]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/nfs/direct.c
Merge branch 'slab/next' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg...
[mirror_ubuntu-artful-kernel.git] / fs / nfs / direct.c
1 /*
2 * linux/fs/nfs/direct.c
3 *
4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5 *
6 * High-performance uncached I/O for the Linux NFS client
7 *
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
16 *
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
22 * an application.
23 *
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
28 *
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
31 *
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 * 04 May 2005 support O_DIRECT with aio --cel
38 *
39 */
40
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/module.h>
50
51 #include <linux/nfs_fs.h>
52 #include <linux/nfs_page.h>
53 #include <linux/sunrpc/clnt.h>
54
55 #include <asm/uaccess.h>
56 #include <linux/atomic.h>
57
58 #include "internal.h"
59 #include "iostat.h"
60 #include "pnfs.h"
61
62 #define NFSDBG_FACILITY NFSDBG_VFS
63
64 static struct kmem_cache *nfs_direct_cachep;
65
66 /*
67 * This represents a set of asynchronous requests that we're waiting on
68 */
69 struct nfs_direct_req {
70 struct kref kref; /* release manager */
71
72 /* I/O parameters */
73 struct nfs_open_context *ctx; /* file open context info */
74 struct nfs_lock_context *l_ctx; /* Lock context info */
75 struct kiocb * iocb; /* controlling i/o request */
76 struct inode * inode; /* target file of i/o */
77
78 /* completion state */
79 atomic_t io_count; /* i/os we're waiting for */
80 spinlock_t lock; /* protect completion state */
81 ssize_t count, /* bytes actually processed */
82 bytes_left, /* bytes left to be sent */
83 error; /* any reported error */
84 struct completion completion; /* wait for i/o completion */
85
86 /* commit state */
87 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
88 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
89 struct work_struct work;
90 int flags;
91 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
92 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
93 struct nfs_writeverf verf; /* unstable write verifier */
94 };
95
96 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
97 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
98 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
99 static void nfs_direct_write_schedule_work(struct work_struct *work);
100
101 static inline void get_dreq(struct nfs_direct_req *dreq)
102 {
103 atomic_inc(&dreq->io_count);
104 }
105
106 static inline int put_dreq(struct nfs_direct_req *dreq)
107 {
108 return atomic_dec_and_test(&dreq->io_count);
109 }
110
111 /**
112 * nfs_direct_IO - NFS address space operation for direct I/O
113 * @rw: direction (read or write)
114 * @iocb: target I/O control block
115 * @iov: array of vectors that define I/O buffer
116 * @pos: offset in file to begin the operation
117 * @nr_segs: size of iovec array
118 *
119 * The presence of this routine in the address space ops vector means
120 * the NFS client supports direct I/O. However, for most direct IO, we
121 * shunt off direct read and write requests before the VFS gets them,
122 * so this method is only ever called for swap.
123 */
124 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
125 {
126 #ifndef CONFIG_NFS_SWAP
127 dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
128 iocb->ki_filp->f_path.dentry->d_name.name,
129 (long long) pos, nr_segs);
130
131 return -EINVAL;
132 #else
133 VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE);
134
135 if (rw == READ || rw == KERNEL_READ)
136 return nfs_file_direct_read(iocb, iov, nr_segs, pos,
137 rw == READ ? true : false);
138 return nfs_file_direct_write(iocb, iov, nr_segs, pos,
139 rw == WRITE ? true : false);
140 #endif /* CONFIG_NFS_SWAP */
141 }
142
143 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
144 {
145 unsigned int i;
146 for (i = 0; i < npages; i++)
147 page_cache_release(pages[i]);
148 }
149
150 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
151 struct nfs_direct_req *dreq)
152 {
153 cinfo->lock = &dreq->lock;
154 cinfo->mds = &dreq->mds_cinfo;
155 cinfo->ds = &dreq->ds_cinfo;
156 cinfo->dreq = dreq;
157 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
158 }
159
160 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
161 {
162 struct nfs_direct_req *dreq;
163
164 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
165 if (!dreq)
166 return NULL;
167
168 kref_init(&dreq->kref);
169 kref_get(&dreq->kref);
170 init_completion(&dreq->completion);
171 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
172 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
173 spin_lock_init(&dreq->lock);
174
175 return dreq;
176 }
177
178 static void nfs_direct_req_free(struct kref *kref)
179 {
180 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
181
182 if (dreq->l_ctx != NULL)
183 nfs_put_lock_context(dreq->l_ctx);
184 if (dreq->ctx != NULL)
185 put_nfs_open_context(dreq->ctx);
186 kmem_cache_free(nfs_direct_cachep, dreq);
187 }
188
189 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
190 {
191 kref_put(&dreq->kref, nfs_direct_req_free);
192 }
193
194 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
195 {
196 return dreq->bytes_left;
197 }
198 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
199
200 /*
201 * Collects and returns the final error value/byte-count.
202 */
203 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
204 {
205 ssize_t result = -EIOCBQUEUED;
206
207 /* Async requests don't wait here */
208 if (dreq->iocb)
209 goto out;
210
211 result = wait_for_completion_killable(&dreq->completion);
212
213 if (!result)
214 result = dreq->error;
215 if (!result)
216 result = dreq->count;
217
218 out:
219 return (ssize_t) result;
220 }
221
222 /*
223 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
224 * the iocb is still valid here if this is a synchronous request.
225 */
226 static void nfs_direct_complete(struct nfs_direct_req *dreq)
227 {
228 if (dreq->iocb) {
229 long res = (long) dreq->error;
230 if (!res)
231 res = (long) dreq->count;
232 aio_complete(dreq->iocb, res, 0);
233 }
234 complete_all(&dreq->completion);
235
236 nfs_direct_req_release(dreq);
237 }
238
239 static void nfs_direct_readpage_release(struct nfs_page *req)
240 {
241 dprintk("NFS: direct read done (%s/%lld %d@%lld)\n",
242 req->wb_context->dentry->d_inode->i_sb->s_id,
243 (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
244 req->wb_bytes,
245 (long long)req_offset(req));
246 nfs_release_request(req);
247 }
248
249 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
250 {
251 unsigned long bytes = 0;
252 struct nfs_direct_req *dreq = hdr->dreq;
253
254 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
255 goto out_put;
256
257 spin_lock(&dreq->lock);
258 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
259 dreq->error = hdr->error;
260 else
261 dreq->count += hdr->good_bytes;
262 spin_unlock(&dreq->lock);
263
264 while (!list_empty(&hdr->pages)) {
265 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
266 struct page *page = req->wb_page;
267
268 if (!PageCompound(page) && bytes < hdr->good_bytes)
269 set_page_dirty(page);
270 bytes += req->wb_bytes;
271 nfs_list_remove_request(req);
272 nfs_direct_readpage_release(req);
273 }
274 out_put:
275 if (put_dreq(dreq))
276 nfs_direct_complete(dreq);
277 hdr->release(hdr);
278 }
279
280 static void nfs_read_sync_pgio_error(struct list_head *head)
281 {
282 struct nfs_page *req;
283
284 while (!list_empty(head)) {
285 req = nfs_list_entry(head->next);
286 nfs_list_remove_request(req);
287 nfs_release_request(req);
288 }
289 }
290
291 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
292 {
293 get_dreq(hdr->dreq);
294 }
295
296 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
297 .error_cleanup = nfs_read_sync_pgio_error,
298 .init_hdr = nfs_direct_pgio_init,
299 .completion = nfs_direct_read_completion,
300 };
301
302 /*
303 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
304 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
305 * bail and stop sending more reads. Read length accounting is
306 * handled automatically by nfs_direct_read_result(). Otherwise, if
307 * no requests have been sent, just return an error.
308 */
309 static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
310 const struct iovec *iov,
311 loff_t pos, bool uio)
312 {
313 struct nfs_direct_req *dreq = desc->pg_dreq;
314 struct nfs_open_context *ctx = dreq->ctx;
315 struct inode *inode = ctx->dentry->d_inode;
316 unsigned long user_addr = (unsigned long)iov->iov_base;
317 size_t count = iov->iov_len;
318 size_t rsize = NFS_SERVER(inode)->rsize;
319 unsigned int pgbase;
320 int result;
321 ssize_t started = 0;
322 struct page **pagevec = NULL;
323 unsigned int npages;
324
325 do {
326 size_t bytes;
327 int i;
328
329 pgbase = user_addr & ~PAGE_MASK;
330 bytes = min(max_t(size_t, rsize, PAGE_SIZE), count);
331
332 result = -ENOMEM;
333 npages = nfs_page_array_len(pgbase, bytes);
334 if (!pagevec)
335 pagevec = kmalloc(npages * sizeof(struct page *),
336 GFP_KERNEL);
337 if (!pagevec)
338 break;
339 if (uio) {
340 down_read(&current->mm->mmap_sem);
341 result = get_user_pages(current, current->mm, user_addr,
342 npages, 1, 0, pagevec, NULL);
343 up_read(&current->mm->mmap_sem);
344 if (result < 0)
345 break;
346 } else {
347 WARN_ON(npages != 1);
348 result = get_kernel_page(user_addr, 1, pagevec);
349 if (WARN_ON(result != 1))
350 break;
351 }
352
353 if ((unsigned)result < npages) {
354 bytes = result * PAGE_SIZE;
355 if (bytes <= pgbase) {
356 nfs_direct_release_pages(pagevec, result);
357 break;
358 }
359 bytes -= pgbase;
360 npages = result;
361 }
362
363 for (i = 0; i < npages; i++) {
364 struct nfs_page *req;
365 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
366 /* XXX do we need to do the eof zeroing found in async_filler? */
367 req = nfs_create_request(dreq->ctx, dreq->inode,
368 pagevec[i],
369 pgbase, req_len);
370 if (IS_ERR(req)) {
371 result = PTR_ERR(req);
372 break;
373 }
374 req->wb_index = pos >> PAGE_SHIFT;
375 req->wb_offset = pos & ~PAGE_MASK;
376 if (!nfs_pageio_add_request(desc, req)) {
377 result = desc->pg_error;
378 nfs_release_request(req);
379 break;
380 }
381 pgbase = 0;
382 bytes -= req_len;
383 started += req_len;
384 user_addr += req_len;
385 pos += req_len;
386 count -= req_len;
387 dreq->bytes_left -= req_len;
388 }
389 /* The nfs_page now hold references to these pages */
390 nfs_direct_release_pages(pagevec, npages);
391 } while (count != 0 && result >= 0);
392
393 kfree(pagevec);
394
395 if (started)
396 return started;
397 return result < 0 ? (ssize_t) result : -EFAULT;
398 }
399
400 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
401 const struct iovec *iov,
402 unsigned long nr_segs,
403 loff_t pos, bool uio)
404 {
405 struct nfs_pageio_descriptor desc;
406 ssize_t result = -EINVAL;
407 size_t requested_bytes = 0;
408 unsigned long seg;
409
410 NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode,
411 &nfs_direct_read_completion_ops);
412 get_dreq(dreq);
413 desc.pg_dreq = dreq;
414
415 for (seg = 0; seg < nr_segs; seg++) {
416 const struct iovec *vec = &iov[seg];
417 result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio);
418 if (result < 0)
419 break;
420 requested_bytes += result;
421 if ((size_t)result < vec->iov_len)
422 break;
423 pos += vec->iov_len;
424 }
425
426 nfs_pageio_complete(&desc);
427
428 /*
429 * If no bytes were started, return the error, and let the
430 * generic layer handle the completion.
431 */
432 if (requested_bytes == 0) {
433 nfs_direct_req_release(dreq);
434 return result < 0 ? result : -EIO;
435 }
436
437 if (put_dreq(dreq))
438 nfs_direct_complete(dreq);
439 return 0;
440 }
441
442 static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
443 unsigned long nr_segs, loff_t pos, bool uio)
444 {
445 ssize_t result = -ENOMEM;
446 struct inode *inode = iocb->ki_filp->f_mapping->host;
447 struct nfs_direct_req *dreq;
448 struct nfs_lock_context *l_ctx;
449
450 dreq = nfs_direct_req_alloc();
451 if (dreq == NULL)
452 goto out;
453
454 dreq->inode = inode;
455 dreq->bytes_left = iov_length(iov, nr_segs);
456 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
457 l_ctx = nfs_get_lock_context(dreq->ctx);
458 if (IS_ERR(l_ctx)) {
459 result = PTR_ERR(l_ctx);
460 goto out_release;
461 }
462 dreq->l_ctx = l_ctx;
463 if (!is_sync_kiocb(iocb))
464 dreq->iocb = iocb;
465
466 NFS_I(inode)->read_io += iov_length(iov, nr_segs);
467 result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos, uio);
468 if (!result)
469 result = nfs_direct_wait(dreq);
470 out_release:
471 nfs_direct_req_release(dreq);
472 out:
473 return result;
474 }
475
476 static void nfs_inode_dio_write_done(struct inode *inode)
477 {
478 nfs_zap_mapping(inode, inode->i_mapping);
479 inode_dio_done(inode);
480 }
481
482 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
483 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
484 {
485 struct nfs_pageio_descriptor desc;
486 struct nfs_page *req, *tmp;
487 LIST_HEAD(reqs);
488 struct nfs_commit_info cinfo;
489 LIST_HEAD(failed);
490
491 nfs_init_cinfo_from_dreq(&cinfo, dreq);
492 pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
493 spin_lock(cinfo.lock);
494 nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
495 spin_unlock(cinfo.lock);
496
497 dreq->count = 0;
498 get_dreq(dreq);
499
500 NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE,
501 &nfs_direct_write_completion_ops);
502 desc.pg_dreq = dreq;
503
504 list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
505 if (!nfs_pageio_add_request(&desc, req)) {
506 nfs_list_remove_request(req);
507 nfs_list_add_request(req, &failed);
508 spin_lock(cinfo.lock);
509 dreq->flags = 0;
510 dreq->error = -EIO;
511 spin_unlock(cinfo.lock);
512 }
513 nfs_release_request(req);
514 }
515 nfs_pageio_complete(&desc);
516
517 while (!list_empty(&failed)) {
518 req = nfs_list_entry(failed.next);
519 nfs_list_remove_request(req);
520 nfs_unlock_and_release_request(req);
521 }
522
523 if (put_dreq(dreq))
524 nfs_direct_write_complete(dreq, dreq->inode);
525 }
526
527 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
528 {
529 struct nfs_direct_req *dreq = data->dreq;
530 struct nfs_commit_info cinfo;
531 struct nfs_page *req;
532 int status = data->task.tk_status;
533
534 nfs_init_cinfo_from_dreq(&cinfo, dreq);
535 if (status < 0) {
536 dprintk("NFS: %5u commit failed with error %d.\n",
537 data->task.tk_pid, status);
538 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
539 } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
540 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
541 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
542 }
543
544 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
545 while (!list_empty(&data->pages)) {
546 req = nfs_list_entry(data->pages.next);
547 nfs_list_remove_request(req);
548 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
549 /* Note the rewrite will go through mds */
550 nfs_mark_request_commit(req, NULL, &cinfo);
551 } else
552 nfs_release_request(req);
553 nfs_unlock_and_release_request(req);
554 }
555
556 if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
557 nfs_direct_write_complete(dreq, data->inode);
558 }
559
560 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
561 {
562 /* There is no lock to clear */
563 }
564
565 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
566 .completion = nfs_direct_commit_complete,
567 .error_cleanup = nfs_direct_error_cleanup,
568 };
569
570 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
571 {
572 int res;
573 struct nfs_commit_info cinfo;
574 LIST_HEAD(mds_list);
575
576 nfs_init_cinfo_from_dreq(&cinfo, dreq);
577 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
578 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
579 if (res < 0) /* res == -ENOMEM */
580 nfs_direct_write_reschedule(dreq);
581 }
582
583 static void nfs_direct_write_schedule_work(struct work_struct *work)
584 {
585 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
586 int flags = dreq->flags;
587
588 dreq->flags = 0;
589 switch (flags) {
590 case NFS_ODIRECT_DO_COMMIT:
591 nfs_direct_commit_schedule(dreq);
592 break;
593 case NFS_ODIRECT_RESCHED_WRITES:
594 nfs_direct_write_reschedule(dreq);
595 break;
596 default:
597 nfs_inode_dio_write_done(dreq->inode);
598 nfs_direct_complete(dreq);
599 }
600 }
601
602 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
603 {
604 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
605 }
606
607 #else
608 static void nfs_direct_write_schedule_work(struct work_struct *work)
609 {
610 }
611
612 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
613 {
614 nfs_inode_dio_write_done(inode);
615 nfs_direct_complete(dreq);
616 }
617 #endif
618
619 /*
620 * NB: Return the value of the first error return code. Subsequent
621 * errors after the first one are ignored.
622 */
623 /*
624 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
625 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
626 * bail and stop sending more writes. Write length accounting is
627 * handled automatically by nfs_direct_write_result(). Otherwise, if
628 * no requests have been sent, just return an error.
629 */
630 static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
631 const struct iovec *iov,
632 loff_t pos, bool uio)
633 {
634 struct nfs_direct_req *dreq = desc->pg_dreq;
635 struct nfs_open_context *ctx = dreq->ctx;
636 struct inode *inode = ctx->dentry->d_inode;
637 unsigned long user_addr = (unsigned long)iov->iov_base;
638 size_t count = iov->iov_len;
639 size_t wsize = NFS_SERVER(inode)->wsize;
640 unsigned int pgbase;
641 int result;
642 ssize_t started = 0;
643 struct page **pagevec = NULL;
644 unsigned int npages;
645
646 do {
647 size_t bytes;
648 int i;
649
650 pgbase = user_addr & ~PAGE_MASK;
651 bytes = min(max_t(size_t, wsize, PAGE_SIZE), count);
652
653 result = -ENOMEM;
654 npages = nfs_page_array_len(pgbase, bytes);
655 if (!pagevec)
656 pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
657 if (!pagevec)
658 break;
659
660 if (uio) {
661 down_read(&current->mm->mmap_sem);
662 result = get_user_pages(current, current->mm, user_addr,
663 npages, 0, 0, pagevec, NULL);
664 up_read(&current->mm->mmap_sem);
665 if (result < 0)
666 break;
667 } else {
668 WARN_ON(npages != 1);
669 result = get_kernel_page(user_addr, 0, pagevec);
670 if (WARN_ON(result != 1))
671 break;
672 }
673
674 if ((unsigned)result < npages) {
675 bytes = result * PAGE_SIZE;
676 if (bytes <= pgbase) {
677 nfs_direct_release_pages(pagevec, result);
678 break;
679 }
680 bytes -= pgbase;
681 npages = result;
682 }
683
684 for (i = 0; i < npages; i++) {
685 struct nfs_page *req;
686 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
687
688 req = nfs_create_request(dreq->ctx, dreq->inode,
689 pagevec[i],
690 pgbase, req_len);
691 if (IS_ERR(req)) {
692 result = PTR_ERR(req);
693 break;
694 }
695 nfs_lock_request(req);
696 req->wb_index = pos >> PAGE_SHIFT;
697 req->wb_offset = pos & ~PAGE_MASK;
698 if (!nfs_pageio_add_request(desc, req)) {
699 result = desc->pg_error;
700 nfs_unlock_and_release_request(req);
701 break;
702 }
703 pgbase = 0;
704 bytes -= req_len;
705 started += req_len;
706 user_addr += req_len;
707 pos += req_len;
708 count -= req_len;
709 dreq->bytes_left -= req_len;
710 }
711 /* The nfs_page now hold references to these pages */
712 nfs_direct_release_pages(pagevec, npages);
713 } while (count != 0 && result >= 0);
714
715 kfree(pagevec);
716
717 if (started)
718 return started;
719 return result < 0 ? (ssize_t) result : -EFAULT;
720 }
721
722 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
723 {
724 struct nfs_direct_req *dreq = hdr->dreq;
725 struct nfs_commit_info cinfo;
726 int bit = -1;
727 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
728
729 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
730 goto out_put;
731
732 nfs_init_cinfo_from_dreq(&cinfo, dreq);
733
734 spin_lock(&dreq->lock);
735
736 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
737 dreq->flags = 0;
738 dreq->error = hdr->error;
739 }
740 if (dreq->error != 0)
741 bit = NFS_IOHDR_ERROR;
742 else {
743 dreq->count += hdr->good_bytes;
744 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
745 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
746 bit = NFS_IOHDR_NEED_RESCHED;
747 } else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
748 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
749 bit = NFS_IOHDR_NEED_RESCHED;
750 else if (dreq->flags == 0) {
751 memcpy(&dreq->verf, hdr->verf,
752 sizeof(dreq->verf));
753 bit = NFS_IOHDR_NEED_COMMIT;
754 dreq->flags = NFS_ODIRECT_DO_COMMIT;
755 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
756 if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) {
757 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
758 bit = NFS_IOHDR_NEED_RESCHED;
759 } else
760 bit = NFS_IOHDR_NEED_COMMIT;
761 }
762 }
763 }
764 spin_unlock(&dreq->lock);
765
766 while (!list_empty(&hdr->pages)) {
767 req = nfs_list_entry(hdr->pages.next);
768 nfs_list_remove_request(req);
769 switch (bit) {
770 case NFS_IOHDR_NEED_RESCHED:
771 case NFS_IOHDR_NEED_COMMIT:
772 kref_get(&req->wb_kref);
773 nfs_mark_request_commit(req, hdr->lseg, &cinfo);
774 }
775 nfs_unlock_and_release_request(req);
776 }
777
778 out_put:
779 if (put_dreq(dreq))
780 nfs_direct_write_complete(dreq, hdr->inode);
781 hdr->release(hdr);
782 }
783
784 static void nfs_write_sync_pgio_error(struct list_head *head)
785 {
786 struct nfs_page *req;
787
788 while (!list_empty(head)) {
789 req = nfs_list_entry(head->next);
790 nfs_list_remove_request(req);
791 nfs_unlock_and_release_request(req);
792 }
793 }
794
795 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
796 .error_cleanup = nfs_write_sync_pgio_error,
797 .init_hdr = nfs_direct_pgio_init,
798 .completion = nfs_direct_write_completion,
799 };
800
801 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
802 const struct iovec *iov,
803 unsigned long nr_segs,
804 loff_t pos, bool uio)
805 {
806 struct nfs_pageio_descriptor desc;
807 struct inode *inode = dreq->inode;
808 ssize_t result = 0;
809 size_t requested_bytes = 0;
810 unsigned long seg;
811
812 NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE,
813 &nfs_direct_write_completion_ops);
814 desc.pg_dreq = dreq;
815 get_dreq(dreq);
816 atomic_inc(&inode->i_dio_count);
817
818 NFS_I(dreq->inode)->write_io += iov_length(iov, nr_segs);
819 for (seg = 0; seg < nr_segs; seg++) {
820 const struct iovec *vec = &iov[seg];
821 result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio);
822 if (result < 0)
823 break;
824 requested_bytes += result;
825 if ((size_t)result < vec->iov_len)
826 break;
827 pos += vec->iov_len;
828 }
829 nfs_pageio_complete(&desc);
830
831 /*
832 * If no bytes were started, return the error, and let the
833 * generic layer handle the completion.
834 */
835 if (requested_bytes == 0) {
836 inode_dio_done(inode);
837 nfs_direct_req_release(dreq);
838 return result < 0 ? result : -EIO;
839 }
840
841 if (put_dreq(dreq))
842 nfs_direct_write_complete(dreq, dreq->inode);
843 return 0;
844 }
845
846 static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
847 unsigned long nr_segs, loff_t pos,
848 size_t count, bool uio)
849 {
850 ssize_t result = -ENOMEM;
851 struct inode *inode = iocb->ki_filp->f_mapping->host;
852 struct nfs_direct_req *dreq;
853 struct nfs_lock_context *l_ctx;
854
855 dreq = nfs_direct_req_alloc();
856 if (!dreq)
857 goto out;
858
859 dreq->inode = inode;
860 dreq->bytes_left = count;
861 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
862 l_ctx = nfs_get_lock_context(dreq->ctx);
863 if (IS_ERR(l_ctx)) {
864 result = PTR_ERR(l_ctx);
865 goto out_release;
866 }
867 dreq->l_ctx = l_ctx;
868 if (!is_sync_kiocb(iocb))
869 dreq->iocb = iocb;
870
871 result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, uio);
872 if (!result)
873 result = nfs_direct_wait(dreq);
874 out_release:
875 nfs_direct_req_release(dreq);
876 out:
877 return result;
878 }
879
880 /**
881 * nfs_file_direct_read - file direct read operation for NFS files
882 * @iocb: target I/O control block
883 * @iov: vector of user buffers into which to read data
884 * @nr_segs: size of iov vector
885 * @pos: byte offset in file where reading starts
886 *
887 * We use this function for direct reads instead of calling
888 * generic_file_aio_read() in order to avoid gfar's check to see if
889 * the request starts before the end of the file. For that check
890 * to work, we must generate a GETATTR before each direct read, and
891 * even then there is a window between the GETATTR and the subsequent
892 * READ where the file size could change. Our preference is simply
893 * to do all reads the application wants, and the server will take
894 * care of managing the end of file boundary.
895 *
896 * This function also eliminates unnecessarily updating the file's
897 * atime locally, as the NFS server sets the file's atime, and this
898 * client must read the updated atime from the server back into its
899 * cache.
900 */
901 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
902 unsigned long nr_segs, loff_t pos, bool uio)
903 {
904 ssize_t retval = -EINVAL;
905 struct file *file = iocb->ki_filp;
906 struct address_space *mapping = file->f_mapping;
907 size_t count;
908
909 count = iov_length(iov, nr_segs);
910 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
911
912 dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
913 file->f_path.dentry->d_parent->d_name.name,
914 file->f_path.dentry->d_name.name,
915 count, (long long) pos);
916
917 retval = 0;
918 if (!count)
919 goto out;
920
921 retval = nfs_sync_mapping(mapping);
922 if (retval)
923 goto out;
924
925 task_io_account_read(count);
926
927 retval = nfs_direct_read(iocb, iov, nr_segs, pos, uio);
928 if (retval > 0)
929 iocb->ki_pos = pos + retval;
930
931 out:
932 return retval;
933 }
934
935 /**
936 * nfs_file_direct_write - file direct write operation for NFS files
937 * @iocb: target I/O control block
938 * @iov: vector of user buffers from which to write data
939 * @nr_segs: size of iov vector
940 * @pos: byte offset in file where writing starts
941 *
942 * We use this function for direct writes instead of calling
943 * generic_file_aio_write() in order to avoid taking the inode
944 * semaphore and updating the i_size. The NFS server will set
945 * the new i_size and this client must read the updated size
946 * back into its cache. We let the server do generic write
947 * parameter checking and report problems.
948 *
949 * We eliminate local atime updates, see direct read above.
950 *
951 * We avoid unnecessary page cache invalidations for normal cached
952 * readers of this file.
953 *
954 * Note that O_APPEND is not supported for NFS direct writes, as there
955 * is no atomic O_APPEND write facility in the NFS protocol.
956 */
957 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
958 unsigned long nr_segs, loff_t pos, bool uio)
959 {
960 ssize_t retval = -EINVAL;
961 struct file *file = iocb->ki_filp;
962 struct address_space *mapping = file->f_mapping;
963 size_t count;
964
965 count = iov_length(iov, nr_segs);
966 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
967
968 dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
969 file->f_path.dentry->d_parent->d_name.name,
970 file->f_path.dentry->d_name.name,
971 count, (long long) pos);
972
973 retval = generic_write_checks(file, &pos, &count, 0);
974 if (retval)
975 goto out;
976
977 retval = -EINVAL;
978 if ((ssize_t) count < 0)
979 goto out;
980 retval = 0;
981 if (!count)
982 goto out;
983
984 retval = nfs_sync_mapping(mapping);
985 if (retval)
986 goto out;
987
988 task_io_account_write(count);
989
990 retval = nfs_direct_write(iocb, iov, nr_segs, pos, count, uio);
991 if (retval > 0) {
992 struct inode *inode = mapping->host;
993
994 iocb->ki_pos = pos + retval;
995 spin_lock(&inode->i_lock);
996 if (i_size_read(inode) < iocb->ki_pos)
997 i_size_write(inode, iocb->ki_pos);
998 spin_unlock(&inode->i_lock);
999 }
1000 out:
1001 return retval;
1002 }
1003
1004 /**
1005 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1006 *
1007 */
1008 int __init nfs_init_directcache(void)
1009 {
1010 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1011 sizeof(struct nfs_direct_req),
1012 0, (SLAB_RECLAIM_ACCOUNT|
1013 SLAB_MEM_SPREAD),
1014 NULL);
1015 if (nfs_direct_cachep == NULL)
1016 return -ENOMEM;
1017
1018 return 0;
1019 }
1020
1021 /**
1022 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1023 *
1024 */
1025 void nfs_destroy_directcache(void)
1026 {
1027 kmem_cache_destroy(nfs_direct_cachep);
1028 }