]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/nfs/direct.c
0cb44240616889f62616f7804be7dd909c3b9de1
[mirror_ubuntu-focal-kernel.git] / fs / nfs / direct.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/nfs/direct.c
4 *
5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6 *
7 * High-performance uncached I/O for the Linux NFS client
8 *
9 * There are important applications whose performance or correctness
10 * depends on uncached access to file data. Database clusters
11 * (multiple copies of the same instance running on separate hosts)
12 * implement their own cache coherency protocol that subsumes file
13 * system cache protocols. Applications that process datasets
14 * considerably larger than the client's memory do not always benefit
15 * from a local cache. A streaming video server, for instance, has no
16 * need to cache the contents of a file.
17 *
18 * When an application requests uncached I/O, all read and write requests
19 * are made directly to the server; data stored or fetched via these
20 * requests is not cached in the Linux page cache. The client does not
21 * correct unaligned requests from applications. All requested bytes are
22 * held on permanent storage before a direct write system call returns to
23 * an application.
24 *
25 * Solaris implements an uncached I/O facility called directio() that
26 * is used for backups and sequential I/O to very large files. Solaris
27 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
28 * an undocumented mount option.
29 *
30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
31 * help from Andrew Morton.
32 *
33 * 18 Dec 2001 Initial implementation for 2.4 --cel
34 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
35 * 08 Jun 2003 Port to 2.5 APIs --cel
36 * 31 Mar 2004 Handle direct I/O without VFS support --cel
37 * 15 Sep 2004 Parallel async reads --cel
38 * 04 May 2005 support O_DIRECT with aio --cel
39 *
40 */
41
42 #include <linux/errno.h>
43 #include <linux/sched.h>
44 #include <linux/kernel.h>
45 #include <linux/file.h>
46 #include <linux/pagemap.h>
47 #include <linux/kref.h>
48 #include <linux/slab.h>
49 #include <linux/task_io_accounting_ops.h>
50 #include <linux/module.h>
51
52 #include <linux/nfs_fs.h>
53 #include <linux/nfs_page.h>
54 #include <linux/sunrpc/clnt.h>
55
56 #include <linux/uaccess.h>
57 #include <linux/atomic.h>
58
59 #include "internal.h"
60 #include "iostat.h"
61 #include "pnfs.h"
62
63 #define NFSDBG_FACILITY NFSDBG_VFS
64
65 static struct kmem_cache *nfs_direct_cachep;
66
67 /*
68 * This represents a set of asynchronous requests that we're waiting on
69 */
70 struct nfs_direct_mirror {
71 ssize_t count;
72 };
73
74 struct nfs_direct_req {
75 struct kref kref; /* release manager */
76
77 /* I/O parameters */
78 struct nfs_open_context *ctx; /* file open context info */
79 struct nfs_lock_context *l_ctx; /* Lock context info */
80 struct kiocb * iocb; /* controlling i/o request */
81 struct inode * inode; /* target file of i/o */
82
83 /* completion state */
84 atomic_t io_count; /* i/os we're waiting for */
85 spinlock_t lock; /* protect completion state */
86
87 struct nfs_direct_mirror mirrors[NFS_PAGEIO_DESCRIPTOR_MIRROR_MAX];
88 int mirror_count;
89
90 loff_t io_start; /* Start offset for I/O */
91 ssize_t count, /* bytes actually processed */
92 max_count, /* max expected count */
93 bytes_left, /* bytes left to be sent */
94 error; /* any reported error */
95 struct completion completion; /* wait for i/o completion */
96
97 /* commit state */
98 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
99 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
100 struct work_struct work;
101 int flags;
102 /* for write */
103 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
104 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
105 /* for read */
106 #define NFS_ODIRECT_SHOULD_DIRTY (3) /* dirty user-space page after read */
107 struct nfs_writeverf verf; /* unstable write verifier */
108 };
109
110 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
111 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
112 static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
113 static void nfs_direct_write_schedule_work(struct work_struct *work);
114
115 static inline void get_dreq(struct nfs_direct_req *dreq)
116 {
117 atomic_inc(&dreq->io_count);
118 }
119
120 static inline int put_dreq(struct nfs_direct_req *dreq)
121 {
122 return atomic_dec_and_test(&dreq->io_count);
123 }
124
125 static void
126 nfs_direct_good_bytes(struct nfs_direct_req *dreq, struct nfs_pgio_header *hdr)
127 {
128 int i;
129 ssize_t count;
130
131 WARN_ON_ONCE(dreq->count >= dreq->max_count);
132
133 if (dreq->mirror_count == 1) {
134 dreq->mirrors[hdr->pgio_mirror_idx].count += hdr->good_bytes;
135 dreq->count += hdr->good_bytes;
136 } else {
137 /* mirrored writes */
138 count = dreq->mirrors[hdr->pgio_mirror_idx].count;
139 if (count + dreq->io_start < hdr->io_start + hdr->good_bytes) {
140 count = hdr->io_start + hdr->good_bytes - dreq->io_start;
141 dreq->mirrors[hdr->pgio_mirror_idx].count = count;
142 }
143 /* update the dreq->count by finding the minimum agreed count from all
144 * mirrors */
145 count = dreq->mirrors[0].count;
146
147 for (i = 1; i < dreq->mirror_count; i++)
148 count = min(count, dreq->mirrors[i].count);
149
150 dreq->count = count;
151 }
152 }
153
154 /*
155 * nfs_direct_select_verf - select the right verifier
156 * @dreq - direct request possibly spanning multiple servers
157 * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs
158 * @commit_idx - commit bucket index for the DS
159 *
160 * returns the correct verifier to use given the role of the server
161 */
162 static struct nfs_writeverf *
163 nfs_direct_select_verf(struct nfs_direct_req *dreq,
164 struct nfs_client *ds_clp,
165 int commit_idx)
166 {
167 struct nfs_writeverf *verfp = &dreq->verf;
168
169 #ifdef CONFIG_NFS_V4_1
170 /*
171 * pNFS is in use, use the DS verf except commit_through_mds is set
172 * for layout segment where nbuckets is zero.
173 */
174 if (ds_clp && dreq->ds_cinfo.nbuckets > 0) {
175 if (commit_idx >= 0 && commit_idx < dreq->ds_cinfo.nbuckets)
176 verfp = &dreq->ds_cinfo.buckets[commit_idx].direct_verf;
177 else
178 WARN_ON_ONCE(1);
179 }
180 #endif
181 return verfp;
182 }
183
184
185 /*
186 * nfs_direct_set_hdr_verf - set the write/commit verifier
187 * @dreq - direct request possibly spanning multiple servers
188 * @hdr - pageio header to validate against previously seen verfs
189 *
190 * Set the server's (MDS or DS) "seen" verifier
191 */
192 static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq,
193 struct nfs_pgio_header *hdr)
194 {
195 struct nfs_writeverf *verfp;
196
197 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
198 WARN_ON_ONCE(verfp->committed >= 0);
199 memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
200 WARN_ON_ONCE(verfp->committed < 0);
201 }
202
203 static int nfs_direct_cmp_verf(const struct nfs_writeverf *v1,
204 const struct nfs_writeverf *v2)
205 {
206 return nfs_write_verifier_cmp(&v1->verifier, &v2->verifier);
207 }
208
209 /*
210 * nfs_direct_cmp_hdr_verf - compare verifier for pgio header
211 * @dreq - direct request possibly spanning multiple servers
212 * @hdr - pageio header to validate against previously seen verf
213 *
214 * set the server's "seen" verf if not initialized.
215 * returns result of comparison between @hdr->verf and the "seen"
216 * verf of the server used by @hdr (DS or MDS)
217 */
218 static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq,
219 struct nfs_pgio_header *hdr)
220 {
221 struct nfs_writeverf *verfp;
222
223 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
224 if (verfp->committed < 0) {
225 nfs_direct_set_hdr_verf(dreq, hdr);
226 return 0;
227 }
228 return nfs_direct_cmp_verf(verfp, &hdr->verf);
229 }
230
231 /*
232 * nfs_direct_cmp_commit_data_verf - compare verifier for commit data
233 * @dreq - direct request possibly spanning multiple servers
234 * @data - commit data to validate against previously seen verf
235 *
236 * returns result of comparison between @data->verf and the verf of
237 * the server used by @data (DS or MDS)
238 */
239 static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq,
240 struct nfs_commit_data *data)
241 {
242 struct nfs_writeverf *verfp;
243
244 verfp = nfs_direct_select_verf(dreq, data->ds_clp,
245 data->ds_commit_index);
246
247 /* verifier not set so always fail */
248 if (verfp->committed < 0)
249 return 1;
250
251 return nfs_direct_cmp_verf(verfp, &data->verf);
252 }
253
254 /**
255 * nfs_direct_IO - NFS address space operation for direct I/O
256 * @iocb: target I/O control block
257 * @iter: I/O buffer
258 *
259 * The presence of this routine in the address space ops vector means
260 * the NFS client supports direct I/O. However, for most direct IO, we
261 * shunt off direct read and write requests before the VFS gets them,
262 * so this method is only ever called for swap.
263 */
264 ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
265 {
266 struct inode *inode = iocb->ki_filp->f_mapping->host;
267
268 /* we only support swap file calling nfs_direct_IO */
269 if (!IS_SWAPFILE(inode))
270 return 0;
271
272 VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
273
274 if (iov_iter_rw(iter) == READ)
275 return nfs_file_direct_read(iocb, iter);
276 return nfs_file_direct_write(iocb, iter);
277 }
278
279 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
280 {
281 unsigned int i;
282 for (i = 0; i < npages; i++)
283 put_page(pages[i]);
284 }
285
286 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
287 struct nfs_direct_req *dreq)
288 {
289 cinfo->inode = dreq->inode;
290 cinfo->mds = &dreq->mds_cinfo;
291 cinfo->ds = &dreq->ds_cinfo;
292 cinfo->dreq = dreq;
293 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
294 }
295
296 static inline void nfs_direct_setup_mirroring(struct nfs_direct_req *dreq,
297 struct nfs_pageio_descriptor *pgio,
298 struct nfs_page *req)
299 {
300 int mirror_count = 1;
301
302 if (pgio->pg_ops->pg_get_mirror_count)
303 mirror_count = pgio->pg_ops->pg_get_mirror_count(pgio, req);
304
305 dreq->mirror_count = mirror_count;
306 }
307
308 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
309 {
310 struct nfs_direct_req *dreq;
311
312 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
313 if (!dreq)
314 return NULL;
315
316 kref_init(&dreq->kref);
317 kref_get(&dreq->kref);
318 init_completion(&dreq->completion);
319 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
320 dreq->verf.committed = NFS_INVALID_STABLE_HOW; /* not set yet */
321 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
322 dreq->mirror_count = 1;
323 spin_lock_init(&dreq->lock);
324
325 return dreq;
326 }
327
328 static void nfs_direct_req_free(struct kref *kref)
329 {
330 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
331
332 nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo);
333 if (dreq->l_ctx != NULL)
334 nfs_put_lock_context(dreq->l_ctx);
335 if (dreq->ctx != NULL)
336 put_nfs_open_context(dreq->ctx);
337 kmem_cache_free(nfs_direct_cachep, dreq);
338 }
339
340 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
341 {
342 kref_put(&dreq->kref, nfs_direct_req_free);
343 }
344
345 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
346 {
347 return dreq->bytes_left;
348 }
349 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
350
351 /*
352 * Collects and returns the final error value/byte-count.
353 */
354 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
355 {
356 ssize_t result = -EIOCBQUEUED;
357
358 /* Async requests don't wait here */
359 if (dreq->iocb)
360 goto out;
361
362 result = wait_for_completion_killable(&dreq->completion);
363
364 if (!result) {
365 result = dreq->count;
366 WARN_ON_ONCE(dreq->count < 0);
367 }
368 if (!result)
369 result = dreq->error;
370
371 out:
372 return (ssize_t) result;
373 }
374
375 /*
376 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
377 * the iocb is still valid here if this is a synchronous request.
378 */
379 static void nfs_direct_complete(struct nfs_direct_req *dreq)
380 {
381 struct inode *inode = dreq->inode;
382
383 inode_dio_end(inode);
384
385 if (dreq->iocb) {
386 long res = (long) dreq->error;
387 if (dreq->count != 0) {
388 res = (long) dreq->count;
389 WARN_ON_ONCE(dreq->count < 0);
390 }
391 dreq->iocb->ki_complete(dreq->iocb, res, 0);
392 }
393
394 complete(&dreq->completion);
395
396 nfs_direct_req_release(dreq);
397 }
398
399 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
400 {
401 unsigned long bytes = 0;
402 struct nfs_direct_req *dreq = hdr->dreq;
403
404 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
405 goto out_put;
406
407 spin_lock(&dreq->lock);
408 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
409 dreq->error = hdr->error;
410 else
411 nfs_direct_good_bytes(dreq, hdr);
412
413 spin_unlock(&dreq->lock);
414
415 while (!list_empty(&hdr->pages)) {
416 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
417 struct page *page = req->wb_page;
418
419 if (!PageCompound(page) && bytes < hdr->good_bytes &&
420 (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
421 set_page_dirty(page);
422 bytes += req->wb_bytes;
423 nfs_list_remove_request(req);
424 nfs_release_request(req);
425 }
426 out_put:
427 if (put_dreq(dreq))
428 nfs_direct_complete(dreq);
429 hdr->release(hdr);
430 }
431
432 static void nfs_read_sync_pgio_error(struct list_head *head, int error)
433 {
434 struct nfs_page *req;
435
436 while (!list_empty(head)) {
437 req = nfs_list_entry(head->next);
438 nfs_list_remove_request(req);
439 nfs_release_request(req);
440 }
441 }
442
443 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
444 {
445 get_dreq(hdr->dreq);
446 }
447
448 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
449 .error_cleanup = nfs_read_sync_pgio_error,
450 .init_hdr = nfs_direct_pgio_init,
451 .completion = nfs_direct_read_completion,
452 };
453
454 /*
455 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
456 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
457 * bail and stop sending more reads. Read length accounting is
458 * handled automatically by nfs_direct_read_result(). Otherwise, if
459 * no requests have been sent, just return an error.
460 */
461
462 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
463 struct iov_iter *iter,
464 loff_t pos)
465 {
466 struct nfs_pageio_descriptor desc;
467 struct inode *inode = dreq->inode;
468 ssize_t result = -EINVAL;
469 size_t requested_bytes = 0;
470 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
471
472 nfs_pageio_init_read(&desc, dreq->inode, false,
473 &nfs_direct_read_completion_ops);
474 get_dreq(dreq);
475 desc.pg_dreq = dreq;
476 inode_dio_begin(inode);
477
478 while (iov_iter_count(iter)) {
479 struct page **pagevec;
480 size_t bytes;
481 size_t pgbase;
482 unsigned npages, i;
483
484 result = iov_iter_get_pages_alloc(iter, &pagevec,
485 rsize, &pgbase);
486 if (result < 0)
487 break;
488
489 bytes = result;
490 iov_iter_advance(iter, bytes);
491 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
492 for (i = 0; i < npages; i++) {
493 struct nfs_page *req;
494 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
495 /* XXX do we need to do the eof zeroing found in async_filler? */
496 req = nfs_create_request(dreq->ctx, pagevec[i],
497 pgbase, req_len);
498 if (IS_ERR(req)) {
499 result = PTR_ERR(req);
500 break;
501 }
502 req->wb_index = pos >> PAGE_SHIFT;
503 req->wb_offset = pos & ~PAGE_MASK;
504 if (!nfs_pageio_add_request(&desc, req)) {
505 result = desc.pg_error;
506 nfs_release_request(req);
507 break;
508 }
509 pgbase = 0;
510 bytes -= req_len;
511 requested_bytes += req_len;
512 pos += req_len;
513 dreq->bytes_left -= req_len;
514 }
515 nfs_direct_release_pages(pagevec, npages);
516 kvfree(pagevec);
517 if (result < 0)
518 break;
519 }
520
521 nfs_pageio_complete(&desc);
522
523 /*
524 * If no bytes were started, return the error, and let the
525 * generic layer handle the completion.
526 */
527 if (requested_bytes == 0) {
528 inode_dio_end(inode);
529 nfs_direct_req_release(dreq);
530 return result < 0 ? result : -EIO;
531 }
532
533 if (put_dreq(dreq))
534 nfs_direct_complete(dreq);
535 return requested_bytes;
536 }
537
538 /**
539 * nfs_file_direct_read - file direct read operation for NFS files
540 * @iocb: target I/O control block
541 * @iter: vector of user buffers into which to read data
542 *
543 * We use this function for direct reads instead of calling
544 * generic_file_aio_read() in order to avoid gfar's check to see if
545 * the request starts before the end of the file. For that check
546 * to work, we must generate a GETATTR before each direct read, and
547 * even then there is a window between the GETATTR and the subsequent
548 * READ where the file size could change. Our preference is simply
549 * to do all reads the application wants, and the server will take
550 * care of managing the end of file boundary.
551 *
552 * This function also eliminates unnecessarily updating the file's
553 * atime locally, as the NFS server sets the file's atime, and this
554 * client must read the updated atime from the server back into its
555 * cache.
556 */
557 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter)
558 {
559 struct file *file = iocb->ki_filp;
560 struct address_space *mapping = file->f_mapping;
561 struct inode *inode = mapping->host;
562 struct nfs_direct_req *dreq;
563 struct nfs_lock_context *l_ctx;
564 ssize_t result = -EINVAL, requested;
565 size_t count = iov_iter_count(iter);
566 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
567
568 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
569 file, count, (long long) iocb->ki_pos);
570
571 result = 0;
572 if (!count)
573 goto out;
574
575 task_io_account_read(count);
576
577 result = -ENOMEM;
578 dreq = nfs_direct_req_alloc();
579 if (dreq == NULL)
580 goto out;
581
582 dreq->inode = inode;
583 dreq->bytes_left = dreq->max_count = count;
584 dreq->io_start = iocb->ki_pos;
585 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
586 l_ctx = nfs_get_lock_context(dreq->ctx);
587 if (IS_ERR(l_ctx)) {
588 result = PTR_ERR(l_ctx);
589 goto out_release;
590 }
591 dreq->l_ctx = l_ctx;
592 if (!is_sync_kiocb(iocb))
593 dreq->iocb = iocb;
594
595 if (iter_is_iovec(iter))
596 dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
597
598 nfs_start_io_direct(inode);
599
600 NFS_I(inode)->read_io += count;
601 requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
602
603 nfs_end_io_direct(inode);
604
605 if (requested > 0) {
606 result = nfs_direct_wait(dreq);
607 if (result > 0) {
608 requested -= result;
609 iocb->ki_pos += result;
610 }
611 iov_iter_revert(iter, requested);
612 } else {
613 result = requested;
614 }
615
616 out_release:
617 nfs_direct_req_release(dreq);
618 out:
619 return result;
620 }
621
622 static void
623 nfs_direct_write_scan_commit_list(struct inode *inode,
624 struct list_head *list,
625 struct nfs_commit_info *cinfo)
626 {
627 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
628 #ifdef CONFIG_NFS_V4_1
629 if (cinfo->ds != NULL && cinfo->ds->nwritten != 0)
630 NFS_SERVER(inode)->pnfs_curr_ld->recover_commit_reqs(list, cinfo);
631 #endif
632 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
633 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
634 }
635
636 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
637 {
638 struct nfs_pageio_descriptor desc;
639 struct nfs_page *req, *tmp;
640 LIST_HEAD(reqs);
641 struct nfs_commit_info cinfo;
642 LIST_HEAD(failed);
643 int i;
644
645 nfs_init_cinfo_from_dreq(&cinfo, dreq);
646 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
647
648 dreq->count = 0;
649 dreq->verf.committed = NFS_INVALID_STABLE_HOW;
650 nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
651 for (i = 0; i < dreq->mirror_count; i++)
652 dreq->mirrors[i].count = 0;
653 get_dreq(dreq);
654
655 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
656 &nfs_direct_write_completion_ops);
657 desc.pg_dreq = dreq;
658
659 req = nfs_list_entry(reqs.next);
660 nfs_direct_setup_mirroring(dreq, &desc, req);
661 if (desc.pg_error < 0) {
662 list_splice_init(&reqs, &failed);
663 goto out_failed;
664 }
665
666 list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
667 /* Bump the transmission count */
668 req->wb_nio++;
669 if (!nfs_pageio_add_request(&desc, req)) {
670 nfs_list_move_request(req, &failed);
671 spin_lock(&cinfo.inode->i_lock);
672 dreq->flags = 0;
673 if (desc.pg_error < 0)
674 dreq->error = desc.pg_error;
675 else
676 dreq->error = -EIO;
677 spin_unlock(&cinfo.inode->i_lock);
678 }
679 nfs_release_request(req);
680 }
681 nfs_pageio_complete(&desc);
682
683 out_failed:
684 while (!list_empty(&failed)) {
685 req = nfs_list_entry(failed.next);
686 nfs_list_remove_request(req);
687 nfs_unlock_and_release_request(req);
688 }
689
690 if (put_dreq(dreq))
691 nfs_direct_write_complete(dreq);
692 }
693
694 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
695 {
696 struct nfs_direct_req *dreq = data->dreq;
697 struct nfs_commit_info cinfo;
698 struct nfs_page *req;
699 int status = data->task.tk_status;
700
701 nfs_init_cinfo_from_dreq(&cinfo, dreq);
702 if (status < 0 || nfs_direct_cmp_commit_data_verf(dreq, data))
703 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
704
705 while (!list_empty(&data->pages)) {
706 req = nfs_list_entry(data->pages.next);
707 nfs_list_remove_request(req);
708 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
709 /*
710 * Despite the reboot, the write was successful,
711 * so reset wb_nio.
712 */
713 req->wb_nio = 0;
714 /* Note the rewrite will go through mds */
715 nfs_mark_request_commit(req, NULL, &cinfo, 0);
716 } else
717 nfs_release_request(req);
718 nfs_unlock_and_release_request(req);
719 }
720
721 if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
722 nfs_direct_write_complete(dreq);
723 }
724
725 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
726 struct nfs_page *req)
727 {
728 struct nfs_direct_req *dreq = cinfo->dreq;
729
730 spin_lock(&dreq->lock);
731 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
732 spin_unlock(&dreq->lock);
733 nfs_mark_request_commit(req, NULL, cinfo, 0);
734 }
735
736 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
737 .completion = nfs_direct_commit_complete,
738 .resched_write = nfs_direct_resched_write,
739 };
740
741 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
742 {
743 int res;
744 struct nfs_commit_info cinfo;
745 LIST_HEAD(mds_list);
746
747 nfs_init_cinfo_from_dreq(&cinfo, dreq);
748 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
749 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
750 if (res < 0) /* res == -ENOMEM */
751 nfs_direct_write_reschedule(dreq);
752 }
753
754 static void nfs_direct_write_schedule_work(struct work_struct *work)
755 {
756 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
757 int flags = dreq->flags;
758
759 dreq->flags = 0;
760 switch (flags) {
761 case NFS_ODIRECT_DO_COMMIT:
762 nfs_direct_commit_schedule(dreq);
763 break;
764 case NFS_ODIRECT_RESCHED_WRITES:
765 nfs_direct_write_reschedule(dreq);
766 break;
767 default:
768 nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
769 nfs_direct_complete(dreq);
770 }
771 }
772
773 static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
774 {
775 queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
776 }
777
778 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
779 {
780 struct nfs_direct_req *dreq = hdr->dreq;
781 struct nfs_commit_info cinfo;
782 bool request_commit = false;
783 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
784
785 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
786 goto out_put;
787
788 nfs_init_cinfo_from_dreq(&cinfo, dreq);
789
790 spin_lock(&dreq->lock);
791
792 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags))
793 dreq->error = hdr->error;
794 if (dreq->error == 0) {
795 nfs_direct_good_bytes(dreq, hdr);
796 if (nfs_write_need_commit(hdr)) {
797 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
798 request_commit = true;
799 else if (dreq->flags == 0) {
800 nfs_direct_set_hdr_verf(dreq, hdr);
801 request_commit = true;
802 dreq->flags = NFS_ODIRECT_DO_COMMIT;
803 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
804 request_commit = true;
805 if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr))
806 dreq->flags =
807 NFS_ODIRECT_RESCHED_WRITES;
808 }
809 }
810 }
811 spin_unlock(&dreq->lock);
812
813 while (!list_empty(&hdr->pages)) {
814
815 req = nfs_list_entry(hdr->pages.next);
816 nfs_list_remove_request(req);
817 if (request_commit) {
818 kref_get(&req->wb_kref);
819 nfs_mark_request_commit(req, hdr->lseg, &cinfo,
820 hdr->ds_commit_idx);
821 }
822 nfs_unlock_and_release_request(req);
823 }
824
825 out_put:
826 if (put_dreq(dreq))
827 nfs_direct_write_complete(dreq);
828 hdr->release(hdr);
829 }
830
831 static void nfs_write_sync_pgio_error(struct list_head *head, int error)
832 {
833 struct nfs_page *req;
834
835 while (!list_empty(head)) {
836 req = nfs_list_entry(head->next);
837 nfs_list_remove_request(req);
838 nfs_unlock_and_release_request(req);
839 }
840 }
841
842 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
843 {
844 struct nfs_direct_req *dreq = hdr->dreq;
845
846 spin_lock(&dreq->lock);
847 if (dreq->error == 0) {
848 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
849 /* fake unstable write to let common nfs resend pages */
850 hdr->verf.committed = NFS_UNSTABLE;
851 hdr->good_bytes = hdr->args.count;
852 }
853 spin_unlock(&dreq->lock);
854 }
855
856 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
857 .error_cleanup = nfs_write_sync_pgio_error,
858 .init_hdr = nfs_direct_pgio_init,
859 .completion = nfs_direct_write_completion,
860 .reschedule_io = nfs_direct_write_reschedule_io,
861 };
862
863
864 /*
865 * NB: Return the value of the first error return code. Subsequent
866 * errors after the first one are ignored.
867 */
868 /*
869 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
870 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
871 * bail and stop sending more writes. Write length accounting is
872 * handled automatically by nfs_direct_write_result(). Otherwise, if
873 * no requests have been sent, just return an error.
874 */
875 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
876 struct iov_iter *iter,
877 loff_t pos)
878 {
879 struct nfs_pageio_descriptor desc;
880 struct inode *inode = dreq->inode;
881 ssize_t result = 0;
882 size_t requested_bytes = 0;
883 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
884
885 nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false,
886 &nfs_direct_write_completion_ops);
887 desc.pg_dreq = dreq;
888 get_dreq(dreq);
889 inode_dio_begin(inode);
890
891 NFS_I(inode)->write_io += iov_iter_count(iter);
892 while (iov_iter_count(iter)) {
893 struct page **pagevec;
894 size_t bytes;
895 size_t pgbase;
896 unsigned npages, i;
897
898 result = iov_iter_get_pages_alloc(iter, &pagevec,
899 wsize, &pgbase);
900 if (result < 0)
901 break;
902
903 bytes = result;
904 iov_iter_advance(iter, bytes);
905 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
906 for (i = 0; i < npages; i++) {
907 struct nfs_page *req;
908 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
909
910 req = nfs_create_request(dreq->ctx, pagevec[i],
911 pgbase, req_len);
912 if (IS_ERR(req)) {
913 result = PTR_ERR(req);
914 break;
915 }
916
917 nfs_direct_setup_mirroring(dreq, &desc, req);
918 if (desc.pg_error < 0) {
919 nfs_free_request(req);
920 result = desc.pg_error;
921 break;
922 }
923
924 nfs_lock_request(req);
925 req->wb_index = pos >> PAGE_SHIFT;
926 req->wb_offset = pos & ~PAGE_MASK;
927 if (!nfs_pageio_add_request(&desc, req)) {
928 result = desc.pg_error;
929 nfs_unlock_and_release_request(req);
930 break;
931 }
932 pgbase = 0;
933 bytes -= req_len;
934 requested_bytes += req_len;
935 pos += req_len;
936 dreq->bytes_left -= req_len;
937 }
938 nfs_direct_release_pages(pagevec, npages);
939 kvfree(pagevec);
940 if (result < 0)
941 break;
942 }
943 nfs_pageio_complete(&desc);
944
945 /*
946 * If no bytes were started, return the error, and let the
947 * generic layer handle the completion.
948 */
949 if (requested_bytes == 0) {
950 inode_dio_end(inode);
951 nfs_direct_req_release(dreq);
952 return result < 0 ? result : -EIO;
953 }
954
955 if (put_dreq(dreq))
956 nfs_direct_write_complete(dreq);
957 return requested_bytes;
958 }
959
960 /**
961 * nfs_file_direct_write - file direct write operation for NFS files
962 * @iocb: target I/O control block
963 * @iter: vector of user buffers from which to write data
964 *
965 * We use this function for direct writes instead of calling
966 * generic_file_aio_write() in order to avoid taking the inode
967 * semaphore and updating the i_size. The NFS server will set
968 * the new i_size and this client must read the updated size
969 * back into its cache. We let the server do generic write
970 * parameter checking and report problems.
971 *
972 * We eliminate local atime updates, see direct read above.
973 *
974 * We avoid unnecessary page cache invalidations for normal cached
975 * readers of this file.
976 *
977 * Note that O_APPEND is not supported for NFS direct writes, as there
978 * is no atomic O_APPEND write facility in the NFS protocol.
979 */
980 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter)
981 {
982 ssize_t result = -EINVAL, requested;
983 size_t count;
984 struct file *file = iocb->ki_filp;
985 struct address_space *mapping = file->f_mapping;
986 struct inode *inode = mapping->host;
987 struct nfs_direct_req *dreq;
988 struct nfs_lock_context *l_ctx;
989 loff_t pos, end;
990
991 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
992 file, iov_iter_count(iter), (long long) iocb->ki_pos);
993
994 result = generic_write_checks(iocb, iter);
995 if (result <= 0)
996 return result;
997 count = result;
998 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
999
1000 pos = iocb->ki_pos;
1001 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
1002
1003 task_io_account_write(count);
1004
1005 result = -ENOMEM;
1006 dreq = nfs_direct_req_alloc();
1007 if (!dreq)
1008 goto out;
1009
1010 dreq->inode = inode;
1011 dreq->bytes_left = dreq->max_count = count;
1012 dreq->io_start = pos;
1013 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
1014 l_ctx = nfs_get_lock_context(dreq->ctx);
1015 if (IS_ERR(l_ctx)) {
1016 result = PTR_ERR(l_ctx);
1017 goto out_release;
1018 }
1019 dreq->l_ctx = l_ctx;
1020 if (!is_sync_kiocb(iocb))
1021 dreq->iocb = iocb;
1022
1023 nfs_start_io_direct(inode);
1024
1025 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos);
1026
1027 if (mapping->nrpages) {
1028 invalidate_inode_pages2_range(mapping,
1029 pos >> PAGE_SHIFT, end);
1030 }
1031
1032 nfs_end_io_direct(inode);
1033
1034 if (requested > 0) {
1035 result = nfs_direct_wait(dreq);
1036 if (result > 0) {
1037 requested -= result;
1038 iocb->ki_pos = pos + result;
1039 /* XXX: should check the generic_write_sync retval */
1040 generic_write_sync(iocb, result);
1041 }
1042 iov_iter_revert(iter, requested);
1043 } else {
1044 result = requested;
1045 }
1046 out_release:
1047 nfs_direct_req_release(dreq);
1048 out:
1049 return result;
1050 }
1051
1052 /**
1053 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1054 *
1055 */
1056 int __init nfs_init_directcache(void)
1057 {
1058 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1059 sizeof(struct nfs_direct_req),
1060 0, (SLAB_RECLAIM_ACCOUNT|
1061 SLAB_MEM_SPREAD),
1062 NULL);
1063 if (nfs_direct_cachep == NULL)
1064 return -ENOMEM;
1065
1066 return 0;
1067 }
1068
1069 /**
1070 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1071 *
1072 */
1073 void nfs_destroy_directcache(void)
1074 {
1075 kmem_cache_destroy(nfs_direct_cachep);
1076 }