]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/nfs/direct.c
Merge tag 'drm-intel-fixes-2016-07-14' of git://anongit.freedesktop.org/drm-intel...
[mirror_ubuntu-artful-kernel.git] / fs / nfs / direct.c
1 /*
2 * linux/fs/nfs/direct.c
3 *
4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5 *
6 * High-performance uncached I/O for the Linux NFS client
7 *
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
16 *
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
22 * an application.
23 *
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
28 *
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
31 *
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 * 04 May 2005 support O_DIRECT with aio --cel
38 *
39 */
40
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/module.h>
50
51 #include <linux/nfs_fs.h>
52 #include <linux/nfs_page.h>
53 #include <linux/sunrpc/clnt.h>
54
55 #include <asm/uaccess.h>
56 #include <linux/atomic.h>
57
58 #include "internal.h"
59 #include "iostat.h"
60 #include "pnfs.h"
61
62 #define NFSDBG_FACILITY NFSDBG_VFS
63
64 static struct kmem_cache *nfs_direct_cachep;
65
66 /*
67 * This represents a set of asynchronous requests that we're waiting on
68 */
69 struct nfs_direct_mirror {
70 ssize_t count;
71 };
72
73 struct nfs_direct_req {
74 struct kref kref; /* release manager */
75
76 /* I/O parameters */
77 struct nfs_open_context *ctx; /* file open context info */
78 struct nfs_lock_context *l_ctx; /* Lock context info */
79 struct kiocb * iocb; /* controlling i/o request */
80 struct inode * inode; /* target file of i/o */
81
82 /* completion state */
83 atomic_t io_count; /* i/os we're waiting for */
84 spinlock_t lock; /* protect completion state */
85
86 struct nfs_direct_mirror mirrors[NFS_PAGEIO_DESCRIPTOR_MIRROR_MAX];
87 int mirror_count;
88
89 ssize_t count, /* bytes actually processed */
90 max_count, /* max expected count */
91 bytes_left, /* bytes left to be sent */
92 io_start, /* start of IO */
93 error; /* any reported error */
94 struct completion completion; /* wait for i/o completion */
95
96 /* commit state */
97 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
98 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
99 struct work_struct work;
100 int flags;
101 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
102 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
103 struct nfs_writeverf verf; /* unstable write verifier */
104 };
105
106 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
107 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
108 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
109 static void nfs_direct_write_schedule_work(struct work_struct *work);
110
111 static inline void get_dreq(struct nfs_direct_req *dreq)
112 {
113 atomic_inc(&dreq->io_count);
114 }
115
116 static inline int put_dreq(struct nfs_direct_req *dreq)
117 {
118 return atomic_dec_and_test(&dreq->io_count);
119 }
120
121 static void
122 nfs_direct_good_bytes(struct nfs_direct_req *dreq, struct nfs_pgio_header *hdr)
123 {
124 int i;
125 ssize_t count;
126
127 WARN_ON_ONCE(dreq->count >= dreq->max_count);
128
129 if (dreq->mirror_count == 1) {
130 dreq->mirrors[hdr->pgio_mirror_idx].count += hdr->good_bytes;
131 dreq->count += hdr->good_bytes;
132 } else {
133 /* mirrored writes */
134 count = dreq->mirrors[hdr->pgio_mirror_idx].count;
135 if (count + dreq->io_start < hdr->io_start + hdr->good_bytes) {
136 count = hdr->io_start + hdr->good_bytes - dreq->io_start;
137 dreq->mirrors[hdr->pgio_mirror_idx].count = count;
138 }
139 /* update the dreq->count by finding the minimum agreed count from all
140 * mirrors */
141 count = dreq->mirrors[0].count;
142
143 for (i = 1; i < dreq->mirror_count; i++)
144 count = min(count, dreq->mirrors[i].count);
145
146 dreq->count = count;
147 }
148 }
149
150 /*
151 * nfs_direct_select_verf - select the right verifier
152 * @dreq - direct request possibly spanning multiple servers
153 * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs
154 * @commit_idx - commit bucket index for the DS
155 *
156 * returns the correct verifier to use given the role of the server
157 */
158 static struct nfs_writeverf *
159 nfs_direct_select_verf(struct nfs_direct_req *dreq,
160 struct nfs_client *ds_clp,
161 int commit_idx)
162 {
163 struct nfs_writeverf *verfp = &dreq->verf;
164
165 #ifdef CONFIG_NFS_V4_1
166 /*
167 * pNFS is in use, use the DS verf except commit_through_mds is set
168 * for layout segment where nbuckets is zero.
169 */
170 if (ds_clp && dreq->ds_cinfo.nbuckets > 0) {
171 if (commit_idx >= 0 && commit_idx < dreq->ds_cinfo.nbuckets)
172 verfp = &dreq->ds_cinfo.buckets[commit_idx].direct_verf;
173 else
174 WARN_ON_ONCE(1);
175 }
176 #endif
177 return verfp;
178 }
179
180
181 /*
182 * nfs_direct_set_hdr_verf - set the write/commit verifier
183 * @dreq - direct request possibly spanning multiple servers
184 * @hdr - pageio header to validate against previously seen verfs
185 *
186 * Set the server's (MDS or DS) "seen" verifier
187 */
188 static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq,
189 struct nfs_pgio_header *hdr)
190 {
191 struct nfs_writeverf *verfp;
192
193 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
194 WARN_ON_ONCE(verfp->committed >= 0);
195 memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
196 WARN_ON_ONCE(verfp->committed < 0);
197 }
198
199 /*
200 * nfs_direct_cmp_hdr_verf - compare verifier for pgio header
201 * @dreq - direct request possibly spanning multiple servers
202 * @hdr - pageio header to validate against previously seen verf
203 *
204 * set the server's "seen" verf if not initialized.
205 * returns result of comparison between @hdr->verf and the "seen"
206 * verf of the server used by @hdr (DS or MDS)
207 */
208 static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq,
209 struct nfs_pgio_header *hdr)
210 {
211 struct nfs_writeverf *verfp;
212
213 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
214 if (verfp->committed < 0) {
215 nfs_direct_set_hdr_verf(dreq, hdr);
216 return 0;
217 }
218 return memcmp(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
219 }
220
221 /*
222 * nfs_direct_cmp_commit_data_verf - compare verifier for commit data
223 * @dreq - direct request possibly spanning multiple servers
224 * @data - commit data to validate against previously seen verf
225 *
226 * returns result of comparison between @data->verf and the verf of
227 * the server used by @data (DS or MDS)
228 */
229 static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq,
230 struct nfs_commit_data *data)
231 {
232 struct nfs_writeverf *verfp;
233
234 verfp = nfs_direct_select_verf(dreq, data->ds_clp,
235 data->ds_commit_index);
236
237 /* verifier not set so always fail */
238 if (verfp->committed < 0)
239 return 1;
240
241 return memcmp(verfp, &data->verf, sizeof(struct nfs_writeverf));
242 }
243
244 /**
245 * nfs_direct_IO - NFS address space operation for direct I/O
246 * @iocb: target I/O control block
247 * @iov: array of vectors that define I/O buffer
248 * @pos: offset in file to begin the operation
249 * @nr_segs: size of iovec array
250 *
251 * The presence of this routine in the address space ops vector means
252 * the NFS client supports direct I/O. However, for most direct IO, we
253 * shunt off direct read and write requests before the VFS gets them,
254 * so this method is only ever called for swap.
255 */
256 ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
257 {
258 struct inode *inode = iocb->ki_filp->f_mapping->host;
259
260 /* we only support swap file calling nfs_direct_IO */
261 if (!IS_SWAPFILE(inode))
262 return 0;
263
264 VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
265
266 if (iov_iter_rw(iter) == READ)
267 return nfs_file_direct_read(iocb, iter);
268 return nfs_file_direct_write(iocb, iter);
269 }
270
271 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
272 {
273 unsigned int i;
274 for (i = 0; i < npages; i++)
275 put_page(pages[i]);
276 }
277
278 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
279 struct nfs_direct_req *dreq)
280 {
281 cinfo->inode = dreq->inode;
282 cinfo->mds = &dreq->mds_cinfo;
283 cinfo->ds = &dreq->ds_cinfo;
284 cinfo->dreq = dreq;
285 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
286 }
287
288 static inline void nfs_direct_setup_mirroring(struct nfs_direct_req *dreq,
289 struct nfs_pageio_descriptor *pgio,
290 struct nfs_page *req)
291 {
292 int mirror_count = 1;
293
294 if (pgio->pg_ops->pg_get_mirror_count)
295 mirror_count = pgio->pg_ops->pg_get_mirror_count(pgio, req);
296
297 dreq->mirror_count = mirror_count;
298 }
299
300 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
301 {
302 struct nfs_direct_req *dreq;
303
304 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
305 if (!dreq)
306 return NULL;
307
308 kref_init(&dreq->kref);
309 kref_get(&dreq->kref);
310 init_completion(&dreq->completion);
311 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
312 dreq->verf.committed = NFS_INVALID_STABLE_HOW; /* not set yet */
313 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
314 dreq->mirror_count = 1;
315 spin_lock_init(&dreq->lock);
316
317 return dreq;
318 }
319
320 static void nfs_direct_req_free(struct kref *kref)
321 {
322 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
323
324 nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo);
325 if (dreq->l_ctx != NULL)
326 nfs_put_lock_context(dreq->l_ctx);
327 if (dreq->ctx != NULL)
328 put_nfs_open_context(dreq->ctx);
329 kmem_cache_free(nfs_direct_cachep, dreq);
330 }
331
332 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
333 {
334 kref_put(&dreq->kref, nfs_direct_req_free);
335 }
336
337 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
338 {
339 return dreq->bytes_left;
340 }
341 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
342
343 /*
344 * Collects and returns the final error value/byte-count.
345 */
346 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
347 {
348 ssize_t result = -EIOCBQUEUED;
349
350 /* Async requests don't wait here */
351 if (dreq->iocb)
352 goto out;
353
354 result = wait_for_completion_killable(&dreq->completion);
355
356 if (!result) {
357 result = dreq->count;
358 WARN_ON_ONCE(dreq->count < 0);
359 }
360 if (!result)
361 result = dreq->error;
362
363 out:
364 return (ssize_t) result;
365 }
366
367 /*
368 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
369 * the iocb is still valid here if this is a synchronous request.
370 */
371 static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write)
372 {
373 struct inode *inode = dreq->inode;
374
375 if (dreq->iocb && write) {
376 loff_t pos = dreq->iocb->ki_pos + dreq->count;
377
378 spin_lock(&inode->i_lock);
379 if (i_size_read(inode) < pos)
380 i_size_write(inode, pos);
381 spin_unlock(&inode->i_lock);
382 }
383
384 if (write)
385 nfs_zap_mapping(inode, inode->i_mapping);
386
387 inode_dio_end(inode);
388
389 if (dreq->iocb) {
390 long res = (long) dreq->error;
391 if (dreq->count != 0) {
392 res = (long) dreq->count;
393 WARN_ON_ONCE(dreq->count < 0);
394 }
395 dreq->iocb->ki_complete(dreq->iocb, res, 0);
396 }
397
398 complete_all(&dreq->completion);
399
400 nfs_direct_req_release(dreq);
401 }
402
403 static void nfs_direct_readpage_release(struct nfs_page *req)
404 {
405 dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
406 req->wb_context->dentry->d_sb->s_id,
407 (unsigned long long)NFS_FILEID(d_inode(req->wb_context->dentry)),
408 req->wb_bytes,
409 (long long)req_offset(req));
410 nfs_release_request(req);
411 }
412
413 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
414 {
415 unsigned long bytes = 0;
416 struct nfs_direct_req *dreq = hdr->dreq;
417
418 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
419 goto out_put;
420
421 spin_lock(&dreq->lock);
422 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
423 dreq->error = hdr->error;
424 else
425 nfs_direct_good_bytes(dreq, hdr);
426
427 spin_unlock(&dreq->lock);
428
429 while (!list_empty(&hdr->pages)) {
430 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
431 struct page *page = req->wb_page;
432
433 if (!PageCompound(page) && bytes < hdr->good_bytes)
434 set_page_dirty(page);
435 bytes += req->wb_bytes;
436 nfs_list_remove_request(req);
437 nfs_direct_readpage_release(req);
438 }
439 out_put:
440 if (put_dreq(dreq))
441 nfs_direct_complete(dreq, false);
442 hdr->release(hdr);
443 }
444
445 static void nfs_read_sync_pgio_error(struct list_head *head)
446 {
447 struct nfs_page *req;
448
449 while (!list_empty(head)) {
450 req = nfs_list_entry(head->next);
451 nfs_list_remove_request(req);
452 nfs_release_request(req);
453 }
454 }
455
456 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
457 {
458 get_dreq(hdr->dreq);
459 }
460
461 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
462 .error_cleanup = nfs_read_sync_pgio_error,
463 .init_hdr = nfs_direct_pgio_init,
464 .completion = nfs_direct_read_completion,
465 };
466
467 /*
468 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
469 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
470 * bail and stop sending more reads. Read length accounting is
471 * handled automatically by nfs_direct_read_result(). Otherwise, if
472 * no requests have been sent, just return an error.
473 */
474
475 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
476 struct iov_iter *iter,
477 loff_t pos)
478 {
479 struct nfs_pageio_descriptor desc;
480 struct inode *inode = dreq->inode;
481 ssize_t result = -EINVAL;
482 size_t requested_bytes = 0;
483 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
484
485 nfs_pageio_init_read(&desc, dreq->inode, false,
486 &nfs_direct_read_completion_ops);
487 get_dreq(dreq);
488 desc.pg_dreq = dreq;
489 inode_dio_begin(inode);
490
491 while (iov_iter_count(iter)) {
492 struct page **pagevec;
493 size_t bytes;
494 size_t pgbase;
495 unsigned npages, i;
496
497 result = iov_iter_get_pages_alloc(iter, &pagevec,
498 rsize, &pgbase);
499 if (result < 0)
500 break;
501
502 bytes = result;
503 iov_iter_advance(iter, bytes);
504 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
505 for (i = 0; i < npages; i++) {
506 struct nfs_page *req;
507 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
508 /* XXX do we need to do the eof zeroing found in async_filler? */
509 req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
510 pgbase, req_len);
511 if (IS_ERR(req)) {
512 result = PTR_ERR(req);
513 break;
514 }
515 req->wb_index = pos >> PAGE_SHIFT;
516 req->wb_offset = pos & ~PAGE_MASK;
517 if (!nfs_pageio_add_request(&desc, req)) {
518 result = desc.pg_error;
519 nfs_release_request(req);
520 break;
521 }
522 pgbase = 0;
523 bytes -= req_len;
524 requested_bytes += req_len;
525 pos += req_len;
526 dreq->bytes_left -= req_len;
527 }
528 nfs_direct_release_pages(pagevec, npages);
529 kvfree(pagevec);
530 if (result < 0)
531 break;
532 }
533
534 nfs_pageio_complete(&desc);
535
536 /*
537 * If no bytes were started, return the error, and let the
538 * generic layer handle the completion.
539 */
540 if (requested_bytes == 0) {
541 inode_dio_end(inode);
542 nfs_direct_req_release(dreq);
543 return result < 0 ? result : -EIO;
544 }
545
546 if (put_dreq(dreq))
547 nfs_direct_complete(dreq, false);
548 return 0;
549 }
550
551 /**
552 * nfs_file_direct_read - file direct read operation for NFS files
553 * @iocb: target I/O control block
554 * @iter: vector of user buffers into which to read data
555 *
556 * We use this function for direct reads instead of calling
557 * generic_file_aio_read() in order to avoid gfar's check to see if
558 * the request starts before the end of the file. For that check
559 * to work, we must generate a GETATTR before each direct read, and
560 * even then there is a window between the GETATTR and the subsequent
561 * READ where the file size could change. Our preference is simply
562 * to do all reads the application wants, and the server will take
563 * care of managing the end of file boundary.
564 *
565 * This function also eliminates unnecessarily updating the file's
566 * atime locally, as the NFS server sets the file's atime, and this
567 * client must read the updated atime from the server back into its
568 * cache.
569 */
570 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter)
571 {
572 struct file *file = iocb->ki_filp;
573 struct address_space *mapping = file->f_mapping;
574 struct inode *inode = mapping->host;
575 struct nfs_direct_req *dreq;
576 struct nfs_lock_context *l_ctx;
577 ssize_t result = -EINVAL;
578 size_t count = iov_iter_count(iter);
579 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
580
581 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
582 file, count, (long long) iocb->ki_pos);
583
584 result = 0;
585 if (!count)
586 goto out;
587
588 inode_lock(inode);
589 result = nfs_sync_mapping(mapping);
590 if (result)
591 goto out_unlock;
592
593 task_io_account_read(count);
594
595 result = -ENOMEM;
596 dreq = nfs_direct_req_alloc();
597 if (dreq == NULL)
598 goto out_unlock;
599
600 dreq->inode = inode;
601 dreq->bytes_left = dreq->max_count = count;
602 dreq->io_start = iocb->ki_pos;
603 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
604 l_ctx = nfs_get_lock_context(dreq->ctx);
605 if (IS_ERR(l_ctx)) {
606 result = PTR_ERR(l_ctx);
607 goto out_release;
608 }
609 dreq->l_ctx = l_ctx;
610 if (!is_sync_kiocb(iocb))
611 dreq->iocb = iocb;
612
613 NFS_I(inode)->read_io += count;
614 result = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
615
616 inode_unlock(inode);
617
618 if (!result) {
619 result = nfs_direct_wait(dreq);
620 if (result > 0)
621 iocb->ki_pos += result;
622 }
623
624 nfs_direct_req_release(dreq);
625 return result;
626
627 out_release:
628 nfs_direct_req_release(dreq);
629 out_unlock:
630 inode_unlock(inode);
631 out:
632 return result;
633 }
634
635 static void
636 nfs_direct_write_scan_commit_list(struct inode *inode,
637 struct list_head *list,
638 struct nfs_commit_info *cinfo)
639 {
640 spin_lock(&cinfo->inode->i_lock);
641 #ifdef CONFIG_NFS_V4_1
642 if (cinfo->ds != NULL && cinfo->ds->nwritten != 0)
643 NFS_SERVER(inode)->pnfs_curr_ld->recover_commit_reqs(list, cinfo);
644 #endif
645 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
646 spin_unlock(&cinfo->inode->i_lock);
647 }
648
649 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
650 {
651 struct nfs_pageio_descriptor desc;
652 struct nfs_page *req, *tmp;
653 LIST_HEAD(reqs);
654 struct nfs_commit_info cinfo;
655 LIST_HEAD(failed);
656 int i;
657
658 nfs_init_cinfo_from_dreq(&cinfo, dreq);
659 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
660
661 dreq->count = 0;
662 for (i = 0; i < dreq->mirror_count; i++)
663 dreq->mirrors[i].count = 0;
664 get_dreq(dreq);
665
666 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
667 &nfs_direct_write_completion_ops);
668 desc.pg_dreq = dreq;
669
670 req = nfs_list_entry(reqs.next);
671 nfs_direct_setup_mirroring(dreq, &desc, req);
672 if (desc.pg_error < 0) {
673 list_splice_init(&reqs, &failed);
674 goto out_failed;
675 }
676
677 list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
678 if (!nfs_pageio_add_request(&desc, req)) {
679 nfs_list_remove_request(req);
680 nfs_list_add_request(req, &failed);
681 spin_lock(&cinfo.inode->i_lock);
682 dreq->flags = 0;
683 if (desc.pg_error < 0)
684 dreq->error = desc.pg_error;
685 else
686 dreq->error = -EIO;
687 spin_unlock(&cinfo.inode->i_lock);
688 }
689 nfs_release_request(req);
690 }
691 nfs_pageio_complete(&desc);
692
693 out_failed:
694 while (!list_empty(&failed)) {
695 req = nfs_list_entry(failed.next);
696 nfs_list_remove_request(req);
697 nfs_unlock_and_release_request(req);
698 }
699
700 if (put_dreq(dreq))
701 nfs_direct_write_complete(dreq, dreq->inode);
702 }
703
704 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
705 {
706 struct nfs_direct_req *dreq = data->dreq;
707 struct nfs_commit_info cinfo;
708 struct nfs_page *req;
709 int status = data->task.tk_status;
710
711 nfs_init_cinfo_from_dreq(&cinfo, dreq);
712 if (status < 0) {
713 dprintk("NFS: %5u commit failed with error %d.\n",
714 data->task.tk_pid, status);
715 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
716 } else if (nfs_direct_cmp_commit_data_verf(dreq, data)) {
717 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
718 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
719 }
720
721 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
722 while (!list_empty(&data->pages)) {
723 req = nfs_list_entry(data->pages.next);
724 nfs_list_remove_request(req);
725 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
726 /* Note the rewrite will go through mds */
727 nfs_mark_request_commit(req, NULL, &cinfo, 0);
728 } else
729 nfs_release_request(req);
730 nfs_unlock_and_release_request(req);
731 }
732
733 if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
734 nfs_direct_write_complete(dreq, data->inode);
735 }
736
737 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
738 struct nfs_page *req)
739 {
740 struct nfs_direct_req *dreq = cinfo->dreq;
741
742 spin_lock(&dreq->lock);
743 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
744 spin_unlock(&dreq->lock);
745 nfs_mark_request_commit(req, NULL, cinfo, 0);
746 }
747
748 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
749 .completion = nfs_direct_commit_complete,
750 .resched_write = nfs_direct_resched_write,
751 };
752
753 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
754 {
755 int res;
756 struct nfs_commit_info cinfo;
757 LIST_HEAD(mds_list);
758
759 nfs_init_cinfo_from_dreq(&cinfo, dreq);
760 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
761 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
762 if (res < 0) /* res == -ENOMEM */
763 nfs_direct_write_reschedule(dreq);
764 }
765
766 static void nfs_direct_write_schedule_work(struct work_struct *work)
767 {
768 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
769 int flags = dreq->flags;
770
771 dreq->flags = 0;
772 switch (flags) {
773 case NFS_ODIRECT_DO_COMMIT:
774 nfs_direct_commit_schedule(dreq);
775 break;
776 case NFS_ODIRECT_RESCHED_WRITES:
777 nfs_direct_write_reschedule(dreq);
778 break;
779 default:
780 nfs_direct_complete(dreq, true);
781 }
782 }
783
784 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
785 {
786 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
787 }
788
789 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
790 {
791 struct nfs_direct_req *dreq = hdr->dreq;
792 struct nfs_commit_info cinfo;
793 bool request_commit = false;
794 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
795
796 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
797 goto out_put;
798
799 nfs_init_cinfo_from_dreq(&cinfo, dreq);
800
801 spin_lock(&dreq->lock);
802
803 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
804 dreq->flags = 0;
805 dreq->error = hdr->error;
806 }
807 if (dreq->error == 0) {
808 nfs_direct_good_bytes(dreq, hdr);
809 if (nfs_write_need_commit(hdr)) {
810 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
811 request_commit = true;
812 else if (dreq->flags == 0) {
813 nfs_direct_set_hdr_verf(dreq, hdr);
814 request_commit = true;
815 dreq->flags = NFS_ODIRECT_DO_COMMIT;
816 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
817 request_commit = true;
818 if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr))
819 dreq->flags =
820 NFS_ODIRECT_RESCHED_WRITES;
821 }
822 }
823 }
824 spin_unlock(&dreq->lock);
825
826 while (!list_empty(&hdr->pages)) {
827
828 req = nfs_list_entry(hdr->pages.next);
829 nfs_list_remove_request(req);
830 if (request_commit) {
831 kref_get(&req->wb_kref);
832 nfs_mark_request_commit(req, hdr->lseg, &cinfo,
833 hdr->ds_commit_idx);
834 }
835 nfs_unlock_and_release_request(req);
836 }
837
838 out_put:
839 if (put_dreq(dreq))
840 nfs_direct_write_complete(dreq, hdr->inode);
841 hdr->release(hdr);
842 }
843
844 static void nfs_write_sync_pgio_error(struct list_head *head)
845 {
846 struct nfs_page *req;
847
848 while (!list_empty(head)) {
849 req = nfs_list_entry(head->next);
850 nfs_list_remove_request(req);
851 nfs_unlock_and_release_request(req);
852 }
853 }
854
855 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
856 {
857 struct nfs_direct_req *dreq = hdr->dreq;
858
859 spin_lock(&dreq->lock);
860 if (dreq->error == 0) {
861 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
862 /* fake unstable write to let common nfs resend pages */
863 hdr->verf.committed = NFS_UNSTABLE;
864 hdr->good_bytes = hdr->args.count;
865 }
866 spin_unlock(&dreq->lock);
867 }
868
869 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
870 .error_cleanup = nfs_write_sync_pgio_error,
871 .init_hdr = nfs_direct_pgio_init,
872 .completion = nfs_direct_write_completion,
873 .reschedule_io = nfs_direct_write_reschedule_io,
874 };
875
876
877 /*
878 * NB: Return the value of the first error return code. Subsequent
879 * errors after the first one are ignored.
880 */
881 /*
882 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
883 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
884 * bail and stop sending more writes. Write length accounting is
885 * handled automatically by nfs_direct_write_result(). Otherwise, if
886 * no requests have been sent, just return an error.
887 */
888 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
889 struct iov_iter *iter,
890 loff_t pos)
891 {
892 struct nfs_pageio_descriptor desc;
893 struct inode *inode = dreq->inode;
894 ssize_t result = 0;
895 size_t requested_bytes = 0;
896 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
897
898 nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false,
899 &nfs_direct_write_completion_ops);
900 desc.pg_dreq = dreq;
901 get_dreq(dreq);
902 inode_dio_begin(inode);
903
904 NFS_I(inode)->write_io += iov_iter_count(iter);
905 while (iov_iter_count(iter)) {
906 struct page **pagevec;
907 size_t bytes;
908 size_t pgbase;
909 unsigned npages, i;
910
911 result = iov_iter_get_pages_alloc(iter, &pagevec,
912 wsize, &pgbase);
913 if (result < 0)
914 break;
915
916 bytes = result;
917 iov_iter_advance(iter, bytes);
918 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
919 for (i = 0; i < npages; i++) {
920 struct nfs_page *req;
921 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
922
923 req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
924 pgbase, req_len);
925 if (IS_ERR(req)) {
926 result = PTR_ERR(req);
927 break;
928 }
929
930 nfs_direct_setup_mirroring(dreq, &desc, req);
931 if (desc.pg_error < 0) {
932 nfs_free_request(req);
933 result = desc.pg_error;
934 break;
935 }
936
937 nfs_lock_request(req);
938 req->wb_index = pos >> PAGE_SHIFT;
939 req->wb_offset = pos & ~PAGE_MASK;
940 if (!nfs_pageio_add_request(&desc, req)) {
941 result = desc.pg_error;
942 nfs_unlock_and_release_request(req);
943 break;
944 }
945 pgbase = 0;
946 bytes -= req_len;
947 requested_bytes += req_len;
948 pos += req_len;
949 dreq->bytes_left -= req_len;
950 }
951 nfs_direct_release_pages(pagevec, npages);
952 kvfree(pagevec);
953 if (result < 0)
954 break;
955 }
956 nfs_pageio_complete(&desc);
957
958 /*
959 * If no bytes were started, return the error, and let the
960 * generic layer handle the completion.
961 */
962 if (requested_bytes == 0) {
963 inode_dio_end(inode);
964 nfs_direct_req_release(dreq);
965 return result < 0 ? result : -EIO;
966 }
967
968 if (put_dreq(dreq))
969 nfs_direct_write_complete(dreq, dreq->inode);
970 return 0;
971 }
972
973 /**
974 * nfs_file_direct_write - file direct write operation for NFS files
975 * @iocb: target I/O control block
976 * @iter: vector of user buffers from which to write data
977 *
978 * We use this function for direct writes instead of calling
979 * generic_file_aio_write() in order to avoid taking the inode
980 * semaphore and updating the i_size. The NFS server will set
981 * the new i_size and this client must read the updated size
982 * back into its cache. We let the server do generic write
983 * parameter checking and report problems.
984 *
985 * We eliminate local atime updates, see direct read above.
986 *
987 * We avoid unnecessary page cache invalidations for normal cached
988 * readers of this file.
989 *
990 * Note that O_APPEND is not supported for NFS direct writes, as there
991 * is no atomic O_APPEND write facility in the NFS protocol.
992 */
993 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter)
994 {
995 ssize_t result = -EINVAL;
996 struct file *file = iocb->ki_filp;
997 struct address_space *mapping = file->f_mapping;
998 struct inode *inode = mapping->host;
999 struct nfs_direct_req *dreq;
1000 struct nfs_lock_context *l_ctx;
1001 loff_t pos, end;
1002
1003 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
1004 file, iov_iter_count(iter), (long long) iocb->ki_pos);
1005
1006 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES,
1007 iov_iter_count(iter));
1008
1009 pos = iocb->ki_pos;
1010 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
1011
1012 inode_lock(inode);
1013
1014 result = nfs_sync_mapping(mapping);
1015 if (result)
1016 goto out_unlock;
1017
1018 if (mapping->nrpages) {
1019 result = invalidate_inode_pages2_range(mapping,
1020 pos >> PAGE_SHIFT, end);
1021 if (result)
1022 goto out_unlock;
1023 }
1024
1025 task_io_account_write(iov_iter_count(iter));
1026
1027 result = -ENOMEM;
1028 dreq = nfs_direct_req_alloc();
1029 if (!dreq)
1030 goto out_unlock;
1031
1032 dreq->inode = inode;
1033 dreq->bytes_left = dreq->max_count = iov_iter_count(iter);
1034 dreq->io_start = pos;
1035 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
1036 l_ctx = nfs_get_lock_context(dreq->ctx);
1037 if (IS_ERR(l_ctx)) {
1038 result = PTR_ERR(l_ctx);
1039 goto out_release;
1040 }
1041 dreq->l_ctx = l_ctx;
1042 if (!is_sync_kiocb(iocb))
1043 dreq->iocb = iocb;
1044
1045 result = nfs_direct_write_schedule_iovec(dreq, iter, pos);
1046
1047 if (mapping->nrpages) {
1048 invalidate_inode_pages2_range(mapping,
1049 pos >> PAGE_SHIFT, end);
1050 }
1051
1052 inode_unlock(inode);
1053
1054 if (!result) {
1055 result = nfs_direct_wait(dreq);
1056 if (result > 0) {
1057 struct inode *inode = mapping->host;
1058
1059 iocb->ki_pos = pos + result;
1060 spin_lock(&inode->i_lock);
1061 if (i_size_read(inode) < iocb->ki_pos)
1062 i_size_write(inode, iocb->ki_pos);
1063 spin_unlock(&inode->i_lock);
1064
1065 /* XXX: should check the generic_write_sync retval */
1066 generic_write_sync(iocb, result);
1067 }
1068 }
1069 nfs_direct_req_release(dreq);
1070 return result;
1071
1072 out_release:
1073 nfs_direct_req_release(dreq);
1074 out_unlock:
1075 inode_unlock(inode);
1076 return result;
1077 }
1078
1079 /**
1080 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1081 *
1082 */
1083 int __init nfs_init_directcache(void)
1084 {
1085 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1086 sizeof(struct nfs_direct_req),
1087 0, (SLAB_RECLAIM_ACCOUNT|
1088 SLAB_MEM_SPREAD),
1089 NULL);
1090 if (nfs_direct_cachep == NULL)
1091 return -ENOMEM;
1092
1093 return 0;
1094 }
1095
1096 /**
1097 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1098 *
1099 */
1100 void nfs_destroy_directcache(void)
1101 {
1102 kmem_cache_destroy(nfs_direct_cachep);
1103 }