]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/nfs/file.c
524dd80d189862db5a76a7bb9e8a263ce857ffeb
[mirror_ubuntu-zesty-kernel.git] / fs / nfs / file.c
1 /*
2 * linux/fs/nfs/file.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * Changes Copyright (C) 1994 by Florian La Roche
7 * - Do not copy data too often around in the kernel.
8 * - In nfs_file_read the return value of kmalloc wasn't checked.
9 * - Put in a better version of read look-ahead buffering. Original idea
10 * and implementation by Wai S Kok elekokws@ee.nus.sg.
11 *
12 * Expire cache on write to a file by Wai S Kok (Oct 1994).
13 *
14 * Total rewrite of read side for new NFS buffer cache.. Linus.
15 *
16 * nfs regular file handling functions
17 */
18
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/fcntl.h>
24 #include <linux/stat.h>
25 #include <linux/nfs_fs.h>
26 #include <linux/nfs_mount.h>
27 #include <linux/mm.h>
28 #include <linux/pagemap.h>
29 #include <linux/aio.h>
30 #include <linux/gfp.h>
31 #include <linux/swap.h>
32
33 #include <asm/uaccess.h>
34
35 #include "delegation.h"
36 #include "internal.h"
37 #include "iostat.h"
38 #include "fscache.h"
39
40 #include "nfstrace.h"
41
42 #define NFSDBG_FACILITY NFSDBG_FILE
43
44 static const struct vm_operations_struct nfs_file_vm_ops;
45
46 /* Hack for future NFS swap support */
47 #ifndef IS_SWAPFILE
48 # define IS_SWAPFILE(inode) (0)
49 #endif
50
51 int nfs_check_flags(int flags)
52 {
53 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
54 return -EINVAL;
55
56 return 0;
57 }
58 EXPORT_SYMBOL_GPL(nfs_check_flags);
59
60 /*
61 * Open file
62 */
63 static int
64 nfs_file_open(struct inode *inode, struct file *filp)
65 {
66 int res;
67
68 dprintk("NFS: open file(%pD2)\n", filp);
69
70 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
71 res = nfs_check_flags(filp->f_flags);
72 if (res)
73 return res;
74
75 res = nfs_open(inode, filp);
76 return res;
77 }
78
79 int
80 nfs_file_release(struct inode *inode, struct file *filp)
81 {
82 dprintk("NFS: release(%pD2)\n", filp);
83
84 nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
85 return nfs_release(inode, filp);
86 }
87 EXPORT_SYMBOL_GPL(nfs_file_release);
88
89 /**
90 * nfs_revalidate_size - Revalidate the file size
91 * @inode - pointer to inode struct
92 * @file - pointer to struct file
93 *
94 * Revalidates the file length. This is basically a wrapper around
95 * nfs_revalidate_inode() that takes into account the fact that we may
96 * have cached writes (in which case we don't care about the server's
97 * idea of what the file length is), or O_DIRECT (in which case we
98 * shouldn't trust the cache).
99 */
100 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
101 {
102 struct nfs_server *server = NFS_SERVER(inode);
103 struct nfs_inode *nfsi = NFS_I(inode);
104
105 if (nfs_have_delegated_attributes(inode))
106 goto out_noreval;
107
108 if (filp->f_flags & O_DIRECT)
109 goto force_reval;
110 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
111 goto force_reval;
112 if (nfs_attribute_timeout(inode))
113 goto force_reval;
114 out_noreval:
115 return 0;
116 force_reval:
117 return __nfs_revalidate_inode(server, inode);
118 }
119
120 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
121 {
122 dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
123 filp, offset, whence);
124
125 /*
126 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
127 * the cached file length
128 */
129 if (whence != SEEK_SET && whence != SEEK_CUR) {
130 struct inode *inode = filp->f_mapping->host;
131
132 int retval = nfs_revalidate_file_size(inode, filp);
133 if (retval < 0)
134 return (loff_t)retval;
135 }
136
137 return generic_file_llseek(filp, offset, whence);
138 }
139 EXPORT_SYMBOL_GPL(nfs_file_llseek);
140
141 /*
142 * Flush all dirty pages, and check for write errors.
143 */
144 int
145 nfs_file_flush(struct file *file, fl_owner_t id)
146 {
147 struct inode *inode = file_inode(file);
148
149 dprintk("NFS: flush(%pD2)\n", file);
150
151 nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
152 if ((file->f_mode & FMODE_WRITE) == 0)
153 return 0;
154
155 /*
156 * If we're holding a write delegation, then just start the i/o
157 * but don't wait for completion (or send a commit).
158 */
159 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
160 return filemap_fdatawrite(file->f_mapping);
161
162 /* Flush writes to the server and return any errors */
163 return vfs_fsync(file, 0);
164 }
165 EXPORT_SYMBOL_GPL(nfs_file_flush);
166
167 ssize_t
168 nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
169 {
170 struct inode *inode = file_inode(iocb->ki_filp);
171 ssize_t result;
172
173 if (iocb->ki_filp->f_flags & O_DIRECT)
174 return nfs_file_direct_read(iocb, to, iocb->ki_pos, true);
175
176 dprintk("NFS: read(%pD2, %zu@%lu)\n",
177 iocb->ki_filp,
178 iov_iter_count(to), (unsigned long) iocb->ki_pos);
179
180 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
181 if (!result) {
182 result = generic_file_read_iter(iocb, to);
183 if (result > 0)
184 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
185 }
186 return result;
187 }
188 EXPORT_SYMBOL_GPL(nfs_file_read);
189
190 ssize_t
191 nfs_file_splice_read(struct file *filp, loff_t *ppos,
192 struct pipe_inode_info *pipe, size_t count,
193 unsigned int flags)
194 {
195 struct inode *inode = file_inode(filp);
196 ssize_t res;
197
198 dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n",
199 filp, (unsigned long) count, (unsigned long long) *ppos);
200
201 res = nfs_revalidate_mapping(inode, filp->f_mapping);
202 if (!res) {
203 res = generic_file_splice_read(filp, ppos, pipe, count, flags);
204 if (res > 0)
205 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
206 }
207 return res;
208 }
209 EXPORT_SYMBOL_GPL(nfs_file_splice_read);
210
211 int
212 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
213 {
214 struct inode *inode = file_inode(file);
215 int status;
216
217 dprintk("NFS: mmap(%pD2)\n", file);
218
219 /* Note: generic_file_mmap() returns ENOSYS on nommu systems
220 * so we call that before revalidating the mapping
221 */
222 status = generic_file_mmap(file, vma);
223 if (!status) {
224 vma->vm_ops = &nfs_file_vm_ops;
225 status = nfs_revalidate_mapping(inode, file->f_mapping);
226 }
227 return status;
228 }
229 EXPORT_SYMBOL_GPL(nfs_file_mmap);
230
231 /*
232 * Flush any dirty pages for this process, and check for write errors.
233 * The return status from this call provides a reliable indication of
234 * whether any write errors occurred for this process.
235 *
236 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
237 * disk, but it retrieves and clears ctx->error after synching, despite
238 * the two being set at the same time in nfs_context_set_write_error().
239 * This is because the former is used to notify the _next_ call to
240 * nfs_file_write() that a write error occurred, and hence cause it to
241 * fall back to doing a synchronous write.
242 */
243 int
244 nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
245 {
246 struct nfs_open_context *ctx = nfs_file_open_context(file);
247 struct inode *inode = file_inode(file);
248 int have_error, do_resend, status;
249 int ret = 0;
250
251 dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
252
253 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
254 do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
255 have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
256 status = nfs_commit_inode(inode, FLUSH_SYNC);
257 have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
258 if (have_error) {
259 ret = xchg(&ctx->error, 0);
260 if (ret)
261 goto out;
262 }
263 if (status < 0) {
264 ret = status;
265 goto out;
266 }
267 do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
268 if (do_resend)
269 ret = -EAGAIN;
270 out:
271 return ret;
272 }
273 EXPORT_SYMBOL_GPL(nfs_file_fsync_commit);
274
275 static int
276 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
277 {
278 int ret;
279 struct inode *inode = file_inode(file);
280
281 trace_nfs_fsync_enter(inode);
282
283 do {
284 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
285 if (ret != 0)
286 break;
287 mutex_lock(&inode->i_mutex);
288 ret = nfs_file_fsync_commit(file, start, end, datasync);
289 mutex_unlock(&inode->i_mutex);
290 /*
291 * If nfs_file_fsync_commit detected a server reboot, then
292 * resend all dirty pages that might have been covered by
293 * the NFS_CONTEXT_RESEND_WRITES flag
294 */
295 start = 0;
296 end = LLONG_MAX;
297 } while (ret == -EAGAIN);
298
299 trace_nfs_fsync_exit(inode, ret);
300 return ret;
301 }
302
303 /*
304 * Decide whether a read/modify/write cycle may be more efficient
305 * then a modify/write/read cycle when writing to a page in the
306 * page cache.
307 *
308 * The modify/write/read cycle may occur if a page is read before
309 * being completely filled by the writer. In this situation, the
310 * page must be completely written to stable storage on the server
311 * before it can be refilled by reading in the page from the server.
312 * This can lead to expensive, small, FILE_SYNC mode writes being
313 * done.
314 *
315 * It may be more efficient to read the page first if the file is
316 * open for reading in addition to writing, the page is not marked
317 * as Uptodate, it is not dirty or waiting to be committed,
318 * indicating that it was previously allocated and then modified,
319 * that there were valid bytes of data in that range of the file,
320 * and that the new data won't completely replace the old data in
321 * that range of the file.
322 */
323 static int nfs_want_read_modify_write(struct file *file, struct page *page,
324 loff_t pos, unsigned len)
325 {
326 unsigned int pglen = nfs_page_length(page);
327 unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
328 unsigned int end = offset + len;
329
330 if ((file->f_mode & FMODE_READ) && /* open for read? */
331 !PageUptodate(page) && /* Uptodate? */
332 !PagePrivate(page) && /* i/o request already? */
333 pglen && /* valid bytes of file? */
334 (end < pglen || offset)) /* replace all valid bytes? */
335 return 1;
336 return 0;
337 }
338
339 /*
340 * This does the "real" work of the write. We must allocate and lock the
341 * page to be sent back to the generic routine, which then copies the
342 * data from user space.
343 *
344 * If the writer ends up delaying the write, the writer needs to
345 * increment the page use counts until he is done with the page.
346 */
347 static int nfs_write_begin(struct file *file, struct address_space *mapping,
348 loff_t pos, unsigned len, unsigned flags,
349 struct page **pagep, void **fsdata)
350 {
351 int ret;
352 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
353 struct page *page;
354 int once_thru = 0;
355
356 dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
357 file, mapping->host->i_ino, len, (long long) pos);
358
359 start:
360 /*
361 * Prevent starvation issues if someone is doing a consistency
362 * sync-to-disk
363 */
364 ret = wait_on_bit_action(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
365 nfs_wait_bit_killable, TASK_KILLABLE);
366 if (ret)
367 return ret;
368
369 page = grab_cache_page_write_begin(mapping, index, flags);
370 if (!page)
371 return -ENOMEM;
372 *pagep = page;
373
374 ret = nfs_flush_incompatible(file, page);
375 if (ret) {
376 unlock_page(page);
377 page_cache_release(page);
378 } else if (!once_thru &&
379 nfs_want_read_modify_write(file, page, pos, len)) {
380 once_thru = 1;
381 ret = nfs_readpage(file, page);
382 page_cache_release(page);
383 if (!ret)
384 goto start;
385 }
386 return ret;
387 }
388
389 static int nfs_write_end(struct file *file, struct address_space *mapping,
390 loff_t pos, unsigned len, unsigned copied,
391 struct page *page, void *fsdata)
392 {
393 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
394 struct nfs_open_context *ctx = nfs_file_open_context(file);
395 int status;
396
397 dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
398 file, mapping->host->i_ino, len, (long long) pos);
399
400 /*
401 * Zero any uninitialised parts of the page, and then mark the page
402 * as up to date if it turns out that we're extending the file.
403 */
404 if (!PageUptodate(page)) {
405 unsigned pglen = nfs_page_length(page);
406 unsigned end = offset + len;
407
408 if (pglen == 0) {
409 zero_user_segments(page, 0, offset,
410 end, PAGE_CACHE_SIZE);
411 SetPageUptodate(page);
412 } else if (end >= pglen) {
413 zero_user_segment(page, end, PAGE_CACHE_SIZE);
414 if (offset == 0)
415 SetPageUptodate(page);
416 } else
417 zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
418 }
419
420 status = nfs_updatepage(file, page, offset, copied);
421
422 unlock_page(page);
423 page_cache_release(page);
424
425 if (status < 0)
426 return status;
427 NFS_I(mapping->host)->write_io += copied;
428
429 if (nfs_ctx_key_to_expire(ctx)) {
430 status = nfs_wb_all(mapping->host);
431 if (status < 0)
432 return status;
433 }
434
435 return copied;
436 }
437
438 /*
439 * Partially or wholly invalidate a page
440 * - Release the private state associated with a page if undergoing complete
441 * page invalidation
442 * - Called if either PG_private or PG_fscache is set on the page
443 * - Caller holds page lock
444 */
445 static void nfs_invalidate_page(struct page *page, unsigned int offset,
446 unsigned int length)
447 {
448 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
449 page, offset, length);
450
451 if (offset != 0 || length < PAGE_CACHE_SIZE)
452 return;
453 /* Cancel any unstarted writes on this page */
454 nfs_wb_page_cancel(page_file_mapping(page)->host, page);
455
456 nfs_fscache_invalidate_page(page, page->mapping->host);
457 }
458
459 /*
460 * Attempt to release the private state associated with a page
461 * - Called if either PG_private or PG_fscache is set on the page
462 * - Caller holds page lock
463 * - Return true (may release page) or false (may not)
464 */
465 static int nfs_release_page(struct page *page, gfp_t gfp)
466 {
467 struct address_space *mapping = page->mapping;
468
469 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
470
471 /* Only do I/O if gfp is a superset of GFP_KERNEL, and we're not
472 * doing this memory reclaim for a fs-related allocation.
473 */
474 if (mapping && (gfp & GFP_KERNEL) == GFP_KERNEL &&
475 !(current->flags & PF_FSTRANS)) {
476 int how = FLUSH_SYNC;
477
478 /* Don't let kswapd deadlock waiting for OOM RPC calls */
479 if (current_is_kswapd())
480 how = 0;
481 nfs_commit_inode(mapping->host, how);
482 }
483 /* If PagePrivate() is set, then the page is not freeable */
484 if (PagePrivate(page))
485 return 0;
486 return nfs_fscache_release_page(page, gfp);
487 }
488
489 static void nfs_check_dirty_writeback(struct page *page,
490 bool *dirty, bool *writeback)
491 {
492 struct nfs_inode *nfsi;
493 struct address_space *mapping = page_file_mapping(page);
494
495 if (!mapping || PageSwapCache(page))
496 return;
497
498 /*
499 * Check if an unstable page is currently being committed and
500 * if so, have the VM treat it as if the page is under writeback
501 * so it will not block due to pages that will shortly be freeable.
502 */
503 nfsi = NFS_I(mapping->host);
504 if (test_bit(NFS_INO_COMMIT, &nfsi->flags)) {
505 *writeback = true;
506 return;
507 }
508
509 /*
510 * If PagePrivate() is set, then the page is not freeable and as the
511 * inode is not being committed, it's not going to be cleaned in the
512 * near future so treat it as dirty
513 */
514 if (PagePrivate(page))
515 *dirty = true;
516 }
517
518 /*
519 * Attempt to clear the private state associated with a page when an error
520 * occurs that requires the cached contents of an inode to be written back or
521 * destroyed
522 * - Called if either PG_private or fscache is set on the page
523 * - Caller holds page lock
524 * - Return 0 if successful, -error otherwise
525 */
526 static int nfs_launder_page(struct page *page)
527 {
528 struct inode *inode = page_file_mapping(page)->host;
529 struct nfs_inode *nfsi = NFS_I(inode);
530
531 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
532 inode->i_ino, (long long)page_offset(page));
533
534 nfs_fscache_wait_on_page_write(nfsi, page);
535 return nfs_wb_page(inode, page);
536 }
537
538 #ifdef CONFIG_NFS_SWAP
539 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
540 sector_t *span)
541 {
542 *span = sis->pages;
543 return xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 1);
544 }
545
546 static void nfs_swap_deactivate(struct file *file)
547 {
548 xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 0);
549 }
550 #endif
551
552 const struct address_space_operations nfs_file_aops = {
553 .readpage = nfs_readpage,
554 .readpages = nfs_readpages,
555 .set_page_dirty = __set_page_dirty_nobuffers,
556 .writepage = nfs_writepage,
557 .writepages = nfs_writepages,
558 .write_begin = nfs_write_begin,
559 .write_end = nfs_write_end,
560 .invalidatepage = nfs_invalidate_page,
561 .releasepage = nfs_release_page,
562 .direct_IO = nfs_direct_IO,
563 .migratepage = nfs_migrate_page,
564 .launder_page = nfs_launder_page,
565 .is_dirty_writeback = nfs_check_dirty_writeback,
566 .error_remove_page = generic_error_remove_page,
567 #ifdef CONFIG_NFS_SWAP
568 .swap_activate = nfs_swap_activate,
569 .swap_deactivate = nfs_swap_deactivate,
570 #endif
571 };
572
573 /*
574 * Notification that a PTE pointing to an NFS page is about to be made
575 * writable, implying that someone is about to modify the page through a
576 * shared-writable mapping
577 */
578 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
579 {
580 struct page *page = vmf->page;
581 struct file *filp = vma->vm_file;
582 struct inode *inode = file_inode(filp);
583 unsigned pagelen;
584 int ret = VM_FAULT_NOPAGE;
585 struct address_space *mapping;
586
587 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
588 filp, filp->f_mapping->host->i_ino,
589 (long long)page_offset(page));
590
591 /* make sure the cache has finished storing the page */
592 nfs_fscache_wait_on_page_write(NFS_I(inode), page);
593
594 lock_page(page);
595 mapping = page_file_mapping(page);
596 if (mapping != inode->i_mapping)
597 goto out_unlock;
598
599 wait_on_page_writeback(page);
600
601 pagelen = nfs_page_length(page);
602 if (pagelen == 0)
603 goto out_unlock;
604
605 ret = VM_FAULT_LOCKED;
606 if (nfs_flush_incompatible(filp, page) == 0 &&
607 nfs_updatepage(filp, page, 0, pagelen) == 0)
608 goto out;
609
610 ret = VM_FAULT_SIGBUS;
611 out_unlock:
612 unlock_page(page);
613 out:
614 return ret;
615 }
616
617 static const struct vm_operations_struct nfs_file_vm_ops = {
618 .fault = filemap_fault,
619 .map_pages = filemap_map_pages,
620 .page_mkwrite = nfs_vm_page_mkwrite,
621 .remap_pages = generic_file_remap_pages,
622 };
623
624 static int nfs_need_sync_write(struct file *filp, struct inode *inode)
625 {
626 struct nfs_open_context *ctx;
627
628 if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
629 return 1;
630 ctx = nfs_file_open_context(filp);
631 if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
632 nfs_ctx_key_to_expire(ctx))
633 return 1;
634 return 0;
635 }
636
637 ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
638 {
639 struct file *file = iocb->ki_filp;
640 struct inode *inode = file_inode(file);
641 unsigned long written = 0;
642 ssize_t result;
643 size_t count = iov_iter_count(from);
644 loff_t pos = iocb->ki_pos;
645
646 result = nfs_key_timeout_notify(file, inode);
647 if (result)
648 return result;
649
650 if (file->f_flags & O_DIRECT)
651 return nfs_file_direct_write(iocb, from, pos, true);
652
653 dprintk("NFS: write(%pD2, %zu@%Ld)\n",
654 file, count, (long long) pos);
655
656 result = -EBUSY;
657 if (IS_SWAPFILE(inode))
658 goto out_swapfile;
659 /*
660 * O_APPEND implies that we must revalidate the file length.
661 */
662 if (file->f_flags & O_APPEND) {
663 result = nfs_revalidate_file_size(inode, file);
664 if (result)
665 goto out;
666 }
667
668 result = count;
669 if (!count)
670 goto out;
671
672 result = generic_file_write_iter(iocb, from);
673 if (result > 0)
674 written = result;
675
676 /* Return error values for O_DSYNC and IS_SYNC() */
677 if (result >= 0 && nfs_need_sync_write(file, inode)) {
678 int err = vfs_fsync(file, 0);
679 if (err < 0)
680 result = err;
681 }
682 if (result > 0)
683 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
684 out:
685 return result;
686
687 out_swapfile:
688 printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
689 goto out;
690 }
691 EXPORT_SYMBOL_GPL(nfs_file_write);
692
693 static int
694 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
695 {
696 struct inode *inode = filp->f_mapping->host;
697 int status = 0;
698 unsigned int saved_type = fl->fl_type;
699
700 /* Try local locking first */
701 posix_test_lock(filp, fl);
702 if (fl->fl_type != F_UNLCK) {
703 /* found a conflict */
704 goto out;
705 }
706 fl->fl_type = saved_type;
707
708 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
709 goto out_noconflict;
710
711 if (is_local)
712 goto out_noconflict;
713
714 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
715 out:
716 return status;
717 out_noconflict:
718 fl->fl_type = F_UNLCK;
719 goto out;
720 }
721
722 static int do_vfs_lock(struct file *file, struct file_lock *fl)
723 {
724 int res = 0;
725 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
726 case FL_POSIX:
727 res = posix_lock_file_wait(file, fl);
728 break;
729 case FL_FLOCK:
730 res = flock_lock_file_wait(file, fl);
731 break;
732 default:
733 BUG();
734 }
735 return res;
736 }
737
738 static int
739 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
740 {
741 struct inode *inode = filp->f_mapping->host;
742 struct nfs_lock_context *l_ctx;
743 int status;
744
745 /*
746 * Flush all pending writes before doing anything
747 * with locks..
748 */
749 nfs_sync_mapping(filp->f_mapping);
750
751 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
752 if (!IS_ERR(l_ctx)) {
753 status = nfs_iocounter_wait(&l_ctx->io_count);
754 nfs_put_lock_context(l_ctx);
755 if (status < 0)
756 return status;
757 }
758
759 /* NOTE: special case
760 * If we're signalled while cleaning up locks on process exit, we
761 * still need to complete the unlock.
762 */
763 /*
764 * Use local locking if mounted with "-onolock" or with appropriate
765 * "-olocal_lock="
766 */
767 if (!is_local)
768 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
769 else
770 status = do_vfs_lock(filp, fl);
771 return status;
772 }
773
774 static int
775 is_time_granular(struct timespec *ts) {
776 return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
777 }
778
779 static int
780 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
781 {
782 struct inode *inode = filp->f_mapping->host;
783 int status;
784
785 /*
786 * Flush all pending writes before doing anything
787 * with locks..
788 */
789 status = nfs_sync_mapping(filp->f_mapping);
790 if (status != 0)
791 goto out;
792
793 /*
794 * Use local locking if mounted with "-onolock" or with appropriate
795 * "-olocal_lock="
796 */
797 if (!is_local)
798 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
799 else
800 status = do_vfs_lock(filp, fl);
801 if (status < 0)
802 goto out;
803
804 /*
805 * Revalidate the cache if the server has time stamps granular
806 * enough to detect subsecond changes. Otherwise, clear the
807 * cache to prevent missing any changes.
808 *
809 * This makes locking act as a cache coherency point.
810 */
811 nfs_sync_mapping(filp->f_mapping);
812 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
813 if (is_time_granular(&NFS_SERVER(inode)->time_delta))
814 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
815 else
816 nfs_zap_caches(inode);
817 }
818 out:
819 return status;
820 }
821
822 /*
823 * Lock a (portion of) a file
824 */
825 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
826 {
827 struct inode *inode = filp->f_mapping->host;
828 int ret = -ENOLCK;
829 int is_local = 0;
830
831 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
832 filp, fl->fl_type, fl->fl_flags,
833 (long long)fl->fl_start, (long long)fl->fl_end);
834
835 nfs_inc_stats(inode, NFSIOS_VFSLOCK);
836
837 /* No mandatory locks over NFS */
838 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
839 goto out_err;
840
841 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
842 is_local = 1;
843
844 if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
845 ret = NFS_PROTO(inode)->lock_check_bounds(fl);
846 if (ret < 0)
847 goto out_err;
848 }
849
850 if (IS_GETLK(cmd))
851 ret = do_getlk(filp, cmd, fl, is_local);
852 else if (fl->fl_type == F_UNLCK)
853 ret = do_unlk(filp, cmd, fl, is_local);
854 else
855 ret = do_setlk(filp, cmd, fl, is_local);
856 out_err:
857 return ret;
858 }
859 EXPORT_SYMBOL_GPL(nfs_lock);
860
861 /*
862 * Lock a (portion of) a file
863 */
864 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
865 {
866 struct inode *inode = filp->f_mapping->host;
867 int is_local = 0;
868
869 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
870 filp, fl->fl_type, fl->fl_flags);
871
872 if (!(fl->fl_flags & FL_FLOCK))
873 return -ENOLCK;
874
875 /*
876 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
877 * any standard. In principle we might be able to support LOCK_MAND
878 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
879 * NFS code is not set up for it.
880 */
881 if (fl->fl_type & LOCK_MAND)
882 return -EINVAL;
883
884 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
885 is_local = 1;
886
887 /* We're simulating flock() locks using posix locks on the server */
888 if (fl->fl_type == F_UNLCK)
889 return do_unlk(filp, cmd, fl, is_local);
890 return do_setlk(filp, cmd, fl, is_local);
891 }
892 EXPORT_SYMBOL_GPL(nfs_flock);
893
894 /*
895 * There is no protocol support for leases, so we have no way to implement
896 * them correctly in the face of opens by other clients.
897 */
898 int nfs_setlease(struct file *file, long arg, struct file_lock **fl)
899 {
900 dprintk("NFS: setlease(%pD2, arg=%ld)\n", file, arg);
901 return -EINVAL;
902 }
903 EXPORT_SYMBOL_GPL(nfs_setlease);
904
905 const struct file_operations nfs_file_operations = {
906 .llseek = nfs_file_llseek,
907 .read = new_sync_read,
908 .write = new_sync_write,
909 .read_iter = nfs_file_read,
910 .write_iter = nfs_file_write,
911 .mmap = nfs_file_mmap,
912 .open = nfs_file_open,
913 .flush = nfs_file_flush,
914 .release = nfs_file_release,
915 .fsync = nfs_file_fsync,
916 .lock = nfs_lock,
917 .flock = nfs_flock,
918 .splice_read = nfs_file_splice_read,
919 .splice_write = iter_file_splice_write,
920 .check_flags = nfs_check_flags,
921 .setlease = nfs_setlease,
922 };
923 EXPORT_SYMBOL_GPL(nfs_file_operations);