]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/nfs/dir.c
Merge branch 'linus' into timers/nohz
[mirror_ubuntu-zesty-kernel.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37
38 #include "nfs4_fs.h"
39 #include "delegation.h"
40 #include "iostat.h"
41 #include "internal.h"
42
43 /* #define NFS_DEBUG_VERBOSE 1 */
44
45 static int nfs_opendir(struct inode *, struct file *);
46 static int nfs_readdir(struct file *, void *, filldir_t);
47 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
48 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
49 static int nfs_mkdir(struct inode *, struct dentry *, int);
50 static int nfs_rmdir(struct inode *, struct dentry *);
51 static int nfs_unlink(struct inode *, struct dentry *);
52 static int nfs_symlink(struct inode *, struct dentry *, const char *);
53 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
54 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
55 static int nfs_rename(struct inode *, struct dentry *,
56 struct inode *, struct dentry *);
57 static int nfs_fsync_dir(struct file *, struct dentry *, int);
58 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
59
60 const struct file_operations nfs_dir_operations = {
61 .llseek = nfs_llseek_dir,
62 .read = generic_read_dir,
63 .readdir = nfs_readdir,
64 .open = nfs_opendir,
65 .release = nfs_release,
66 .fsync = nfs_fsync_dir,
67 };
68
69 const struct inode_operations nfs_dir_inode_operations = {
70 .create = nfs_create,
71 .lookup = nfs_lookup,
72 .link = nfs_link,
73 .unlink = nfs_unlink,
74 .symlink = nfs_symlink,
75 .mkdir = nfs_mkdir,
76 .rmdir = nfs_rmdir,
77 .mknod = nfs_mknod,
78 .rename = nfs_rename,
79 .permission = nfs_permission,
80 .getattr = nfs_getattr,
81 .setattr = nfs_setattr,
82 };
83
84 #ifdef CONFIG_NFS_V3
85 const struct inode_operations nfs3_dir_inode_operations = {
86 .create = nfs_create,
87 .lookup = nfs_lookup,
88 .link = nfs_link,
89 .unlink = nfs_unlink,
90 .symlink = nfs_symlink,
91 .mkdir = nfs_mkdir,
92 .rmdir = nfs_rmdir,
93 .mknod = nfs_mknod,
94 .rename = nfs_rename,
95 .permission = nfs_permission,
96 .getattr = nfs_getattr,
97 .setattr = nfs_setattr,
98 .listxattr = nfs3_listxattr,
99 .getxattr = nfs3_getxattr,
100 .setxattr = nfs3_setxattr,
101 .removexattr = nfs3_removexattr,
102 };
103 #endif /* CONFIG_NFS_V3 */
104
105 #ifdef CONFIG_NFS_V4
106
107 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
108 const struct inode_operations nfs4_dir_inode_operations = {
109 .create = nfs_create,
110 .lookup = nfs_atomic_lookup,
111 .link = nfs_link,
112 .unlink = nfs_unlink,
113 .symlink = nfs_symlink,
114 .mkdir = nfs_mkdir,
115 .rmdir = nfs_rmdir,
116 .mknod = nfs_mknod,
117 .rename = nfs_rename,
118 .permission = nfs_permission,
119 .getattr = nfs_getattr,
120 .setattr = nfs_setattr,
121 .getxattr = nfs4_getxattr,
122 .setxattr = nfs4_setxattr,
123 .listxattr = nfs4_listxattr,
124 };
125
126 #endif /* CONFIG_NFS_V4 */
127
128 /*
129 * Open file
130 */
131 static int
132 nfs_opendir(struct inode *inode, struct file *filp)
133 {
134 int res;
135
136 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
137 filp->f_path.dentry->d_parent->d_name.name,
138 filp->f_path.dentry->d_name.name);
139
140 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
141
142 /* Call generic open code in order to cache credentials */
143 res = nfs_open(inode, filp);
144 return res;
145 }
146
147 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
148 typedef struct {
149 struct file *file;
150 struct page *page;
151 unsigned long page_index;
152 __be32 *ptr;
153 u64 *dir_cookie;
154 loff_t current_index;
155 struct nfs_entry *entry;
156 decode_dirent_t decode;
157 int plus;
158 unsigned long timestamp;
159 int timestamp_valid;
160 } nfs_readdir_descriptor_t;
161
162 /* Now we cache directories properly, by stuffing the dirent
163 * data directly in the page cache.
164 *
165 * Inode invalidation due to refresh etc. takes care of
166 * _everything_, no sloppy entry flushing logic, no extraneous
167 * copying, network direct to page cache, the way it was meant
168 * to be.
169 *
170 * NOTE: Dirent information verification is done always by the
171 * page-in of the RPC reply, nowhere else, this simplies
172 * things substantially.
173 */
174 static
175 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
176 {
177 struct file *file = desc->file;
178 struct inode *inode = file->f_path.dentry->d_inode;
179 struct rpc_cred *cred = nfs_file_cred(file);
180 unsigned long timestamp;
181 int error;
182
183 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
184 __func__, (long long)desc->entry->cookie,
185 page->index);
186
187 again:
188 timestamp = jiffies;
189 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
190 NFS_SERVER(inode)->dtsize, desc->plus);
191 if (error < 0) {
192 /* We requested READDIRPLUS, but the server doesn't grok it */
193 if (error == -ENOTSUPP && desc->plus) {
194 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
195 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
196 desc->plus = 0;
197 goto again;
198 }
199 goto error;
200 }
201 desc->timestamp = timestamp;
202 desc->timestamp_valid = 1;
203 SetPageUptodate(page);
204 /* Ensure consistent page alignment of the data.
205 * Note: assumes we have exclusive access to this mapping either
206 * through inode->i_mutex or some other mechanism.
207 */
208 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
209 /* Should never happen */
210 nfs_zap_mapping(inode, inode->i_mapping);
211 }
212 unlock_page(page);
213 return 0;
214 error:
215 unlock_page(page);
216 return -EIO;
217 }
218
219 static inline
220 int dir_decode(nfs_readdir_descriptor_t *desc)
221 {
222 __be32 *p = desc->ptr;
223 p = desc->decode(p, desc->entry, desc->plus);
224 if (IS_ERR(p))
225 return PTR_ERR(p);
226 desc->ptr = p;
227 if (desc->timestamp_valid)
228 desc->entry->fattr->time_start = desc->timestamp;
229 else
230 desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
231 return 0;
232 }
233
234 static inline
235 void dir_page_release(nfs_readdir_descriptor_t *desc)
236 {
237 kunmap(desc->page);
238 page_cache_release(desc->page);
239 desc->page = NULL;
240 desc->ptr = NULL;
241 }
242
243 /*
244 * Given a pointer to a buffer that has already been filled by a call
245 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
246 *
247 * If the end of the buffer has been reached, return -EAGAIN, if not,
248 * return the offset within the buffer of the next entry to be
249 * read.
250 */
251 static inline
252 int find_dirent(nfs_readdir_descriptor_t *desc)
253 {
254 struct nfs_entry *entry = desc->entry;
255 int loop_count = 0,
256 status;
257
258 while((status = dir_decode(desc)) == 0) {
259 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
260 __func__, (unsigned long long)entry->cookie);
261 if (entry->prev_cookie == *desc->dir_cookie)
262 break;
263 if (loop_count++ > 200) {
264 loop_count = 0;
265 schedule();
266 }
267 }
268 return status;
269 }
270
271 /*
272 * Given a pointer to a buffer that has already been filled by a call
273 * to readdir, find the entry at offset 'desc->file->f_pos'.
274 *
275 * If the end of the buffer has been reached, return -EAGAIN, if not,
276 * return the offset within the buffer of the next entry to be
277 * read.
278 */
279 static inline
280 int find_dirent_index(nfs_readdir_descriptor_t *desc)
281 {
282 struct nfs_entry *entry = desc->entry;
283 int loop_count = 0,
284 status;
285
286 for(;;) {
287 status = dir_decode(desc);
288 if (status)
289 break;
290
291 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
292 (unsigned long long)entry->cookie, desc->current_index);
293
294 if (desc->file->f_pos == desc->current_index) {
295 *desc->dir_cookie = entry->cookie;
296 break;
297 }
298 desc->current_index++;
299 if (loop_count++ > 200) {
300 loop_count = 0;
301 schedule();
302 }
303 }
304 return status;
305 }
306
307 /*
308 * Find the given page, and call find_dirent() or find_dirent_index in
309 * order to try to return the next entry.
310 */
311 static inline
312 int find_dirent_page(nfs_readdir_descriptor_t *desc)
313 {
314 struct inode *inode = desc->file->f_path.dentry->d_inode;
315 struct page *page;
316 int status;
317
318 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
319 __func__, desc->page_index,
320 (long long) *desc->dir_cookie);
321
322 /* If we find the page in the page_cache, we cannot be sure
323 * how fresh the data is, so we will ignore readdir_plus attributes.
324 */
325 desc->timestamp_valid = 0;
326 page = read_cache_page(inode->i_mapping, desc->page_index,
327 (filler_t *)nfs_readdir_filler, desc);
328 if (IS_ERR(page)) {
329 status = PTR_ERR(page);
330 goto out;
331 }
332
333 /* NOTE: Someone else may have changed the READDIRPLUS flag */
334 desc->page = page;
335 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
336 if (*desc->dir_cookie != 0)
337 status = find_dirent(desc);
338 else
339 status = find_dirent_index(desc);
340 if (status < 0)
341 dir_page_release(desc);
342 out:
343 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
344 return status;
345 }
346
347 /*
348 * Recurse through the page cache pages, and return a
349 * filled nfs_entry structure of the next directory entry if possible.
350 *
351 * The target for the search is '*desc->dir_cookie' if non-0,
352 * 'desc->file->f_pos' otherwise
353 */
354 static inline
355 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
356 {
357 int loop_count = 0;
358 int res;
359
360 /* Always search-by-index from the beginning of the cache */
361 if (*desc->dir_cookie == 0) {
362 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
363 (long long)desc->file->f_pos);
364 desc->page_index = 0;
365 desc->entry->cookie = desc->entry->prev_cookie = 0;
366 desc->entry->eof = 0;
367 desc->current_index = 0;
368 } else
369 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
370 (unsigned long long)*desc->dir_cookie);
371
372 for (;;) {
373 res = find_dirent_page(desc);
374 if (res != -EAGAIN)
375 break;
376 /* Align to beginning of next page */
377 desc->page_index ++;
378 if (loop_count++ > 200) {
379 loop_count = 0;
380 schedule();
381 }
382 }
383
384 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, res);
385 return res;
386 }
387
388 static inline unsigned int dt_type(struct inode *inode)
389 {
390 return (inode->i_mode >> 12) & 15;
391 }
392
393 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
394
395 /*
396 * Once we've found the start of the dirent within a page: fill 'er up...
397 */
398 static
399 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
400 filldir_t filldir)
401 {
402 struct file *file = desc->file;
403 struct nfs_entry *entry = desc->entry;
404 struct dentry *dentry = NULL;
405 u64 fileid;
406 int loop_count = 0,
407 res;
408
409 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
410 (unsigned long long)entry->cookie);
411
412 for(;;) {
413 unsigned d_type = DT_UNKNOWN;
414 /* Note: entry->prev_cookie contains the cookie for
415 * retrieving the current dirent on the server */
416 fileid = entry->ino;
417
418 /* Get a dentry if we have one */
419 if (dentry != NULL)
420 dput(dentry);
421 dentry = nfs_readdir_lookup(desc);
422
423 /* Use readdirplus info */
424 if (dentry != NULL && dentry->d_inode != NULL) {
425 d_type = dt_type(dentry->d_inode);
426 fileid = NFS_FILEID(dentry->d_inode);
427 }
428
429 res = filldir(dirent, entry->name, entry->len,
430 file->f_pos, nfs_compat_user_ino64(fileid),
431 d_type);
432 if (res < 0)
433 break;
434 file->f_pos++;
435 *desc->dir_cookie = entry->cookie;
436 if (dir_decode(desc) != 0) {
437 desc->page_index ++;
438 break;
439 }
440 if (loop_count++ > 200) {
441 loop_count = 0;
442 schedule();
443 }
444 }
445 dir_page_release(desc);
446 if (dentry != NULL)
447 dput(dentry);
448 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
449 (unsigned long long)*desc->dir_cookie, res);
450 return res;
451 }
452
453 /*
454 * If we cannot find a cookie in our cache, we suspect that this is
455 * because it points to a deleted file, so we ask the server to return
456 * whatever it thinks is the next entry. We then feed this to filldir.
457 * If all goes well, we should then be able to find our way round the
458 * cache on the next call to readdir_search_pagecache();
459 *
460 * NOTE: we cannot add the anonymous page to the pagecache because
461 * the data it contains might not be page aligned. Besides,
462 * we should already have a complete representation of the
463 * directory in the page cache by the time we get here.
464 */
465 static inline
466 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
467 filldir_t filldir)
468 {
469 struct file *file = desc->file;
470 struct inode *inode = file->f_path.dentry->d_inode;
471 struct rpc_cred *cred = nfs_file_cred(file);
472 struct page *page = NULL;
473 int status;
474 unsigned long timestamp;
475
476 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
477 (unsigned long long)*desc->dir_cookie);
478
479 page = alloc_page(GFP_HIGHUSER);
480 if (!page) {
481 status = -ENOMEM;
482 goto out;
483 }
484 timestamp = jiffies;
485 status = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred,
486 *desc->dir_cookie, page,
487 NFS_SERVER(inode)->dtsize,
488 desc->plus);
489 desc->page = page;
490 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
491 if (status >= 0) {
492 desc->timestamp = timestamp;
493 desc->timestamp_valid = 1;
494 if ((status = dir_decode(desc)) == 0)
495 desc->entry->prev_cookie = *desc->dir_cookie;
496 } else
497 status = -EIO;
498 if (status < 0)
499 goto out_release;
500
501 status = nfs_do_filldir(desc, dirent, filldir);
502
503 /* Reset read descriptor so it searches the page cache from
504 * the start upon the next call to readdir_search_pagecache() */
505 desc->page_index = 0;
506 desc->entry->cookie = desc->entry->prev_cookie = 0;
507 desc->entry->eof = 0;
508 out:
509 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
510 __func__, status);
511 return status;
512 out_release:
513 dir_page_release(desc);
514 goto out;
515 }
516
517 /* The file offset position represents the dirent entry number. A
518 last cookie cache takes care of the common case of reading the
519 whole directory.
520 */
521 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
522 {
523 struct dentry *dentry = filp->f_path.dentry;
524 struct inode *inode = dentry->d_inode;
525 nfs_readdir_descriptor_t my_desc,
526 *desc = &my_desc;
527 struct nfs_entry my_entry;
528 struct nfs_fh fh;
529 struct nfs_fattr fattr;
530 long res;
531
532 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
533 dentry->d_parent->d_name.name, dentry->d_name.name,
534 (long long)filp->f_pos);
535 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
536
537 /*
538 * filp->f_pos points to the dirent entry number.
539 * *desc->dir_cookie has the cookie for the next entry. We have
540 * to either find the entry with the appropriate number or
541 * revalidate the cookie.
542 */
543 memset(desc, 0, sizeof(*desc));
544
545 desc->file = filp;
546 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
547 desc->decode = NFS_PROTO(inode)->decode_dirent;
548 desc->plus = NFS_USE_READDIRPLUS(inode);
549
550 my_entry.cookie = my_entry.prev_cookie = 0;
551 my_entry.eof = 0;
552 my_entry.fh = &fh;
553 my_entry.fattr = &fattr;
554 nfs_fattr_init(&fattr);
555 desc->entry = &my_entry;
556
557 nfs_block_sillyrename(dentry);
558 res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
559 if (res < 0)
560 goto out;
561
562 while(!desc->entry->eof) {
563 res = readdir_search_pagecache(desc);
564
565 if (res == -EBADCOOKIE) {
566 /* This means either end of directory */
567 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
568 /* Or that the server has 'lost' a cookie */
569 res = uncached_readdir(desc, dirent, filldir);
570 if (res >= 0)
571 continue;
572 }
573 res = 0;
574 break;
575 }
576 if (res == -ETOOSMALL && desc->plus) {
577 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
578 nfs_zap_caches(inode);
579 desc->plus = 0;
580 desc->entry->eof = 0;
581 continue;
582 }
583 if (res < 0)
584 break;
585
586 res = nfs_do_filldir(desc, dirent, filldir);
587 if (res < 0) {
588 res = 0;
589 break;
590 }
591 }
592 out:
593 nfs_unblock_sillyrename(dentry);
594 if (res > 0)
595 res = 0;
596 dfprintk(FILE, "NFS: readdir(%s/%s) returns %ld\n",
597 dentry->d_parent->d_name.name, dentry->d_name.name,
598 res);
599 return res;
600 }
601
602 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
603 {
604 struct dentry *dentry = filp->f_path.dentry;
605 struct inode *inode = dentry->d_inode;
606
607 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
608 dentry->d_parent->d_name.name,
609 dentry->d_name.name,
610 offset, origin);
611
612 mutex_lock(&inode->i_mutex);
613 switch (origin) {
614 case 1:
615 offset += filp->f_pos;
616 case 0:
617 if (offset >= 0)
618 break;
619 default:
620 offset = -EINVAL;
621 goto out;
622 }
623 if (offset != filp->f_pos) {
624 filp->f_pos = offset;
625 nfs_file_open_context(filp)->dir_cookie = 0;
626 }
627 out:
628 mutex_unlock(&inode->i_mutex);
629 return offset;
630 }
631
632 /*
633 * All directory operations under NFS are synchronous, so fsync()
634 * is a dummy operation.
635 */
636 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
637 {
638 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
639 dentry->d_parent->d_name.name, dentry->d_name.name,
640 datasync);
641
642 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
643 return 0;
644 }
645
646 /**
647 * nfs_force_lookup_revalidate - Mark the directory as having changed
648 * @dir - pointer to directory inode
649 *
650 * This forces the revalidation code in nfs_lookup_revalidate() to do a
651 * full lookup on all child dentries of 'dir' whenever a change occurs
652 * on the server that might have invalidated our dcache.
653 *
654 * The caller should be holding dir->i_lock
655 */
656 void nfs_force_lookup_revalidate(struct inode *dir)
657 {
658 NFS_I(dir)->cache_change_attribute = jiffies;
659 }
660
661 /*
662 * A check for whether or not the parent directory has changed.
663 * In the case it has, we assume that the dentries are untrustworthy
664 * and may need to be looked up again.
665 */
666 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
667 {
668 if (IS_ROOT(dentry))
669 return 1;
670 if (!nfs_verify_change_attribute(dir, dentry->d_time))
671 return 0;
672 /* Revalidate nfsi->cache_change_attribute before we declare a match */
673 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
674 return 0;
675 if (!nfs_verify_change_attribute(dir, dentry->d_time))
676 return 0;
677 return 1;
678 }
679
680 /*
681 * Return the intent data that applies to this particular path component
682 *
683 * Note that the current set of intents only apply to the very last
684 * component of the path.
685 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
686 */
687 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
688 {
689 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
690 return 0;
691 return nd->flags & mask;
692 }
693
694 /*
695 * Use intent information to check whether or not we're going to do
696 * an O_EXCL create using this path component.
697 */
698 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
699 {
700 if (NFS_PROTO(dir)->version == 2)
701 return 0;
702 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
703 return 0;
704 return (nd->intent.open.flags & O_EXCL) != 0;
705 }
706
707 /*
708 * Inode and filehandle revalidation for lookups.
709 *
710 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
711 * or if the intent information indicates that we're about to open this
712 * particular file and the "nocto" mount flag is not set.
713 *
714 */
715 static inline
716 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
717 {
718 struct nfs_server *server = NFS_SERVER(inode);
719
720 if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags))
721 return 0;
722 if (nd != NULL) {
723 /* VFS wants an on-the-wire revalidation */
724 if (nd->flags & LOOKUP_REVAL)
725 goto out_force;
726 /* This is an open(2) */
727 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
728 !(server->flags & NFS_MOUNT_NOCTO) &&
729 (S_ISREG(inode->i_mode) ||
730 S_ISDIR(inode->i_mode)))
731 goto out_force;
732 return 0;
733 }
734 return nfs_revalidate_inode(server, inode);
735 out_force:
736 return __nfs_revalidate_inode(server, inode);
737 }
738
739 /*
740 * We judge how long we want to trust negative
741 * dentries by looking at the parent inode mtime.
742 *
743 * If parent mtime has changed, we revalidate, else we wait for a
744 * period corresponding to the parent's attribute cache timeout value.
745 */
746 static inline
747 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
748 struct nameidata *nd)
749 {
750 /* Don't revalidate a negative dentry if we're creating a new file */
751 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
752 return 0;
753 return !nfs_check_verifier(dir, dentry);
754 }
755
756 /*
757 * This is called every time the dcache has a lookup hit,
758 * and we should check whether we can really trust that
759 * lookup.
760 *
761 * NOTE! The hit can be a negative hit too, don't assume
762 * we have an inode!
763 *
764 * If the parent directory is seen to have changed, we throw out the
765 * cached dentry and do a new lookup.
766 */
767 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
768 {
769 struct inode *dir;
770 struct inode *inode;
771 struct dentry *parent;
772 int error;
773 struct nfs_fh fhandle;
774 struct nfs_fattr fattr;
775
776 parent = dget_parent(dentry);
777 dir = parent->d_inode;
778 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
779 inode = dentry->d_inode;
780
781 if (!inode) {
782 if (nfs_neg_need_reval(dir, dentry, nd))
783 goto out_bad;
784 goto out_valid;
785 }
786
787 if (is_bad_inode(inode)) {
788 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
789 __func__, dentry->d_parent->d_name.name,
790 dentry->d_name.name);
791 goto out_bad;
792 }
793
794 /* Force a full look up iff the parent directory has changed */
795 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
796 if (nfs_lookup_verify_inode(inode, nd))
797 goto out_zap_parent;
798 goto out_valid;
799 }
800
801 if (NFS_STALE(inode))
802 goto out_bad;
803
804 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
805 if (error)
806 goto out_bad;
807 if (nfs_compare_fh(NFS_FH(inode), &fhandle))
808 goto out_bad;
809 if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
810 goto out_bad;
811
812 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
813 out_valid:
814 dput(parent);
815 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
816 __func__, dentry->d_parent->d_name.name,
817 dentry->d_name.name);
818 return 1;
819 out_zap_parent:
820 nfs_zap_caches(dir);
821 out_bad:
822 nfs_mark_for_revalidate(dir);
823 if (inode && S_ISDIR(inode->i_mode)) {
824 /* Purge readdir caches. */
825 nfs_zap_caches(inode);
826 /* If we have submounts, don't unhash ! */
827 if (have_submounts(dentry))
828 goto out_valid;
829 shrink_dcache_parent(dentry);
830 }
831 d_drop(dentry);
832 dput(parent);
833 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
834 __func__, dentry->d_parent->d_name.name,
835 dentry->d_name.name);
836 return 0;
837 }
838
839 /*
840 * This is called from dput() when d_count is going to 0.
841 */
842 static int nfs_dentry_delete(struct dentry *dentry)
843 {
844 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
845 dentry->d_parent->d_name.name, dentry->d_name.name,
846 dentry->d_flags);
847
848 /* Unhash any dentry with a stale inode */
849 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
850 return 1;
851
852 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
853 /* Unhash it, so that ->d_iput() would be called */
854 return 1;
855 }
856 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
857 /* Unhash it, so that ancestors of killed async unlink
858 * files will be cleaned up during umount */
859 return 1;
860 }
861 return 0;
862
863 }
864
865 static void nfs_drop_nlink(struct inode *inode)
866 {
867 spin_lock(&inode->i_lock);
868 if (inode->i_nlink > 0)
869 drop_nlink(inode);
870 spin_unlock(&inode->i_lock);
871 }
872
873 /*
874 * Called when the dentry loses inode.
875 * We use it to clean up silly-renamed files.
876 */
877 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
878 {
879 if (S_ISDIR(inode->i_mode))
880 /* drop any readdir cache as it could easily be old */
881 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
882
883 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
884 drop_nlink(inode);
885 nfs_complete_unlink(dentry, inode);
886 }
887 iput(inode);
888 }
889
890 struct dentry_operations nfs_dentry_operations = {
891 .d_revalidate = nfs_lookup_revalidate,
892 .d_delete = nfs_dentry_delete,
893 .d_iput = nfs_dentry_iput,
894 };
895
896 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
897 {
898 struct dentry *res;
899 struct dentry *parent;
900 struct inode *inode = NULL;
901 int error;
902 struct nfs_fh fhandle;
903 struct nfs_fattr fattr;
904
905 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
906 dentry->d_parent->d_name.name, dentry->d_name.name);
907 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
908
909 res = ERR_PTR(-ENAMETOOLONG);
910 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
911 goto out;
912
913 res = ERR_PTR(-ENOMEM);
914 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
915
916 /*
917 * If we're doing an exclusive create, optimize away the lookup
918 * but don't hash the dentry.
919 */
920 if (nfs_is_exclusive_create(dir, nd)) {
921 d_instantiate(dentry, NULL);
922 res = NULL;
923 goto out;
924 }
925
926 parent = dentry->d_parent;
927 /* Protect against concurrent sillydeletes */
928 nfs_block_sillyrename(parent);
929 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
930 if (error == -ENOENT)
931 goto no_entry;
932 if (error < 0) {
933 res = ERR_PTR(error);
934 goto out_unblock_sillyrename;
935 }
936 inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
937 res = (struct dentry *)inode;
938 if (IS_ERR(res))
939 goto out_unblock_sillyrename;
940
941 no_entry:
942 res = d_materialise_unique(dentry, inode);
943 if (res != NULL) {
944 if (IS_ERR(res))
945 goto out_unblock_sillyrename;
946 dentry = res;
947 }
948 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
949 out_unblock_sillyrename:
950 nfs_unblock_sillyrename(parent);
951 out:
952 return res;
953 }
954
955 #ifdef CONFIG_NFS_V4
956 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
957
958 struct dentry_operations nfs4_dentry_operations = {
959 .d_revalidate = nfs_open_revalidate,
960 .d_delete = nfs_dentry_delete,
961 .d_iput = nfs_dentry_iput,
962 };
963
964 /*
965 * Use intent information to determine whether we need to substitute
966 * the NFSv4-style stateful OPEN for the LOOKUP call
967 */
968 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
969 {
970 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
971 return 0;
972 /* NFS does not (yet) have a stateful open for directories */
973 if (nd->flags & LOOKUP_DIRECTORY)
974 return 0;
975 /* Are we trying to write to a read only partition? */
976 if (__mnt_is_readonly(nd->path.mnt) &&
977 (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
978 return 0;
979 return 1;
980 }
981
982 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
983 {
984 struct dentry *res = NULL;
985 int error;
986
987 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
988 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
989
990 /* Check that we are indeed trying to open this file */
991 if (!is_atomic_open(dir, nd))
992 goto no_open;
993
994 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
995 res = ERR_PTR(-ENAMETOOLONG);
996 goto out;
997 }
998 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
999
1000 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1001 * the dentry. */
1002 if (nd->intent.open.flags & O_EXCL) {
1003 d_instantiate(dentry, NULL);
1004 goto out;
1005 }
1006
1007 /* Open the file on the server */
1008 res = nfs4_atomic_open(dir, dentry, nd);
1009 if (IS_ERR(res)) {
1010 error = PTR_ERR(res);
1011 switch (error) {
1012 /* Make a negative dentry */
1013 case -ENOENT:
1014 res = NULL;
1015 goto out;
1016 /* This turned out not to be a regular file */
1017 case -EISDIR:
1018 case -ENOTDIR:
1019 goto no_open;
1020 case -ELOOP:
1021 if (!(nd->intent.open.flags & O_NOFOLLOW))
1022 goto no_open;
1023 /* case -EINVAL: */
1024 default:
1025 goto out;
1026 }
1027 } else if (res != NULL)
1028 dentry = res;
1029 out:
1030 return res;
1031 no_open:
1032 return nfs_lookup(dir, dentry, nd);
1033 }
1034
1035 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1036 {
1037 struct dentry *parent = NULL;
1038 struct inode *inode = dentry->d_inode;
1039 struct inode *dir;
1040 int openflags, ret = 0;
1041
1042 parent = dget_parent(dentry);
1043 dir = parent->d_inode;
1044 if (!is_atomic_open(dir, nd))
1045 goto no_open;
1046 /* We can't create new files in nfs_open_revalidate(), so we
1047 * optimize away revalidation of negative dentries.
1048 */
1049 if (inode == NULL) {
1050 if (!nfs_neg_need_reval(dir, dentry, nd))
1051 ret = 1;
1052 goto out;
1053 }
1054
1055 /* NFS only supports OPEN on regular files */
1056 if (!S_ISREG(inode->i_mode))
1057 goto no_open;
1058 openflags = nd->intent.open.flags;
1059 /* We cannot do exclusive creation on a positive dentry */
1060 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1061 goto no_open;
1062 /* We can't create new files, or truncate existing ones here */
1063 openflags &= ~(O_CREAT|O_TRUNC);
1064
1065 /*
1066 * Note: we're not holding inode->i_mutex and so may be racing with
1067 * operations that change the directory. We therefore save the
1068 * change attribute *before* we do the RPC call.
1069 */
1070 ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1071 out:
1072 dput(parent);
1073 if (!ret)
1074 d_drop(dentry);
1075 return ret;
1076 no_open:
1077 dput(parent);
1078 if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1079 return 1;
1080 return nfs_lookup_revalidate(dentry, nd);
1081 }
1082 #endif /* CONFIG_NFSV4 */
1083
1084 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1085 {
1086 struct dentry *parent = desc->file->f_path.dentry;
1087 struct inode *dir = parent->d_inode;
1088 struct nfs_entry *entry = desc->entry;
1089 struct dentry *dentry, *alias;
1090 struct qstr name = {
1091 .name = entry->name,
1092 .len = entry->len,
1093 };
1094 struct inode *inode;
1095 unsigned long verf = nfs_save_change_attribute(dir);
1096
1097 switch (name.len) {
1098 case 2:
1099 if (name.name[0] == '.' && name.name[1] == '.')
1100 return dget_parent(parent);
1101 break;
1102 case 1:
1103 if (name.name[0] == '.')
1104 return dget(parent);
1105 }
1106
1107 spin_lock(&dir->i_lock);
1108 if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1109 spin_unlock(&dir->i_lock);
1110 return NULL;
1111 }
1112 spin_unlock(&dir->i_lock);
1113
1114 name.hash = full_name_hash(name.name, name.len);
1115 dentry = d_lookup(parent, &name);
1116 if (dentry != NULL) {
1117 /* Is this a positive dentry that matches the readdir info? */
1118 if (dentry->d_inode != NULL &&
1119 (NFS_FILEID(dentry->d_inode) == entry->ino ||
1120 d_mountpoint(dentry))) {
1121 if (!desc->plus || entry->fh->size == 0)
1122 return dentry;
1123 if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1124 entry->fh) == 0)
1125 goto out_renew;
1126 }
1127 /* No, so d_drop to allow one to be created */
1128 d_drop(dentry);
1129 dput(dentry);
1130 }
1131 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1132 return NULL;
1133 if (name.len > NFS_SERVER(dir)->namelen)
1134 return NULL;
1135 /* Note: caller is already holding the dir->i_mutex! */
1136 dentry = d_alloc(parent, &name);
1137 if (dentry == NULL)
1138 return NULL;
1139 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1140 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1141 if (IS_ERR(inode)) {
1142 dput(dentry);
1143 return NULL;
1144 }
1145
1146 alias = d_materialise_unique(dentry, inode);
1147 if (alias != NULL) {
1148 dput(dentry);
1149 if (IS_ERR(alias))
1150 return NULL;
1151 dentry = alias;
1152 }
1153
1154 out_renew:
1155 nfs_set_verifier(dentry, verf);
1156 return dentry;
1157 }
1158
1159 /*
1160 * Code common to create, mkdir, and mknod.
1161 */
1162 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1163 struct nfs_fattr *fattr)
1164 {
1165 struct dentry *parent = dget_parent(dentry);
1166 struct inode *dir = parent->d_inode;
1167 struct inode *inode;
1168 int error = -EACCES;
1169
1170 d_drop(dentry);
1171
1172 /* We may have been initialized further down */
1173 if (dentry->d_inode)
1174 goto out;
1175 if (fhandle->size == 0) {
1176 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1177 if (error)
1178 goto out_error;
1179 }
1180 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1181 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1182 struct nfs_server *server = NFS_SB(dentry->d_sb);
1183 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1184 if (error < 0)
1185 goto out_error;
1186 }
1187 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1188 error = PTR_ERR(inode);
1189 if (IS_ERR(inode))
1190 goto out_error;
1191 d_add(dentry, inode);
1192 out:
1193 dput(parent);
1194 return 0;
1195 out_error:
1196 nfs_mark_for_revalidate(dir);
1197 dput(parent);
1198 return error;
1199 }
1200
1201 /*
1202 * Following a failed create operation, we drop the dentry rather
1203 * than retain a negative dentry. This avoids a problem in the event
1204 * that the operation succeeded on the server, but an error in the
1205 * reply path made it appear to have failed.
1206 */
1207 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1208 struct nameidata *nd)
1209 {
1210 struct iattr attr;
1211 int error;
1212 int open_flags = 0;
1213
1214 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1215 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1216
1217 attr.ia_mode = mode;
1218 attr.ia_valid = ATTR_MODE;
1219
1220 if ((nd->flags & LOOKUP_CREATE) != 0)
1221 open_flags = nd->intent.open.flags;
1222
1223 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1224 if (error != 0)
1225 goto out_err;
1226 return 0;
1227 out_err:
1228 d_drop(dentry);
1229 return error;
1230 }
1231
1232 /*
1233 * See comments for nfs_proc_create regarding failed operations.
1234 */
1235 static int
1236 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1237 {
1238 struct iattr attr;
1239 int status;
1240
1241 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1242 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1243
1244 if (!new_valid_dev(rdev))
1245 return -EINVAL;
1246
1247 attr.ia_mode = mode;
1248 attr.ia_valid = ATTR_MODE;
1249
1250 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1251 if (status != 0)
1252 goto out_err;
1253 return 0;
1254 out_err:
1255 d_drop(dentry);
1256 return status;
1257 }
1258
1259 /*
1260 * See comments for nfs_proc_create regarding failed operations.
1261 */
1262 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1263 {
1264 struct iattr attr;
1265 int error;
1266
1267 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1268 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1269
1270 attr.ia_valid = ATTR_MODE;
1271 attr.ia_mode = mode | S_IFDIR;
1272
1273 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1274 if (error != 0)
1275 goto out_err;
1276 return 0;
1277 out_err:
1278 d_drop(dentry);
1279 return error;
1280 }
1281
1282 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1283 {
1284 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1285 d_delete(dentry);
1286 }
1287
1288 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1289 {
1290 int error;
1291
1292 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1293 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1294
1295 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1296 /* Ensure the VFS deletes this inode */
1297 if (error == 0 && dentry->d_inode != NULL)
1298 clear_nlink(dentry->d_inode);
1299 else if (error == -ENOENT)
1300 nfs_dentry_handle_enoent(dentry);
1301
1302 return error;
1303 }
1304
1305 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1306 {
1307 static unsigned int sillycounter;
1308 const int fileidsize = sizeof(NFS_FILEID(dentry->d_inode))*2;
1309 const int countersize = sizeof(sillycounter)*2;
1310 const int slen = sizeof(".nfs")+fileidsize+countersize-1;
1311 char silly[slen+1];
1312 struct qstr qsilly;
1313 struct dentry *sdentry;
1314 int error = -EIO;
1315
1316 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1317 dentry->d_parent->d_name.name, dentry->d_name.name,
1318 atomic_read(&dentry->d_count));
1319 nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1320
1321 /*
1322 * We don't allow a dentry to be silly-renamed twice.
1323 */
1324 error = -EBUSY;
1325 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1326 goto out;
1327
1328 sprintf(silly, ".nfs%*.*Lx",
1329 fileidsize, fileidsize,
1330 (unsigned long long)NFS_FILEID(dentry->d_inode));
1331
1332 /* Return delegation in anticipation of the rename */
1333 nfs_inode_return_delegation(dentry->d_inode);
1334
1335 sdentry = NULL;
1336 do {
1337 char *suffix = silly + slen - countersize;
1338
1339 dput(sdentry);
1340 sillycounter++;
1341 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1342
1343 dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1344 dentry->d_name.name, silly);
1345
1346 sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1347 /*
1348 * N.B. Better to return EBUSY here ... it could be
1349 * dangerous to delete the file while it's in use.
1350 */
1351 if (IS_ERR(sdentry))
1352 goto out;
1353 } while(sdentry->d_inode != NULL); /* need negative lookup */
1354
1355 qsilly.name = silly;
1356 qsilly.len = strlen(silly);
1357 if (dentry->d_inode) {
1358 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1359 dir, &qsilly);
1360 nfs_mark_for_revalidate(dentry->d_inode);
1361 } else
1362 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1363 dir, &qsilly);
1364 if (!error) {
1365 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1366 d_move(dentry, sdentry);
1367 error = nfs_async_unlink(dir, dentry);
1368 /* If we return 0 we don't unlink */
1369 }
1370 dput(sdentry);
1371 out:
1372 return error;
1373 }
1374
1375 /*
1376 * Remove a file after making sure there are no pending writes,
1377 * and after checking that the file has only one user.
1378 *
1379 * We invalidate the attribute cache and free the inode prior to the operation
1380 * to avoid possible races if the server reuses the inode.
1381 */
1382 static int nfs_safe_remove(struct dentry *dentry)
1383 {
1384 struct inode *dir = dentry->d_parent->d_inode;
1385 struct inode *inode = dentry->d_inode;
1386 int error = -EBUSY;
1387
1388 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1389 dentry->d_parent->d_name.name, dentry->d_name.name);
1390
1391 /* If the dentry was sillyrenamed, we simply call d_delete() */
1392 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1393 error = 0;
1394 goto out;
1395 }
1396
1397 if (inode != NULL) {
1398 nfs_inode_return_delegation(inode);
1399 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1400 /* The VFS may want to delete this inode */
1401 if (error == 0)
1402 nfs_drop_nlink(inode);
1403 nfs_mark_for_revalidate(inode);
1404 } else
1405 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1406 if (error == -ENOENT)
1407 nfs_dentry_handle_enoent(dentry);
1408 out:
1409 return error;
1410 }
1411
1412 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1413 * belongs to an active ".nfs..." file and we return -EBUSY.
1414 *
1415 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1416 */
1417 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1418 {
1419 int error;
1420 int need_rehash = 0;
1421
1422 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1423 dir->i_ino, dentry->d_name.name);
1424
1425 spin_lock(&dcache_lock);
1426 spin_lock(&dentry->d_lock);
1427 if (atomic_read(&dentry->d_count) > 1) {
1428 spin_unlock(&dentry->d_lock);
1429 spin_unlock(&dcache_lock);
1430 /* Start asynchronous writeout of the inode */
1431 write_inode_now(dentry->d_inode, 0);
1432 error = nfs_sillyrename(dir, dentry);
1433 return error;
1434 }
1435 if (!d_unhashed(dentry)) {
1436 __d_drop(dentry);
1437 need_rehash = 1;
1438 }
1439 spin_unlock(&dentry->d_lock);
1440 spin_unlock(&dcache_lock);
1441 error = nfs_safe_remove(dentry);
1442 if (!error || error == -ENOENT) {
1443 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1444 } else if (need_rehash)
1445 d_rehash(dentry);
1446 return error;
1447 }
1448
1449 /*
1450 * To create a symbolic link, most file systems instantiate a new inode,
1451 * add a page to it containing the path, then write it out to the disk
1452 * using prepare_write/commit_write.
1453 *
1454 * Unfortunately the NFS client can't create the in-core inode first
1455 * because it needs a file handle to create an in-core inode (see
1456 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1457 * symlink request has completed on the server.
1458 *
1459 * So instead we allocate a raw page, copy the symname into it, then do
1460 * the SYMLINK request with the page as the buffer. If it succeeds, we
1461 * now have a new file handle and can instantiate an in-core NFS inode
1462 * and move the raw page into its mapping.
1463 */
1464 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1465 {
1466 struct pagevec lru_pvec;
1467 struct page *page;
1468 char *kaddr;
1469 struct iattr attr;
1470 unsigned int pathlen = strlen(symname);
1471 int error;
1472
1473 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1474 dir->i_ino, dentry->d_name.name, symname);
1475
1476 if (pathlen > PAGE_SIZE)
1477 return -ENAMETOOLONG;
1478
1479 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1480 attr.ia_valid = ATTR_MODE;
1481
1482 page = alloc_page(GFP_HIGHUSER);
1483 if (!page)
1484 return -ENOMEM;
1485
1486 kaddr = kmap_atomic(page, KM_USER0);
1487 memcpy(kaddr, symname, pathlen);
1488 if (pathlen < PAGE_SIZE)
1489 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1490 kunmap_atomic(kaddr, KM_USER0);
1491
1492 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1493 if (error != 0) {
1494 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1495 dir->i_sb->s_id, dir->i_ino,
1496 dentry->d_name.name, symname, error);
1497 d_drop(dentry);
1498 __free_page(page);
1499 return error;
1500 }
1501
1502 /*
1503 * No big deal if we can't add this page to the page cache here.
1504 * READLINK will get the missing page from the server if needed.
1505 */
1506 pagevec_init(&lru_pvec, 0);
1507 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1508 GFP_KERNEL)) {
1509 pagevec_add(&lru_pvec, page);
1510 pagevec_lru_add(&lru_pvec);
1511 SetPageUptodate(page);
1512 unlock_page(page);
1513 } else
1514 __free_page(page);
1515
1516 return 0;
1517 }
1518
1519 static int
1520 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1521 {
1522 struct inode *inode = old_dentry->d_inode;
1523 int error;
1524
1525 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1526 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1527 dentry->d_parent->d_name.name, dentry->d_name.name);
1528
1529 d_drop(dentry);
1530 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1531 if (error == 0) {
1532 atomic_inc(&inode->i_count);
1533 d_add(dentry, inode);
1534 }
1535 return error;
1536 }
1537
1538 /*
1539 * RENAME
1540 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1541 * different file handle for the same inode after a rename (e.g. when
1542 * moving to a different directory). A fail-safe method to do so would
1543 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1544 * rename the old file using the sillyrename stuff. This way, the original
1545 * file in old_dir will go away when the last process iput()s the inode.
1546 *
1547 * FIXED.
1548 *
1549 * It actually works quite well. One needs to have the possibility for
1550 * at least one ".nfs..." file in each directory the file ever gets
1551 * moved or linked to which happens automagically with the new
1552 * implementation that only depends on the dcache stuff instead of
1553 * using the inode layer
1554 *
1555 * Unfortunately, things are a little more complicated than indicated
1556 * above. For a cross-directory move, we want to make sure we can get
1557 * rid of the old inode after the operation. This means there must be
1558 * no pending writes (if it's a file), and the use count must be 1.
1559 * If these conditions are met, we can drop the dentries before doing
1560 * the rename.
1561 */
1562 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1563 struct inode *new_dir, struct dentry *new_dentry)
1564 {
1565 struct inode *old_inode = old_dentry->d_inode;
1566 struct inode *new_inode = new_dentry->d_inode;
1567 struct dentry *dentry = NULL, *rehash = NULL;
1568 int error = -EBUSY;
1569
1570 /*
1571 * To prevent any new references to the target during the rename,
1572 * we unhash the dentry and free the inode in advance.
1573 */
1574 if (!d_unhashed(new_dentry)) {
1575 d_drop(new_dentry);
1576 rehash = new_dentry;
1577 }
1578
1579 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1580 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1581 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1582 atomic_read(&new_dentry->d_count));
1583
1584 /*
1585 * First check whether the target is busy ... we can't
1586 * safely do _any_ rename if the target is in use.
1587 *
1588 * For files, make a copy of the dentry and then do a
1589 * silly-rename. If the silly-rename succeeds, the
1590 * copied dentry is hashed and becomes the new target.
1591 */
1592 if (!new_inode)
1593 goto go_ahead;
1594 if (S_ISDIR(new_inode->i_mode)) {
1595 error = -EISDIR;
1596 if (!S_ISDIR(old_inode->i_mode))
1597 goto out;
1598 } else if (atomic_read(&new_dentry->d_count) > 2) {
1599 int err;
1600 /* copy the target dentry's name */
1601 dentry = d_alloc(new_dentry->d_parent,
1602 &new_dentry->d_name);
1603 if (!dentry)
1604 goto out;
1605
1606 /* silly-rename the existing target ... */
1607 err = nfs_sillyrename(new_dir, new_dentry);
1608 if (!err) {
1609 new_dentry = rehash = dentry;
1610 new_inode = NULL;
1611 /* instantiate the replacement target */
1612 d_instantiate(new_dentry, NULL);
1613 } else if (atomic_read(&new_dentry->d_count) > 1)
1614 /* dentry still busy? */
1615 goto out;
1616 } else
1617 nfs_drop_nlink(new_inode);
1618
1619 go_ahead:
1620 /*
1621 * ... prune child dentries and writebacks if needed.
1622 */
1623 if (atomic_read(&old_dentry->d_count) > 1) {
1624 if (S_ISREG(old_inode->i_mode))
1625 nfs_wb_all(old_inode);
1626 shrink_dcache_parent(old_dentry);
1627 }
1628 nfs_inode_return_delegation(old_inode);
1629
1630 if (new_inode != NULL) {
1631 nfs_inode_return_delegation(new_inode);
1632 d_delete(new_dentry);
1633 }
1634
1635 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1636 new_dir, &new_dentry->d_name);
1637 nfs_mark_for_revalidate(old_inode);
1638 out:
1639 if (rehash)
1640 d_rehash(rehash);
1641 if (!error) {
1642 d_move(old_dentry, new_dentry);
1643 nfs_set_verifier(new_dentry,
1644 nfs_save_change_attribute(new_dir));
1645 } else if (error == -ENOENT)
1646 nfs_dentry_handle_enoent(old_dentry);
1647
1648 /* new dentry created? */
1649 if (dentry)
1650 dput(dentry);
1651 return error;
1652 }
1653
1654 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1655 static LIST_HEAD(nfs_access_lru_list);
1656 static atomic_long_t nfs_access_nr_entries;
1657
1658 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1659 {
1660 put_rpccred(entry->cred);
1661 kfree(entry);
1662 smp_mb__before_atomic_dec();
1663 atomic_long_dec(&nfs_access_nr_entries);
1664 smp_mb__after_atomic_dec();
1665 }
1666
1667 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1668 {
1669 LIST_HEAD(head);
1670 struct nfs_inode *nfsi;
1671 struct nfs_access_entry *cache;
1672
1673 restart:
1674 spin_lock(&nfs_access_lru_lock);
1675 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1676 struct rw_semaphore *s_umount;
1677 struct inode *inode;
1678
1679 if (nr_to_scan-- == 0)
1680 break;
1681 s_umount = &nfsi->vfs_inode.i_sb->s_umount;
1682 if (!down_read_trylock(s_umount))
1683 continue;
1684 inode = igrab(&nfsi->vfs_inode);
1685 if (inode == NULL) {
1686 up_read(s_umount);
1687 continue;
1688 }
1689 spin_lock(&inode->i_lock);
1690 if (list_empty(&nfsi->access_cache_entry_lru))
1691 goto remove_lru_entry;
1692 cache = list_entry(nfsi->access_cache_entry_lru.next,
1693 struct nfs_access_entry, lru);
1694 list_move(&cache->lru, &head);
1695 rb_erase(&cache->rb_node, &nfsi->access_cache);
1696 if (!list_empty(&nfsi->access_cache_entry_lru))
1697 list_move_tail(&nfsi->access_cache_inode_lru,
1698 &nfs_access_lru_list);
1699 else {
1700 remove_lru_entry:
1701 list_del_init(&nfsi->access_cache_inode_lru);
1702 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1703 }
1704 spin_unlock(&inode->i_lock);
1705 spin_unlock(&nfs_access_lru_lock);
1706 iput(inode);
1707 up_read(s_umount);
1708 goto restart;
1709 }
1710 spin_unlock(&nfs_access_lru_lock);
1711 while (!list_empty(&head)) {
1712 cache = list_entry(head.next, struct nfs_access_entry, lru);
1713 list_del(&cache->lru);
1714 nfs_access_free_entry(cache);
1715 }
1716 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1717 }
1718
1719 static void __nfs_access_zap_cache(struct inode *inode)
1720 {
1721 struct nfs_inode *nfsi = NFS_I(inode);
1722 struct rb_root *root_node = &nfsi->access_cache;
1723 struct rb_node *n, *dispose = NULL;
1724 struct nfs_access_entry *entry;
1725
1726 /* Unhook entries from the cache */
1727 while ((n = rb_first(root_node)) != NULL) {
1728 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1729 rb_erase(n, root_node);
1730 list_del(&entry->lru);
1731 n->rb_left = dispose;
1732 dispose = n;
1733 }
1734 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1735 spin_unlock(&inode->i_lock);
1736
1737 /* Now kill them all! */
1738 while (dispose != NULL) {
1739 n = dispose;
1740 dispose = n->rb_left;
1741 nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1742 }
1743 }
1744
1745 void nfs_access_zap_cache(struct inode *inode)
1746 {
1747 /* Remove from global LRU init */
1748 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1749 spin_lock(&nfs_access_lru_lock);
1750 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1751 spin_unlock(&nfs_access_lru_lock);
1752 }
1753
1754 spin_lock(&inode->i_lock);
1755 /* This will release the spinlock */
1756 __nfs_access_zap_cache(inode);
1757 }
1758
1759 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1760 {
1761 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1762 struct nfs_access_entry *entry;
1763
1764 while (n != NULL) {
1765 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1766
1767 if (cred < entry->cred)
1768 n = n->rb_left;
1769 else if (cred > entry->cred)
1770 n = n->rb_right;
1771 else
1772 return entry;
1773 }
1774 return NULL;
1775 }
1776
1777 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1778 {
1779 struct nfs_inode *nfsi = NFS_I(inode);
1780 struct nfs_access_entry *cache;
1781 int err = -ENOENT;
1782
1783 spin_lock(&inode->i_lock);
1784 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1785 goto out_zap;
1786 cache = nfs_access_search_rbtree(inode, cred);
1787 if (cache == NULL)
1788 goto out;
1789 if (!time_in_range(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
1790 goto out_stale;
1791 res->jiffies = cache->jiffies;
1792 res->cred = cache->cred;
1793 res->mask = cache->mask;
1794 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1795 err = 0;
1796 out:
1797 spin_unlock(&inode->i_lock);
1798 return err;
1799 out_stale:
1800 rb_erase(&cache->rb_node, &nfsi->access_cache);
1801 list_del(&cache->lru);
1802 spin_unlock(&inode->i_lock);
1803 nfs_access_free_entry(cache);
1804 return -ENOENT;
1805 out_zap:
1806 /* This will release the spinlock */
1807 __nfs_access_zap_cache(inode);
1808 return -ENOENT;
1809 }
1810
1811 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1812 {
1813 struct nfs_inode *nfsi = NFS_I(inode);
1814 struct rb_root *root_node = &nfsi->access_cache;
1815 struct rb_node **p = &root_node->rb_node;
1816 struct rb_node *parent = NULL;
1817 struct nfs_access_entry *entry;
1818
1819 spin_lock(&inode->i_lock);
1820 while (*p != NULL) {
1821 parent = *p;
1822 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1823
1824 if (set->cred < entry->cred)
1825 p = &parent->rb_left;
1826 else if (set->cred > entry->cred)
1827 p = &parent->rb_right;
1828 else
1829 goto found;
1830 }
1831 rb_link_node(&set->rb_node, parent, p);
1832 rb_insert_color(&set->rb_node, root_node);
1833 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1834 spin_unlock(&inode->i_lock);
1835 return;
1836 found:
1837 rb_replace_node(parent, &set->rb_node, root_node);
1838 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1839 list_del(&entry->lru);
1840 spin_unlock(&inode->i_lock);
1841 nfs_access_free_entry(entry);
1842 }
1843
1844 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1845 {
1846 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1847 if (cache == NULL)
1848 return;
1849 RB_CLEAR_NODE(&cache->rb_node);
1850 cache->jiffies = set->jiffies;
1851 cache->cred = get_rpccred(set->cred);
1852 cache->mask = set->mask;
1853
1854 nfs_access_add_rbtree(inode, cache);
1855
1856 /* Update accounting */
1857 smp_mb__before_atomic_inc();
1858 atomic_long_inc(&nfs_access_nr_entries);
1859 smp_mb__after_atomic_inc();
1860
1861 /* Add inode to global LRU list */
1862 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1863 spin_lock(&nfs_access_lru_lock);
1864 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1865 spin_unlock(&nfs_access_lru_lock);
1866 }
1867 }
1868
1869 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1870 {
1871 struct nfs_access_entry cache;
1872 int status;
1873
1874 status = nfs_access_get_cached(inode, cred, &cache);
1875 if (status == 0)
1876 goto out;
1877
1878 /* Be clever: ask server to check for all possible rights */
1879 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1880 cache.cred = cred;
1881 cache.jiffies = jiffies;
1882 status = NFS_PROTO(inode)->access(inode, &cache);
1883 if (status != 0)
1884 return status;
1885 nfs_access_add_cache(inode, &cache);
1886 out:
1887 if ((cache.mask & mask) == mask)
1888 return 0;
1889 return -EACCES;
1890 }
1891
1892 static int nfs_open_permission_mask(int openflags)
1893 {
1894 int mask = 0;
1895
1896 if (openflags & FMODE_READ)
1897 mask |= MAY_READ;
1898 if (openflags & FMODE_WRITE)
1899 mask |= MAY_WRITE;
1900 if (openflags & FMODE_EXEC)
1901 mask |= MAY_EXEC;
1902 return mask;
1903 }
1904
1905 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
1906 {
1907 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
1908 }
1909
1910 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
1911 {
1912 struct rpc_cred *cred;
1913 int res = 0;
1914
1915 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1916
1917 if (mask == 0)
1918 goto out;
1919 /* Is this sys_access() ? */
1920 if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
1921 goto force_lookup;
1922
1923 switch (inode->i_mode & S_IFMT) {
1924 case S_IFLNK:
1925 goto out;
1926 case S_IFREG:
1927 /* NFSv4 has atomic_open... */
1928 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1929 && nd != NULL
1930 && (nd->flags & LOOKUP_OPEN))
1931 goto out;
1932 break;
1933 case S_IFDIR:
1934 /*
1935 * Optimize away all write operations, since the server
1936 * will check permissions when we perform the op.
1937 */
1938 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1939 goto out;
1940 }
1941
1942 force_lookup:
1943 if (!NFS_PROTO(inode)->access)
1944 goto out_notsup;
1945
1946 cred = rpc_lookup_cred();
1947 if (!IS_ERR(cred)) {
1948 res = nfs_do_access(inode, cred, mask);
1949 put_rpccred(cred);
1950 } else
1951 res = PTR_ERR(cred);
1952 out:
1953 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1954 inode->i_sb->s_id, inode->i_ino, mask, res);
1955 return res;
1956 out_notsup:
1957 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1958 if (res == 0)
1959 res = generic_permission(inode, mask, NULL);
1960 goto out;
1961 }
1962
1963 /*
1964 * Local variables:
1965 * version-control: t
1966 * kept-new-versions: 5
1967 * End:
1968 */