]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/nfs/direct.c
Merge tag 'asoc-fix-v3.19-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/broon...
[mirror_ubuntu-artful-kernel.git] / fs / nfs / direct.c
1 /*
2 * linux/fs/nfs/direct.c
3 *
4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5 *
6 * High-performance uncached I/O for the Linux NFS client
7 *
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
16 *
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
22 * an application.
23 *
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
28 *
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
31 *
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 * 04 May 2005 support O_DIRECT with aio --cel
38 *
39 */
40
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/module.h>
50
51 #include <linux/nfs_fs.h>
52 #include <linux/nfs_page.h>
53 #include <linux/sunrpc/clnt.h>
54
55 #include <asm/uaccess.h>
56 #include <linux/atomic.h>
57
58 #include "internal.h"
59 #include "iostat.h"
60 #include "pnfs.h"
61
62 #define NFSDBG_FACILITY NFSDBG_VFS
63
64 static struct kmem_cache *nfs_direct_cachep;
65
66 /*
67 * This represents a set of asynchronous requests that we're waiting on
68 */
69 struct nfs_direct_req {
70 struct kref kref; /* release manager */
71
72 /* I/O parameters */
73 struct nfs_open_context *ctx; /* file open context info */
74 struct nfs_lock_context *l_ctx; /* Lock context info */
75 struct kiocb * iocb; /* controlling i/o request */
76 struct inode * inode; /* target file of i/o */
77
78 /* completion state */
79 atomic_t io_count; /* i/os we're waiting for */
80 spinlock_t lock; /* protect completion state */
81 ssize_t count, /* bytes actually processed */
82 bytes_left, /* bytes left to be sent */
83 error; /* any reported error */
84 struct completion completion; /* wait for i/o completion */
85
86 /* commit state */
87 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
88 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
89 struct work_struct work;
90 int flags;
91 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
92 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
93 struct nfs_writeverf verf; /* unstable write verifier */
94 };
95
96 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
97 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
98 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
99 static void nfs_direct_write_schedule_work(struct work_struct *work);
100
101 static inline void get_dreq(struct nfs_direct_req *dreq)
102 {
103 atomic_inc(&dreq->io_count);
104 }
105
106 static inline int put_dreq(struct nfs_direct_req *dreq)
107 {
108 return atomic_dec_and_test(&dreq->io_count);
109 }
110
111 /*
112 * nfs_direct_select_verf - select the right verifier
113 * @dreq - direct request possibly spanning multiple servers
114 * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs
115 * @ds_idx - index of data server in data server list, only valid if ds_clp set
116 *
117 * returns the correct verifier to use given the role of the server
118 */
119 static struct nfs_writeverf *
120 nfs_direct_select_verf(struct nfs_direct_req *dreq,
121 struct nfs_client *ds_clp,
122 int ds_idx)
123 {
124 struct nfs_writeverf *verfp = &dreq->verf;
125
126 #ifdef CONFIG_NFS_V4_1
127 if (ds_clp) {
128 /* pNFS is in use, use the DS verf */
129 if (ds_idx >= 0 && ds_idx < dreq->ds_cinfo.nbuckets)
130 verfp = &dreq->ds_cinfo.buckets[ds_idx].direct_verf;
131 else
132 WARN_ON_ONCE(1);
133 }
134 #endif
135 return verfp;
136 }
137
138
139 /*
140 * nfs_direct_set_hdr_verf - set the write/commit verifier
141 * @dreq - direct request possibly spanning multiple servers
142 * @hdr - pageio header to validate against previously seen verfs
143 *
144 * Set the server's (MDS or DS) "seen" verifier
145 */
146 static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq,
147 struct nfs_pgio_header *hdr)
148 {
149 struct nfs_writeverf *verfp;
150
151 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp,
152 hdr->ds_idx);
153 WARN_ON_ONCE(verfp->committed >= 0);
154 memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
155 WARN_ON_ONCE(verfp->committed < 0);
156 }
157
158 /*
159 * nfs_direct_cmp_hdr_verf - compare verifier for pgio header
160 * @dreq - direct request possibly spanning multiple servers
161 * @hdr - pageio header to validate against previously seen verf
162 *
163 * set the server's "seen" verf if not initialized.
164 * returns result of comparison between @hdr->verf and the "seen"
165 * verf of the server used by @hdr (DS or MDS)
166 */
167 static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq,
168 struct nfs_pgio_header *hdr)
169 {
170 struct nfs_writeverf *verfp;
171
172 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp,
173 hdr->ds_idx);
174 if (verfp->committed < 0) {
175 nfs_direct_set_hdr_verf(dreq, hdr);
176 return 0;
177 }
178 return memcmp(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
179 }
180
181 /*
182 * nfs_direct_cmp_commit_data_verf - compare verifier for commit data
183 * @dreq - direct request possibly spanning multiple servers
184 * @data - commit data to validate against previously seen verf
185 *
186 * returns result of comparison between @data->verf and the verf of
187 * the server used by @data (DS or MDS)
188 */
189 static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq,
190 struct nfs_commit_data *data)
191 {
192 struct nfs_writeverf *verfp;
193
194 verfp = nfs_direct_select_verf(dreq, data->ds_clp,
195 data->ds_commit_index);
196 WARN_ON_ONCE(verfp->committed < 0);
197 return memcmp(verfp, &data->verf, sizeof(struct nfs_writeverf));
198 }
199
200 /**
201 * nfs_direct_IO - NFS address space operation for direct I/O
202 * @rw: direction (read or write)
203 * @iocb: target I/O control block
204 * @iov: array of vectors that define I/O buffer
205 * @pos: offset in file to begin the operation
206 * @nr_segs: size of iovec array
207 *
208 * The presence of this routine in the address space ops vector means
209 * the NFS client supports direct I/O. However, for most direct IO, we
210 * shunt off direct read and write requests before the VFS gets them,
211 * so this method is only ever called for swap.
212 */
213 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, struct iov_iter *iter, loff_t pos)
214 {
215 struct inode *inode = iocb->ki_filp->f_mapping->host;
216
217 /* we only support swap file calling nfs_direct_IO */
218 if (!IS_SWAPFILE(inode))
219 return 0;
220
221 #ifndef CONFIG_NFS_SWAP
222 dprintk("NFS: nfs_direct_IO (%pD) off/no(%Ld/%lu) EINVAL\n",
223 iocb->ki_filp, (long long) pos, iter->nr_segs);
224
225 return -EINVAL;
226 #else
227 VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE);
228
229 if (rw == READ)
230 return nfs_file_direct_read(iocb, iter, pos);
231 return nfs_file_direct_write(iocb, iter, pos);
232 #endif /* CONFIG_NFS_SWAP */
233 }
234
235 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
236 {
237 unsigned int i;
238 for (i = 0; i < npages; i++)
239 page_cache_release(pages[i]);
240 }
241
242 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
243 struct nfs_direct_req *dreq)
244 {
245 cinfo->lock = &dreq->lock;
246 cinfo->mds = &dreq->mds_cinfo;
247 cinfo->ds = &dreq->ds_cinfo;
248 cinfo->dreq = dreq;
249 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
250 }
251
252 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
253 {
254 struct nfs_direct_req *dreq;
255
256 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
257 if (!dreq)
258 return NULL;
259
260 kref_init(&dreq->kref);
261 kref_get(&dreq->kref);
262 init_completion(&dreq->completion);
263 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
264 dreq->verf.committed = NFS_INVALID_STABLE_HOW; /* not set yet */
265 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
266 spin_lock_init(&dreq->lock);
267
268 return dreq;
269 }
270
271 static void nfs_direct_req_free(struct kref *kref)
272 {
273 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
274
275 nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo);
276 if (dreq->l_ctx != NULL)
277 nfs_put_lock_context(dreq->l_ctx);
278 if (dreq->ctx != NULL)
279 put_nfs_open_context(dreq->ctx);
280 kmem_cache_free(nfs_direct_cachep, dreq);
281 }
282
283 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
284 {
285 kref_put(&dreq->kref, nfs_direct_req_free);
286 }
287
288 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
289 {
290 return dreq->bytes_left;
291 }
292 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
293
294 /*
295 * Collects and returns the final error value/byte-count.
296 */
297 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
298 {
299 ssize_t result = -EIOCBQUEUED;
300
301 /* Async requests don't wait here */
302 if (dreq->iocb)
303 goto out;
304
305 result = wait_for_completion_killable(&dreq->completion);
306
307 if (!result)
308 result = dreq->error;
309 if (!result)
310 result = dreq->count;
311
312 out:
313 return (ssize_t) result;
314 }
315
316 /*
317 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
318 * the iocb is still valid here if this is a synchronous request.
319 */
320 static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write)
321 {
322 struct inode *inode = dreq->inode;
323
324 if (dreq->iocb && write) {
325 loff_t pos = dreq->iocb->ki_pos + dreq->count;
326
327 spin_lock(&inode->i_lock);
328 if (i_size_read(inode) < pos)
329 i_size_write(inode, pos);
330 spin_unlock(&inode->i_lock);
331 }
332
333 if (write)
334 nfs_zap_mapping(inode, inode->i_mapping);
335
336 inode_dio_done(inode);
337
338 if (dreq->iocb) {
339 long res = (long) dreq->error;
340 if (!res)
341 res = (long) dreq->count;
342 aio_complete(dreq->iocb, res, 0);
343 }
344
345 complete_all(&dreq->completion);
346
347 nfs_direct_req_release(dreq);
348 }
349
350 static void nfs_direct_readpage_release(struct nfs_page *req)
351 {
352 dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
353 req->wb_context->dentry->d_inode->i_sb->s_id,
354 (unsigned long long)NFS_FILEID(req->wb_context->dentry->d_inode),
355 req->wb_bytes,
356 (long long)req_offset(req));
357 nfs_release_request(req);
358 }
359
360 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
361 {
362 unsigned long bytes = 0;
363 struct nfs_direct_req *dreq = hdr->dreq;
364
365 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
366 goto out_put;
367
368 spin_lock(&dreq->lock);
369 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
370 dreq->error = hdr->error;
371 else
372 dreq->count += hdr->good_bytes;
373 spin_unlock(&dreq->lock);
374
375 while (!list_empty(&hdr->pages)) {
376 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
377 struct page *page = req->wb_page;
378
379 if (!PageCompound(page) && bytes < hdr->good_bytes)
380 set_page_dirty(page);
381 bytes += req->wb_bytes;
382 nfs_list_remove_request(req);
383 nfs_direct_readpage_release(req);
384 }
385 out_put:
386 if (put_dreq(dreq))
387 nfs_direct_complete(dreq, false);
388 hdr->release(hdr);
389 }
390
391 static void nfs_read_sync_pgio_error(struct list_head *head)
392 {
393 struct nfs_page *req;
394
395 while (!list_empty(head)) {
396 req = nfs_list_entry(head->next);
397 nfs_list_remove_request(req);
398 nfs_release_request(req);
399 }
400 }
401
402 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
403 {
404 get_dreq(hdr->dreq);
405 }
406
407 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
408 .error_cleanup = nfs_read_sync_pgio_error,
409 .init_hdr = nfs_direct_pgio_init,
410 .completion = nfs_direct_read_completion,
411 };
412
413 /*
414 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
415 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
416 * bail and stop sending more reads. Read length accounting is
417 * handled automatically by nfs_direct_read_result(). Otherwise, if
418 * no requests have been sent, just return an error.
419 */
420
421 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
422 struct iov_iter *iter,
423 loff_t pos)
424 {
425 struct nfs_pageio_descriptor desc;
426 struct inode *inode = dreq->inode;
427 ssize_t result = -EINVAL;
428 size_t requested_bytes = 0;
429 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
430
431 nfs_pageio_init_read(&desc, dreq->inode, false,
432 &nfs_direct_read_completion_ops);
433 get_dreq(dreq);
434 desc.pg_dreq = dreq;
435 atomic_inc(&inode->i_dio_count);
436
437 while (iov_iter_count(iter)) {
438 struct page **pagevec;
439 size_t bytes;
440 size_t pgbase;
441 unsigned npages, i;
442
443 result = iov_iter_get_pages_alloc(iter, &pagevec,
444 rsize, &pgbase);
445 if (result < 0)
446 break;
447
448 bytes = result;
449 iov_iter_advance(iter, bytes);
450 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
451 for (i = 0; i < npages; i++) {
452 struct nfs_page *req;
453 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
454 /* XXX do we need to do the eof zeroing found in async_filler? */
455 req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
456 pgbase, req_len);
457 if (IS_ERR(req)) {
458 result = PTR_ERR(req);
459 break;
460 }
461 req->wb_index = pos >> PAGE_SHIFT;
462 req->wb_offset = pos & ~PAGE_MASK;
463 if (!nfs_pageio_add_request(&desc, req)) {
464 result = desc.pg_error;
465 nfs_release_request(req);
466 break;
467 }
468 pgbase = 0;
469 bytes -= req_len;
470 requested_bytes += req_len;
471 pos += req_len;
472 dreq->bytes_left -= req_len;
473 }
474 nfs_direct_release_pages(pagevec, npages);
475 kvfree(pagevec);
476 if (result < 0)
477 break;
478 }
479
480 nfs_pageio_complete(&desc);
481
482 /*
483 * If no bytes were started, return the error, and let the
484 * generic layer handle the completion.
485 */
486 if (requested_bytes == 0) {
487 inode_dio_done(inode);
488 nfs_direct_req_release(dreq);
489 return result < 0 ? result : -EIO;
490 }
491
492 if (put_dreq(dreq))
493 nfs_direct_complete(dreq, false);
494 return 0;
495 }
496
497 /**
498 * nfs_file_direct_read - file direct read operation for NFS files
499 * @iocb: target I/O control block
500 * @iter: vector of user buffers into which to read data
501 * @pos: byte offset in file where reading starts
502 *
503 * We use this function for direct reads instead of calling
504 * generic_file_aio_read() in order to avoid gfar's check to see if
505 * the request starts before the end of the file. For that check
506 * to work, we must generate a GETATTR before each direct read, and
507 * even then there is a window between the GETATTR and the subsequent
508 * READ where the file size could change. Our preference is simply
509 * to do all reads the application wants, and the server will take
510 * care of managing the end of file boundary.
511 *
512 * This function also eliminates unnecessarily updating the file's
513 * atime locally, as the NFS server sets the file's atime, and this
514 * client must read the updated atime from the server back into its
515 * cache.
516 */
517 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
518 loff_t pos)
519 {
520 struct file *file = iocb->ki_filp;
521 struct address_space *mapping = file->f_mapping;
522 struct inode *inode = mapping->host;
523 struct nfs_direct_req *dreq;
524 struct nfs_lock_context *l_ctx;
525 ssize_t result = -EINVAL;
526 size_t count = iov_iter_count(iter);
527 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
528
529 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
530 file, count, (long long) pos);
531
532 result = 0;
533 if (!count)
534 goto out;
535
536 mutex_lock(&inode->i_mutex);
537 result = nfs_sync_mapping(mapping);
538 if (result)
539 goto out_unlock;
540
541 task_io_account_read(count);
542
543 result = -ENOMEM;
544 dreq = nfs_direct_req_alloc();
545 if (dreq == NULL)
546 goto out_unlock;
547
548 dreq->inode = inode;
549 dreq->bytes_left = count;
550 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
551 l_ctx = nfs_get_lock_context(dreq->ctx);
552 if (IS_ERR(l_ctx)) {
553 result = PTR_ERR(l_ctx);
554 goto out_release;
555 }
556 dreq->l_ctx = l_ctx;
557 if (!is_sync_kiocb(iocb))
558 dreq->iocb = iocb;
559
560 NFS_I(inode)->read_io += count;
561 result = nfs_direct_read_schedule_iovec(dreq, iter, pos);
562
563 mutex_unlock(&inode->i_mutex);
564
565 if (!result) {
566 result = nfs_direct_wait(dreq);
567 if (result > 0)
568 iocb->ki_pos = pos + result;
569 }
570
571 nfs_direct_req_release(dreq);
572 return result;
573
574 out_release:
575 nfs_direct_req_release(dreq);
576 out_unlock:
577 mutex_unlock(&inode->i_mutex);
578 out:
579 return result;
580 }
581
582 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
583 {
584 struct nfs_pageio_descriptor desc;
585 struct nfs_page *req, *tmp;
586 LIST_HEAD(reqs);
587 struct nfs_commit_info cinfo;
588 LIST_HEAD(failed);
589
590 nfs_init_cinfo_from_dreq(&cinfo, dreq);
591 pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
592 spin_lock(cinfo.lock);
593 nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
594 spin_unlock(cinfo.lock);
595
596 dreq->count = 0;
597 get_dreq(dreq);
598
599 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
600 &nfs_direct_write_completion_ops);
601 desc.pg_dreq = dreq;
602
603 list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
604 if (!nfs_pageio_add_request(&desc, req)) {
605 nfs_list_remove_request(req);
606 nfs_list_add_request(req, &failed);
607 spin_lock(cinfo.lock);
608 dreq->flags = 0;
609 dreq->error = -EIO;
610 spin_unlock(cinfo.lock);
611 }
612 nfs_release_request(req);
613 }
614 nfs_pageio_complete(&desc);
615
616 while (!list_empty(&failed)) {
617 req = nfs_list_entry(failed.next);
618 nfs_list_remove_request(req);
619 nfs_unlock_and_release_request(req);
620 }
621
622 if (put_dreq(dreq))
623 nfs_direct_write_complete(dreq, dreq->inode);
624 }
625
626 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
627 {
628 struct nfs_direct_req *dreq = data->dreq;
629 struct nfs_commit_info cinfo;
630 struct nfs_page *req;
631 int status = data->task.tk_status;
632
633 nfs_init_cinfo_from_dreq(&cinfo, dreq);
634 if (status < 0) {
635 dprintk("NFS: %5u commit failed with error %d.\n",
636 data->task.tk_pid, status);
637 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
638 } else if (nfs_direct_cmp_commit_data_verf(dreq, data)) {
639 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
640 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
641 }
642
643 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
644 while (!list_empty(&data->pages)) {
645 req = nfs_list_entry(data->pages.next);
646 nfs_list_remove_request(req);
647 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
648 /* Note the rewrite will go through mds */
649 nfs_mark_request_commit(req, NULL, &cinfo);
650 } else
651 nfs_release_request(req);
652 nfs_unlock_and_release_request(req);
653 }
654
655 if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
656 nfs_direct_write_complete(dreq, data->inode);
657 }
658
659 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
660 {
661 /* There is no lock to clear */
662 }
663
664 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
665 .completion = nfs_direct_commit_complete,
666 .error_cleanup = nfs_direct_error_cleanup,
667 };
668
669 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
670 {
671 int res;
672 struct nfs_commit_info cinfo;
673 LIST_HEAD(mds_list);
674
675 nfs_init_cinfo_from_dreq(&cinfo, dreq);
676 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
677 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
678 if (res < 0) /* res == -ENOMEM */
679 nfs_direct_write_reschedule(dreq);
680 }
681
682 static void nfs_direct_write_schedule_work(struct work_struct *work)
683 {
684 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
685 int flags = dreq->flags;
686
687 dreq->flags = 0;
688 switch (flags) {
689 case NFS_ODIRECT_DO_COMMIT:
690 nfs_direct_commit_schedule(dreq);
691 break;
692 case NFS_ODIRECT_RESCHED_WRITES:
693 nfs_direct_write_reschedule(dreq);
694 break;
695 default:
696 nfs_direct_complete(dreq, true);
697 }
698 }
699
700 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
701 {
702 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
703 }
704
705 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
706 {
707 struct nfs_direct_req *dreq = hdr->dreq;
708 struct nfs_commit_info cinfo;
709 bool request_commit = false;
710 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
711
712 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
713 goto out_put;
714
715 nfs_init_cinfo_from_dreq(&cinfo, dreq);
716
717 spin_lock(&dreq->lock);
718
719 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
720 dreq->flags = 0;
721 dreq->error = hdr->error;
722 }
723 if (dreq->error == 0) {
724 dreq->count += hdr->good_bytes;
725 if (nfs_write_need_commit(hdr)) {
726 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
727 request_commit = true;
728 else if (dreq->flags == 0) {
729 nfs_direct_set_hdr_verf(dreq, hdr);
730 request_commit = true;
731 dreq->flags = NFS_ODIRECT_DO_COMMIT;
732 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
733 request_commit = true;
734 if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr))
735 dreq->flags =
736 NFS_ODIRECT_RESCHED_WRITES;
737 }
738 }
739 }
740 spin_unlock(&dreq->lock);
741
742 while (!list_empty(&hdr->pages)) {
743
744 req = nfs_list_entry(hdr->pages.next);
745 nfs_list_remove_request(req);
746 if (request_commit) {
747 kref_get(&req->wb_kref);
748 nfs_mark_request_commit(req, hdr->lseg, &cinfo);
749 }
750 nfs_unlock_and_release_request(req);
751 }
752
753 out_put:
754 if (put_dreq(dreq))
755 nfs_direct_write_complete(dreq, hdr->inode);
756 hdr->release(hdr);
757 }
758
759 static void nfs_write_sync_pgio_error(struct list_head *head)
760 {
761 struct nfs_page *req;
762
763 while (!list_empty(head)) {
764 req = nfs_list_entry(head->next);
765 nfs_list_remove_request(req);
766 nfs_unlock_and_release_request(req);
767 }
768 }
769
770 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
771 .error_cleanup = nfs_write_sync_pgio_error,
772 .init_hdr = nfs_direct_pgio_init,
773 .completion = nfs_direct_write_completion,
774 };
775
776
777 /*
778 * NB: Return the value of the first error return code. Subsequent
779 * errors after the first one are ignored.
780 */
781 /*
782 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
783 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
784 * bail and stop sending more writes. Write length accounting is
785 * handled automatically by nfs_direct_write_result(). Otherwise, if
786 * no requests have been sent, just return an error.
787 */
788 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
789 struct iov_iter *iter,
790 loff_t pos)
791 {
792 struct nfs_pageio_descriptor desc;
793 struct inode *inode = dreq->inode;
794 ssize_t result = 0;
795 size_t requested_bytes = 0;
796 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
797
798 nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false,
799 &nfs_direct_write_completion_ops);
800 desc.pg_dreq = dreq;
801 get_dreq(dreq);
802 atomic_inc(&inode->i_dio_count);
803
804 NFS_I(inode)->write_io += iov_iter_count(iter);
805 while (iov_iter_count(iter)) {
806 struct page **pagevec;
807 size_t bytes;
808 size_t pgbase;
809 unsigned npages, i;
810
811 result = iov_iter_get_pages_alloc(iter, &pagevec,
812 wsize, &pgbase);
813 if (result < 0)
814 break;
815
816 bytes = result;
817 iov_iter_advance(iter, bytes);
818 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
819 for (i = 0; i < npages; i++) {
820 struct nfs_page *req;
821 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
822
823 req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
824 pgbase, req_len);
825 if (IS_ERR(req)) {
826 result = PTR_ERR(req);
827 break;
828 }
829 nfs_lock_request(req);
830 req->wb_index = pos >> PAGE_SHIFT;
831 req->wb_offset = pos & ~PAGE_MASK;
832 if (!nfs_pageio_add_request(&desc, req)) {
833 result = desc.pg_error;
834 nfs_unlock_and_release_request(req);
835 break;
836 }
837 pgbase = 0;
838 bytes -= req_len;
839 requested_bytes += req_len;
840 pos += req_len;
841 dreq->bytes_left -= req_len;
842 }
843 nfs_direct_release_pages(pagevec, npages);
844 kvfree(pagevec);
845 if (result < 0)
846 break;
847 }
848 nfs_pageio_complete(&desc);
849
850 /*
851 * If no bytes were started, return the error, and let the
852 * generic layer handle the completion.
853 */
854 if (requested_bytes == 0) {
855 inode_dio_done(inode);
856 nfs_direct_req_release(dreq);
857 return result < 0 ? result : -EIO;
858 }
859
860 if (put_dreq(dreq))
861 nfs_direct_write_complete(dreq, dreq->inode);
862 return 0;
863 }
864
865 /**
866 * nfs_file_direct_write - file direct write operation for NFS files
867 * @iocb: target I/O control block
868 * @iter: vector of user buffers from which to write data
869 * @pos: byte offset in file where writing starts
870 *
871 * We use this function for direct writes instead of calling
872 * generic_file_aio_write() in order to avoid taking the inode
873 * semaphore and updating the i_size. The NFS server will set
874 * the new i_size and this client must read the updated size
875 * back into its cache. We let the server do generic write
876 * parameter checking and report problems.
877 *
878 * We eliminate local atime updates, see direct read above.
879 *
880 * We avoid unnecessary page cache invalidations for normal cached
881 * readers of this file.
882 *
883 * Note that O_APPEND is not supported for NFS direct writes, as there
884 * is no atomic O_APPEND write facility in the NFS protocol.
885 */
886 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
887 loff_t pos)
888 {
889 ssize_t result = -EINVAL;
890 struct file *file = iocb->ki_filp;
891 struct address_space *mapping = file->f_mapping;
892 struct inode *inode = mapping->host;
893 struct nfs_direct_req *dreq;
894 struct nfs_lock_context *l_ctx;
895 loff_t end;
896 size_t count = iov_iter_count(iter);
897 end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
898
899 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
900
901 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
902 file, count, (long long) pos);
903
904 result = generic_write_checks(file, &pos, &count, 0);
905 if (result)
906 goto out;
907
908 result = -EINVAL;
909 if ((ssize_t) count < 0)
910 goto out;
911 result = 0;
912 if (!count)
913 goto out;
914
915 mutex_lock(&inode->i_mutex);
916
917 result = nfs_sync_mapping(mapping);
918 if (result)
919 goto out_unlock;
920
921 if (mapping->nrpages) {
922 result = invalidate_inode_pages2_range(mapping,
923 pos >> PAGE_CACHE_SHIFT, end);
924 if (result)
925 goto out_unlock;
926 }
927
928 task_io_account_write(count);
929
930 result = -ENOMEM;
931 dreq = nfs_direct_req_alloc();
932 if (!dreq)
933 goto out_unlock;
934
935 dreq->inode = inode;
936 dreq->bytes_left = count;
937 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
938 l_ctx = nfs_get_lock_context(dreq->ctx);
939 if (IS_ERR(l_ctx)) {
940 result = PTR_ERR(l_ctx);
941 goto out_release;
942 }
943 dreq->l_ctx = l_ctx;
944 if (!is_sync_kiocb(iocb))
945 dreq->iocb = iocb;
946
947 result = nfs_direct_write_schedule_iovec(dreq, iter, pos);
948
949 if (mapping->nrpages) {
950 invalidate_inode_pages2_range(mapping,
951 pos >> PAGE_CACHE_SHIFT, end);
952 }
953
954 mutex_unlock(&inode->i_mutex);
955
956 if (!result) {
957 result = nfs_direct_wait(dreq);
958 if (result > 0) {
959 struct inode *inode = mapping->host;
960
961 iocb->ki_pos = pos + result;
962 spin_lock(&inode->i_lock);
963 if (i_size_read(inode) < iocb->ki_pos)
964 i_size_write(inode, iocb->ki_pos);
965 spin_unlock(&inode->i_lock);
966 }
967 }
968 nfs_direct_req_release(dreq);
969 return result;
970
971 out_release:
972 nfs_direct_req_release(dreq);
973 out_unlock:
974 mutex_unlock(&inode->i_mutex);
975 out:
976 return result;
977 }
978
979 /**
980 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
981 *
982 */
983 int __init nfs_init_directcache(void)
984 {
985 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
986 sizeof(struct nfs_direct_req),
987 0, (SLAB_RECLAIM_ACCOUNT|
988 SLAB_MEM_SPREAD),
989 NULL);
990 if (nfs_direct_cachep == NULL)
991 return -ENOMEM;
992
993 return 0;
994 }
995
996 /**
997 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
998 *
999 */
1000 void nfs_destroy_directcache(void)
1001 {
1002 kmem_cache_destroy(nfs_direct_cachep);
1003 }