACCESS_ONCE(dentry->d_parent))
1230 return -ECHILD;
1231 } else
1232 dput(parent);
1233 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1234 __func__, dentry);
1235 return 1;
1236 out_zap_parent:
1237 nfs_zap_caches(dir);
1238 out_bad:
1239 WARN_ON(flags & LOOKUP_RCU);
1240 nfs_free_fattr(fattr);
1241 nfs_free_fhandle(fhandle);
1242 nfs4_label_free(label);
1243 nfs_mark_for_revalidate(dir);
1244 if (inode && S_ISDIR(inode->i_mode)) {
1245 /* Purge readdir caches. */
1246 nfs_zap_caches(inode);
1247 /*
1248 * We can't d_drop the root of a disconnected tree:
1249 * its d_hash is on the s_anon list and d_drop() would hide
1250 * it from shrink_dcache_for_unmount(), leading to busy
1251 * inodes on unmount and further oopses.
1252 */
1253 if (IS_ROOT(dentry))
1254 goto out_valid;
1255 }
1256 dput(parent);
1257 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1258 __func__, dentry);
1259 return 0;
1260 out_error:
1261 WARN_ON(flags & LOOKUP_RCU);
1262 nfs_free_fattr(fattr);
1263 nfs_free_fhandle(fhandle);
1264 nfs4_label_free(label);
1265 dput(parent);
1266 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1267 __func__, dentry, error);
1268 return error;
1269 }
1270
1271 /*
1272 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1273 * when we don't really care about the dentry name. This is called when a
1274 * pathwalk ends on a dentry that was not found via a normal lookup in the
1275 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1276 *
1277 * In this situation, we just want to verify that the inode itself is OK
1278 * since the dentry might have changed on the server.
1279 */
1280 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1281 {
1282 int error;
1283 struct inode *inode = d_inode(dentry);
1284
1285 /*
1286 * I believe we can only get a negative dentry here in the case of a
1287 * procfs-style symlink. Just assume it's correct for now, but we may
1288 * eventually need to do something more here.
1289 */
1290 if (!inode) {
1291 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1292 __func__, dentry);
1293 return 1;
1294 }
1295
1296 if (is_bad_inode(inode)) {
1297 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1298 __func__, dentry);
1299 return 0;
1300 }
1301
1302 error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1303 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1304 __func__, inode->i_ino, error ? "invalid" : "valid");
1305 return !error;
1306 }
1307
1308 /*
1309 * This is called from dput() when d_count is going to 0.
1310 */
1311 static int nfs_dentry_delete(const struct dentry *dentry)
1312 {
1313 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1314 dentry, dentry->d_flags);
1315
1316 /* Unhash any dentry with a stale inode */
1317 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1318 return 1;
1319
1320 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1321 /* Unhash it, so that ->d_iput() would be called */
1322 return 1;
1323 }
1324 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1325 /* Unhash it, so that ancestors of killed async unlink
1326 * files will be cleaned up during umount */
1327 return 1;
1328 }
1329 return 0;
1330
1331 }
1332
1333 /* Ensure that we revalidate inode->i_nlink */
1334 static void nfs_drop_nlink(struct inode *inode)
1335 {
1336 spin_lock(&inode->i_lock);
1337 /* drop the inode if we're reasonably sure this is the last link */
1338 if (inode->i_nlink == 1)
1339 clear_nlink(inode);
1340 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1341 spin_unlock(&inode->i_lock);
1342 }
1343
1344 /*
1345 * Called when the dentry loses inode.
1346 * We use it to clean up silly-renamed files.
1347 */
1348 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1349 {
1350 if (S_ISDIR(inode->i_mode))
1351 /* drop any readdir cache as it could easily be old */
1352 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1353
1354 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1355 nfs_complete_unlink(dentry, inode);
1356 nfs_drop_nlink(inode);
1357 }
1358 iput(inode);
1359 }
1360
1361 static void nfs_d_release(struct dentry *dentry)
1362 {
1363 /* free cached devname value, if it survived that far */
1364 if (unlikely(dentry->d_fsdata)) {
1365 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1366 WARN_ON(1);
1367 else
1368 kfree(dentry->d_fsdata);
1369 }
1370 }
1371
1372 const struct dentry_operations nfs_dentry_operations = {
1373 .d_revalidate = nfs_lookup_revalidate,
1374 .d_weak_revalidate = nfs_weak_revalidate,
1375 .d_delete = nfs_dentry_delete,
1376 .d_iput = nfs_dentry_iput,
1377 .d_automount = nfs_d_automount,
1378 .d_release = nfs_d_release,
1379 };
1380 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1381
1382 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1383 {
1384 struct dentry *res;
1385 struct inode *inode = NULL;
1386 struct nfs_fh *fhandle = NULL;
1387 struct nfs_fattr *fattr = NULL;
1388 struct nfs4_label *label = NULL;
1389 int error;
1390
1391 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1392 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1393
1394 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1395 return ERR_PTR(-ENAMETOOLONG);
1396
1397 /*
1398 * If we're doing an exclusive create, optimize away the lookup
1399 * but don't hash the dentry.
1400 */
1401 if (nfs_is_exclusive_create(dir, flags))
1402 return NULL;
1403
1404 res = ERR_PTR(-ENOMEM);
1405 fhandle = nfs_alloc_fhandle();
1406 fattr = nfs_alloc_fattr();
1407 if (fhandle == NULL || fattr == NULL)
1408 goto out;
1409
1410 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1411 if (IS_ERR(label))
1412 goto out;
1413
1414 trace_nfs_lookup_enter(dir, dentry, flags);
1415 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1416 if (error == -ENOENT)
1417 goto no_entry;
1418 if (error < 0) {
1419 res = ERR_PTR(error);
1420 goto out_label;
1421 }
1422 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1423 res = ERR_CAST(inode);
1424 if (IS_ERR(res))
1425 goto out_label;
1426
1427 /* Success: notify readdir to use READDIRPLUS */
1428 nfs_advise_use_readdirplus(dir);
1429
1430 no_entry:
1431 res = d_splice_alias(inode, dentry);
1432 if (res != NULL) {
1433 if (IS_ERR(res))
1434 goto out_label;
1435 dentry = res;
1436 }
1437 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1438 out_label:
1439 trace_nfs_lookup_exit(dir, dentry, flags, error);
1440 nfs4_label_free(label);
1441 out:
1442 nfs_free_fattr(fattr);
1443 nfs_free_fhandle(fhandle);
1444 return res;
1445 }
1446 EXPORT_SYMBOL_GPL(nfs_lookup);
1447
1448 #if IS_ENABLED(CONFIG_NFS_V4)
1449 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1450
1451 const struct dentry_operations nfs4_dentry_operations = {
1452 .d_revalidate = nfs4_lookup_revalidate,
1453 .d_delete = nfs_dentry_delete,
1454 .d_iput = nfs_dentry_iput,
1455 .d_automount = nfs_d_automount,
1456 .d_release = nfs_d_release,
1457 };
1458 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1459
1460 static fmode_t flags_to_mode(int flags)
1461 {
1462 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1463 if ((flags & O_ACCMODE) != O_WRONLY)
1464 res |= FMODE_READ;
1465 if ((flags & O_ACCMODE) != O_RDONLY)
1466 res |= FMODE_WRITE;
1467 return res;
1468 }
1469
1470 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1471 {
1472 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1473 }
1474
1475 static int do_open(struct inode *inode, struct file *filp)
1476 {
1477 nfs_fscache_open_file(inode, filp);
1478 return 0;
1479 }
1480
1481 static int nfs_finish_open(struct nfs_open_context *ctx,
1482 struct dentry *dentry,
1483 struct file *file, unsigned open_flags,
1484 int *opened)
1485 {
1486 int err;
1487
1488 err = finish_open(file, dentry, do_open, opened);
1489 if (err)
1490 goto out;
1491 nfs_file_set_open_context(file, ctx);
1492
1493 out:
1494 return err;
1495 }
1496
1497 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1498 struct file *file, unsigned open_flags,
1499 umode_t mode, int *opened)
1500 {
1501 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1502 struct nfs_open_context *ctx;
1503 struct dentry *res;
1504 struct iattr attr = { .ia_valid = ATTR_OPEN };
1505 struct inode *inode;
1506 unsigned int lookup_flags = 0;
1507 bool switched = false;
1508 int err;
1509
1510 /* Expect a negative dentry */
1511 BUG_ON(d_inode(dentry));
1512
1513 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1514 dir->i_sb->s_id, dir->i_ino, dentry);
1515
1516 err = nfs_check_flags(open_flags);
1517 if (err)
1518 return err;
1519
1520 /* NFS only supports OPEN on regular files */
1521 if ((open_flags & O_DIRECTORY)) {
1522 if (!d_in_lookup(dentry)) {
1523 /*
1524 * Hashed negative dentry with O_DIRECTORY: dentry was
1525 * revalidated and is fine, no need to perform lookup
1526 * again
1527 */
1528 return -ENOENT;
1529 }
1530 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1531 goto no_open;
1532 }
1533
1534 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1535 return -ENAMETOOLONG;
1536
1537 if (open_flags & O_CREAT) {
1538 attr.ia_valid |= ATTR_MODE;
1539 attr.ia_mode = mode & ~current_umask();
1540 }
1541 if (open_flags & O_TRUNC) {
1542 attr.ia_valid |= ATTR_SIZE;
1543 attr.ia_size = 0;
1544 }
1545
1546 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1547 d_drop(dentry);
1548 switched = true;
1549 dentry = d_alloc_parallel(dentry->d_parent,
1550 &dentry->d_name, &wq);
1551 if (IS_ERR(dentry))
1552 return PTR_ERR(dentry);
1553 if (unlikely(!d_in_lookup(dentry)))
1554 return finish_no_open(file, dentry);
1555 }
1556
1557 ctx = create_nfs_open_context(dentry, open_flags);
1558 err = PTR_ERR(ctx);
1559 if (IS_ERR(ctx))
1560 goto out;
1561
1562 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1563 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1564 if (IS_ERR(inode)) {
1565 err = PTR_ERR(inode);
1566 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1567 put_nfs_open_context(ctx);
1568 d_drop(dentry);
1569 switch (err) {
1570 case -ENOENT:
1571 d_add(dentry, NULL);
1572 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1573 break;
1574 case -EISDIR:
1575 case -ENOTDIR:
1576 goto no_open;
1577 case -ELOOP:
1578 if (!(open_flags & O_NOFOLLOW))
1579 goto no_open;
1580 break;
1581 /* case -EINVAL: */
1582 default:
1583 break;
1584 }
1585 goto out;
1586 }
1587
1588 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1589 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1590 put_nfs_open_context(ctx);
1591 out:
1592 if (unlikely(switched)) {
1593 d_lookup_done(dentry);
1594 dput(dentry);
1595 }
1596 return err;
1597
1598 no_open:
1599 res = nfs_lookup(dir, dentry, lookup_flags);
1600 if (switched) {
1601 d_lookup_done(dentry);
1602 if (!res)
1603 res = dentry;
1604 else
1605 dput(dentry);
1606 }
1607 if (IS_ERR(res))
1608 return PTR_ERR(res);
1609 return finish_no_open(file, res);
1610 }
1611 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1612
1613 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1614 {
1615 struct inode *inode;
1616 int ret = 0;
1617
1618 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1619 goto no_open;
1620 if (d_mountpoint(dentry))
1621 goto no_open;
1622 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1623 goto no_open;
1624
1625 inode = d_inode(dentry);
1626
1627 /* We can't create new files in nfs_open_revalidate(), so we
1628 * optimize away revalidation of negative dentries.
1629 */
1630 if (inode == NULL) {
1631 struct dentry *parent;
1632 struct inode *dir;
1633
1634 if (flags & LOOKUP_RCU) {
1635 parent = ACCESS_ONCE(dentry->d_parent);
1636 dir = d_inode_rcu(parent);
1637 if (!dir)
1638 return -ECHILD;
1639 } else {
1640 parent = dget_parent(dentry);
1641 dir = d_inode(parent);
1642 }
1643 if (!nfs_neg_need_reval(dir, dentry, flags))
1644 ret = 1;
1645 else if (flags & LOOKUP_RCU)
1646 ret = -ECHILD;
1647 if (!(flags & LOOKUP_RCU))
1648 dput(parent);
1649 else if (parent != ACCESS_ONCE(dentry->d_parent))
1650 return -ECHILD;
1651 goto out;
1652 }
1653
1654 /* NFS only supports OPEN on regular files */
1655 if (!S_ISREG(inode->i_mode))
1656 goto no_open;
1657 /* We cannot do exclusive creation on a positive dentry */
1658 if (flags & LOOKUP_EXCL)
1659 goto no_open;
1660
1661 /* Let f_op->open() actually open (and revalidate) the file */
1662 ret = 1;
1663
1664 out:
1665 return ret;
1666
1667 no_open:
1668 return nfs_lookup_revalidate(dentry, flags);
1669 }
1670
1671 #endif /* CONFIG_NFSV4 */
1672
1673 /*
1674 * Code common to create, mkdir, and mknod.
1675 */
1676 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1677 struct nfs_fattr *fattr,
1678 struct nfs4_label *label)
1679 {
1680 struct dentry *parent = dget_parent(dentry);
1681 struct inode *dir = d_inode(parent);
1682 struct inode *inode;
1683 int error = -EACCES;
1684
1685 d_drop(dentry);
1686
1687 /* We may have been initialized further down */
1688 if (d_really_is_positive(dentry))
1689 goto out;
1690 if (fhandle->size == 0) {
1691 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1692 if (error)
1693 goto out_error;
1694 }
1695 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1696 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1697 struct nfs_server *server = NFS_SB(dentry->d_sb);
1698 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1699 if (error < 0)
1700 goto out_error;
1701 }
1702 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1703 error = PTR_ERR(inode);
1704 if (IS_ERR(inode))
1705 goto out_error;
1706 d_add(dentry, inode);
1707 out:
1708 dput(parent);
1709 return 0;
1710 out_error:
1711 nfs_mark_for_revalidate(dir);
1712 dput(parent);
1713 return error;
1714 }
1715 EXPORT_SYMBOL_GPL(nfs_instantiate);
1716
1717 /*
1718 * Following a failed create operation, we drop the dentry rather
1719 * than retain a negative dentry. This avoids a problem in the event
1720 * that the operation succeeded on the server, but an error in the
1721 * reply path made it appear to have failed.
1722 */
1723 int nfs_create(struct inode *dir, struct dentry *dentry,
1724 umode_t mode, bool excl)
1725 {
1726 struct iattr attr;
1727 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1728 int error;
1729
1730 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1731 dir->i_sb->s_id, dir->i_ino, dentry);
1732
1733 attr.ia_mode = mode;
1734 attr.ia_valid = ATTR_MODE;
1735
1736 trace_nfs_create_enter(dir, dentry, open_flags);
1737 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1738 trace_nfs_create_exit(dir, dentry, open_flags, error);
1739 if (error != 0)
1740 goto out_err;
1741 return 0;
1742 out_err:
1743 d_drop(dentry);
1744 return error;
1745 }
1746 EXPORT_SYMBOL_GPL(nfs_create);
1747
1748 /*
1749 * See comments for nfs_proc_create regarding failed operations.
1750 */
1751 int
1752 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1753 {
1754 struct iattr attr;
1755 int status;
1756
1757 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1758 dir->i_sb->s_id, dir->i_ino, dentry);
1759
1760 attr.ia_mode = mode;
1761 attr.ia_valid = ATTR_MODE;
1762
1763 trace_nfs_mknod_enter(dir, dentry);
1764 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1765 trace_nfs_mknod_exit(dir, dentry, status);
1766 if (status != 0)
1767 goto out_err;
1768 return 0;
1769 out_err:
1770 d_drop(dentry);
1771 return status;
1772 }
1773 EXPORT_SYMBOL_GPL(nfs_mknod);
1774
1775 /*
1776 * See comments for nfs_proc_create regarding failed operations.
1777 */
1778 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1779 {
1780 struct iattr attr;
1781 int error;
1782
1783 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1784 dir->i_sb->s_id, dir->i_ino, dentry);
1785
1786 attr.ia_valid = ATTR_MODE;
1787 attr.ia_mode = mode | S_IFDIR;
1788
1789 trace_nfs_mkdir_enter(dir, dentry);
1790 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1791 trace_nfs_mkdir_exit(dir, dentry, error);
1792 if (error != 0)
1793 goto out_err;
1794 return 0;
1795 out_err:
1796 d_drop(dentry);
1797 return error;
1798 }
1799 EXPORT_SYMBOL_GPL(nfs_mkdir);
1800
1801 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1802 {
1803 if (simple_positive(dentry))
1804 d_delete(dentry);
1805 }
1806
1807 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1808 {
1809 int error;
1810
1811 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1812 dir->i_sb->s_id, dir->i_ino, dentry);
1813
1814 trace_nfs_rmdir_enter(dir, dentry);
1815 if (d_really_is_positive(dentry)) {
1816 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1817 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1818 /* Ensure the VFS deletes this inode */
1819 switch (error) {
1820 case 0:
1821 clear_nlink(d_inode(dentry));
1822 break;
1823 case -ENOENT:
1824 nfs_dentry_handle_enoent(dentry);
1825 }
1826 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1827 } else
1828 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1829 trace_nfs_rmdir_exit(dir, dentry, error);
1830
1831 return error;
1832 }
1833 EXPORT_SYMBOL_GPL(nfs_rmdir);
1834
1835 /*
1836 * Remove a file after making sure there are no pending writes,
1837 * and after checking that the file has only one user.
1838 *
1839 * We invalidate the attribute cache and free the inode prior to the operation
1840 * to avoid possible races if the server reuses the inode.
1841 */
1842 static int nfs_safe_remove(struct dentry *dentry)
1843 {
1844 struct inode *dir = d_inode(dentry->d_parent);
1845 struct inode *inode = d_inode(dentry);
1846 int error = -EBUSY;
1847
1848 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1849
1850 /* If the dentry was sillyrenamed, we simply call d_delete() */
1851 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1852 error = 0;
1853 goto out;
1854 }
1855
1856 trace_nfs_remove_enter(dir, dentry);
1857 if (inode != NULL) {
1858 NFS_PROTO(inode)->return_delegation(inode);
1859 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1860 if (error == 0)
1861 nfs_drop_nlink(inode);
1862 } else
1863 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1864 if (error == -ENOENT)
1865 nfs_dentry_handle_enoent(dentry);
1866 trace_nfs_remove_exit(dir, dentry, error);
1867 out:
1868 return error;
1869 }
1870
1871 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1872 * belongs to an active ".nfs..." file and we return -EBUSY.
1873 *
1874 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1875 */
1876 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1877 {
1878 int error;
1879 int need_rehash = 0;
1880
1881 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1882 dir->i_ino, dentry);
1883
1884 trace_nfs_unlink_enter(dir, dentry);
1885 spin_lock(&dentry->d_lock);
1886 if (d_count(dentry) > 1) {
1887 spin_unlock(&dentry->d_lock);
1888 /* Start asynchronous writeout of the inode */
1889 write_inode_now(d_inode(dentry), 0);
1890 error = nfs_sillyrename(dir, dentry);
1891 goto out;
1892 }
1893 if (!d_unhashed(dentry)) {
1894 __d_drop(dentry);
1895 need_rehash = 1;
1896 }
1897 spin_unlock(&dentry->d_lock);
1898 error = nfs_safe_remove(dentry);
1899 if (!error || error == -ENOENT) {
1900 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1901 } else if (need_rehash)
1902 d_rehash(dentry);
1903 out:
1904 trace_nfs_unlink_exit(dir, dentry, error);
1905 return error;
1906 }
1907 EXPORT_SYMBOL_GPL(nfs_unlink);
1908
1909 /*
1910 * To create a symbolic link, most file systems instantiate a new inode,
1911 * add a page to it containing the path, then write it out to the disk
1912 * using prepare_write/commit_write.
1913 *
1914 * Unfortunately the NFS client can't create the in-core inode first
1915 * because it needs a file handle to create an in-core inode (see
1916 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1917 * symlink request has completed on the server.
1918 *
1919 * So instead we allocate a raw page, copy the symname into it, then do
1920 * the SYMLINK request with the page as the buffer. If it succeeds, we
1921 * now have a new file handle and can instantiate an in-core NFS inode
1922 * and move the raw page into its mapping.
1923 */
1924 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1925 {
1926 struct page *page;
1927 char *kaddr;
1928 struct iattr attr;
1929 unsigned int pathlen = strlen(symname);
1930 int error;
1931
1932 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1933 dir->i_ino, dentry, symname);
1934
1935 if (pathlen > PAGE_SIZE)
1936 return -ENAMETOOLONG;
1937
1938 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1939 attr.ia_valid = ATTR_MODE;
1940
1941 page = alloc_page(GFP_USER);
1942 if (!page)
1943 return -ENOMEM;
1944
1945 kaddr = page_address(page);
1946 memcpy(kaddr, symname, pathlen);
1947 if (pathlen < PAGE_SIZE)
1948 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1949
1950 trace_nfs_symlink_enter(dir, dentry);
1951 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1952 trace_nfs_symlink_exit(dir, dentry, error);
1953 if (error != 0) {
1954 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1955 dir->i_sb->s_id, dir->i_ino,
1956 dentry, symname, error);
1957 d_drop(dentry);
1958 __free_page(page);
1959 return error;
1960 }
1961
1962 /*
1963 * No big deal if we can't add this page to the page cache here.
1964 * READLINK will get the missing page from the server if needed.
1965 */
1966 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1967 GFP_KERNEL)) {
1968 SetPageUptodate(page);
1969 unlock_page(page);
1970 /*
1971 * add_to_page_cache_lru() grabs an extra page refcount.
1972 * Drop it here to avoid leaking this page later.
1973 */
1974 put_page(page);
1975 } else
1976 __free_page(page);
1977
1978 return 0;
1979 }
1980 EXPORT_SYMBOL_GPL(nfs_symlink);
1981
1982 int
1983 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1984 {
1985 struct inode *inode = d_inode(old_dentry);
1986 int error;
1987
1988 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1989 old_dentry, dentry);
1990
1991 trace_nfs_link_enter(inode, dir, dentry);
1992 NFS_PROTO(inode)->return_delegation(inode);
1993
1994 d_drop(dentry);
1995 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1996 if (error == 0) {
1997 ihold(inode);
1998 d_add(dentry, inode);
1999 }
2000 trace_nfs_link_exit(inode, dir, dentry, error);
2001 return error;
2002 }
2003 EXPORT_SYMBOL_GPL(nfs_link);
2004
2005 /*
2006 * RENAME
2007 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2008 * different file handle for the same inode after a rename (e.g. when
2009 * moving to a different directory). A fail-safe method to do so would
2010 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2011 * rename the old file using the sillyrename stuff. This way, the original
2012 * file in old_dir will go away when the last process iput()s the inode.
2013 *
2014 * FIXED.
2015 *
2016 * It actually works quite well. One needs to have the possibility for
2017 * at least one ".nfs..." file in each directory the file ever gets
2018 * moved or linked to which happens automagically with the new
2019 * implementation that only depends on the dcache stuff instead of
2020 * using the inode layer
2021 *
2022 * Unfortunately, things are a little more complicated than indicated
2023 * above. For a cross-directory move, we want to make sure we can get
2024 * rid of the old inode after the operation. This means there must be
2025 * no pending writes (if it's a file), and the use count must be 1.
2026 * If these conditions are met, we can drop the dentries before doing
2027 * the rename.
2028 */
2029 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2030 struct inode *new_dir, struct dentry *new_dentry,
2031 unsigned int flags)
2032 {
2033 struct inode *old_inode = d_inode(old_dentry);
2034 struct inode *new_inode = d_inode(new_dentry);
2035 struct dentry *dentry = NULL, *rehash = NULL;
2036 struct rpc_task *task;
2037 int error = -EBUSY;
2038
2039 if (flags)
2040 return -EINVAL;
2041
2042 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2043 old_dentry, new_dentry,
2044 d_count(new_dentry));
2045
2046 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2047 /*
2048 * For non-directories, check whether the target is busy and if so,
2049 * make a copy of the dentry and then do a silly-rename. If the
2050 * silly-rename succeeds, the copied dentry is hashed and becomes
2051 * the new target.
2052 */
2053 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2054 /*
2055 * To prevent any new references to the target during the
2056 * rename, we unhash the dentry in advance.
2057 */
2058 if (!d_unhashed(new_dentry)) {
2059 d_drop(new_dentry);
2060 rehash = new_dentry;
2061 }
2062
2063 if (d_count(new_dentry) > 2) {
2064 int err;
2065
2066 /* copy the target dentry's name */
2067 dentry = d_alloc(new_dentry->d_parent,
2068 &new_dentry->d_name);
2069 if (!dentry)
2070 goto out;
2071
2072 /* silly-rename the existing target ... */
2073 err = nfs_sillyrename(new_dir, new_dentry);
2074 if (err)
2075 goto out;
2076
2077 new_dentry = dentry;
2078 rehash = NULL;
2079 new_inode = NULL;
2080 }
2081 }
2082
2083 NFS_PROTO(old_inode)->return_delegation(old_inode);
2084 if (new_inode != NULL)
2085 NFS_PROTO(new_inode)->return_delegation(new_inode);
2086
2087 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2088 if (IS_ERR(task)) {
2089 error = PTR_ERR(task);
2090 goto out;
2091 }
2092
2093 error = rpc_wait_for_completion_task(task);
2094 if (error == 0)
2095 error = task->tk_status;
2096 rpc_put_task(task);
2097 nfs_mark_for_revalidate(old_inode);
2098 out:
2099 if (rehash)
2100 d_rehash(rehash);
2101 trace_nfs_rename_exit(old_dir, old_dentry,
2102 new_dir, new_dentry, error);
2103 if (!error) {
2104 if (new_inode != NULL)
2105 nfs_drop_nlink(new_inode);
2106 d_move(old_dentry, new_dentry);
2107 nfs_set_verifier(new_dentry,
2108 nfs_save_change_attribute(new_dir));
2109 } else if (error == -ENOENT)
2110 nfs_dentry_handle_enoent(old_dentry);
2111
2112 /* new dentry created? */
2113 if (dentry)
2114 dput(dentry);
2115 return error;
2116 }
2117 EXPORT_SYMBOL_GPL(nfs_rename);
2118
2119 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2120 static LIST_HEAD(nfs_access_lru_list);
2121 static atomic_long_t nfs_access_nr_entries;
2122
2123 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2124 module_param(nfs_access_max_cachesize, ulong, 0644);
2125 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2126
2127 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2128 {
2129 put_rpccred(entry->cred);
2130 kfree_rcu(entry, rcu_head);
2131 smp_mb__before_atomic();
2132 atomic_long_dec(&nfs_access_nr_entries);
2133 smp_mb__after_atomic();
2134 }
2135
2136 static void nfs_access_free_list(struct list_head *head)
2137 {
2138 struct nfs_access_entry *cache;
2139
2140 while (!list_empty(head)) {
2141 cache = list_entry(head->next, struct nfs_access_entry, lru);
2142 list_del(&cache->lru);
2143 nfs_access_free_entry(cache);
2144 }
2145 }
2146
2147 static unsigned long
2148 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2149 {
2150 LIST_HEAD(head);
2151 struct nfs_inode *nfsi, *next;
2152 struct nfs_access_entry *cache;
2153 long freed = 0;
2154
2155 spin_lock(&nfs_access_lru_lock);
2156 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2157 struct inode *inode;
2158
2159 if (nr_to_scan-- == 0)
2160 break;
2161 inode = &nfsi->vfs_inode;
2162 spin_lock(&inode->i_lock);
2163 if (list_empty(&nfsi->access_cache_entry_lru))
2164 goto remove_lru_entry;
2165 cache = list_entry(nfsi->access_cache_entry_lru.next,
2166 struct nfs_access_entry, lru);
2167 list_move(&cache->lru, &head);
2168 rb_erase(&cache->rb_node, &nfsi->access_cache);
2169 freed++;
2170 if (!list_empty(&nfsi->access_cache_entry_lru))
2171 list_move_tail(&nfsi->access_cache_inode_lru,
2172 &nfs_access_lru_list);
2173 else {
2174 remove_lru_entry:
2175 list_del_init(&nfsi->access_cache_inode_lru);
2176 smp_mb__before_atomic();
2177 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2178 smp_mb__after_atomic();
2179 }
2180 spin_unlock(&inode->i_lock);
2181 }
2182 spin_unlock(&nfs_access_lru_lock);
2183 nfs_access_free_list(&head);
2184 return freed;
2185 }
2186
2187 unsigned long
2188 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2189 {
2190 int nr_to_scan = sc->nr_to_scan;
2191 gfp_t gfp_mask = sc->gfp_mask;
2192
2193 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2194 return SHRINK_STOP;
2195 return nfs_do_access_cache_scan(nr_to_scan);
2196 }
2197
2198
2199 unsigned long
2200 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2201 {
2202 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2203 }
2204
2205 static void
2206 nfs_access_cache_enforce_limit(void)
2207 {
2208 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2209 unsigned long diff;
2210 unsigned int nr_to_scan;
2211
2212 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2213 return;
2214 nr_to_scan = 100;
2215 diff = nr_entries - nfs_access_max_cachesize;
2216 if (diff < nr_to_scan)
2217 nr_to_scan = diff;
2218 nfs_do_access_cache_scan(nr_to_scan);
2219 }
2220
2221 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2222 {
2223 struct rb_root *root_node = &nfsi->access_cache;
2224 struct rb_node *n;
2225 struct nfs_access_entry *entry;
2226
2227 /* Unhook entries from the cache */
2228 while ((n = rb_first(root_node)) != NULL) {
2229 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2230 rb_erase(n, root_node);
2231 list_move(&entry->lru, head);
2232 }
2233 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2234 }
2235
2236 void nfs_access_zap_cache(struct inode *inode)
2237 {
2238 LIST_HEAD(head);
2239
2240 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2241 return;
2242 /* Remove from global LRU init */
2243 spin_lock(&nfs_access_lru_lock);
2244 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2245 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2246
2247 spin_lock(&inode->i_lock);
2248 __nfs_access_zap_cache(NFS_I(inode), &head);
2249 spin_unlock(&inode->i_lock);
2250 spin_unlock(&nfs_access_lru_lock);
2251 nfs_access_free_list(&head);
2252 }
2253 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2254
2255 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2256 {
2257 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2258 struct nfs_access_entry *entry;
2259
2260 while (n != NULL) {
2261 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2262
2263 if (cred < entry->cred)
2264 n = n->rb_left;
2265 else if (cred > entry->cred)
2266 n = n->rb_right;
2267 else
2268 return entry;
2269 }
2270 return NULL;
2271 }
2272
2273 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res, bool may_block)
2274 {
2275 struct nfs_inode *nfsi = NFS_I(inode);
2276 struct nfs_access_entry *cache;
2277 bool retry = true;
2278 int err;
2279
2280 spin_lock(&inode->i_lock);
2281 for(;;) {
2282 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2283 goto out_zap;
2284 cache = nfs_access_search_rbtree(inode, cred);
2285 err = -ENOENT;
2286 if (cache == NULL)
2287 goto out;
2288 /* Found an entry, is our attribute cache valid? */
2289 if (!nfs_attribute_cache_expired(inode) &&
2290 !(nfsi->cache_validity & NFS_INO_INVALID_ATTR))
2291 break;
2292 err = -ECHILD;
2293 if (!may_block)
2294 goto out;
2295 if (!retry)
2296 goto out_zap;
2297 spin_unlock(&inode->i_lock);
2298 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2299 if (err)
2300 return err;
2301 spin_lock(&inode->i_lock);
2302 retry = false;
2303 }
2304 res->jiffies = cache->jiffies;
2305 res->cred = cache->cred;
2306 res->mask = cache->mask;
2307 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2308 err = 0;
2309 out:
2310 spin_unlock(&inode->i_lock);
2311 return err;
2312 out_zap:
2313 spin_unlock(&inode->i_lock);
2314 nfs_access_zap_cache(inode);
2315 return -ENOENT;
2316 }
2317
2318 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2319 {
2320 /* Only check the most recently returned cache entry,
2321 * but do it without locking.
2322 */
2323 struct nfs_inode *nfsi = NFS_I(inode);
2324 struct nfs_access_entry *cache;
2325 int err = -ECHILD;
2326 struct list_head *lh;
2327
2328 rcu_read_lock();
2329 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2330 goto out;
2331 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2332 cache = list_entry(lh, struct nfs_access_entry, lru);
2333 if (lh == &nfsi->access_cache_entry_lru ||
2334 cred != cache->cred)
2335 cache = NULL;
2336 if (cache == NULL)
2337 goto out;
2338 err = nfs_revalidate_inode_rcu(NFS_SERVER(inode), inode);
2339 if (err)
2340 goto out;
2341 res->jiffies = cache->jiffies;
2342 res->cred = cache->cred;
2343 res->mask = cache->mask;
2344 out:
2345 rcu_read_unlock();
2346 return err;
2347 }
2348
2349 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2350 {
2351 struct nfs_inode *nfsi = NFS_I(inode);
2352 struct rb_root *root_node = &nfsi->access_cache;
2353 struct rb_node **p = &root_node->rb_node;
2354 struct rb_node *parent = NULL;
2355 struct nfs_access_entry *entry;
2356
2357 spin_lock(&inode->i_lock);
2358 while (*p != NULL) {
2359 parent = *p;
2360 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2361
2362 if (set->cred < entry->cred)
2363 p = &parent->rb_left;
2364 else if (set->cred > entry->cred)
2365 p = &parent->rb_right;
2366 else
2367 goto found;
2368 }
2369 rb_link_node(&set->rb_node, parent, p);
2370 rb_insert_color(&set->rb_node, root_node);
2371 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2372 spin_unlock(&inode->i_lock);
2373 return;
2374 found:
2375 rb_replace_node(parent, &set->rb_node, root_node);
2376 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2377 list_del(&entry->lru);
2378 spin_unlock(&inode->i_lock);
2379 nfs_access_free_entry(entry);
2380 }
2381
2382 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2383 {
2384 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2385 if (cache == NULL)
2386 return;
2387 RB_CLEAR_NODE(&cache->rb_node);
2388 cache->jiffies = set->jiffies;
2389 cache->cred = get_rpccred(set->cred);
2390 cache->mask = set->mask;
2391
2392 /* The above field assignments must be visible
2393 * before this item appears on the lru. We cannot easily
2394 * use rcu_assign_pointer, so just force the memory barrier.
2395 */
2396 smp_wmb();
2397 nfs_access_add_rbtree(inode, cache);
2398
2399 /* Update accounting */
2400 smp_mb__before_atomic();
2401 atomic_long_inc(&nfs_access_nr_entries);
2402 smp_mb__after_atomic();
2403
2404 /* Add inode to global LRU list */
2405 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2406 spin_lock(&nfs_access_lru_lock);
2407 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2408 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2409 &nfs_access_lru_list);
2410 spin_unlock(&nfs_access_lru_lock);
2411 }
2412 nfs_access_cache_enforce_limit();
2413 }
2414 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2415
2416 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2417 {
2418 entry->mask = 0;
2419 if (access_result & NFS4_ACCESS_READ)
2420 entry->mask |= MAY_READ;
2421 if (access_result &
2422 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2423 entry->mask |= MAY_WRITE;
2424 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2425 entry->mask |= MAY_EXEC;
2426 }
2427 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2428
2429 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2430 {
2431 struct nfs_access_entry cache;
2432 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2433 int status;
2434
2435 trace_nfs_access_enter(inode);
2436
2437 status = nfs_access_get_cached_rcu(inode, cred, &cache);
2438 if (status != 0)
2439 status = nfs_access_get_cached(inode, cred, &cache, may_block);
2440 if (status == 0)
2441 goto out_cached;
2442
2443 status = -ECHILD;
2444 if (!may_block)
2445 goto out;
2446
2447 /* Be clever: ask server to check for all possible rights */
2448 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2449 cache.cred = cred;
2450 cache.jiffies = jiffies;
2451 status = NFS_PROTO(inode)->access(inode, &cache);
2452 if (status != 0) {
2453 if (status == -ESTALE) {
2454 nfs_zap_caches(inode);
2455 if (!S_ISDIR(inode->i_mode))
2456 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2457 }
2458 goto out;
2459 }
2460 nfs_access_add_cache(inode, &cache);
2461 out_cached:
2462 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2463 status = -EACCES;
2464 out:
2465 trace_nfs_access_exit(inode, status);
2466 return status;
2467 }
2468
2469 static int nfs_open_permission_mask(int openflags)
2470 {
2471 int mask = 0;
2472
2473 if (openflags & __FMODE_EXEC) {
2474 /* ONLY check exec rights */
2475 mask = MAY_EXEC;
2476 } else {
2477 if ((openflags & O_ACCMODE) != O_WRONLY)
2478 mask |= MAY_READ;
2479 if ((openflags & O_ACCMODE) != O_RDONLY)
2480 mask |= MAY_WRITE;
2481 }
2482
2483 return mask;
2484 }
2485
2486 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2487 {
2488 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2489 }
2490 EXPORT_SYMBOL_GPL(nfs_may_open);
2491
2492 static int nfs_execute_ok(struct inode *inode, int mask)
2493 {
2494 struct nfs_server *server = NFS_SERVER(inode);
2495 int ret;
2496
2497 if (mask & MAY_NOT_BLOCK)
2498 ret = nfs_revalidate_inode_rcu(server, inode);
2499 else
2500 ret = nfs_revalidate_inode(server, inode);
2501 if (ret == 0 && !execute_ok(inode))
2502 ret = -EACCES;
2503 return ret;
2504 }
2505
2506 int nfs_permission(struct inode *inode, int mask)
2507 {
2508 struct rpc_cred *cred;
2509 int res = 0;
2510
2511 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2512
2513 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2514 goto out;
2515 /* Is this sys_access() ? */
2516 if (mask & (MAY_ACCESS | MAY_CHDIR))
2517 goto force_lookup;
2518
2519 switch (inode->i_mode & S_IFMT) {
2520 case S_IFLNK:
2521 goto out;
2522 case S_IFREG:
2523 if ((mask & MAY_OPEN) &&
2524 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2525 return 0;
2526 break;
2527 case S_IFDIR:
2528 /*
2529 * Optimize away all write operations, since the server
2530 * will check permissions when we perform the op.
2531 */
2532 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2533 goto out;
2534 }
2535
2536 force_lookup:
2537 if (!NFS_PROTO(inode)->access)
2538 goto out_notsup;
2539
2540 /* Always try fast lookups first */
2541 rcu_read_lock();
2542 cred = rpc_lookup_cred_nonblock();
2543 if (!IS_ERR(cred))
2544 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2545 else
2546 res = PTR_ERR(cred);
2547 rcu_read_unlock();
2548 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2549 /* Fast lookup failed, try the slow way */
2550 cred = rpc_lookup_cred();
2551 if (!IS_ERR(cred)) {
2552 res = nfs_do_access(inode, cred, mask);
2553 put_rpccred(cred);
2554 } else
2555 res = PTR_ERR(cred);
2556 }
2557 out:
2558 if (!res && (mask & MAY_EXEC))
2559 res = nfs_execute_ok(inode, mask);
2560
2561 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2562 inode->i_sb->s_id, inode->i_ino, mask, res);
2563 return res;
2564 out_notsup:
2565 if (mask & MAY_NOT_BLOCK)
2566 return -ECHILD;
2567
2568 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2569 if (res == 0)
2570 res = generic_permission(inode, mask);
2571 goto out;
2572 }
2573 EXPORT_SYMBOL_GPL(nfs_permission);
2574
2575 /*
2576 * Local variables:
2577 * version-control: t
2578 * kept-new-versions: 5
2579 * End:
2580 */