]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/nfs/dir.c
NFS: Eliminate nfs_refresh_verifier()
[mirror_ubuntu-bionic-kernel.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37
38 #include "nfs4_fs.h"
39 #include "delegation.h"
40 #include "iostat.h"
41
42 /* #define NFS_DEBUG_VERBOSE 1 */
43
44 static int nfs_opendir(struct inode *, struct file *);
45 static int nfs_readdir(struct file *, void *, filldir_t);
46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
48 static int nfs_mkdir(struct inode *, struct dentry *, int);
49 static int nfs_rmdir(struct inode *, struct dentry *);
50 static int nfs_unlink(struct inode *, struct dentry *);
51 static int nfs_symlink(struct inode *, struct dentry *, const char *);
52 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
54 static int nfs_rename(struct inode *, struct dentry *,
55 struct inode *, struct dentry *);
56 static int nfs_fsync_dir(struct file *, struct dentry *, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58
59 const struct file_operations nfs_dir_operations = {
60 .llseek = nfs_llseek_dir,
61 .read = generic_read_dir,
62 .readdir = nfs_readdir,
63 .open = nfs_opendir,
64 .release = nfs_release,
65 .fsync = nfs_fsync_dir,
66 };
67
68 const struct inode_operations nfs_dir_inode_operations = {
69 .create = nfs_create,
70 .lookup = nfs_lookup,
71 .link = nfs_link,
72 .unlink = nfs_unlink,
73 .symlink = nfs_symlink,
74 .mkdir = nfs_mkdir,
75 .rmdir = nfs_rmdir,
76 .mknod = nfs_mknod,
77 .rename = nfs_rename,
78 .permission = nfs_permission,
79 .getattr = nfs_getattr,
80 .setattr = nfs_setattr,
81 };
82
83 #ifdef CONFIG_NFS_V3
84 const struct inode_operations nfs3_dir_inode_operations = {
85 .create = nfs_create,
86 .lookup = nfs_lookup,
87 .link = nfs_link,
88 .unlink = nfs_unlink,
89 .symlink = nfs_symlink,
90 .mkdir = nfs_mkdir,
91 .rmdir = nfs_rmdir,
92 .mknod = nfs_mknod,
93 .rename = nfs_rename,
94 .permission = nfs_permission,
95 .getattr = nfs_getattr,
96 .setattr = nfs_setattr,
97 .listxattr = nfs3_listxattr,
98 .getxattr = nfs3_getxattr,
99 .setxattr = nfs3_setxattr,
100 .removexattr = nfs3_removexattr,
101 };
102 #endif /* CONFIG_NFS_V3 */
103
104 #ifdef CONFIG_NFS_V4
105
106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
107 const struct inode_operations nfs4_dir_inode_operations = {
108 .create = nfs_create,
109 .lookup = nfs_atomic_lookup,
110 .link = nfs_link,
111 .unlink = nfs_unlink,
112 .symlink = nfs_symlink,
113 .mkdir = nfs_mkdir,
114 .rmdir = nfs_rmdir,
115 .mknod = nfs_mknod,
116 .rename = nfs_rename,
117 .permission = nfs_permission,
118 .getattr = nfs_getattr,
119 .setattr = nfs_setattr,
120 .getxattr = nfs4_getxattr,
121 .setxattr = nfs4_setxattr,
122 .listxattr = nfs4_listxattr,
123 };
124
125 #endif /* CONFIG_NFS_V4 */
126
127 /*
128 * Open file
129 */
130 static int
131 nfs_opendir(struct inode *inode, struct file *filp)
132 {
133 int res;
134
135 dfprintk(VFS, "NFS: opendir(%s/%ld)\n",
136 inode->i_sb->s_id, inode->i_ino);
137
138 lock_kernel();
139 /* Call generic open code in order to cache credentials */
140 res = nfs_open(inode, filp);
141 unlock_kernel();
142 return res;
143 }
144
145 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
146 typedef struct {
147 struct file *file;
148 struct page *page;
149 unsigned long page_index;
150 __be32 *ptr;
151 u64 *dir_cookie;
152 loff_t current_index;
153 struct nfs_entry *entry;
154 decode_dirent_t decode;
155 int plus;
156 int error;
157 unsigned long timestamp;
158 int timestamp_valid;
159 } nfs_readdir_descriptor_t;
160
161 /* Now we cache directories properly, by stuffing the dirent
162 * data directly in the page cache.
163 *
164 * Inode invalidation due to refresh etc. takes care of
165 * _everything_, no sloppy entry flushing logic, no extraneous
166 * copying, network direct to page cache, the way it was meant
167 * to be.
168 *
169 * NOTE: Dirent information verification is done always by the
170 * page-in of the RPC reply, nowhere else, this simplies
171 * things substantially.
172 */
173 static
174 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
175 {
176 struct file *file = desc->file;
177 struct inode *inode = file->f_path.dentry->d_inode;
178 struct rpc_cred *cred = nfs_file_cred(file);
179 unsigned long timestamp;
180 int error;
181
182 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
183 __FUNCTION__, (long long)desc->entry->cookie,
184 page->index);
185
186 again:
187 timestamp = jiffies;
188 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
189 NFS_SERVER(inode)->dtsize, desc->plus);
190 if (error < 0) {
191 /* We requested READDIRPLUS, but the server doesn't grok it */
192 if (error == -ENOTSUPP && desc->plus) {
193 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
194 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
195 desc->plus = 0;
196 goto again;
197 }
198 goto error;
199 }
200 desc->timestamp = timestamp;
201 desc->timestamp_valid = 1;
202 SetPageUptodate(page);
203 spin_lock(&inode->i_lock);
204 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
205 spin_unlock(&inode->i_lock);
206 /* Ensure consistent page alignment of the data.
207 * Note: assumes we have exclusive access to this mapping either
208 * through inode->i_mutex or some other mechanism.
209 */
210 if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) {
211 /* Should never happen */
212 nfs_zap_mapping(inode, inode->i_mapping);
213 }
214 unlock_page(page);
215 return 0;
216 error:
217 SetPageError(page);
218 unlock_page(page);
219 nfs_zap_caches(inode);
220 desc->error = error;
221 return -EIO;
222 }
223
224 static inline
225 int dir_decode(nfs_readdir_descriptor_t *desc)
226 {
227 __be32 *p = desc->ptr;
228 p = desc->decode(p, desc->entry, desc->plus);
229 if (IS_ERR(p))
230 return PTR_ERR(p);
231 desc->ptr = p;
232 if (desc->timestamp_valid)
233 desc->entry->fattr->time_start = desc->timestamp;
234 else
235 desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
236 return 0;
237 }
238
239 static inline
240 void dir_page_release(nfs_readdir_descriptor_t *desc)
241 {
242 kunmap(desc->page);
243 page_cache_release(desc->page);
244 desc->page = NULL;
245 desc->ptr = NULL;
246 }
247
248 /*
249 * Given a pointer to a buffer that has already been filled by a call
250 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
251 *
252 * If the end of the buffer has been reached, return -EAGAIN, if not,
253 * return the offset within the buffer of the next entry to be
254 * read.
255 */
256 static inline
257 int find_dirent(nfs_readdir_descriptor_t *desc)
258 {
259 struct nfs_entry *entry = desc->entry;
260 int loop_count = 0,
261 status;
262
263 while((status = dir_decode(desc)) == 0) {
264 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
265 __FUNCTION__, (unsigned long long)entry->cookie);
266 if (entry->prev_cookie == *desc->dir_cookie)
267 break;
268 if (loop_count++ > 200) {
269 loop_count = 0;
270 schedule();
271 }
272 }
273 return status;
274 }
275
276 /*
277 * Given a pointer to a buffer that has already been filled by a call
278 * to readdir, find the entry at offset 'desc->file->f_pos'.
279 *
280 * If the end of the buffer has been reached, return -EAGAIN, if not,
281 * return the offset within the buffer of the next entry to be
282 * read.
283 */
284 static inline
285 int find_dirent_index(nfs_readdir_descriptor_t *desc)
286 {
287 struct nfs_entry *entry = desc->entry;
288 int loop_count = 0,
289 status;
290
291 for(;;) {
292 status = dir_decode(desc);
293 if (status)
294 break;
295
296 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
297 (unsigned long long)entry->cookie, desc->current_index);
298
299 if (desc->file->f_pos == desc->current_index) {
300 *desc->dir_cookie = entry->cookie;
301 break;
302 }
303 desc->current_index++;
304 if (loop_count++ > 200) {
305 loop_count = 0;
306 schedule();
307 }
308 }
309 return status;
310 }
311
312 /*
313 * Find the given page, and call find_dirent() or find_dirent_index in
314 * order to try to return the next entry.
315 */
316 static inline
317 int find_dirent_page(nfs_readdir_descriptor_t *desc)
318 {
319 struct inode *inode = desc->file->f_path.dentry->d_inode;
320 struct page *page;
321 int status;
322
323 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
324 __FUNCTION__, desc->page_index,
325 (long long) *desc->dir_cookie);
326
327 /* If we find the page in the page_cache, we cannot be sure
328 * how fresh the data is, so we will ignore readdir_plus attributes.
329 */
330 desc->timestamp_valid = 0;
331 page = read_cache_page(inode->i_mapping, desc->page_index,
332 (filler_t *)nfs_readdir_filler, desc);
333 if (IS_ERR(page)) {
334 status = PTR_ERR(page);
335 goto out;
336 }
337
338 /* NOTE: Someone else may have changed the READDIRPLUS flag */
339 desc->page = page;
340 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
341 if (*desc->dir_cookie != 0)
342 status = find_dirent(desc);
343 else
344 status = find_dirent_index(desc);
345 if (status < 0)
346 dir_page_release(desc);
347 out:
348 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status);
349 return status;
350 }
351
352 /*
353 * Recurse through the page cache pages, and return a
354 * filled nfs_entry structure of the next directory entry if possible.
355 *
356 * The target for the search is '*desc->dir_cookie' if non-0,
357 * 'desc->file->f_pos' otherwise
358 */
359 static inline
360 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
361 {
362 int loop_count = 0;
363 int res;
364
365 /* Always search-by-index from the beginning of the cache */
366 if (*desc->dir_cookie == 0) {
367 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
368 (long long)desc->file->f_pos);
369 desc->page_index = 0;
370 desc->entry->cookie = desc->entry->prev_cookie = 0;
371 desc->entry->eof = 0;
372 desc->current_index = 0;
373 } else
374 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
375 (unsigned long long)*desc->dir_cookie);
376
377 for (;;) {
378 res = find_dirent_page(desc);
379 if (res != -EAGAIN)
380 break;
381 /* Align to beginning of next page */
382 desc->page_index ++;
383 if (loop_count++ > 200) {
384 loop_count = 0;
385 schedule();
386 }
387 }
388
389 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res);
390 return res;
391 }
392
393 static inline unsigned int dt_type(struct inode *inode)
394 {
395 return (inode->i_mode >> 12) & 15;
396 }
397
398 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
399
400 /*
401 * Once we've found the start of the dirent within a page: fill 'er up...
402 */
403 static
404 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
405 filldir_t filldir)
406 {
407 struct file *file = desc->file;
408 struct nfs_entry *entry = desc->entry;
409 struct dentry *dentry = NULL;
410 u64 fileid;
411 int loop_count = 0,
412 res;
413
414 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
415 (unsigned long long)entry->cookie);
416
417 for(;;) {
418 unsigned d_type = DT_UNKNOWN;
419 /* Note: entry->prev_cookie contains the cookie for
420 * retrieving the current dirent on the server */
421 fileid = entry->ino;
422
423 /* Get a dentry if we have one */
424 if (dentry != NULL)
425 dput(dentry);
426 dentry = nfs_readdir_lookup(desc);
427
428 /* Use readdirplus info */
429 if (dentry != NULL && dentry->d_inode != NULL) {
430 d_type = dt_type(dentry->d_inode);
431 fileid = NFS_FILEID(dentry->d_inode);
432 }
433
434 res = filldir(dirent, entry->name, entry->len,
435 file->f_pos, fileid, d_type);
436 if (res < 0)
437 break;
438 file->f_pos++;
439 *desc->dir_cookie = entry->cookie;
440 if (dir_decode(desc) != 0) {
441 desc->page_index ++;
442 break;
443 }
444 if (loop_count++ > 200) {
445 loop_count = 0;
446 schedule();
447 }
448 }
449 dir_page_release(desc);
450 if (dentry != NULL)
451 dput(dentry);
452 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
453 (unsigned long long)*desc->dir_cookie, res);
454 return res;
455 }
456
457 /*
458 * If we cannot find a cookie in our cache, we suspect that this is
459 * because it points to a deleted file, so we ask the server to return
460 * whatever it thinks is the next entry. We then feed this to filldir.
461 * If all goes well, we should then be able to find our way round the
462 * cache on the next call to readdir_search_pagecache();
463 *
464 * NOTE: we cannot add the anonymous page to the pagecache because
465 * the data it contains might not be page aligned. Besides,
466 * we should already have a complete representation of the
467 * directory in the page cache by the time we get here.
468 */
469 static inline
470 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
471 filldir_t filldir)
472 {
473 struct file *file = desc->file;
474 struct inode *inode = file->f_path.dentry->d_inode;
475 struct rpc_cred *cred = nfs_file_cred(file);
476 struct page *page = NULL;
477 int status;
478 unsigned long timestamp;
479
480 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
481 (unsigned long long)*desc->dir_cookie);
482
483 page = alloc_page(GFP_HIGHUSER);
484 if (!page) {
485 status = -ENOMEM;
486 goto out;
487 }
488 timestamp = jiffies;
489 desc->error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, *desc->dir_cookie,
490 page,
491 NFS_SERVER(inode)->dtsize,
492 desc->plus);
493 spin_lock(&inode->i_lock);
494 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
495 spin_unlock(&inode->i_lock);
496 desc->page = page;
497 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
498 if (desc->error >= 0) {
499 desc->timestamp = timestamp;
500 desc->timestamp_valid = 1;
501 if ((status = dir_decode(desc)) == 0)
502 desc->entry->prev_cookie = *desc->dir_cookie;
503 } else
504 status = -EIO;
505 if (status < 0)
506 goto out_release;
507
508 status = nfs_do_filldir(desc, dirent, filldir);
509
510 /* Reset read descriptor so it searches the page cache from
511 * the start upon the next call to readdir_search_pagecache() */
512 desc->page_index = 0;
513 desc->entry->cookie = desc->entry->prev_cookie = 0;
514 desc->entry->eof = 0;
515 out:
516 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
517 __FUNCTION__, status);
518 return status;
519 out_release:
520 dir_page_release(desc);
521 goto out;
522 }
523
524 /* The file offset position represents the dirent entry number. A
525 last cookie cache takes care of the common case of reading the
526 whole directory.
527 */
528 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
529 {
530 struct dentry *dentry = filp->f_path.dentry;
531 struct inode *inode = dentry->d_inode;
532 nfs_readdir_descriptor_t my_desc,
533 *desc = &my_desc;
534 struct nfs_entry my_entry;
535 struct nfs_fh fh;
536 struct nfs_fattr fattr;
537 long res;
538
539 dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
540 dentry->d_parent->d_name.name, dentry->d_name.name,
541 (long long)filp->f_pos);
542 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
543
544 lock_kernel();
545
546 res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
547 if (res < 0) {
548 unlock_kernel();
549 return res;
550 }
551
552 /*
553 * filp->f_pos points to the dirent entry number.
554 * *desc->dir_cookie has the cookie for the next entry. We have
555 * to either find the entry with the appropriate number or
556 * revalidate the cookie.
557 */
558 memset(desc, 0, sizeof(*desc));
559
560 desc->file = filp;
561 desc->dir_cookie = &((struct nfs_open_context *)filp->private_data)->dir_cookie;
562 desc->decode = NFS_PROTO(inode)->decode_dirent;
563 desc->plus = NFS_USE_READDIRPLUS(inode);
564
565 my_entry.cookie = my_entry.prev_cookie = 0;
566 my_entry.eof = 0;
567 my_entry.fh = &fh;
568 my_entry.fattr = &fattr;
569 nfs_fattr_init(&fattr);
570 desc->entry = &my_entry;
571
572 while(!desc->entry->eof) {
573 res = readdir_search_pagecache(desc);
574
575 if (res == -EBADCOOKIE) {
576 /* This means either end of directory */
577 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
578 /* Or that the server has 'lost' a cookie */
579 res = uncached_readdir(desc, dirent, filldir);
580 if (res >= 0)
581 continue;
582 }
583 res = 0;
584 break;
585 }
586 if (res == -ETOOSMALL && desc->plus) {
587 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
588 nfs_zap_caches(inode);
589 desc->plus = 0;
590 desc->entry->eof = 0;
591 continue;
592 }
593 if (res < 0)
594 break;
595
596 res = nfs_do_filldir(desc, dirent, filldir);
597 if (res < 0) {
598 res = 0;
599 break;
600 }
601 }
602 unlock_kernel();
603 if (res > 0)
604 res = 0;
605 dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n",
606 dentry->d_parent->d_name.name, dentry->d_name.name,
607 res);
608 return res;
609 }
610
611 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
612 {
613 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
614 switch (origin) {
615 case 1:
616 offset += filp->f_pos;
617 case 0:
618 if (offset >= 0)
619 break;
620 default:
621 offset = -EINVAL;
622 goto out;
623 }
624 if (offset != filp->f_pos) {
625 filp->f_pos = offset;
626 ((struct nfs_open_context *)filp->private_data)->dir_cookie = 0;
627 }
628 out:
629 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
630 return offset;
631 }
632
633 /*
634 * All directory operations under NFS are synchronous, so fsync()
635 * is a dummy operation.
636 */
637 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
638 {
639 dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n",
640 dentry->d_parent->d_name.name, dentry->d_name.name,
641 datasync);
642
643 return 0;
644 }
645
646 /*
647 * A check for whether or not the parent directory has changed.
648 * In the case it has, we assume that the dentries are untrustworthy
649 * and may need to be looked up again.
650 */
651 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
652 {
653 unsigned long verf;
654
655 if (IS_ROOT(dentry))
656 return 1;
657 verf = dentry->d_time;
658 if (nfs_caches_unstable(dir)
659 || verf != NFS_I(dir)->cache_change_attribute)
660 return 0;
661 return 1;
662 }
663
664 static inline void nfs_set_verifier(struct dentry * dentry, unsigned long verf)
665 {
666 dentry->d_time = verf;
667 }
668
669 /*
670 * Return the intent data that applies to this particular path component
671 *
672 * Note that the current set of intents only apply to the very last
673 * component of the path.
674 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
675 */
676 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
677 {
678 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
679 return 0;
680 return nd->flags & mask;
681 }
682
683 /*
684 * Inode and filehandle revalidation for lookups.
685 *
686 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
687 * or if the intent information indicates that we're about to open this
688 * particular file and the "nocto" mount flag is not set.
689 *
690 */
691 static inline
692 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
693 {
694 struct nfs_server *server = NFS_SERVER(inode);
695
696 if (nd != NULL) {
697 /* VFS wants an on-the-wire revalidation */
698 if (nd->flags & LOOKUP_REVAL)
699 goto out_force;
700 /* This is an open(2) */
701 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
702 !(server->flags & NFS_MOUNT_NOCTO) &&
703 (S_ISREG(inode->i_mode) ||
704 S_ISDIR(inode->i_mode)))
705 goto out_force;
706 }
707 return nfs_revalidate_inode(server, inode);
708 out_force:
709 return __nfs_revalidate_inode(server, inode);
710 }
711
712 /*
713 * We judge how long we want to trust negative
714 * dentries by looking at the parent inode mtime.
715 *
716 * If parent mtime has changed, we revalidate, else we wait for a
717 * period corresponding to the parent's attribute cache timeout value.
718 */
719 static inline
720 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
721 struct nameidata *nd)
722 {
723 /* Don't revalidate a negative dentry if we're creating a new file */
724 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
725 return 0;
726 return !nfs_check_verifier(dir, dentry);
727 }
728
729 /*
730 * This is called every time the dcache has a lookup hit,
731 * and we should check whether we can really trust that
732 * lookup.
733 *
734 * NOTE! The hit can be a negative hit too, don't assume
735 * we have an inode!
736 *
737 * If the parent directory is seen to have changed, we throw out the
738 * cached dentry and do a new lookup.
739 */
740 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
741 {
742 struct inode *dir;
743 struct inode *inode;
744 struct dentry *parent;
745 int error;
746 struct nfs_fh fhandle;
747 struct nfs_fattr fattr;
748 unsigned long verifier;
749
750 parent = dget_parent(dentry);
751 lock_kernel();
752 dir = parent->d_inode;
753 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
754 inode = dentry->d_inode;
755
756 /* Revalidate parent directory attribute cache */
757 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
758 goto out_zap_parent;
759
760 if (!inode) {
761 if (nfs_neg_need_reval(dir, dentry, nd))
762 goto out_bad;
763 goto out_valid;
764 }
765
766 if (is_bad_inode(inode)) {
767 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
768 __FUNCTION__, dentry->d_parent->d_name.name,
769 dentry->d_name.name);
770 goto out_bad;
771 }
772
773 /* Force a full look up iff the parent directory has changed */
774 if (nfs_check_verifier(dir, dentry)) {
775 if (nfs_lookup_verify_inode(inode, nd))
776 goto out_zap_parent;
777 goto out_valid;
778 }
779
780 if (NFS_STALE(inode))
781 goto out_bad;
782
783 verifier = nfs_save_change_attribute(dir);
784 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
785 if (error)
786 goto out_bad;
787 if (nfs_compare_fh(NFS_FH(inode), &fhandle))
788 goto out_bad;
789 if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
790 goto out_bad;
791
792 nfs_set_verifier(dentry, verifier);
793 out_valid:
794 unlock_kernel();
795 dput(parent);
796 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
797 __FUNCTION__, dentry->d_parent->d_name.name,
798 dentry->d_name.name);
799 return 1;
800 out_zap_parent:
801 nfs_zap_caches(dir);
802 out_bad:
803 NFS_CACHEINV(dir);
804 if (inode && S_ISDIR(inode->i_mode)) {
805 /* Purge readdir caches. */
806 nfs_zap_caches(inode);
807 /* If we have submounts, don't unhash ! */
808 if (have_submounts(dentry))
809 goto out_valid;
810 shrink_dcache_parent(dentry);
811 }
812 d_drop(dentry);
813 unlock_kernel();
814 dput(parent);
815 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
816 __FUNCTION__, dentry->d_parent->d_name.name,
817 dentry->d_name.name);
818 return 0;
819 }
820
821 /*
822 * This is called from dput() when d_count is going to 0.
823 */
824 static int nfs_dentry_delete(struct dentry *dentry)
825 {
826 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
827 dentry->d_parent->d_name.name, dentry->d_name.name,
828 dentry->d_flags);
829
830 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
831 /* Unhash it, so that ->d_iput() would be called */
832 return 1;
833 }
834 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
835 /* Unhash it, so that ancestors of killed async unlink
836 * files will be cleaned up during umount */
837 return 1;
838 }
839 return 0;
840
841 }
842
843 /*
844 * Called when the dentry loses inode.
845 * We use it to clean up silly-renamed files.
846 */
847 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
848 {
849 nfs_inode_return_delegation(inode);
850 if (S_ISDIR(inode->i_mode))
851 /* drop any readdir cache as it could easily be old */
852 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
853
854 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
855 lock_kernel();
856 drop_nlink(inode);
857 nfs_complete_unlink(dentry, inode);
858 unlock_kernel();
859 }
860 iput(inode);
861 }
862
863 struct dentry_operations nfs_dentry_operations = {
864 .d_revalidate = nfs_lookup_revalidate,
865 .d_delete = nfs_dentry_delete,
866 .d_iput = nfs_dentry_iput,
867 };
868
869 /*
870 * Use intent information to check whether or not we're going to do
871 * an O_EXCL create using this path component.
872 */
873 static inline
874 int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
875 {
876 if (NFS_PROTO(dir)->version == 2)
877 return 0;
878 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
879 return 0;
880 return (nd->intent.open.flags & O_EXCL) != 0;
881 }
882
883 static inline int nfs_reval_fsid(struct inode *dir, const struct nfs_fattr *fattr)
884 {
885 struct nfs_server *server = NFS_SERVER(dir);
886
887 if (!nfs_fsid_equal(&server->fsid, &fattr->fsid))
888 /* Revalidate fsid using the parent directory */
889 return __nfs_revalidate_inode(server, dir);
890 return 0;
891 }
892
893 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
894 {
895 struct dentry *res;
896 struct inode *inode = NULL;
897 int error;
898 struct nfs_fh fhandle;
899 struct nfs_fattr fattr;
900
901 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
902 dentry->d_parent->d_name.name, dentry->d_name.name);
903 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
904
905 res = ERR_PTR(-ENAMETOOLONG);
906 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
907 goto out;
908
909 res = ERR_PTR(-ENOMEM);
910 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
911
912 lock_kernel();
913
914 /*
915 * If we're doing an exclusive create, optimize away the lookup
916 * but don't hash the dentry.
917 */
918 if (nfs_is_exclusive_create(dir, nd)) {
919 d_instantiate(dentry, NULL);
920 res = NULL;
921 goto out_unlock;
922 }
923
924 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
925 if (error == -ENOENT)
926 goto no_entry;
927 if (error < 0) {
928 res = ERR_PTR(error);
929 goto out_unlock;
930 }
931 error = nfs_reval_fsid(dir, &fattr);
932 if (error < 0) {
933 res = ERR_PTR(error);
934 goto out_unlock;
935 }
936 inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
937 res = (struct dentry *)inode;
938 if (IS_ERR(res))
939 goto out_unlock;
940
941 no_entry:
942 res = d_materialise_unique(dentry, inode);
943 if (res != NULL) {
944 struct dentry *parent;
945 if (IS_ERR(res))
946 goto out_unlock;
947 /* Was a directory renamed! */
948 parent = dget_parent(res);
949 if (!IS_ROOT(parent))
950 nfs_mark_for_revalidate(parent->d_inode);
951 dput(parent);
952 dentry = res;
953 }
954 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
955 out_unlock:
956 unlock_kernel();
957 out:
958 return res;
959 }
960
961 #ifdef CONFIG_NFS_V4
962 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
963
964 struct dentry_operations nfs4_dentry_operations = {
965 .d_revalidate = nfs_open_revalidate,
966 .d_delete = nfs_dentry_delete,
967 .d_iput = nfs_dentry_iput,
968 };
969
970 /*
971 * Use intent information to determine whether we need to substitute
972 * the NFSv4-style stateful OPEN for the LOOKUP call
973 */
974 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
975 {
976 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
977 return 0;
978 /* NFS does not (yet) have a stateful open for directories */
979 if (nd->flags & LOOKUP_DIRECTORY)
980 return 0;
981 /* Are we trying to write to a read only partition? */
982 if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
983 return 0;
984 return 1;
985 }
986
987 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
988 {
989 struct dentry *res = NULL;
990 int error;
991
992 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
993 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
994
995 /* Check that we are indeed trying to open this file */
996 if (!is_atomic_open(dir, nd))
997 goto no_open;
998
999 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1000 res = ERR_PTR(-ENAMETOOLONG);
1001 goto out;
1002 }
1003 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1004
1005 /* Let vfs_create() deal with O_EXCL */
1006 if (nd->intent.open.flags & O_EXCL) {
1007 d_add(dentry, NULL);
1008 goto out;
1009 }
1010
1011 /* Open the file on the server */
1012 lock_kernel();
1013 /* Revalidate parent directory attribute cache */
1014 error = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1015 if (error < 0) {
1016 res = ERR_PTR(error);
1017 unlock_kernel();
1018 goto out;
1019 }
1020
1021 if (nd->intent.open.flags & O_CREAT) {
1022 nfs_begin_data_update(dir);
1023 res = nfs4_atomic_open(dir, dentry, nd);
1024 nfs_end_data_update(dir);
1025 } else
1026 res = nfs4_atomic_open(dir, dentry, nd);
1027 unlock_kernel();
1028 if (IS_ERR(res)) {
1029 error = PTR_ERR(res);
1030 switch (error) {
1031 /* Make a negative dentry */
1032 case -ENOENT:
1033 res = NULL;
1034 goto out;
1035 /* This turned out not to be a regular file */
1036 case -EISDIR:
1037 case -ENOTDIR:
1038 goto no_open;
1039 case -ELOOP:
1040 if (!(nd->intent.open.flags & O_NOFOLLOW))
1041 goto no_open;
1042 /* case -EINVAL: */
1043 default:
1044 goto out;
1045 }
1046 } else if (res != NULL)
1047 dentry = res;
1048 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1049 out:
1050 return res;
1051 no_open:
1052 return nfs_lookup(dir, dentry, nd);
1053 }
1054
1055 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1056 {
1057 struct dentry *parent = NULL;
1058 struct inode *inode = dentry->d_inode;
1059 struct inode *dir;
1060 unsigned long verifier;
1061 int openflags, ret = 0;
1062
1063 parent = dget_parent(dentry);
1064 dir = parent->d_inode;
1065 if (!is_atomic_open(dir, nd))
1066 goto no_open;
1067 /* We can't create new files in nfs_open_revalidate(), so we
1068 * optimize away revalidation of negative dentries.
1069 */
1070 if (inode == NULL)
1071 goto out;
1072 /* NFS only supports OPEN on regular files */
1073 if (!S_ISREG(inode->i_mode))
1074 goto no_open;
1075 openflags = nd->intent.open.flags;
1076 /* We cannot do exclusive creation on a positive dentry */
1077 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1078 goto no_open;
1079 /* We can't create new files, or truncate existing ones here */
1080 openflags &= ~(O_CREAT|O_TRUNC);
1081
1082 /*
1083 * Note: we're not holding inode->i_mutex and so may be racing with
1084 * operations that change the directory. We therefore save the
1085 * change attribute *before* we do the RPC call.
1086 */
1087 lock_kernel();
1088 verifier = nfs_save_change_attribute(dir);
1089 ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1090 if (!ret)
1091 nfs_set_verifier(dentry, verifier);
1092 unlock_kernel();
1093 out:
1094 dput(parent);
1095 if (!ret)
1096 d_drop(dentry);
1097 return ret;
1098 no_open:
1099 dput(parent);
1100 if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1101 return 1;
1102 return nfs_lookup_revalidate(dentry, nd);
1103 }
1104 #endif /* CONFIG_NFSV4 */
1105
1106 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1107 {
1108 struct dentry *parent = desc->file->f_path.dentry;
1109 struct inode *dir = parent->d_inode;
1110 struct nfs_entry *entry = desc->entry;
1111 struct dentry *dentry, *alias;
1112 struct qstr name = {
1113 .name = entry->name,
1114 .len = entry->len,
1115 };
1116 struct inode *inode;
1117
1118 switch (name.len) {
1119 case 2:
1120 if (name.name[0] == '.' && name.name[1] == '.')
1121 return dget_parent(parent);
1122 break;
1123 case 1:
1124 if (name.name[0] == '.')
1125 return dget(parent);
1126 }
1127 name.hash = full_name_hash(name.name, name.len);
1128 dentry = d_lookup(parent, &name);
1129 if (dentry != NULL) {
1130 /* Is this a positive dentry that matches the readdir info? */
1131 if (dentry->d_inode != NULL &&
1132 (NFS_FILEID(dentry->d_inode) == entry->ino ||
1133 d_mountpoint(dentry))) {
1134 if (!desc->plus || entry->fh->size == 0)
1135 return dentry;
1136 if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1137 entry->fh) == 0)
1138 goto out_renew;
1139 }
1140 /* No, so d_drop to allow one to be created */
1141 d_drop(dentry);
1142 dput(dentry);
1143 }
1144 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1145 return NULL;
1146 if (name.len > NFS_SERVER(dir)->namelen)
1147 return NULL;
1148 /* Note: caller is already holding the dir->i_mutex! */
1149 dentry = d_alloc(parent, &name);
1150 if (dentry == NULL)
1151 return NULL;
1152 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1153 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1154 if (IS_ERR(inode)) {
1155 dput(dentry);
1156 return NULL;
1157 }
1158
1159 alias = d_materialise_unique(dentry, inode);
1160 if (alias != NULL) {
1161 dput(dentry);
1162 if (IS_ERR(alias))
1163 return NULL;
1164 dentry = alias;
1165 }
1166
1167 out_renew:
1168 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1169 return dentry;
1170 }
1171
1172 /*
1173 * Code common to create, mkdir, and mknod.
1174 */
1175 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1176 struct nfs_fattr *fattr)
1177 {
1178 struct inode *inode;
1179 int error = -EACCES;
1180
1181 /* We may have been initialized further down */
1182 if (dentry->d_inode)
1183 return 0;
1184 if (fhandle->size == 0) {
1185 struct inode *dir = dentry->d_parent->d_inode;
1186 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1187 if (error)
1188 return error;
1189 }
1190 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1191 struct nfs_server *server = NFS_SB(dentry->d_sb);
1192 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1193 if (error < 0)
1194 return error;
1195 }
1196 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1197 error = PTR_ERR(inode);
1198 if (IS_ERR(inode))
1199 return error;
1200 d_instantiate(dentry, inode);
1201 if (d_unhashed(dentry))
1202 d_rehash(dentry);
1203 return 0;
1204 }
1205
1206 /*
1207 * Following a failed create operation, we drop the dentry rather
1208 * than retain a negative dentry. This avoids a problem in the event
1209 * that the operation succeeded on the server, but an error in the
1210 * reply path made it appear to have failed.
1211 */
1212 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1213 struct nameidata *nd)
1214 {
1215 struct iattr attr;
1216 int error;
1217 int open_flags = 0;
1218
1219 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1220 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1221
1222 attr.ia_mode = mode;
1223 attr.ia_valid = ATTR_MODE;
1224
1225 if ((nd->flags & LOOKUP_CREATE) != 0)
1226 open_flags = nd->intent.open.flags;
1227
1228 lock_kernel();
1229 nfs_begin_data_update(dir);
1230 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1231 nfs_end_data_update(dir);
1232 if (error != 0)
1233 goto out_err;
1234 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1235 unlock_kernel();
1236 return 0;
1237 out_err:
1238 unlock_kernel();
1239 d_drop(dentry);
1240 return error;
1241 }
1242
1243 /*
1244 * See comments for nfs_proc_create regarding failed operations.
1245 */
1246 static int
1247 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1248 {
1249 struct iattr attr;
1250 int status;
1251
1252 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1253 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1254
1255 if (!new_valid_dev(rdev))
1256 return -EINVAL;
1257
1258 attr.ia_mode = mode;
1259 attr.ia_valid = ATTR_MODE;
1260
1261 lock_kernel();
1262 nfs_begin_data_update(dir);
1263 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1264 nfs_end_data_update(dir);
1265 if (status != 0)
1266 goto out_err;
1267 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1268 unlock_kernel();
1269 return 0;
1270 out_err:
1271 unlock_kernel();
1272 d_drop(dentry);
1273 return status;
1274 }
1275
1276 /*
1277 * See comments for nfs_proc_create regarding failed operations.
1278 */
1279 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1280 {
1281 struct iattr attr;
1282 int error;
1283
1284 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1285 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1286
1287 attr.ia_valid = ATTR_MODE;
1288 attr.ia_mode = mode | S_IFDIR;
1289
1290 lock_kernel();
1291 nfs_begin_data_update(dir);
1292 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1293 nfs_end_data_update(dir);
1294 if (error != 0)
1295 goto out_err;
1296 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1297 unlock_kernel();
1298 return 0;
1299 out_err:
1300 d_drop(dentry);
1301 unlock_kernel();
1302 return error;
1303 }
1304
1305 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1306 {
1307 int error;
1308
1309 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1310 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1311
1312 lock_kernel();
1313 nfs_begin_data_update(dir);
1314 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1315 /* Ensure the VFS deletes this inode */
1316 if (error == 0 && dentry->d_inode != NULL)
1317 clear_nlink(dentry->d_inode);
1318 nfs_end_data_update(dir);
1319 unlock_kernel();
1320
1321 return error;
1322 }
1323
1324 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1325 {
1326 static unsigned int sillycounter;
1327 const int fileidsize = sizeof(NFS_FILEID(dentry->d_inode))*2;
1328 const int countersize = sizeof(sillycounter)*2;
1329 const int slen = sizeof(".nfs")+fileidsize+countersize-1;
1330 char silly[slen+1];
1331 struct qstr qsilly;
1332 struct dentry *sdentry;
1333 int error = -EIO;
1334
1335 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1336 dentry->d_parent->d_name.name, dentry->d_name.name,
1337 atomic_read(&dentry->d_count));
1338 nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1339
1340 /*
1341 * We don't allow a dentry to be silly-renamed twice.
1342 */
1343 error = -EBUSY;
1344 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1345 goto out;
1346
1347 sprintf(silly, ".nfs%*.*Lx",
1348 fileidsize, fileidsize,
1349 (unsigned long long)NFS_FILEID(dentry->d_inode));
1350
1351 /* Return delegation in anticipation of the rename */
1352 nfs_inode_return_delegation(dentry->d_inode);
1353
1354 sdentry = NULL;
1355 do {
1356 char *suffix = silly + slen - countersize;
1357
1358 dput(sdentry);
1359 sillycounter++;
1360 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1361
1362 dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1363 dentry->d_name.name, silly);
1364
1365 sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1366 /*
1367 * N.B. Better to return EBUSY here ... it could be
1368 * dangerous to delete the file while it's in use.
1369 */
1370 if (IS_ERR(sdentry))
1371 goto out;
1372 } while(sdentry->d_inode != NULL); /* need negative lookup */
1373
1374 qsilly.name = silly;
1375 qsilly.len = strlen(silly);
1376 nfs_begin_data_update(dir);
1377 if (dentry->d_inode) {
1378 nfs_begin_data_update(dentry->d_inode);
1379 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1380 dir, &qsilly);
1381 nfs_mark_for_revalidate(dentry->d_inode);
1382 nfs_end_data_update(dentry->d_inode);
1383 } else
1384 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1385 dir, &qsilly);
1386 nfs_end_data_update(dir);
1387 if (!error) {
1388 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1389 d_move(dentry, sdentry);
1390 error = nfs_async_unlink(dir, dentry);
1391 /* If we return 0 we don't unlink */
1392 }
1393 dput(sdentry);
1394 out:
1395 return error;
1396 }
1397
1398 /*
1399 * Remove a file after making sure there are no pending writes,
1400 * and after checking that the file has only one user.
1401 *
1402 * We invalidate the attribute cache and free the inode prior to the operation
1403 * to avoid possible races if the server reuses the inode.
1404 */
1405 static int nfs_safe_remove(struct dentry *dentry)
1406 {
1407 struct inode *dir = dentry->d_parent->d_inode;
1408 struct inode *inode = dentry->d_inode;
1409 int error = -EBUSY;
1410
1411 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1412 dentry->d_parent->d_name.name, dentry->d_name.name);
1413
1414 /* If the dentry was sillyrenamed, we simply call d_delete() */
1415 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1416 error = 0;
1417 goto out;
1418 }
1419
1420 nfs_begin_data_update(dir);
1421 if (inode != NULL) {
1422 nfs_inode_return_delegation(inode);
1423 nfs_begin_data_update(inode);
1424 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1425 /* The VFS may want to delete this inode */
1426 if (error == 0)
1427 drop_nlink(inode);
1428 nfs_mark_for_revalidate(inode);
1429 nfs_end_data_update(inode);
1430 } else
1431 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1432 nfs_end_data_update(dir);
1433 out:
1434 return error;
1435 }
1436
1437 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1438 * belongs to an active ".nfs..." file and we return -EBUSY.
1439 *
1440 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1441 */
1442 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1443 {
1444 int error;
1445 int need_rehash = 0;
1446
1447 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1448 dir->i_ino, dentry->d_name.name);
1449
1450 lock_kernel();
1451 spin_lock(&dcache_lock);
1452 spin_lock(&dentry->d_lock);
1453 if (atomic_read(&dentry->d_count) > 1) {
1454 spin_unlock(&dentry->d_lock);
1455 spin_unlock(&dcache_lock);
1456 /* Start asynchronous writeout of the inode */
1457 write_inode_now(dentry->d_inode, 0);
1458 error = nfs_sillyrename(dir, dentry);
1459 unlock_kernel();
1460 return error;
1461 }
1462 if (!d_unhashed(dentry)) {
1463 __d_drop(dentry);
1464 need_rehash = 1;
1465 }
1466 spin_unlock(&dentry->d_lock);
1467 spin_unlock(&dcache_lock);
1468 error = nfs_safe_remove(dentry);
1469 if (!error) {
1470 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1471 } else if (need_rehash)
1472 d_rehash(dentry);
1473 unlock_kernel();
1474 return error;
1475 }
1476
1477 /*
1478 * To create a symbolic link, most file systems instantiate a new inode,
1479 * add a page to it containing the path, then write it out to the disk
1480 * using prepare_write/commit_write.
1481 *
1482 * Unfortunately the NFS client can't create the in-core inode first
1483 * because it needs a file handle to create an in-core inode (see
1484 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1485 * symlink request has completed on the server.
1486 *
1487 * So instead we allocate a raw page, copy the symname into it, then do
1488 * the SYMLINK request with the page as the buffer. If it succeeds, we
1489 * now have a new file handle and can instantiate an in-core NFS inode
1490 * and move the raw page into its mapping.
1491 */
1492 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1493 {
1494 struct pagevec lru_pvec;
1495 struct page *page;
1496 char *kaddr;
1497 struct iattr attr;
1498 unsigned int pathlen = strlen(symname);
1499 int error;
1500
1501 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1502 dir->i_ino, dentry->d_name.name, symname);
1503
1504 if (pathlen > PAGE_SIZE)
1505 return -ENAMETOOLONG;
1506
1507 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1508 attr.ia_valid = ATTR_MODE;
1509
1510 lock_kernel();
1511
1512 page = alloc_page(GFP_HIGHUSER);
1513 if (!page) {
1514 unlock_kernel();
1515 return -ENOMEM;
1516 }
1517
1518 kaddr = kmap_atomic(page, KM_USER0);
1519 memcpy(kaddr, symname, pathlen);
1520 if (pathlen < PAGE_SIZE)
1521 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1522 kunmap_atomic(kaddr, KM_USER0);
1523
1524 nfs_begin_data_update(dir);
1525 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1526 nfs_end_data_update(dir);
1527 if (error != 0) {
1528 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1529 dir->i_sb->s_id, dir->i_ino,
1530 dentry->d_name.name, symname, error);
1531 d_drop(dentry);
1532 __free_page(page);
1533 unlock_kernel();
1534 return error;
1535 }
1536
1537 /*
1538 * No big deal if we can't add this page to the page cache here.
1539 * READLINK will get the missing page from the server if needed.
1540 */
1541 pagevec_init(&lru_pvec, 0);
1542 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1543 GFP_KERNEL)) {
1544 pagevec_add(&lru_pvec, page);
1545 pagevec_lru_add(&lru_pvec);
1546 SetPageUptodate(page);
1547 unlock_page(page);
1548 } else
1549 __free_page(page);
1550
1551 unlock_kernel();
1552 return 0;
1553 }
1554
1555 static int
1556 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1557 {
1558 struct inode *inode = old_dentry->d_inode;
1559 int error;
1560
1561 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1562 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1563 dentry->d_parent->d_name.name, dentry->d_name.name);
1564
1565 lock_kernel();
1566 nfs_begin_data_update(dir);
1567 nfs_begin_data_update(inode);
1568 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1569 if (error == 0) {
1570 atomic_inc(&inode->i_count);
1571 d_instantiate(dentry, inode);
1572 }
1573 nfs_end_data_update(inode);
1574 nfs_end_data_update(dir);
1575 unlock_kernel();
1576 return error;
1577 }
1578
1579 /*
1580 * RENAME
1581 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1582 * different file handle for the same inode after a rename (e.g. when
1583 * moving to a different directory). A fail-safe method to do so would
1584 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1585 * rename the old file using the sillyrename stuff. This way, the original
1586 * file in old_dir will go away when the last process iput()s the inode.
1587 *
1588 * FIXED.
1589 *
1590 * It actually works quite well. One needs to have the possibility for
1591 * at least one ".nfs..." file in each directory the file ever gets
1592 * moved or linked to which happens automagically with the new
1593 * implementation that only depends on the dcache stuff instead of
1594 * using the inode layer
1595 *
1596 * Unfortunately, things are a little more complicated than indicated
1597 * above. For a cross-directory move, we want to make sure we can get
1598 * rid of the old inode after the operation. This means there must be
1599 * no pending writes (if it's a file), and the use count must be 1.
1600 * If these conditions are met, we can drop the dentries before doing
1601 * the rename.
1602 */
1603 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1604 struct inode *new_dir, struct dentry *new_dentry)
1605 {
1606 struct inode *old_inode = old_dentry->d_inode;
1607 struct inode *new_inode = new_dentry->d_inode;
1608 struct dentry *dentry = NULL, *rehash = NULL;
1609 int error = -EBUSY;
1610
1611 /*
1612 * To prevent any new references to the target during the rename,
1613 * we unhash the dentry and free the inode in advance.
1614 */
1615 lock_kernel();
1616 if (!d_unhashed(new_dentry)) {
1617 d_drop(new_dentry);
1618 rehash = new_dentry;
1619 }
1620
1621 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1622 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1623 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1624 atomic_read(&new_dentry->d_count));
1625
1626 /*
1627 * First check whether the target is busy ... we can't
1628 * safely do _any_ rename if the target is in use.
1629 *
1630 * For files, make a copy of the dentry and then do a
1631 * silly-rename. If the silly-rename succeeds, the
1632 * copied dentry is hashed and becomes the new target.
1633 */
1634 if (!new_inode)
1635 goto go_ahead;
1636 if (S_ISDIR(new_inode->i_mode)) {
1637 error = -EISDIR;
1638 if (!S_ISDIR(old_inode->i_mode))
1639 goto out;
1640 } else if (atomic_read(&new_dentry->d_count) > 2) {
1641 int err;
1642 /* copy the target dentry's name */
1643 dentry = d_alloc(new_dentry->d_parent,
1644 &new_dentry->d_name);
1645 if (!dentry)
1646 goto out;
1647
1648 /* silly-rename the existing target ... */
1649 err = nfs_sillyrename(new_dir, new_dentry);
1650 if (!err) {
1651 new_dentry = rehash = dentry;
1652 new_inode = NULL;
1653 /* instantiate the replacement target */
1654 d_instantiate(new_dentry, NULL);
1655 } else if (atomic_read(&new_dentry->d_count) > 1)
1656 /* dentry still busy? */
1657 goto out;
1658 } else
1659 drop_nlink(new_inode);
1660
1661 go_ahead:
1662 /*
1663 * ... prune child dentries and writebacks if needed.
1664 */
1665 if (atomic_read(&old_dentry->d_count) > 1) {
1666 if (S_ISREG(old_inode->i_mode))
1667 nfs_wb_all(old_inode);
1668 shrink_dcache_parent(old_dentry);
1669 }
1670 nfs_inode_return_delegation(old_inode);
1671
1672 if (new_inode != NULL) {
1673 nfs_inode_return_delegation(new_inode);
1674 d_delete(new_dentry);
1675 }
1676
1677 nfs_begin_data_update(old_dir);
1678 nfs_begin_data_update(new_dir);
1679 nfs_begin_data_update(old_inode);
1680 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1681 new_dir, &new_dentry->d_name);
1682 nfs_mark_for_revalidate(old_inode);
1683 nfs_end_data_update(old_inode);
1684 nfs_end_data_update(new_dir);
1685 nfs_end_data_update(old_dir);
1686 out:
1687 if (rehash)
1688 d_rehash(rehash);
1689 if (!error) {
1690 d_move(old_dentry, new_dentry);
1691 nfs_set_verifier(new_dentry,
1692 nfs_save_change_attribute(new_dir));
1693 }
1694
1695 /* new dentry created? */
1696 if (dentry)
1697 dput(dentry);
1698 unlock_kernel();
1699 return error;
1700 }
1701
1702 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1703 static LIST_HEAD(nfs_access_lru_list);
1704 static atomic_long_t nfs_access_nr_entries;
1705
1706 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1707 {
1708 put_rpccred(entry->cred);
1709 kfree(entry);
1710 smp_mb__before_atomic_dec();
1711 atomic_long_dec(&nfs_access_nr_entries);
1712 smp_mb__after_atomic_dec();
1713 }
1714
1715 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1716 {
1717 LIST_HEAD(head);
1718 struct nfs_inode *nfsi;
1719 struct nfs_access_entry *cache;
1720
1721 restart:
1722 spin_lock(&nfs_access_lru_lock);
1723 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1724 struct inode *inode;
1725
1726 if (nr_to_scan-- == 0)
1727 break;
1728 inode = igrab(&nfsi->vfs_inode);
1729 if (inode == NULL)
1730 continue;
1731 spin_lock(&inode->i_lock);
1732 if (list_empty(&nfsi->access_cache_entry_lru))
1733 goto remove_lru_entry;
1734 cache = list_entry(nfsi->access_cache_entry_lru.next,
1735 struct nfs_access_entry, lru);
1736 list_move(&cache->lru, &head);
1737 rb_erase(&cache->rb_node, &nfsi->access_cache);
1738 if (!list_empty(&nfsi->access_cache_entry_lru))
1739 list_move_tail(&nfsi->access_cache_inode_lru,
1740 &nfs_access_lru_list);
1741 else {
1742 remove_lru_entry:
1743 list_del_init(&nfsi->access_cache_inode_lru);
1744 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1745 }
1746 spin_unlock(&inode->i_lock);
1747 spin_unlock(&nfs_access_lru_lock);
1748 iput(inode);
1749 goto restart;
1750 }
1751 spin_unlock(&nfs_access_lru_lock);
1752 while (!list_empty(&head)) {
1753 cache = list_entry(head.next, struct nfs_access_entry, lru);
1754 list_del(&cache->lru);
1755 nfs_access_free_entry(cache);
1756 }
1757 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1758 }
1759
1760 static void __nfs_access_zap_cache(struct inode *inode)
1761 {
1762 struct nfs_inode *nfsi = NFS_I(inode);
1763 struct rb_root *root_node = &nfsi->access_cache;
1764 struct rb_node *n, *dispose = NULL;
1765 struct nfs_access_entry *entry;
1766
1767 /* Unhook entries from the cache */
1768 while ((n = rb_first(root_node)) != NULL) {
1769 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1770 rb_erase(n, root_node);
1771 list_del(&entry->lru);
1772 n->rb_left = dispose;
1773 dispose = n;
1774 }
1775 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1776 spin_unlock(&inode->i_lock);
1777
1778 /* Now kill them all! */
1779 while (dispose != NULL) {
1780 n = dispose;
1781 dispose = n->rb_left;
1782 nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1783 }
1784 }
1785
1786 void nfs_access_zap_cache(struct inode *inode)
1787 {
1788 /* Remove from global LRU init */
1789 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1790 spin_lock(&nfs_access_lru_lock);
1791 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1792 spin_unlock(&nfs_access_lru_lock);
1793 }
1794
1795 spin_lock(&inode->i_lock);
1796 /* This will release the spinlock */
1797 __nfs_access_zap_cache(inode);
1798 }
1799
1800 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1801 {
1802 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1803 struct nfs_access_entry *entry;
1804
1805 while (n != NULL) {
1806 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1807
1808 if (cred < entry->cred)
1809 n = n->rb_left;
1810 else if (cred > entry->cred)
1811 n = n->rb_right;
1812 else
1813 return entry;
1814 }
1815 return NULL;
1816 }
1817
1818 int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1819 {
1820 struct nfs_inode *nfsi = NFS_I(inode);
1821 struct nfs_access_entry *cache;
1822 int err = -ENOENT;
1823
1824 spin_lock(&inode->i_lock);
1825 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1826 goto out_zap;
1827 cache = nfs_access_search_rbtree(inode, cred);
1828 if (cache == NULL)
1829 goto out;
1830 if (!time_in_range(jiffies, cache->jiffies, cache->jiffies + NFS_ATTRTIMEO(inode)))
1831 goto out_stale;
1832 res->jiffies = cache->jiffies;
1833 res->cred = cache->cred;
1834 res->mask = cache->mask;
1835 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1836 err = 0;
1837 out:
1838 spin_unlock(&inode->i_lock);
1839 return err;
1840 out_stale:
1841 rb_erase(&cache->rb_node, &nfsi->access_cache);
1842 list_del(&cache->lru);
1843 spin_unlock(&inode->i_lock);
1844 nfs_access_free_entry(cache);
1845 return -ENOENT;
1846 out_zap:
1847 /* This will release the spinlock */
1848 __nfs_access_zap_cache(inode);
1849 return -ENOENT;
1850 }
1851
1852 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1853 {
1854 struct nfs_inode *nfsi = NFS_I(inode);
1855 struct rb_root *root_node = &nfsi->access_cache;
1856 struct rb_node **p = &root_node->rb_node;
1857 struct rb_node *parent = NULL;
1858 struct nfs_access_entry *entry;
1859
1860 spin_lock(&inode->i_lock);
1861 while (*p != NULL) {
1862 parent = *p;
1863 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1864
1865 if (set->cred < entry->cred)
1866 p = &parent->rb_left;
1867 else if (set->cred > entry->cred)
1868 p = &parent->rb_right;
1869 else
1870 goto found;
1871 }
1872 rb_link_node(&set->rb_node, parent, p);
1873 rb_insert_color(&set->rb_node, root_node);
1874 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1875 spin_unlock(&inode->i_lock);
1876 return;
1877 found:
1878 rb_replace_node(parent, &set->rb_node, root_node);
1879 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1880 list_del(&entry->lru);
1881 spin_unlock(&inode->i_lock);
1882 nfs_access_free_entry(entry);
1883 }
1884
1885 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1886 {
1887 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1888 if (cache == NULL)
1889 return;
1890 RB_CLEAR_NODE(&cache->rb_node);
1891 cache->jiffies = set->jiffies;
1892 cache->cred = get_rpccred(set->cred);
1893 cache->mask = set->mask;
1894
1895 nfs_access_add_rbtree(inode, cache);
1896
1897 /* Update accounting */
1898 smp_mb__before_atomic_inc();
1899 atomic_long_inc(&nfs_access_nr_entries);
1900 smp_mb__after_atomic_inc();
1901
1902 /* Add inode to global LRU list */
1903 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1904 spin_lock(&nfs_access_lru_lock);
1905 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1906 spin_unlock(&nfs_access_lru_lock);
1907 }
1908 }
1909
1910 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1911 {
1912 struct nfs_access_entry cache;
1913 int status;
1914
1915 status = nfs_access_get_cached(inode, cred, &cache);
1916 if (status == 0)
1917 goto out;
1918
1919 /* Be clever: ask server to check for all possible rights */
1920 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1921 cache.cred = cred;
1922 cache.jiffies = jiffies;
1923 status = NFS_PROTO(inode)->access(inode, &cache);
1924 if (status != 0)
1925 return status;
1926 nfs_access_add_cache(inode, &cache);
1927 out:
1928 if ((cache.mask & mask) == mask)
1929 return 0;
1930 return -EACCES;
1931 }
1932
1933 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
1934 {
1935 struct rpc_cred *cred;
1936 int res = 0;
1937
1938 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1939
1940 if (mask == 0)
1941 goto out;
1942 /* Is this sys_access() ? */
1943 if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
1944 goto force_lookup;
1945
1946 switch (inode->i_mode & S_IFMT) {
1947 case S_IFLNK:
1948 goto out;
1949 case S_IFREG:
1950 /* NFSv4 has atomic_open... */
1951 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1952 && nd != NULL
1953 && (nd->flags & LOOKUP_OPEN))
1954 goto out;
1955 break;
1956 case S_IFDIR:
1957 /*
1958 * Optimize away all write operations, since the server
1959 * will check permissions when we perform the op.
1960 */
1961 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1962 goto out;
1963 }
1964
1965 force_lookup:
1966 lock_kernel();
1967
1968 if (!NFS_PROTO(inode)->access)
1969 goto out_notsup;
1970
1971 cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1972 if (!IS_ERR(cred)) {
1973 res = nfs_do_access(inode, cred, mask);
1974 put_rpccred(cred);
1975 } else
1976 res = PTR_ERR(cred);
1977 unlock_kernel();
1978 out:
1979 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1980 inode->i_sb->s_id, inode->i_ino, mask, res);
1981 return res;
1982 out_notsup:
1983 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1984 if (res == 0)
1985 res = generic_permission(inode, mask, NULL);
1986 unlock_kernel();
1987 goto out;
1988 }
1989
1990 /*
1991 * Local variables:
1992 * version-control: t
1993 * kept-new-versions: 5
1994 * End:
1995 */