]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/nfs/direct.c
NFS: rewrite directio write to use async coalesce code
[mirror_ubuntu-bionic-kernel.git] / fs / nfs / direct.c
1 /*
2 * linux/fs/nfs/direct.c
3 *
4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5 *
6 * High-performance uncached I/O for the Linux NFS client
7 *
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
16 *
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
22 * an application.
23 *
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
28 *
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
31 *
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 * 04 May 2005 support O_DIRECT with aio --cel
38 *
39 */
40
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49
50 #include <linux/nfs_fs.h>
51 #include <linux/nfs_page.h>
52 #include <linux/sunrpc/clnt.h>
53
54 #include <asm/uaccess.h>
55 #include <linux/atomic.h>
56
57 #include "internal.h"
58 #include "iostat.h"
59 #include "pnfs.h"
60
61 #define NFSDBG_FACILITY NFSDBG_VFS
62
63 static struct kmem_cache *nfs_direct_cachep;
64
65 /*
66 * This represents a set of asynchronous requests that we're waiting on
67 */
68 struct nfs_direct_req {
69 struct kref kref; /* release manager */
70
71 /* I/O parameters */
72 struct nfs_open_context *ctx; /* file open context info */
73 struct nfs_lock_context *l_ctx; /* Lock context info */
74 struct kiocb * iocb; /* controlling i/o request */
75 struct inode * inode; /* target file of i/o */
76
77 /* completion state */
78 atomic_t io_count; /* i/os we're waiting for */
79 spinlock_t lock; /* protect completion state */
80 ssize_t count, /* bytes actually processed */
81 error; /* any reported error */
82 struct completion completion; /* wait for i/o completion */
83
84 /* commit state */
85 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
86 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
87 struct work_struct work;
88 int flags;
89 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
90 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
91 struct nfs_writeverf verf; /* unstable write verifier */
92 };
93
94 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
95 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
96 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
97 static void nfs_direct_write_schedule_work(struct work_struct *work);
98
99 static inline void get_dreq(struct nfs_direct_req *dreq)
100 {
101 atomic_inc(&dreq->io_count);
102 }
103
104 static inline int put_dreq(struct nfs_direct_req *dreq)
105 {
106 return atomic_dec_and_test(&dreq->io_count);
107 }
108
109 /**
110 * nfs_direct_IO - NFS address space operation for direct I/O
111 * @rw: direction (read or write)
112 * @iocb: target I/O control block
113 * @iov: array of vectors that define I/O buffer
114 * @pos: offset in file to begin the operation
115 * @nr_segs: size of iovec array
116 *
117 * The presence of this routine in the address space ops vector means
118 * the NFS client supports direct I/O. However, we shunt off direct
119 * read and write requests before the VFS gets them, so this method
120 * should never be called.
121 */
122 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
123 {
124 dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
125 iocb->ki_filp->f_path.dentry->d_name.name,
126 (long long) pos, nr_segs);
127
128 return -EINVAL;
129 }
130
131 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
132 {
133 unsigned int i;
134 for (i = 0; i < npages; i++)
135 page_cache_release(pages[i]);
136 }
137
138 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
139 struct nfs_direct_req *dreq)
140 {
141 cinfo->lock = &dreq->lock;
142 cinfo->mds = &dreq->mds_cinfo;
143 cinfo->ds = &dreq->ds_cinfo;
144 cinfo->dreq = dreq;
145 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
146 }
147
148 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
149 {
150 struct nfs_direct_req *dreq;
151
152 dreq = kmem_cache_alloc(nfs_direct_cachep, GFP_KERNEL);
153 if (!dreq)
154 return NULL;
155
156 kref_init(&dreq->kref);
157 kref_get(&dreq->kref);
158 init_completion(&dreq->completion);
159 dreq->mds_cinfo.ncommit = 0;
160 atomic_set(&dreq->mds_cinfo.rpcs_out, 0);
161 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
162 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
163 memset(&dreq->ds_cinfo, 0, sizeof(dreq->ds_cinfo));
164 dreq->iocb = NULL;
165 dreq->ctx = NULL;
166 dreq->l_ctx = NULL;
167 spin_lock_init(&dreq->lock);
168 atomic_set(&dreq->io_count, 0);
169 dreq->count = 0;
170 dreq->error = 0;
171 dreq->flags = 0;
172
173 return dreq;
174 }
175
176 static void nfs_direct_req_free(struct kref *kref)
177 {
178 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
179
180 if (dreq->l_ctx != NULL)
181 nfs_put_lock_context(dreq->l_ctx);
182 if (dreq->ctx != NULL)
183 put_nfs_open_context(dreq->ctx);
184 kmem_cache_free(nfs_direct_cachep, dreq);
185 }
186
187 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
188 {
189 kref_put(&dreq->kref, nfs_direct_req_free);
190 }
191
192 /*
193 * Collects and returns the final error value/byte-count.
194 */
195 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
196 {
197 ssize_t result = -EIOCBQUEUED;
198
199 /* Async requests don't wait here */
200 if (dreq->iocb)
201 goto out;
202
203 result = wait_for_completion_killable(&dreq->completion);
204
205 if (!result)
206 result = dreq->error;
207 if (!result)
208 result = dreq->count;
209
210 out:
211 return (ssize_t) result;
212 }
213
214 /*
215 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
216 * the iocb is still valid here if this is a synchronous request.
217 */
218 static void nfs_direct_complete(struct nfs_direct_req *dreq)
219 {
220 if (dreq->iocb) {
221 long res = (long) dreq->error;
222 if (!res)
223 res = (long) dreq->count;
224 aio_complete(dreq->iocb, res, 0);
225 }
226 complete_all(&dreq->completion);
227
228 nfs_direct_req_release(dreq);
229 }
230
231 void nfs_direct_readpage_release(struct nfs_page *req)
232 {
233 dprintk("NFS: direct read done (%s/%lld %d@%lld)\n",
234 req->wb_context->dentry->d_inode->i_sb->s_id,
235 (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
236 req->wb_bytes,
237 (long long)req_offset(req));
238 nfs_release_request(req);
239 }
240
241 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
242 {
243 unsigned long bytes = 0;
244 struct nfs_direct_req *dreq = hdr->dreq;
245
246 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
247 goto out_put;
248
249 spin_lock(&dreq->lock);
250 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
251 dreq->error = hdr->error;
252 else
253 dreq->count += hdr->good_bytes;
254 spin_unlock(&dreq->lock);
255
256 if (!test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
257 while (!list_empty(&hdr->pages)) {
258 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
259 struct page *page = req->wb_page;
260
261 if (test_bit(NFS_IOHDR_EOF, &hdr->flags)) {
262 if (bytes > hdr->good_bytes)
263 zero_user(page, 0, PAGE_SIZE);
264 else if (hdr->good_bytes - bytes < PAGE_SIZE)
265 zero_user_segment(page,
266 hdr->good_bytes & ~PAGE_MASK,
267 PAGE_SIZE);
268 }
269 bytes += req->wb_bytes;
270 nfs_list_remove_request(req);
271 nfs_direct_readpage_release(req);
272 if (!PageCompound(page))
273 set_page_dirty(page);
274 page_cache_release(page);
275 }
276 } else {
277 while (!list_empty(&hdr->pages)) {
278 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
279
280 if (bytes < hdr->good_bytes)
281 if (!PageCompound(req->wb_page))
282 set_page_dirty(req->wb_page);
283 bytes += req->wb_bytes;
284 page_cache_release(req->wb_page);
285 nfs_list_remove_request(req);
286 nfs_direct_readpage_release(req);
287 }
288 }
289 out_put:
290 if (put_dreq(dreq))
291 nfs_direct_complete(dreq);
292 hdr->release(hdr);
293 }
294
295 static void nfs_sync_pgio_error(struct list_head *head)
296 {
297 struct nfs_page *req;
298
299 while (!list_empty(head)) {
300 req = nfs_list_entry(head->next);
301 nfs_list_remove_request(req);
302 nfs_release_request(req);
303 }
304 }
305
306 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
307 {
308 get_dreq(hdr->dreq);
309 }
310
311 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
312 .error_cleanup = nfs_sync_pgio_error,
313 .init_hdr = nfs_direct_pgio_init,
314 .completion = nfs_direct_read_completion,
315 };
316
317 /*
318 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
319 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
320 * bail and stop sending more reads. Read length accounting is
321 * handled automatically by nfs_direct_read_result(). Otherwise, if
322 * no requests have been sent, just return an error.
323 */
324 static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
325 const struct iovec *iov,
326 loff_t pos)
327 {
328 struct nfs_direct_req *dreq = desc->pg_dreq;
329 struct nfs_open_context *ctx = dreq->ctx;
330 struct inode *inode = ctx->dentry->d_inode;
331 unsigned long user_addr = (unsigned long)iov->iov_base;
332 size_t count = iov->iov_len;
333 size_t rsize = NFS_SERVER(inode)->rsize;
334 unsigned int pgbase;
335 int result;
336 ssize_t started = 0;
337 struct page **pagevec = NULL;
338 unsigned int npages;
339
340 do {
341 size_t bytes;
342 int i;
343
344 pgbase = user_addr & ~PAGE_MASK;
345 bytes = min(max(rsize, PAGE_SIZE), count);
346
347 result = -ENOMEM;
348 npages = nfs_page_array_len(pgbase, bytes);
349 if (!pagevec)
350 pagevec = kmalloc(npages * sizeof(struct page *),
351 GFP_KERNEL);
352 if (!pagevec)
353 break;
354 down_read(&current->mm->mmap_sem);
355 result = get_user_pages(current, current->mm, user_addr,
356 npages, 1, 0, pagevec, NULL);
357 up_read(&current->mm->mmap_sem);
358 if (result < 0)
359 break;
360 if ((unsigned)result < npages) {
361 bytes = result * PAGE_SIZE;
362 if (bytes <= pgbase) {
363 nfs_direct_release_pages(pagevec, result);
364 break;
365 }
366 bytes -= pgbase;
367 npages = result;
368 }
369
370 for (i = 0; i < npages; i++) {
371 struct nfs_page *req;
372 unsigned int req_len = min(bytes, PAGE_SIZE - pgbase);
373 /* XXX do we need to do the eof zeroing found in async_filler? */
374 req = nfs_create_request(dreq->ctx, dreq->inode,
375 pagevec[i],
376 pgbase, req_len);
377 if (IS_ERR(req)) {
378 nfs_direct_release_pages(pagevec + i,
379 npages - i);
380 result = PTR_ERR(req);
381 break;
382 }
383 req->wb_index = pos >> PAGE_SHIFT;
384 req->wb_offset = pos & ~PAGE_MASK;
385 if (!nfs_pageio_add_request(desc, req)) {
386 result = desc->pg_error;
387 nfs_release_request(req);
388 nfs_direct_release_pages(pagevec + i,
389 npages - i);
390 break;
391 }
392 pgbase = 0;
393 bytes -= req_len;
394 started += req_len;
395 user_addr += req_len;
396 pos += req_len;
397 count -= req_len;
398 }
399 } while (count != 0);
400
401 kfree(pagevec);
402
403 if (started)
404 return started;
405 return result < 0 ? (ssize_t) result : -EFAULT;
406 }
407
408 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
409 const struct iovec *iov,
410 unsigned long nr_segs,
411 loff_t pos)
412 {
413 struct nfs_pageio_descriptor desc;
414 ssize_t result = -EINVAL;
415 size_t requested_bytes = 0;
416 unsigned long seg;
417
418 nfs_pageio_init_read(&desc, dreq->inode,
419 &nfs_direct_read_completion_ops);
420 get_dreq(dreq);
421 desc.pg_dreq = dreq;
422
423 for (seg = 0; seg < nr_segs; seg++) {
424 const struct iovec *vec = &iov[seg];
425 result = nfs_direct_read_schedule_segment(&desc, vec, pos);
426 if (result < 0)
427 break;
428 requested_bytes += result;
429 if ((size_t)result < vec->iov_len)
430 break;
431 pos += vec->iov_len;
432 }
433
434 nfs_pageio_complete(&desc);
435
436 /*
437 * If no bytes were started, return the error, and let the
438 * generic layer handle the completion.
439 */
440 if (requested_bytes == 0) {
441 nfs_direct_req_release(dreq);
442 return result < 0 ? result : -EIO;
443 }
444
445 if (put_dreq(dreq))
446 nfs_direct_complete(dreq);
447 return 0;
448 }
449
450 static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
451 unsigned long nr_segs, loff_t pos)
452 {
453 ssize_t result = -ENOMEM;
454 struct inode *inode = iocb->ki_filp->f_mapping->host;
455 struct nfs_direct_req *dreq;
456
457 dreq = nfs_direct_req_alloc();
458 if (dreq == NULL)
459 goto out;
460
461 dreq->inode = inode;
462 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
463 dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
464 if (dreq->l_ctx == NULL)
465 goto out_release;
466 if (!is_sync_kiocb(iocb))
467 dreq->iocb = iocb;
468
469 result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos);
470 if (!result)
471 result = nfs_direct_wait(dreq);
472 out_release:
473 nfs_direct_req_release(dreq);
474 out:
475 return result;
476 }
477
478 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
479 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
480 {
481 struct nfs_pageio_descriptor desc;
482 struct nfs_page *req, *tmp;
483 LIST_HEAD(reqs);
484 struct nfs_commit_info cinfo;
485 LIST_HEAD(failed);
486
487 nfs_init_cinfo_from_dreq(&cinfo, dreq);
488 pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
489 spin_lock(cinfo.lock);
490 nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
491 spin_unlock(cinfo.lock);
492
493 dreq->count = 0;
494 get_dreq(dreq);
495
496 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE,
497 &nfs_direct_write_completion_ops);
498 desc.pg_dreq = dreq;
499
500 list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
501 if (!nfs_pageio_add_request(&desc, req)) {
502 nfs_list_add_request(req, &failed);
503 spin_lock(cinfo.lock);
504 dreq->flags = 0;
505 dreq->error = -EIO;
506 spin_unlock(cinfo.lock);
507 }
508 }
509 nfs_pageio_complete(&desc);
510
511 while (!list_empty(&failed)) {
512 page_cache_release(req->wb_page);
513 nfs_release_request(req);
514 nfs_unlock_request(req);
515 }
516
517 if (put_dreq(dreq))
518 nfs_direct_write_complete(dreq, dreq->inode);
519 }
520
521 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
522 {
523 struct nfs_direct_req *dreq = data->dreq;
524 struct nfs_commit_info cinfo;
525 struct nfs_page *req;
526 int status = data->task.tk_status;
527
528 nfs_init_cinfo_from_dreq(&cinfo, dreq);
529 if (status < 0) {
530 dprintk("NFS: %5u commit failed with error %d.\n",
531 data->task.tk_pid, status);
532 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
533 } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
534 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
535 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
536 }
537
538 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
539 while (!list_empty(&data->pages)) {
540 req = nfs_list_entry(data->pages.next);
541 nfs_list_remove_request(req);
542 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
543 /* Note the rewrite will go through mds */
544 nfs_mark_request_commit(req, NULL, &cinfo);
545 } else {
546 page_cache_release(req->wb_page);
547 nfs_release_request(req);
548 }
549 nfs_unlock_request(req);
550 }
551
552 if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
553 nfs_direct_write_complete(dreq, data->inode);
554 }
555
556 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
557 {
558 /* There is no lock to clear */
559 }
560
561 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
562 .completion = nfs_direct_commit_complete,
563 .error_cleanup = nfs_direct_error_cleanup,
564 };
565
566 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
567 {
568 int res;
569 struct nfs_commit_info cinfo;
570 LIST_HEAD(mds_list);
571
572 nfs_init_cinfo_from_dreq(&cinfo, dreq);
573 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
574 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
575 if (res < 0) /* res == -ENOMEM */
576 nfs_direct_write_reschedule(dreq);
577 }
578
579 static void nfs_direct_write_schedule_work(struct work_struct *work)
580 {
581 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
582 int flags = dreq->flags;
583
584 dreq->flags = 0;
585 switch (flags) {
586 case NFS_ODIRECT_DO_COMMIT:
587 nfs_direct_commit_schedule(dreq);
588 break;
589 case NFS_ODIRECT_RESCHED_WRITES:
590 nfs_direct_write_reschedule(dreq);
591 break;
592 default:
593 nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
594 nfs_direct_complete(dreq);
595 }
596 }
597
598 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
599 {
600 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
601 }
602
603 #else
604
605 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
606 {
607 nfs_zap_mapping(inode, inode->i_mapping);
608 nfs_direct_complete(dreq);
609 }
610 #endif
611
612 /*
613 * NB: Return the value of the first error return code. Subsequent
614 * errors after the first one are ignored.
615 */
616 /*
617 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
618 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
619 * bail and stop sending more writes. Write length accounting is
620 * handled automatically by nfs_direct_write_result(). Otherwise, if
621 * no requests have been sent, just return an error.
622 */
623 static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
624 const struct iovec *iov,
625 loff_t pos)
626 {
627 struct nfs_direct_req *dreq = desc->pg_dreq;
628 struct nfs_open_context *ctx = dreq->ctx;
629 struct inode *inode = ctx->dentry->d_inode;
630 unsigned long user_addr = (unsigned long)iov->iov_base;
631 size_t count = iov->iov_len;
632 size_t wsize = NFS_SERVER(inode)->wsize;
633 unsigned int pgbase;
634 int result;
635 ssize_t started = 0;
636 struct page **pagevec = NULL;
637 unsigned int npages;
638
639 do {
640 size_t bytes;
641 int i;
642
643 pgbase = user_addr & ~PAGE_MASK;
644 bytes = min(max(wsize, PAGE_SIZE), count);
645
646 result = -ENOMEM;
647 npages = nfs_page_array_len(pgbase, bytes);
648 if (!pagevec)
649 pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
650 if (!pagevec)
651 break;
652
653 down_read(&current->mm->mmap_sem);
654 result = get_user_pages(current, current->mm, user_addr,
655 npages, 0, 0, pagevec, NULL);
656 up_read(&current->mm->mmap_sem);
657 if (result < 0)
658 break;
659
660 if ((unsigned)result < npages) {
661 bytes = result * PAGE_SIZE;
662 if (bytes <= pgbase) {
663 nfs_direct_release_pages(pagevec, result);
664 break;
665 }
666 bytes -= pgbase;
667 npages = result;
668 }
669
670 for (i = 0; i < npages; i++) {
671 struct nfs_page *req;
672 unsigned int req_len = min(bytes, PAGE_SIZE - pgbase);
673
674 req = nfs_create_request(dreq->ctx, dreq->inode,
675 pagevec[i],
676 pgbase, req_len);
677 if (IS_ERR(req)) {
678 nfs_direct_release_pages(pagevec + i,
679 npages - i);
680 result = PTR_ERR(req);
681 break;
682 }
683 nfs_lock_request(req);
684 req->wb_index = pos >> PAGE_SHIFT;
685 req->wb_offset = pos & ~PAGE_MASK;
686 if (!nfs_pageio_add_request(desc, req)) {
687 result = desc->pg_error;
688 nfs_unlock_request(req);
689 nfs_release_request(req);
690 nfs_direct_release_pages(pagevec + i,
691 npages - i);
692 }
693 pgbase = 0;
694 bytes -= req_len;
695 started += req_len;
696 user_addr += req_len;
697 pos += req_len;
698 count -= req_len;
699 }
700 } while (count != 0);
701
702 kfree(pagevec);
703
704 if (started)
705 return started;
706 return result < 0 ? (ssize_t) result : -EFAULT;
707 }
708
709 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
710 {
711 struct nfs_direct_req *dreq = hdr->dreq;
712 struct nfs_commit_info cinfo;
713 int bit = -1;
714 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
715
716 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
717 goto out_put;
718
719 nfs_init_cinfo_from_dreq(&cinfo, dreq);
720
721 spin_lock(&dreq->lock);
722
723 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
724 dreq->flags = 0;
725 dreq->error = hdr->error;
726 }
727 if (dreq->error != 0)
728 bit = NFS_IOHDR_ERROR;
729 else {
730 dreq->count += hdr->good_bytes;
731 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
732 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
733 bit = NFS_IOHDR_NEED_RESCHED;
734 } else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
735 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
736 bit = NFS_IOHDR_NEED_RESCHED;
737 else if (dreq->flags == 0) {
738 memcpy(&dreq->verf, &req->wb_verf,
739 sizeof(dreq->verf));
740 bit = NFS_IOHDR_NEED_COMMIT;
741 dreq->flags = NFS_ODIRECT_DO_COMMIT;
742 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
743 if (memcmp(&dreq->verf, &req->wb_verf, sizeof(dreq->verf))) {
744 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
745 bit = NFS_IOHDR_NEED_RESCHED;
746 } else
747 bit = NFS_IOHDR_NEED_COMMIT;
748 }
749 }
750 }
751 spin_unlock(&dreq->lock);
752
753 while (!list_empty(&hdr->pages)) {
754 req = nfs_list_entry(hdr->pages.next);
755 nfs_list_remove_request(req);
756 switch (bit) {
757 case NFS_IOHDR_NEED_RESCHED:
758 case NFS_IOHDR_NEED_COMMIT:
759 nfs_mark_request_commit(req, hdr->lseg, &cinfo);
760 break;
761 default:
762 page_cache_release(req->wb_page);
763 nfs_release_request(req);
764 }
765 nfs_unlock_request(req);
766 }
767
768 out_put:
769 if (put_dreq(dreq))
770 nfs_direct_write_complete(dreq, hdr->inode);
771 hdr->release(hdr);
772 }
773
774 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
775 .error_cleanup = nfs_sync_pgio_error,
776 .init_hdr = nfs_direct_pgio_init,
777 .completion = nfs_direct_write_completion,
778 };
779
780 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
781 const struct iovec *iov,
782 unsigned long nr_segs,
783 loff_t pos)
784 {
785 struct nfs_pageio_descriptor desc;
786 ssize_t result = 0;
787 size_t requested_bytes = 0;
788 unsigned long seg;
789
790 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_COND_STABLE,
791 &nfs_direct_write_completion_ops);
792 desc.pg_dreq = dreq;
793 get_dreq(dreq);
794
795 for (seg = 0; seg < nr_segs; seg++) {
796 const struct iovec *vec = &iov[seg];
797 result = nfs_direct_write_schedule_segment(&desc, vec, pos);
798 if (result < 0)
799 break;
800 requested_bytes += result;
801 if ((size_t)result < vec->iov_len)
802 break;
803 pos += vec->iov_len;
804 }
805 nfs_pageio_complete(&desc);
806
807 /*
808 * If no bytes were started, return the error, and let the
809 * generic layer handle the completion.
810 */
811 if (requested_bytes == 0) {
812 nfs_direct_req_release(dreq);
813 return result < 0 ? result : -EIO;
814 }
815
816 if (put_dreq(dreq))
817 nfs_direct_write_complete(dreq, dreq->inode);
818 return 0;
819 }
820
821 static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
822 unsigned long nr_segs, loff_t pos,
823 size_t count)
824 {
825 ssize_t result = -ENOMEM;
826 struct inode *inode = iocb->ki_filp->f_mapping->host;
827 struct nfs_direct_req *dreq;
828
829 dreq = nfs_direct_req_alloc();
830 if (!dreq)
831 goto out;
832
833 dreq->inode = inode;
834 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
835 dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
836 if (dreq->l_ctx == NULL)
837 goto out_release;
838 if (!is_sync_kiocb(iocb))
839 dreq->iocb = iocb;
840
841 result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos);
842 if (!result)
843 result = nfs_direct_wait(dreq);
844 out_release:
845 nfs_direct_req_release(dreq);
846 out:
847 return result;
848 }
849
850 /**
851 * nfs_file_direct_read - file direct read operation for NFS files
852 * @iocb: target I/O control block
853 * @iov: vector of user buffers into which to read data
854 * @nr_segs: size of iov vector
855 * @pos: byte offset in file where reading starts
856 *
857 * We use this function for direct reads instead of calling
858 * generic_file_aio_read() in order to avoid gfar's check to see if
859 * the request starts before the end of the file. For that check
860 * to work, we must generate a GETATTR before each direct read, and
861 * even then there is a window between the GETATTR and the subsequent
862 * READ where the file size could change. Our preference is simply
863 * to do all reads the application wants, and the server will take
864 * care of managing the end of file boundary.
865 *
866 * This function also eliminates unnecessarily updating the file's
867 * atime locally, as the NFS server sets the file's atime, and this
868 * client must read the updated atime from the server back into its
869 * cache.
870 */
871 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
872 unsigned long nr_segs, loff_t pos)
873 {
874 ssize_t retval = -EINVAL;
875 struct file *file = iocb->ki_filp;
876 struct address_space *mapping = file->f_mapping;
877 size_t count;
878
879 count = iov_length(iov, nr_segs);
880 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
881
882 dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
883 file->f_path.dentry->d_parent->d_name.name,
884 file->f_path.dentry->d_name.name,
885 count, (long long) pos);
886
887 retval = 0;
888 if (!count)
889 goto out;
890
891 retval = nfs_sync_mapping(mapping);
892 if (retval)
893 goto out;
894
895 task_io_account_read(count);
896
897 retval = nfs_direct_read(iocb, iov, nr_segs, pos);
898 if (retval > 0)
899 iocb->ki_pos = pos + retval;
900
901 out:
902 return retval;
903 }
904
905 /**
906 * nfs_file_direct_write - file direct write operation for NFS files
907 * @iocb: target I/O control block
908 * @iov: vector of user buffers from which to write data
909 * @nr_segs: size of iov vector
910 * @pos: byte offset in file where writing starts
911 *
912 * We use this function for direct writes instead of calling
913 * generic_file_aio_write() in order to avoid taking the inode
914 * semaphore and updating the i_size. The NFS server will set
915 * the new i_size and this client must read the updated size
916 * back into its cache. We let the server do generic write
917 * parameter checking and report problems.
918 *
919 * We eliminate local atime updates, see direct read above.
920 *
921 * We avoid unnecessary page cache invalidations for normal cached
922 * readers of this file.
923 *
924 * Note that O_APPEND is not supported for NFS direct writes, as there
925 * is no atomic O_APPEND write facility in the NFS protocol.
926 */
927 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
928 unsigned long nr_segs, loff_t pos)
929 {
930 ssize_t retval = -EINVAL;
931 struct file *file = iocb->ki_filp;
932 struct address_space *mapping = file->f_mapping;
933 size_t count;
934
935 count = iov_length(iov, nr_segs);
936 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
937
938 dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
939 file->f_path.dentry->d_parent->d_name.name,
940 file->f_path.dentry->d_name.name,
941 count, (long long) pos);
942
943 retval = generic_write_checks(file, &pos, &count, 0);
944 if (retval)
945 goto out;
946
947 retval = -EINVAL;
948 if ((ssize_t) count < 0)
949 goto out;
950 retval = 0;
951 if (!count)
952 goto out;
953
954 retval = nfs_sync_mapping(mapping);
955 if (retval)
956 goto out;
957
958 task_io_account_write(count);
959
960 retval = nfs_direct_write(iocb, iov, nr_segs, pos, count);
961 if (retval > 0) {
962 struct inode *inode = mapping->host;
963
964 iocb->ki_pos = pos + retval;
965 spin_lock(&inode->i_lock);
966 if (i_size_read(inode) < iocb->ki_pos)
967 i_size_write(inode, iocb->ki_pos);
968 spin_unlock(&inode->i_lock);
969 }
970 out:
971 return retval;
972 }
973
974 /**
975 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
976 *
977 */
978 int __init nfs_init_directcache(void)
979 {
980 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
981 sizeof(struct nfs_direct_req),
982 0, (SLAB_RECLAIM_ACCOUNT|
983 SLAB_MEM_SPREAD),
984 NULL);
985 if (nfs_direct_cachep == NULL)
986 return -ENOMEM;
987
988 return 0;
989 }
990
991 /**
992 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
993 *
994 */
995 void nfs_destroy_directcache(void)
996 {
997 kmem_cache_destroy(nfs_direct_cachep);
998 }