]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/nfs/dir.c
Merge git://git.infradead.org/mtd-2.6
[mirror_ubuntu-hirsute-kernel.git] / fs / nfs / dir.c
1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36
37 #include "nfs4_fs.h"
38 #include "delegation.h"
39 #include "iostat.h"
40
41 #define NFS_PARANOIA 1
42 /* #define NFS_DEBUG_VERBOSE 1 */
43
44 static int nfs_opendir(struct inode *, struct file *);
45 static int nfs_readdir(struct file *, void *, filldir_t);
46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
48 static int nfs_mkdir(struct inode *, struct dentry *, int);
49 static int nfs_rmdir(struct inode *, struct dentry *);
50 static int nfs_unlink(struct inode *, struct dentry *);
51 static int nfs_symlink(struct inode *, struct dentry *, const char *);
52 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
54 static int nfs_rename(struct inode *, struct dentry *,
55 struct inode *, struct dentry *);
56 static int nfs_fsync_dir(struct file *, struct dentry *, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58
59 const struct file_operations nfs_dir_operations = {
60 .llseek = nfs_llseek_dir,
61 .read = generic_read_dir,
62 .readdir = nfs_readdir,
63 .open = nfs_opendir,
64 .release = nfs_release,
65 .fsync = nfs_fsync_dir,
66 };
67
68 const struct inode_operations nfs_dir_inode_operations = {
69 .create = nfs_create,
70 .lookup = nfs_lookup,
71 .link = nfs_link,
72 .unlink = nfs_unlink,
73 .symlink = nfs_symlink,
74 .mkdir = nfs_mkdir,
75 .rmdir = nfs_rmdir,
76 .mknod = nfs_mknod,
77 .rename = nfs_rename,
78 .permission = nfs_permission,
79 .getattr = nfs_getattr,
80 .setattr = nfs_setattr,
81 };
82
83 #ifdef CONFIG_NFS_V3
84 const struct inode_operations nfs3_dir_inode_operations = {
85 .create = nfs_create,
86 .lookup = nfs_lookup,
87 .link = nfs_link,
88 .unlink = nfs_unlink,
89 .symlink = nfs_symlink,
90 .mkdir = nfs_mkdir,
91 .rmdir = nfs_rmdir,
92 .mknod = nfs_mknod,
93 .rename = nfs_rename,
94 .permission = nfs_permission,
95 .getattr = nfs_getattr,
96 .setattr = nfs_setattr,
97 .listxattr = nfs3_listxattr,
98 .getxattr = nfs3_getxattr,
99 .setxattr = nfs3_setxattr,
100 .removexattr = nfs3_removexattr,
101 };
102 #endif /* CONFIG_NFS_V3 */
103
104 #ifdef CONFIG_NFS_V4
105
106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
107 const struct inode_operations nfs4_dir_inode_operations = {
108 .create = nfs_create,
109 .lookup = nfs_atomic_lookup,
110 .link = nfs_link,
111 .unlink = nfs_unlink,
112 .symlink = nfs_symlink,
113 .mkdir = nfs_mkdir,
114 .rmdir = nfs_rmdir,
115 .mknod = nfs_mknod,
116 .rename = nfs_rename,
117 .permission = nfs_permission,
118 .getattr = nfs_getattr,
119 .setattr = nfs_setattr,
120 .getxattr = nfs4_getxattr,
121 .setxattr = nfs4_setxattr,
122 .listxattr = nfs4_listxattr,
123 };
124
125 #endif /* CONFIG_NFS_V4 */
126
127 /*
128 * Open file
129 */
130 static int
131 nfs_opendir(struct inode *inode, struct file *filp)
132 {
133 int res;
134
135 dfprintk(VFS, "NFS: opendir(%s/%ld)\n",
136 inode->i_sb->s_id, inode->i_ino);
137
138 lock_kernel();
139 /* Call generic open code in order to cache credentials */
140 res = nfs_open(inode, filp);
141 unlock_kernel();
142 return res;
143 }
144
145 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
146 typedef struct {
147 struct file *file;
148 struct page *page;
149 unsigned long page_index;
150 __be32 *ptr;
151 u64 *dir_cookie;
152 loff_t current_index;
153 struct nfs_entry *entry;
154 decode_dirent_t decode;
155 int plus;
156 int error;
157 unsigned long timestamp;
158 int timestamp_valid;
159 } nfs_readdir_descriptor_t;
160
161 /* Now we cache directories properly, by stuffing the dirent
162 * data directly in the page cache.
163 *
164 * Inode invalidation due to refresh etc. takes care of
165 * _everything_, no sloppy entry flushing logic, no extraneous
166 * copying, network direct to page cache, the way it was meant
167 * to be.
168 *
169 * NOTE: Dirent information verification is done always by the
170 * page-in of the RPC reply, nowhere else, this simplies
171 * things substantially.
172 */
173 static
174 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
175 {
176 struct file *file = desc->file;
177 struct inode *inode = file->f_path.dentry->d_inode;
178 struct rpc_cred *cred = nfs_file_cred(file);
179 unsigned long timestamp;
180 int error;
181
182 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
183 __FUNCTION__, (long long)desc->entry->cookie,
184 page->index);
185
186 again:
187 timestamp = jiffies;
188 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
189 NFS_SERVER(inode)->dtsize, desc->plus);
190 if (error < 0) {
191 /* We requested READDIRPLUS, but the server doesn't grok it */
192 if (error == -ENOTSUPP && desc->plus) {
193 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
194 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
195 desc->plus = 0;
196 goto again;
197 }
198 goto error;
199 }
200 desc->timestamp = timestamp;
201 desc->timestamp_valid = 1;
202 SetPageUptodate(page);
203 spin_lock(&inode->i_lock);
204 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
205 spin_unlock(&inode->i_lock);
206 /* Ensure consistent page alignment of the data.
207 * Note: assumes we have exclusive access to this mapping either
208 * through inode->i_mutex or some other mechanism.
209 */
210 if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) {
211 /* Should never happen */
212 nfs_zap_mapping(inode, inode->i_mapping);
213 }
214 unlock_page(page);
215 return 0;
216 error:
217 SetPageError(page);
218 unlock_page(page);
219 nfs_zap_caches(inode);
220 desc->error = error;
221 return -EIO;
222 }
223
224 static inline
225 int dir_decode(nfs_readdir_descriptor_t *desc)
226 {
227 __be32 *p = desc->ptr;
228 p = desc->decode(p, desc->entry, desc->plus);
229 if (IS_ERR(p))
230 return PTR_ERR(p);
231 desc->ptr = p;
232 if (desc->timestamp_valid)
233 desc->entry->fattr->time_start = desc->timestamp;
234 else
235 desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
236 return 0;
237 }
238
239 static inline
240 void dir_page_release(nfs_readdir_descriptor_t *desc)
241 {
242 kunmap(desc->page);
243 page_cache_release(desc->page);
244 desc->page = NULL;
245 desc->ptr = NULL;
246 }
247
248 /*
249 * Given a pointer to a buffer that has already been filled by a call
250 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
251 *
252 * If the end of the buffer has been reached, return -EAGAIN, if not,
253 * return the offset within the buffer of the next entry to be
254 * read.
255 */
256 static inline
257 int find_dirent(nfs_readdir_descriptor_t *desc)
258 {
259 struct nfs_entry *entry = desc->entry;
260 int loop_count = 0,
261 status;
262
263 while((status = dir_decode(desc)) == 0) {
264 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
265 __FUNCTION__, (unsigned long long)entry->cookie);
266 if (entry->prev_cookie == *desc->dir_cookie)
267 break;
268 if (loop_count++ > 200) {
269 loop_count = 0;
270 schedule();
271 }
272 }
273 return status;
274 }
275
276 /*
277 * Given a pointer to a buffer that has already been filled by a call
278 * to readdir, find the entry at offset 'desc->file->f_pos'.
279 *
280 * If the end of the buffer has been reached, return -EAGAIN, if not,
281 * return the offset within the buffer of the next entry to be
282 * read.
283 */
284 static inline
285 int find_dirent_index(nfs_readdir_descriptor_t *desc)
286 {
287 struct nfs_entry *entry = desc->entry;
288 int loop_count = 0,
289 status;
290
291 for(;;) {
292 status = dir_decode(desc);
293 if (status)
294 break;
295
296 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
297 (unsigned long long)entry->cookie, desc->current_index);
298
299 if (desc->file->f_pos == desc->current_index) {
300 *desc->dir_cookie = entry->cookie;
301 break;
302 }
303 desc->current_index++;
304 if (loop_count++ > 200) {
305 loop_count = 0;
306 schedule();
307 }
308 }
309 return status;
310 }
311
312 /*
313 * Find the given page, and call find_dirent() or find_dirent_index in
314 * order to try to return the next entry.
315 */
316 static inline
317 int find_dirent_page(nfs_readdir_descriptor_t *desc)
318 {
319 struct inode *inode = desc->file->f_path.dentry->d_inode;
320 struct page *page;
321 int status;
322
323 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
324 __FUNCTION__, desc->page_index,
325 (long long) *desc->dir_cookie);
326
327 /* If we find the page in the page_cache, we cannot be sure
328 * how fresh the data is, so we will ignore readdir_plus attributes.
329 */
330 desc->timestamp_valid = 0;
331 page = read_cache_page(inode->i_mapping, desc->page_index,
332 (filler_t *)nfs_readdir_filler, desc);
333 if (IS_ERR(page)) {
334 status = PTR_ERR(page);
335 goto out;
336 }
337
338 /* NOTE: Someone else may have changed the READDIRPLUS flag */
339 desc->page = page;
340 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
341 if (*desc->dir_cookie != 0)
342 status = find_dirent(desc);
343 else
344 status = find_dirent_index(desc);
345 if (status < 0)
346 dir_page_release(desc);
347 out:
348 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status);
349 return status;
350 }
351
352 /*
353 * Recurse through the page cache pages, and return a
354 * filled nfs_entry structure of the next directory entry if possible.
355 *
356 * The target for the search is '*desc->dir_cookie' if non-0,
357 * 'desc->file->f_pos' otherwise
358 */
359 static inline
360 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
361 {
362 int loop_count = 0;
363 int res;
364
365 /* Always search-by-index from the beginning of the cache */
366 if (*desc->dir_cookie == 0) {
367 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
368 (long long)desc->file->f_pos);
369 desc->page_index = 0;
370 desc->entry->cookie = desc->entry->prev_cookie = 0;
371 desc->entry->eof = 0;
372 desc->current_index = 0;
373 } else
374 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
375 (unsigned long long)*desc->dir_cookie);
376
377 for (;;) {
378 res = find_dirent_page(desc);
379 if (res != -EAGAIN)
380 break;
381 /* Align to beginning of next page */
382 desc->page_index ++;
383 if (loop_count++ > 200) {
384 loop_count = 0;
385 schedule();
386 }
387 }
388
389 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res);
390 return res;
391 }
392
393 static inline unsigned int dt_type(struct inode *inode)
394 {
395 return (inode->i_mode >> 12) & 15;
396 }
397
398 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
399
400 /*
401 * Once we've found the start of the dirent within a page: fill 'er up...
402 */
403 static
404 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
405 filldir_t filldir)
406 {
407 struct file *file = desc->file;
408 struct nfs_entry *entry = desc->entry;
409 struct dentry *dentry = NULL;
410 unsigned long fileid;
411 int loop_count = 0,
412 res;
413
414 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
415 (unsigned long long)entry->cookie);
416
417 for(;;) {
418 unsigned d_type = DT_UNKNOWN;
419 /* Note: entry->prev_cookie contains the cookie for
420 * retrieving the current dirent on the server */
421 fileid = nfs_fileid_to_ino_t(entry->ino);
422
423 /* Get a dentry if we have one */
424 if (dentry != NULL)
425 dput(dentry);
426 dentry = nfs_readdir_lookup(desc);
427
428 /* Use readdirplus info */
429 if (dentry != NULL && dentry->d_inode != NULL) {
430 d_type = dt_type(dentry->d_inode);
431 fileid = dentry->d_inode->i_ino;
432 }
433
434 res = filldir(dirent, entry->name, entry->len,
435 file->f_pos, fileid, d_type);
436 if (res < 0)
437 break;
438 file->f_pos++;
439 *desc->dir_cookie = entry->cookie;
440 if (dir_decode(desc) != 0) {
441 desc->page_index ++;
442 break;
443 }
444 if (loop_count++ > 200) {
445 loop_count = 0;
446 schedule();
447 }
448 }
449 dir_page_release(desc);
450 if (dentry != NULL)
451 dput(dentry);
452 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
453 (unsigned long long)*desc->dir_cookie, res);
454 return res;
455 }
456
457 /*
458 * If we cannot find a cookie in our cache, we suspect that this is
459 * because it points to a deleted file, so we ask the server to return
460 * whatever it thinks is the next entry. We then feed this to filldir.
461 * If all goes well, we should then be able to find our way round the
462 * cache on the next call to readdir_search_pagecache();
463 *
464 * NOTE: we cannot add the anonymous page to the pagecache because
465 * the data it contains might not be page aligned. Besides,
466 * we should already have a complete representation of the
467 * directory in the page cache by the time we get here.
468 */
469 static inline
470 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
471 filldir_t filldir)
472 {
473 struct file *file = desc->file;
474 struct inode *inode = file->f_path.dentry->d_inode;
475 struct rpc_cred *cred = nfs_file_cred(file);
476 struct page *page = NULL;
477 int status;
478 unsigned long timestamp;
479
480 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
481 (unsigned long long)*desc->dir_cookie);
482
483 page = alloc_page(GFP_HIGHUSER);
484 if (!page) {
485 status = -ENOMEM;
486 goto out;
487 }
488 timestamp = jiffies;
489 desc->error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, *desc->dir_cookie,
490 page,
491 NFS_SERVER(inode)->dtsize,
492 desc->plus);
493 spin_lock(&inode->i_lock);
494 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
495 spin_unlock(&inode->i_lock);
496 desc->page = page;
497 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */
498 if (desc->error >= 0) {
499 desc->timestamp = timestamp;
500 desc->timestamp_valid = 1;
501 if ((status = dir_decode(desc)) == 0)
502 desc->entry->prev_cookie = *desc->dir_cookie;
503 } else
504 status = -EIO;
505 if (status < 0)
506 goto out_release;
507
508 status = nfs_do_filldir(desc, dirent, filldir);
509
510 /* Reset read descriptor so it searches the page cache from
511 * the start upon the next call to readdir_search_pagecache() */
512 desc->page_index = 0;
513 desc->entry->cookie = desc->entry->prev_cookie = 0;
514 desc->entry->eof = 0;
515 out:
516 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
517 __FUNCTION__, status);
518 return status;
519 out_release:
520 dir_page_release(desc);
521 goto out;
522 }
523
524 /* The file offset position represents the dirent entry number. A
525 last cookie cache takes care of the common case of reading the
526 whole directory.
527 */
528 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
529 {
530 struct dentry *dentry = filp->f_path.dentry;
531 struct inode *inode = dentry->d_inode;
532 nfs_readdir_descriptor_t my_desc,
533 *desc = &my_desc;
534 struct nfs_entry my_entry;
535 struct nfs_fh fh;
536 struct nfs_fattr fattr;
537 long res;
538
539 dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
540 dentry->d_parent->d_name.name, dentry->d_name.name,
541 (long long)filp->f_pos);
542 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
543
544 lock_kernel();
545
546 res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
547 if (res < 0) {
548 unlock_kernel();
549 return res;
550 }
551
552 /*
553 * filp->f_pos points to the dirent entry number.
554 * *desc->dir_cookie has the cookie for the next entry. We have
555 * to either find the entry with the appropriate number or
556 * revalidate the cookie.
557 */
558 memset(desc, 0, sizeof(*desc));
559
560 desc->file = filp;
561 desc->dir_cookie = &((struct nfs_open_context *)filp->private_data)->dir_cookie;
562 desc->decode = NFS_PROTO(inode)->decode_dirent;
563 desc->plus = NFS_USE_READDIRPLUS(inode);
564
565 my_entry.cookie = my_entry.prev_cookie = 0;
566 my_entry.eof = 0;
567 my_entry.fh = &fh;
568 my_entry.fattr = &fattr;
569 nfs_fattr_init(&fattr);
570 desc->entry = &my_entry;
571
572 while(!desc->entry->eof) {
573 res = readdir_search_pagecache(desc);
574
575 if (res == -EBADCOOKIE) {
576 /* This means either end of directory */
577 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
578 /* Or that the server has 'lost' a cookie */
579 res = uncached_readdir(desc, dirent, filldir);
580 if (res >= 0)
581 continue;
582 }
583 res = 0;
584 break;
585 }
586 if (res == -ETOOSMALL && desc->plus) {
587 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
588 nfs_zap_caches(inode);
589 desc->plus = 0;
590 desc->entry->eof = 0;
591 continue;
592 }
593 if (res < 0)
594 break;
595
596 res = nfs_do_filldir(desc, dirent, filldir);
597 if (res < 0) {
598 res = 0;
599 break;
600 }
601 }
602 unlock_kernel();
603 if (res > 0)
604 res = 0;
605 dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n",
606 dentry->d_parent->d_name.name, dentry->d_name.name,
607 res);
608 return res;
609 }
610
611 loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
612 {
613 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
614 switch (origin) {
615 case 1:
616 offset += filp->f_pos;
617 case 0:
618 if (offset >= 0)
619 break;
620 default:
621 offset = -EINVAL;
622 goto out;
623 }
624 if (offset != filp->f_pos) {
625 filp->f_pos = offset;
626 ((struct nfs_open_context *)filp->private_data)->dir_cookie = 0;
627 }
628 out:
629 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
630 return offset;
631 }
632
633 /*
634 * All directory operations under NFS are synchronous, so fsync()
635 * is a dummy operation.
636 */
637 int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
638 {
639 dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n",
640 dentry->d_parent->d_name.name, dentry->d_name.name,
641 datasync);
642
643 return 0;
644 }
645
646 /*
647 * A check for whether or not the parent directory has changed.
648 * In the case it has, we assume that the dentries are untrustworthy
649 * and may need to be looked up again.
650 */
651 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
652 {
653 if (IS_ROOT(dentry))
654 return 1;
655 if ((NFS_I(dir)->cache_validity & NFS_INO_INVALID_ATTR) != 0
656 || nfs_attribute_timeout(dir))
657 return 0;
658 return nfs_verify_change_attribute(dir, (unsigned long)dentry->d_fsdata);
659 }
660
661 static inline void nfs_set_verifier(struct dentry * dentry, unsigned long verf)
662 {
663 dentry->d_fsdata = (void *)verf;
664 }
665
666 static void nfs_refresh_verifier(struct dentry * dentry, unsigned long verf)
667 {
668 if (time_after(verf, (unsigned long)dentry->d_fsdata))
669 nfs_set_verifier(dentry, verf);
670 }
671
672 /*
673 * Whenever an NFS operation succeeds, we know that the dentry
674 * is valid, so we update the revalidation timestamp.
675 */
676 static inline void nfs_renew_times(struct dentry * dentry)
677 {
678 dentry->d_time = jiffies;
679 }
680
681 /*
682 * Return the intent data that applies to this particular path component
683 *
684 * Note that the current set of intents only apply to the very last
685 * component of the path.
686 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
687 */
688 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
689 {
690 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
691 return 0;
692 return nd->flags & mask;
693 }
694
695 /*
696 * Inode and filehandle revalidation for lookups.
697 *
698 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
699 * or if the intent information indicates that we're about to open this
700 * particular file and the "nocto" mount flag is not set.
701 *
702 */
703 static inline
704 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
705 {
706 struct nfs_server *server = NFS_SERVER(inode);
707
708 if (nd != NULL) {
709 /* VFS wants an on-the-wire revalidation */
710 if (nd->flags & LOOKUP_REVAL)
711 goto out_force;
712 /* This is an open(2) */
713 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
714 !(server->flags & NFS_MOUNT_NOCTO) &&
715 (S_ISREG(inode->i_mode) ||
716 S_ISDIR(inode->i_mode)))
717 goto out_force;
718 }
719 return nfs_revalidate_inode(server, inode);
720 out_force:
721 return __nfs_revalidate_inode(server, inode);
722 }
723
724 /*
725 * We judge how long we want to trust negative
726 * dentries by looking at the parent inode mtime.
727 *
728 * If parent mtime has changed, we revalidate, else we wait for a
729 * period corresponding to the parent's attribute cache timeout value.
730 */
731 static inline
732 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
733 struct nameidata *nd)
734 {
735 /* Don't revalidate a negative dentry if we're creating a new file */
736 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
737 return 0;
738 return !nfs_check_verifier(dir, dentry);
739 }
740
741 /*
742 * This is called every time the dcache has a lookup hit,
743 * and we should check whether we can really trust that
744 * lookup.
745 *
746 * NOTE! The hit can be a negative hit too, don't assume
747 * we have an inode!
748 *
749 * If the parent directory is seen to have changed, we throw out the
750 * cached dentry and do a new lookup.
751 */
752 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
753 {
754 struct inode *dir;
755 struct inode *inode;
756 struct dentry *parent;
757 int error;
758 struct nfs_fh fhandle;
759 struct nfs_fattr fattr;
760 unsigned long verifier;
761
762 parent = dget_parent(dentry);
763 lock_kernel();
764 dir = parent->d_inode;
765 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
766 inode = dentry->d_inode;
767
768 if (!inode) {
769 if (nfs_neg_need_reval(dir, dentry, nd))
770 goto out_bad;
771 goto out_valid;
772 }
773
774 if (is_bad_inode(inode)) {
775 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
776 __FUNCTION__, dentry->d_parent->d_name.name,
777 dentry->d_name.name);
778 goto out_bad;
779 }
780
781 /* Revalidate parent directory attribute cache */
782 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
783 goto out_zap_parent;
784
785 /* Force a full look up iff the parent directory has changed */
786 if (nfs_check_verifier(dir, dentry)) {
787 if (nfs_lookup_verify_inode(inode, nd))
788 goto out_zap_parent;
789 goto out_valid;
790 }
791
792 if (NFS_STALE(inode))
793 goto out_bad;
794
795 verifier = nfs_save_change_attribute(dir);
796 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
797 if (error)
798 goto out_bad;
799 if (nfs_compare_fh(NFS_FH(inode), &fhandle))
800 goto out_bad;
801 if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
802 goto out_bad;
803
804 nfs_renew_times(dentry);
805 nfs_refresh_verifier(dentry, verifier);
806 out_valid:
807 unlock_kernel();
808 dput(parent);
809 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
810 __FUNCTION__, dentry->d_parent->d_name.name,
811 dentry->d_name.name);
812 return 1;
813 out_zap_parent:
814 nfs_zap_caches(dir);
815 out_bad:
816 NFS_CACHEINV(dir);
817 if (inode && S_ISDIR(inode->i_mode)) {
818 /* Purge readdir caches. */
819 nfs_zap_caches(inode);
820 /* If we have submounts, don't unhash ! */
821 if (have_submounts(dentry))
822 goto out_valid;
823 shrink_dcache_parent(dentry);
824 }
825 d_drop(dentry);
826 unlock_kernel();
827 dput(parent);
828 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
829 __FUNCTION__, dentry->d_parent->d_name.name,
830 dentry->d_name.name);
831 return 0;
832 }
833
834 /*
835 * This is called from dput() when d_count is going to 0.
836 */
837 static int nfs_dentry_delete(struct dentry *dentry)
838 {
839 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
840 dentry->d_parent->d_name.name, dentry->d_name.name,
841 dentry->d_flags);
842
843 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
844 /* Unhash it, so that ->d_iput() would be called */
845 return 1;
846 }
847 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
848 /* Unhash it, so that ancestors of killed async unlink
849 * files will be cleaned up during umount */
850 return 1;
851 }
852 return 0;
853
854 }
855
856 /*
857 * Called when the dentry loses inode.
858 * We use it to clean up silly-renamed files.
859 */
860 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
861 {
862 nfs_inode_return_delegation(inode);
863 if (S_ISDIR(inode->i_mode))
864 /* drop any readdir cache as it could easily be old */
865 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
866
867 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
868 lock_kernel();
869 drop_nlink(inode);
870 nfs_complete_unlink(dentry);
871 unlock_kernel();
872 }
873 /* When creating a negative dentry, we want to renew d_time */
874 nfs_renew_times(dentry);
875 iput(inode);
876 }
877
878 struct dentry_operations nfs_dentry_operations = {
879 .d_revalidate = nfs_lookup_revalidate,
880 .d_delete = nfs_dentry_delete,
881 .d_iput = nfs_dentry_iput,
882 };
883
884 /*
885 * Use intent information to check whether or not we're going to do
886 * an O_EXCL create using this path component.
887 */
888 static inline
889 int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
890 {
891 if (NFS_PROTO(dir)->version == 2)
892 return 0;
893 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
894 return 0;
895 return (nd->intent.open.flags & O_EXCL) != 0;
896 }
897
898 static inline int nfs_reval_fsid(struct vfsmount *mnt, struct inode *dir,
899 struct nfs_fh *fh, struct nfs_fattr *fattr)
900 {
901 struct nfs_server *server = NFS_SERVER(dir);
902
903 if (!nfs_fsid_equal(&server->fsid, &fattr->fsid))
904 /* Revalidate fsid on root dir */
905 return __nfs_revalidate_inode(server, mnt->mnt_root->d_inode);
906 return 0;
907 }
908
909 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
910 {
911 struct dentry *res;
912 struct inode *inode = NULL;
913 int error;
914 struct nfs_fh fhandle;
915 struct nfs_fattr fattr;
916
917 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
918 dentry->d_parent->d_name.name, dentry->d_name.name);
919 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
920
921 res = ERR_PTR(-ENAMETOOLONG);
922 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
923 goto out;
924
925 res = ERR_PTR(-ENOMEM);
926 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
927
928 lock_kernel();
929
930 /*
931 * If we're doing an exclusive create, optimize away the lookup
932 * but don't hash the dentry.
933 */
934 if (nfs_is_exclusive_create(dir, nd)) {
935 d_instantiate(dentry, NULL);
936 res = NULL;
937 goto out_unlock;
938 }
939
940 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
941 if (error == -ENOENT)
942 goto no_entry;
943 if (error < 0) {
944 res = ERR_PTR(error);
945 goto out_unlock;
946 }
947 error = nfs_reval_fsid(nd->mnt, dir, &fhandle, &fattr);
948 if (error < 0) {
949 res = ERR_PTR(error);
950 goto out_unlock;
951 }
952 inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
953 res = (struct dentry *)inode;
954 if (IS_ERR(res))
955 goto out_unlock;
956
957 no_entry:
958 res = d_materialise_unique(dentry, inode);
959 if (res != NULL) {
960 struct dentry *parent;
961 if (IS_ERR(res))
962 goto out_unlock;
963 /* Was a directory renamed! */
964 parent = dget_parent(res);
965 if (!IS_ROOT(parent))
966 nfs_mark_for_revalidate(parent->d_inode);
967 dput(parent);
968 dentry = res;
969 }
970 nfs_renew_times(dentry);
971 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
972 out_unlock:
973 unlock_kernel();
974 out:
975 return res;
976 }
977
978 #ifdef CONFIG_NFS_V4
979 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
980
981 struct dentry_operations nfs4_dentry_operations = {
982 .d_revalidate = nfs_open_revalidate,
983 .d_delete = nfs_dentry_delete,
984 .d_iput = nfs_dentry_iput,
985 };
986
987 /*
988 * Use intent information to determine whether we need to substitute
989 * the NFSv4-style stateful OPEN for the LOOKUP call
990 */
991 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
992 {
993 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
994 return 0;
995 /* NFS does not (yet) have a stateful open for directories */
996 if (nd->flags & LOOKUP_DIRECTORY)
997 return 0;
998 /* Are we trying to write to a read only partition? */
999 if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
1000 return 0;
1001 return 1;
1002 }
1003
1004 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1005 {
1006 struct dentry *res = NULL;
1007 int error;
1008
1009 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1010 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1011
1012 /* Check that we are indeed trying to open this file */
1013 if (!is_atomic_open(dir, nd))
1014 goto no_open;
1015
1016 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1017 res = ERR_PTR(-ENAMETOOLONG);
1018 goto out;
1019 }
1020 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1021
1022 /* Let vfs_create() deal with O_EXCL */
1023 if (nd->intent.open.flags & O_EXCL) {
1024 d_add(dentry, NULL);
1025 goto out;
1026 }
1027
1028 /* Open the file on the server */
1029 lock_kernel();
1030 /* Revalidate parent directory attribute cache */
1031 error = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1032 if (error < 0) {
1033 res = ERR_PTR(error);
1034 unlock_kernel();
1035 goto out;
1036 }
1037
1038 if (nd->intent.open.flags & O_CREAT) {
1039 nfs_begin_data_update(dir);
1040 res = nfs4_atomic_open(dir, dentry, nd);
1041 nfs_end_data_update(dir);
1042 } else
1043 res = nfs4_atomic_open(dir, dentry, nd);
1044 unlock_kernel();
1045 if (IS_ERR(res)) {
1046 error = PTR_ERR(res);
1047 switch (error) {
1048 /* Make a negative dentry */
1049 case -ENOENT:
1050 res = NULL;
1051 goto out;
1052 /* This turned out not to be a regular file */
1053 case -EISDIR:
1054 case -ENOTDIR:
1055 goto no_open;
1056 case -ELOOP:
1057 if (!(nd->intent.open.flags & O_NOFOLLOW))
1058 goto no_open;
1059 /* case -EINVAL: */
1060 default:
1061 goto out;
1062 }
1063 } else if (res != NULL)
1064 dentry = res;
1065 nfs_renew_times(dentry);
1066 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1067 out:
1068 return res;
1069 no_open:
1070 return nfs_lookup(dir, dentry, nd);
1071 }
1072
1073 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1074 {
1075 struct dentry *parent = NULL;
1076 struct inode *inode = dentry->d_inode;
1077 struct inode *dir;
1078 unsigned long verifier;
1079 int openflags, ret = 0;
1080
1081 parent = dget_parent(dentry);
1082 dir = parent->d_inode;
1083 if (!is_atomic_open(dir, nd))
1084 goto no_open;
1085 /* We can't create new files in nfs_open_revalidate(), so we
1086 * optimize away revalidation of negative dentries.
1087 */
1088 if (inode == NULL)
1089 goto out;
1090 /* NFS only supports OPEN on regular files */
1091 if (!S_ISREG(inode->i_mode))
1092 goto no_open;
1093 openflags = nd->intent.open.flags;
1094 /* We cannot do exclusive creation on a positive dentry */
1095 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1096 goto no_open;
1097 /* We can't create new files, or truncate existing ones here */
1098 openflags &= ~(O_CREAT|O_TRUNC);
1099
1100 /*
1101 * Note: we're not holding inode->i_mutex and so may be racing with
1102 * operations that change the directory. We therefore save the
1103 * change attribute *before* we do the RPC call.
1104 */
1105 lock_kernel();
1106 verifier = nfs_save_change_attribute(dir);
1107 ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1108 if (!ret)
1109 nfs_refresh_verifier(dentry, verifier);
1110 unlock_kernel();
1111 out:
1112 dput(parent);
1113 if (!ret)
1114 d_drop(dentry);
1115 return ret;
1116 no_open:
1117 dput(parent);
1118 if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1119 return 1;
1120 return nfs_lookup_revalidate(dentry, nd);
1121 }
1122 #endif /* CONFIG_NFSV4 */
1123
1124 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1125 {
1126 struct dentry *parent = desc->file->f_path.dentry;
1127 struct inode *dir = parent->d_inode;
1128 struct nfs_entry *entry = desc->entry;
1129 struct dentry *dentry, *alias;
1130 struct qstr name = {
1131 .name = entry->name,
1132 .len = entry->len,
1133 };
1134 struct inode *inode;
1135
1136 switch (name.len) {
1137 case 2:
1138 if (name.name[0] == '.' && name.name[1] == '.')
1139 return dget_parent(parent);
1140 break;
1141 case 1:
1142 if (name.name[0] == '.')
1143 return dget(parent);
1144 }
1145 name.hash = full_name_hash(name.name, name.len);
1146 dentry = d_lookup(parent, &name);
1147 if (dentry != NULL) {
1148 /* Is this a positive dentry that matches the readdir info? */
1149 if (dentry->d_inode != NULL &&
1150 (NFS_FILEID(dentry->d_inode) == entry->ino ||
1151 d_mountpoint(dentry))) {
1152 if (!desc->plus || entry->fh->size == 0)
1153 return dentry;
1154 if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1155 entry->fh) == 0)
1156 goto out_renew;
1157 }
1158 /* No, so d_drop to allow one to be created */
1159 d_drop(dentry);
1160 dput(dentry);
1161 }
1162 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1163 return NULL;
1164 /* Note: caller is already holding the dir->i_mutex! */
1165 dentry = d_alloc(parent, &name);
1166 if (dentry == NULL)
1167 return NULL;
1168 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1169 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1170 if (IS_ERR(inode)) {
1171 dput(dentry);
1172 return NULL;
1173 }
1174
1175 alias = d_materialise_unique(dentry, inode);
1176 if (alias != NULL) {
1177 dput(dentry);
1178 if (IS_ERR(alias))
1179 return NULL;
1180 dentry = alias;
1181 }
1182
1183 nfs_renew_times(dentry);
1184 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1185 return dentry;
1186 out_renew:
1187 nfs_renew_times(dentry);
1188 nfs_refresh_verifier(dentry, nfs_save_change_attribute(dir));
1189 return dentry;
1190 }
1191
1192 /*
1193 * Code common to create, mkdir, and mknod.
1194 */
1195 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1196 struct nfs_fattr *fattr)
1197 {
1198 struct inode *inode;
1199 int error = -EACCES;
1200
1201 /* We may have been initialized further down */
1202 if (dentry->d_inode)
1203 return 0;
1204 if (fhandle->size == 0) {
1205 struct inode *dir = dentry->d_parent->d_inode;
1206 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1207 if (error)
1208 return error;
1209 }
1210 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1211 struct nfs_server *server = NFS_SB(dentry->d_sb);
1212 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1213 if (error < 0)
1214 return error;
1215 }
1216 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1217 error = PTR_ERR(inode);
1218 if (IS_ERR(inode))
1219 return error;
1220 d_instantiate(dentry, inode);
1221 if (d_unhashed(dentry))
1222 d_rehash(dentry);
1223 return 0;
1224 }
1225
1226 /*
1227 * Following a failed create operation, we drop the dentry rather
1228 * than retain a negative dentry. This avoids a problem in the event
1229 * that the operation succeeded on the server, but an error in the
1230 * reply path made it appear to have failed.
1231 */
1232 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1233 struct nameidata *nd)
1234 {
1235 struct iattr attr;
1236 int error;
1237 int open_flags = 0;
1238
1239 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1240 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1241
1242 attr.ia_mode = mode;
1243 attr.ia_valid = ATTR_MODE;
1244
1245 if (nd && (nd->flags & LOOKUP_CREATE))
1246 open_flags = nd->intent.open.flags;
1247
1248 lock_kernel();
1249 nfs_begin_data_update(dir);
1250 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1251 nfs_end_data_update(dir);
1252 if (error != 0)
1253 goto out_err;
1254 nfs_renew_times(dentry);
1255 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1256 unlock_kernel();
1257 return 0;
1258 out_err:
1259 unlock_kernel();
1260 d_drop(dentry);
1261 return error;
1262 }
1263
1264 /*
1265 * See comments for nfs_proc_create regarding failed operations.
1266 */
1267 static int
1268 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1269 {
1270 struct iattr attr;
1271 int status;
1272
1273 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1274 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1275
1276 if (!new_valid_dev(rdev))
1277 return -EINVAL;
1278
1279 attr.ia_mode = mode;
1280 attr.ia_valid = ATTR_MODE;
1281
1282 lock_kernel();
1283 nfs_begin_data_update(dir);
1284 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1285 nfs_end_data_update(dir);
1286 if (status != 0)
1287 goto out_err;
1288 nfs_renew_times(dentry);
1289 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1290 unlock_kernel();
1291 return 0;
1292 out_err:
1293 unlock_kernel();
1294 d_drop(dentry);
1295 return status;
1296 }
1297
1298 /*
1299 * See comments for nfs_proc_create regarding failed operations.
1300 */
1301 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1302 {
1303 struct iattr attr;
1304 int error;
1305
1306 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1307 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1308
1309 attr.ia_valid = ATTR_MODE;
1310 attr.ia_mode = mode | S_IFDIR;
1311
1312 lock_kernel();
1313 nfs_begin_data_update(dir);
1314 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1315 nfs_end_data_update(dir);
1316 if (error != 0)
1317 goto out_err;
1318 nfs_renew_times(dentry);
1319 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1320 unlock_kernel();
1321 return 0;
1322 out_err:
1323 d_drop(dentry);
1324 unlock_kernel();
1325 return error;
1326 }
1327
1328 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1329 {
1330 int error;
1331
1332 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1333 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1334
1335 lock_kernel();
1336 nfs_begin_data_update(dir);
1337 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1338 /* Ensure the VFS deletes this inode */
1339 if (error == 0 && dentry->d_inode != NULL)
1340 clear_nlink(dentry->d_inode);
1341 nfs_end_data_update(dir);
1342 unlock_kernel();
1343
1344 return error;
1345 }
1346
1347 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1348 {
1349 static unsigned int sillycounter;
1350 const int i_inosize = sizeof(dir->i_ino)*2;
1351 const int countersize = sizeof(sillycounter)*2;
1352 const int slen = sizeof(".nfs") + i_inosize + countersize - 1;
1353 char silly[slen+1];
1354 struct qstr qsilly;
1355 struct dentry *sdentry;
1356 int error = -EIO;
1357
1358 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1359 dentry->d_parent->d_name.name, dentry->d_name.name,
1360 atomic_read(&dentry->d_count));
1361 nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1362
1363 #ifdef NFS_PARANOIA
1364 if (!dentry->d_inode)
1365 printk("NFS: silly-renaming %s/%s, negative dentry??\n",
1366 dentry->d_parent->d_name.name, dentry->d_name.name);
1367 #endif
1368 /*
1369 * We don't allow a dentry to be silly-renamed twice.
1370 */
1371 error = -EBUSY;
1372 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1373 goto out;
1374
1375 sprintf(silly, ".nfs%*.*lx",
1376 i_inosize, i_inosize, dentry->d_inode->i_ino);
1377
1378 /* Return delegation in anticipation of the rename */
1379 nfs_inode_return_delegation(dentry->d_inode);
1380
1381 sdentry = NULL;
1382 do {
1383 char *suffix = silly + slen - countersize;
1384
1385 dput(sdentry);
1386 sillycounter++;
1387 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1388
1389 dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1390 dentry->d_name.name, silly);
1391
1392 sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1393 /*
1394 * N.B. Better to return EBUSY here ... it could be
1395 * dangerous to delete the file while it's in use.
1396 */
1397 if (IS_ERR(sdentry))
1398 goto out;
1399 } while(sdentry->d_inode != NULL); /* need negative lookup */
1400
1401 qsilly.name = silly;
1402 qsilly.len = strlen(silly);
1403 nfs_begin_data_update(dir);
1404 if (dentry->d_inode) {
1405 nfs_begin_data_update(dentry->d_inode);
1406 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1407 dir, &qsilly);
1408 nfs_mark_for_revalidate(dentry->d_inode);
1409 nfs_end_data_update(dentry->d_inode);
1410 } else
1411 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1412 dir, &qsilly);
1413 nfs_end_data_update(dir);
1414 if (!error) {
1415 nfs_renew_times(dentry);
1416 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1417 d_move(dentry, sdentry);
1418 error = nfs_async_unlink(dentry);
1419 /* If we return 0 we don't unlink */
1420 }
1421 dput(sdentry);
1422 out:
1423 return error;
1424 }
1425
1426 /*
1427 * Remove a file after making sure there are no pending writes,
1428 * and after checking that the file has only one user.
1429 *
1430 * We invalidate the attribute cache and free the inode prior to the operation
1431 * to avoid possible races if the server reuses the inode.
1432 */
1433 static int nfs_safe_remove(struct dentry *dentry)
1434 {
1435 struct inode *dir = dentry->d_parent->d_inode;
1436 struct inode *inode = dentry->d_inode;
1437 int error = -EBUSY;
1438
1439 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1440 dentry->d_parent->d_name.name, dentry->d_name.name);
1441
1442 /* If the dentry was sillyrenamed, we simply call d_delete() */
1443 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1444 error = 0;
1445 goto out;
1446 }
1447
1448 nfs_begin_data_update(dir);
1449 if (inode != NULL) {
1450 nfs_inode_return_delegation(inode);
1451 nfs_begin_data_update(inode);
1452 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1453 /* The VFS may want to delete this inode */
1454 if (error == 0)
1455 drop_nlink(inode);
1456 nfs_mark_for_revalidate(inode);
1457 nfs_end_data_update(inode);
1458 } else
1459 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1460 nfs_end_data_update(dir);
1461 out:
1462 return error;
1463 }
1464
1465 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1466 * belongs to an active ".nfs..." file and we return -EBUSY.
1467 *
1468 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1469 */
1470 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1471 {
1472 int error;
1473 int need_rehash = 0;
1474
1475 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1476 dir->i_ino, dentry->d_name.name);
1477
1478 lock_kernel();
1479 spin_lock(&dcache_lock);
1480 spin_lock(&dentry->d_lock);
1481 if (atomic_read(&dentry->d_count) > 1) {
1482 spin_unlock(&dentry->d_lock);
1483 spin_unlock(&dcache_lock);
1484 /* Start asynchronous writeout of the inode */
1485 write_inode_now(dentry->d_inode, 0);
1486 error = nfs_sillyrename(dir, dentry);
1487 unlock_kernel();
1488 return error;
1489 }
1490 if (!d_unhashed(dentry)) {
1491 __d_drop(dentry);
1492 need_rehash = 1;
1493 }
1494 spin_unlock(&dentry->d_lock);
1495 spin_unlock(&dcache_lock);
1496 error = nfs_safe_remove(dentry);
1497 if (!error) {
1498 nfs_renew_times(dentry);
1499 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1500 } else if (need_rehash)
1501 d_rehash(dentry);
1502 unlock_kernel();
1503 return error;
1504 }
1505
1506 /*
1507 * To create a symbolic link, most file systems instantiate a new inode,
1508 * add a page to it containing the path, then write it out to the disk
1509 * using prepare_write/commit_write.
1510 *
1511 * Unfortunately the NFS client can't create the in-core inode first
1512 * because it needs a file handle to create an in-core inode (see
1513 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1514 * symlink request has completed on the server.
1515 *
1516 * So instead we allocate a raw page, copy the symname into it, then do
1517 * the SYMLINK request with the page as the buffer. If it succeeds, we
1518 * now have a new file handle and can instantiate an in-core NFS inode
1519 * and move the raw page into its mapping.
1520 */
1521 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1522 {
1523 struct pagevec lru_pvec;
1524 struct page *page;
1525 char *kaddr;
1526 struct iattr attr;
1527 unsigned int pathlen = strlen(symname);
1528 int error;
1529
1530 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1531 dir->i_ino, dentry->d_name.name, symname);
1532
1533 if (pathlen > PAGE_SIZE)
1534 return -ENAMETOOLONG;
1535
1536 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1537 attr.ia_valid = ATTR_MODE;
1538
1539 lock_kernel();
1540
1541 page = alloc_page(GFP_KERNEL);
1542 if (!page) {
1543 unlock_kernel();
1544 return -ENOMEM;
1545 }
1546
1547 kaddr = kmap_atomic(page, KM_USER0);
1548 memcpy(kaddr, symname, pathlen);
1549 if (pathlen < PAGE_SIZE)
1550 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1551 kunmap_atomic(kaddr, KM_USER0);
1552
1553 nfs_begin_data_update(dir);
1554 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1555 nfs_end_data_update(dir);
1556 if (error != 0) {
1557 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1558 dir->i_sb->s_id, dir->i_ino,
1559 dentry->d_name.name, symname, error);
1560 d_drop(dentry);
1561 __free_page(page);
1562 unlock_kernel();
1563 return error;
1564 }
1565
1566 /*
1567 * No big deal if we can't add this page to the page cache here.
1568 * READLINK will get the missing page from the server if needed.
1569 */
1570 pagevec_init(&lru_pvec, 0);
1571 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1572 GFP_KERNEL)) {
1573 pagevec_add(&lru_pvec, page);
1574 pagevec_lru_add(&lru_pvec);
1575 SetPageUptodate(page);
1576 unlock_page(page);
1577 } else
1578 __free_page(page);
1579
1580 unlock_kernel();
1581 return 0;
1582 }
1583
1584 static int
1585 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1586 {
1587 struct inode *inode = old_dentry->d_inode;
1588 int error;
1589
1590 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1591 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1592 dentry->d_parent->d_name.name, dentry->d_name.name);
1593
1594 lock_kernel();
1595 nfs_begin_data_update(dir);
1596 nfs_begin_data_update(inode);
1597 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1598 if (error == 0) {
1599 atomic_inc(&inode->i_count);
1600 d_instantiate(dentry, inode);
1601 }
1602 nfs_end_data_update(inode);
1603 nfs_end_data_update(dir);
1604 unlock_kernel();
1605 return error;
1606 }
1607
1608 /*
1609 * RENAME
1610 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1611 * different file handle for the same inode after a rename (e.g. when
1612 * moving to a different directory). A fail-safe method to do so would
1613 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1614 * rename the old file using the sillyrename stuff. This way, the original
1615 * file in old_dir will go away when the last process iput()s the inode.
1616 *
1617 * FIXED.
1618 *
1619 * It actually works quite well. One needs to have the possibility for
1620 * at least one ".nfs..." file in each directory the file ever gets
1621 * moved or linked to which happens automagically with the new
1622 * implementation that only depends on the dcache stuff instead of
1623 * using the inode layer
1624 *
1625 * Unfortunately, things are a little more complicated than indicated
1626 * above. For a cross-directory move, we want to make sure we can get
1627 * rid of the old inode after the operation. This means there must be
1628 * no pending writes (if it's a file), and the use count must be 1.
1629 * If these conditions are met, we can drop the dentries before doing
1630 * the rename.
1631 */
1632 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1633 struct inode *new_dir, struct dentry *new_dentry)
1634 {
1635 struct inode *old_inode = old_dentry->d_inode;
1636 struct inode *new_inode = new_dentry->d_inode;
1637 struct dentry *dentry = NULL, *rehash = NULL;
1638 int error = -EBUSY;
1639
1640 /*
1641 * To prevent any new references to the target during the rename,
1642 * we unhash the dentry and free the inode in advance.
1643 */
1644 lock_kernel();
1645 if (!d_unhashed(new_dentry)) {
1646 d_drop(new_dentry);
1647 rehash = new_dentry;
1648 }
1649
1650 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1651 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1652 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1653 atomic_read(&new_dentry->d_count));
1654
1655 /*
1656 * First check whether the target is busy ... we can't
1657 * safely do _any_ rename if the target is in use.
1658 *
1659 * For files, make a copy of the dentry and then do a
1660 * silly-rename. If the silly-rename succeeds, the
1661 * copied dentry is hashed and becomes the new target.
1662 */
1663 if (!new_inode)
1664 goto go_ahead;
1665 if (S_ISDIR(new_inode->i_mode)) {
1666 error = -EISDIR;
1667 if (!S_ISDIR(old_inode->i_mode))
1668 goto out;
1669 } else if (atomic_read(&new_dentry->d_count) > 2) {
1670 int err;
1671 /* copy the target dentry's name */
1672 dentry = d_alloc(new_dentry->d_parent,
1673 &new_dentry->d_name);
1674 if (!dentry)
1675 goto out;
1676
1677 /* silly-rename the existing target ... */
1678 err = nfs_sillyrename(new_dir, new_dentry);
1679 if (!err) {
1680 new_dentry = rehash = dentry;
1681 new_inode = NULL;
1682 /* instantiate the replacement target */
1683 d_instantiate(new_dentry, NULL);
1684 } else if (atomic_read(&new_dentry->d_count) > 1) {
1685 /* dentry still busy? */
1686 #ifdef NFS_PARANOIA
1687 printk("nfs_rename: target %s/%s busy, d_count=%d\n",
1688 new_dentry->d_parent->d_name.name,
1689 new_dentry->d_name.name,
1690 atomic_read(&new_dentry->d_count));
1691 #endif
1692 goto out;
1693 }
1694 } else
1695 drop_nlink(new_inode);
1696
1697 go_ahead:
1698 /*
1699 * ... prune child dentries and writebacks if needed.
1700 */
1701 if (atomic_read(&old_dentry->d_count) > 1) {
1702 if (S_ISREG(old_inode->i_mode))
1703 nfs_wb_all(old_inode);
1704 shrink_dcache_parent(old_dentry);
1705 }
1706 nfs_inode_return_delegation(old_inode);
1707
1708 if (new_inode != NULL) {
1709 nfs_inode_return_delegation(new_inode);
1710 d_delete(new_dentry);
1711 }
1712
1713 nfs_begin_data_update(old_dir);
1714 nfs_begin_data_update(new_dir);
1715 nfs_begin_data_update(old_inode);
1716 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1717 new_dir, &new_dentry->d_name);
1718 nfs_mark_for_revalidate(old_inode);
1719 nfs_end_data_update(old_inode);
1720 nfs_end_data_update(new_dir);
1721 nfs_end_data_update(old_dir);
1722 out:
1723 if (rehash)
1724 d_rehash(rehash);
1725 if (!error) {
1726 d_move(old_dentry, new_dentry);
1727 nfs_renew_times(new_dentry);
1728 nfs_refresh_verifier(new_dentry, nfs_save_change_attribute(new_dir));
1729 }
1730
1731 /* new dentry created? */
1732 if (dentry)
1733 dput(dentry);
1734 unlock_kernel();
1735 return error;
1736 }
1737
1738 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1739 static LIST_HEAD(nfs_access_lru_list);
1740 static atomic_long_t nfs_access_nr_entries;
1741
1742 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1743 {
1744 put_rpccred(entry->cred);
1745 kfree(entry);
1746 smp_mb__before_atomic_dec();
1747 atomic_long_dec(&nfs_access_nr_entries);
1748 smp_mb__after_atomic_dec();
1749 }
1750
1751 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1752 {
1753 LIST_HEAD(head);
1754 struct nfs_inode *nfsi;
1755 struct nfs_access_entry *cache;
1756
1757 spin_lock(&nfs_access_lru_lock);
1758 restart:
1759 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1760 struct inode *inode;
1761
1762 if (nr_to_scan-- == 0)
1763 break;
1764 inode = igrab(&nfsi->vfs_inode);
1765 if (inode == NULL)
1766 continue;
1767 spin_lock(&inode->i_lock);
1768 if (list_empty(&nfsi->access_cache_entry_lru))
1769 goto remove_lru_entry;
1770 cache = list_entry(nfsi->access_cache_entry_lru.next,
1771 struct nfs_access_entry, lru);
1772 list_move(&cache->lru, &head);
1773 rb_erase(&cache->rb_node, &nfsi->access_cache);
1774 if (!list_empty(&nfsi->access_cache_entry_lru))
1775 list_move_tail(&nfsi->access_cache_inode_lru,
1776 &nfs_access_lru_list);
1777 else {
1778 remove_lru_entry:
1779 list_del_init(&nfsi->access_cache_inode_lru);
1780 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1781 }
1782 spin_unlock(&inode->i_lock);
1783 iput(inode);
1784 goto restart;
1785 }
1786 spin_unlock(&nfs_access_lru_lock);
1787 while (!list_empty(&head)) {
1788 cache = list_entry(head.next, struct nfs_access_entry, lru);
1789 list_del(&cache->lru);
1790 nfs_access_free_entry(cache);
1791 }
1792 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1793 }
1794
1795 static void __nfs_access_zap_cache(struct inode *inode)
1796 {
1797 struct nfs_inode *nfsi = NFS_I(inode);
1798 struct rb_root *root_node = &nfsi->access_cache;
1799 struct rb_node *n, *dispose = NULL;
1800 struct nfs_access_entry *entry;
1801
1802 /* Unhook entries from the cache */
1803 while ((n = rb_first(root_node)) != NULL) {
1804 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1805 rb_erase(n, root_node);
1806 list_del(&entry->lru);
1807 n->rb_left = dispose;
1808 dispose = n;
1809 }
1810 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1811 spin_unlock(&inode->i_lock);
1812
1813 /* Now kill them all! */
1814 while (dispose != NULL) {
1815 n = dispose;
1816 dispose = n->rb_left;
1817 nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1818 }
1819 }
1820
1821 void nfs_access_zap_cache(struct inode *inode)
1822 {
1823 /* Remove from global LRU init */
1824 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1825 spin_lock(&nfs_access_lru_lock);
1826 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1827 spin_unlock(&nfs_access_lru_lock);
1828 }
1829
1830 spin_lock(&inode->i_lock);
1831 /* This will release the spinlock */
1832 __nfs_access_zap_cache(inode);
1833 }
1834
1835 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1836 {
1837 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1838 struct nfs_access_entry *entry;
1839
1840 while (n != NULL) {
1841 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1842
1843 if (cred < entry->cred)
1844 n = n->rb_left;
1845 else if (cred > entry->cred)
1846 n = n->rb_right;
1847 else
1848 return entry;
1849 }
1850 return NULL;
1851 }
1852
1853 int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1854 {
1855 struct nfs_inode *nfsi = NFS_I(inode);
1856 struct nfs_access_entry *cache;
1857 int err = -ENOENT;
1858
1859 spin_lock(&inode->i_lock);
1860 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1861 goto out_zap;
1862 cache = nfs_access_search_rbtree(inode, cred);
1863 if (cache == NULL)
1864 goto out;
1865 if (time_after(jiffies, cache->jiffies + NFS_ATTRTIMEO(inode)))
1866 goto out_stale;
1867 res->jiffies = cache->jiffies;
1868 res->cred = cache->cred;
1869 res->mask = cache->mask;
1870 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1871 err = 0;
1872 out:
1873 spin_unlock(&inode->i_lock);
1874 return err;
1875 out_stale:
1876 rb_erase(&cache->rb_node, &nfsi->access_cache);
1877 list_del(&cache->lru);
1878 spin_unlock(&inode->i_lock);
1879 nfs_access_free_entry(cache);
1880 return -ENOENT;
1881 out_zap:
1882 /* This will release the spinlock */
1883 __nfs_access_zap_cache(inode);
1884 return -ENOENT;
1885 }
1886
1887 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1888 {
1889 struct nfs_inode *nfsi = NFS_I(inode);
1890 struct rb_root *root_node = &nfsi->access_cache;
1891 struct rb_node **p = &root_node->rb_node;
1892 struct rb_node *parent = NULL;
1893 struct nfs_access_entry *entry;
1894
1895 spin_lock(&inode->i_lock);
1896 while (*p != NULL) {
1897 parent = *p;
1898 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1899
1900 if (set->cred < entry->cred)
1901 p = &parent->rb_left;
1902 else if (set->cred > entry->cred)
1903 p = &parent->rb_right;
1904 else
1905 goto found;
1906 }
1907 rb_link_node(&set->rb_node, parent, p);
1908 rb_insert_color(&set->rb_node, root_node);
1909 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1910 spin_unlock(&inode->i_lock);
1911 return;
1912 found:
1913 rb_replace_node(parent, &set->rb_node, root_node);
1914 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1915 list_del(&entry->lru);
1916 spin_unlock(&inode->i_lock);
1917 nfs_access_free_entry(entry);
1918 }
1919
1920 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1921 {
1922 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1923 if (cache == NULL)
1924 return;
1925 RB_CLEAR_NODE(&cache->rb_node);
1926 cache->jiffies = set->jiffies;
1927 cache->cred = get_rpccred(set->cred);
1928 cache->mask = set->mask;
1929
1930 nfs_access_add_rbtree(inode, cache);
1931
1932 /* Update accounting */
1933 smp_mb__before_atomic_inc();
1934 atomic_long_inc(&nfs_access_nr_entries);
1935 smp_mb__after_atomic_inc();
1936
1937 /* Add inode to global LRU list */
1938 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1939 spin_lock(&nfs_access_lru_lock);
1940 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1941 spin_unlock(&nfs_access_lru_lock);
1942 }
1943 }
1944
1945 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1946 {
1947 struct nfs_access_entry cache;
1948 int status;
1949
1950 status = nfs_access_get_cached(inode, cred, &cache);
1951 if (status == 0)
1952 goto out;
1953
1954 /* Be clever: ask server to check for all possible rights */
1955 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1956 cache.cred = cred;
1957 cache.jiffies = jiffies;
1958 status = NFS_PROTO(inode)->access(inode, &cache);
1959 if (status != 0)
1960 return status;
1961 nfs_access_add_cache(inode, &cache);
1962 out:
1963 if ((cache.mask & mask) == mask)
1964 return 0;
1965 return -EACCES;
1966 }
1967
1968 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
1969 {
1970 struct rpc_cred *cred;
1971 int res = 0;
1972
1973 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1974
1975 if (mask == 0)
1976 goto out;
1977 /* Is this sys_access() ? */
1978 if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
1979 goto force_lookup;
1980
1981 switch (inode->i_mode & S_IFMT) {
1982 case S_IFLNK:
1983 goto out;
1984 case S_IFREG:
1985 /* NFSv4 has atomic_open... */
1986 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1987 && nd != NULL
1988 && (nd->flags & LOOKUP_OPEN))
1989 goto out;
1990 break;
1991 case S_IFDIR:
1992 /*
1993 * Optimize away all write operations, since the server
1994 * will check permissions when we perform the op.
1995 */
1996 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1997 goto out;
1998 }
1999
2000 force_lookup:
2001 lock_kernel();
2002
2003 if (!NFS_PROTO(inode)->access)
2004 goto out_notsup;
2005
2006 cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
2007 if (!IS_ERR(cred)) {
2008 res = nfs_do_access(inode, cred, mask);
2009 put_rpccred(cred);
2010 } else
2011 res = PTR_ERR(cred);
2012 unlock_kernel();
2013 out:
2014 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2015 inode->i_sb->s_id, inode->i_ino, mask, res);
2016 return res;
2017 out_notsup:
2018 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2019 if (res == 0)
2020 res = generic_permission(inode, mask, NULL);
2021 unlock_kernel();
2022 goto out;
2023 }
2024
2025 /*
2026 * Local variables:
2027 * version-control: t
2028 * kept-new-versions: 5
2029 * End:
2030 */