]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/nfs/file.c
Merge tag 'vmwgfx-fixes-3.14-2014-02-05' of git://people.freedesktop.org/~thomash...
[mirror_ubuntu-artful-kernel.git] / fs / nfs / file.c
1 /*
2 * linux/fs/nfs/file.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * Changes Copyright (C) 1994 by Florian La Roche
7 * - Do not copy data too often around in the kernel.
8 * - In nfs_file_read the return value of kmalloc wasn't checked.
9 * - Put in a better version of read look-ahead buffering. Original idea
10 * and implementation by Wai S Kok elekokws@ee.nus.sg.
11 *
12 * Expire cache on write to a file by Wai S Kok (Oct 1994).
13 *
14 * Total rewrite of read side for new NFS buffer cache.. Linus.
15 *
16 * nfs regular file handling functions
17 */
18
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/fcntl.h>
24 #include <linux/stat.h>
25 #include <linux/nfs_fs.h>
26 #include <linux/nfs_mount.h>
27 #include <linux/mm.h>
28 #include <linux/pagemap.h>
29 #include <linux/aio.h>
30 #include <linux/gfp.h>
31 #include <linux/swap.h>
32
33 #include <asm/uaccess.h>
34
35 #include "delegation.h"
36 #include "internal.h"
37 #include "iostat.h"
38 #include "fscache.h"
39
40 #include "nfstrace.h"
41
42 #define NFSDBG_FACILITY NFSDBG_FILE
43
44 static const struct vm_operations_struct nfs_file_vm_ops;
45
46 /* Hack for future NFS swap support */
47 #ifndef IS_SWAPFILE
48 # define IS_SWAPFILE(inode) (0)
49 #endif
50
51 int nfs_check_flags(int flags)
52 {
53 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
54 return -EINVAL;
55
56 return 0;
57 }
58 EXPORT_SYMBOL_GPL(nfs_check_flags);
59
60 /*
61 * Open file
62 */
63 static int
64 nfs_file_open(struct inode *inode, struct file *filp)
65 {
66 int res;
67
68 dprintk("NFS: open file(%pD2)\n", filp);
69
70 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
71 res = nfs_check_flags(filp->f_flags);
72 if (res)
73 return res;
74
75 res = nfs_open(inode, filp);
76 return res;
77 }
78
79 int
80 nfs_file_release(struct inode *inode, struct file *filp)
81 {
82 dprintk("NFS: release(%pD2)\n", filp);
83
84 nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
85 return nfs_release(inode, filp);
86 }
87 EXPORT_SYMBOL_GPL(nfs_file_release);
88
89 /**
90 * nfs_revalidate_size - Revalidate the file size
91 * @inode - pointer to inode struct
92 * @file - pointer to struct file
93 *
94 * Revalidates the file length. This is basically a wrapper around
95 * nfs_revalidate_inode() that takes into account the fact that we may
96 * have cached writes (in which case we don't care about the server's
97 * idea of what the file length is), or O_DIRECT (in which case we
98 * shouldn't trust the cache).
99 */
100 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
101 {
102 struct nfs_server *server = NFS_SERVER(inode);
103 struct nfs_inode *nfsi = NFS_I(inode);
104
105 if (nfs_have_delegated_attributes(inode))
106 goto out_noreval;
107
108 if (filp->f_flags & O_DIRECT)
109 goto force_reval;
110 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
111 goto force_reval;
112 if (nfs_attribute_timeout(inode))
113 goto force_reval;
114 out_noreval:
115 return 0;
116 force_reval:
117 return __nfs_revalidate_inode(server, inode);
118 }
119
120 loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
121 {
122 dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
123 filp, offset, whence);
124
125 /*
126 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
127 * the cached file length
128 */
129 if (whence != SEEK_SET && whence != SEEK_CUR) {
130 struct inode *inode = filp->f_mapping->host;
131
132 int retval = nfs_revalidate_file_size(inode, filp);
133 if (retval < 0)
134 return (loff_t)retval;
135 }
136
137 return generic_file_llseek(filp, offset, whence);
138 }
139 EXPORT_SYMBOL_GPL(nfs_file_llseek);
140
141 /*
142 * Flush all dirty pages, and check for write errors.
143 */
144 int
145 nfs_file_flush(struct file *file, fl_owner_t id)
146 {
147 struct inode *inode = file_inode(file);
148
149 dprintk("NFS: flush(%pD2)\n", file);
150
151 nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
152 if ((file->f_mode & FMODE_WRITE) == 0)
153 return 0;
154
155 /*
156 * If we're holding a write delegation, then just start the i/o
157 * but don't wait for completion (or send a commit).
158 */
159 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
160 return filemap_fdatawrite(file->f_mapping);
161
162 /* Flush writes to the server and return any errors */
163 return vfs_fsync(file, 0);
164 }
165 EXPORT_SYMBOL_GPL(nfs_file_flush);
166
167 ssize_t
168 nfs_file_read(struct kiocb *iocb, const struct iovec *iov,
169 unsigned long nr_segs, loff_t pos)
170 {
171 struct inode *inode = file_inode(iocb->ki_filp);
172 ssize_t result;
173
174 if (iocb->ki_filp->f_flags & O_DIRECT)
175 return nfs_file_direct_read(iocb, iov, nr_segs, pos, true);
176
177 dprintk("NFS: read(%pD2, %lu@%lu)\n",
178 iocb->ki_filp,
179 (unsigned long) iov_length(iov, nr_segs), (unsigned long) pos);
180
181 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
182 if (!result) {
183 result = generic_file_aio_read(iocb, iov, nr_segs, pos);
184 if (result > 0)
185 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
186 }
187 return result;
188 }
189 EXPORT_SYMBOL_GPL(nfs_file_read);
190
191 ssize_t
192 nfs_file_splice_read(struct file *filp, loff_t *ppos,
193 struct pipe_inode_info *pipe, size_t count,
194 unsigned int flags)
195 {
196 struct inode *inode = file_inode(filp);
197 ssize_t res;
198
199 dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n",
200 filp, (unsigned long) count, (unsigned long long) *ppos);
201
202 res = nfs_revalidate_mapping(inode, filp->f_mapping);
203 if (!res) {
204 res = generic_file_splice_read(filp, ppos, pipe, count, flags);
205 if (res > 0)
206 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
207 }
208 return res;
209 }
210 EXPORT_SYMBOL_GPL(nfs_file_splice_read);
211
212 int
213 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
214 {
215 struct inode *inode = file_inode(file);
216 int status;
217
218 dprintk("NFS: mmap(%pD2)\n", file);
219
220 /* Note: generic_file_mmap() returns ENOSYS on nommu systems
221 * so we call that before revalidating the mapping
222 */
223 status = generic_file_mmap(file, vma);
224 if (!status) {
225 vma->vm_ops = &nfs_file_vm_ops;
226 status = nfs_revalidate_mapping(inode, file->f_mapping);
227 }
228 return status;
229 }
230 EXPORT_SYMBOL_GPL(nfs_file_mmap);
231
232 /*
233 * Flush any dirty pages for this process, and check for write errors.
234 * The return status from this call provides a reliable indication of
235 * whether any write errors occurred for this process.
236 *
237 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
238 * disk, but it retrieves and clears ctx->error after synching, despite
239 * the two being set at the same time in nfs_context_set_write_error().
240 * This is because the former is used to notify the _next_ call to
241 * nfs_file_write() that a write error occurred, and hence cause it to
242 * fall back to doing a synchronous write.
243 */
244 int
245 nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
246 {
247 struct nfs_open_context *ctx = nfs_file_open_context(file);
248 struct inode *inode = file_inode(file);
249 int have_error, do_resend, status;
250 int ret = 0;
251
252 dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
253
254 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
255 do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
256 have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
257 status = nfs_commit_inode(inode, FLUSH_SYNC);
258 have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
259 if (have_error) {
260 ret = xchg(&ctx->error, 0);
261 if (ret)
262 goto out;
263 }
264 if (status < 0) {
265 ret = status;
266 goto out;
267 }
268 do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
269 if (do_resend)
270 ret = -EAGAIN;
271 out:
272 return ret;
273 }
274 EXPORT_SYMBOL_GPL(nfs_file_fsync_commit);
275
276 static int
277 nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
278 {
279 int ret;
280 struct inode *inode = file_inode(file);
281
282 trace_nfs_fsync_enter(inode);
283
284 do {
285 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
286 if (ret != 0)
287 break;
288 mutex_lock(&inode->i_mutex);
289 ret = nfs_file_fsync_commit(file, start, end, datasync);
290 mutex_unlock(&inode->i_mutex);
291 /*
292 * If nfs_file_fsync_commit detected a server reboot, then
293 * resend all dirty pages that might have been covered by
294 * the NFS_CONTEXT_RESEND_WRITES flag
295 */
296 start = 0;
297 end = LLONG_MAX;
298 } while (ret == -EAGAIN);
299
300 trace_nfs_fsync_exit(inode, ret);
301 return ret;
302 }
303
304 /*
305 * Decide whether a read/modify/write cycle may be more efficient
306 * then a modify/write/read cycle when writing to a page in the
307 * page cache.
308 *
309 * The modify/write/read cycle may occur if a page is read before
310 * being completely filled by the writer. In this situation, the
311 * page must be completely written to stable storage on the server
312 * before it can be refilled by reading in the page from the server.
313 * This can lead to expensive, small, FILE_SYNC mode writes being
314 * done.
315 *
316 * It may be more efficient to read the page first if the file is
317 * open for reading in addition to writing, the page is not marked
318 * as Uptodate, it is not dirty or waiting to be committed,
319 * indicating that it was previously allocated and then modified,
320 * that there were valid bytes of data in that range of the file,
321 * and that the new data won't completely replace the old data in
322 * that range of the file.
323 */
324 static int nfs_want_read_modify_write(struct file *file, struct page *page,
325 loff_t pos, unsigned len)
326 {
327 unsigned int pglen = nfs_page_length(page);
328 unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
329 unsigned int end = offset + len;
330
331 if ((file->f_mode & FMODE_READ) && /* open for read? */
332 !PageUptodate(page) && /* Uptodate? */
333 !PagePrivate(page) && /* i/o request already? */
334 pglen && /* valid bytes of file? */
335 (end < pglen || offset)) /* replace all valid bytes? */
336 return 1;
337 return 0;
338 }
339
340 /*
341 * This does the "real" work of the write. We must allocate and lock the
342 * page to be sent back to the generic routine, which then copies the
343 * data from user space.
344 *
345 * If the writer ends up delaying the write, the writer needs to
346 * increment the page use counts until he is done with the page.
347 */
348 static int nfs_write_begin(struct file *file, struct address_space *mapping,
349 loff_t pos, unsigned len, unsigned flags,
350 struct page **pagep, void **fsdata)
351 {
352 int ret;
353 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
354 struct page *page;
355 int once_thru = 0;
356
357 dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
358 file, mapping->host->i_ino, len, (long long) pos);
359
360 start:
361 /*
362 * Prevent starvation issues if someone is doing a consistency
363 * sync-to-disk
364 */
365 ret = wait_on_bit(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
366 nfs_wait_bit_killable, TASK_KILLABLE);
367 if (ret)
368 return ret;
369
370 page = grab_cache_page_write_begin(mapping, index, flags);
371 if (!page)
372 return -ENOMEM;
373 *pagep = page;
374
375 ret = nfs_flush_incompatible(file, page);
376 if (ret) {
377 unlock_page(page);
378 page_cache_release(page);
379 } else if (!once_thru &&
380 nfs_want_read_modify_write(file, page, pos, len)) {
381 once_thru = 1;
382 ret = nfs_readpage(file, page);
383 page_cache_release(page);
384 if (!ret)
385 goto start;
386 }
387 return ret;
388 }
389
390 static int nfs_write_end(struct file *file, struct address_space *mapping,
391 loff_t pos, unsigned len, unsigned copied,
392 struct page *page, void *fsdata)
393 {
394 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
395 struct nfs_open_context *ctx = nfs_file_open_context(file);
396 int status;
397
398 dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
399 file, mapping->host->i_ino, len, (long long) pos);
400
401 /*
402 * Zero any uninitialised parts of the page, and then mark the page
403 * as up to date if it turns out that we're extending the file.
404 */
405 if (!PageUptodate(page)) {
406 unsigned pglen = nfs_page_length(page);
407 unsigned end = offset + len;
408
409 if (pglen == 0) {
410 zero_user_segments(page, 0, offset,
411 end, PAGE_CACHE_SIZE);
412 SetPageUptodate(page);
413 } else if (end >= pglen) {
414 zero_user_segment(page, end, PAGE_CACHE_SIZE);
415 if (offset == 0)
416 SetPageUptodate(page);
417 } else
418 zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
419 }
420
421 status = nfs_updatepage(file, page, offset, copied);
422
423 unlock_page(page);
424 page_cache_release(page);
425
426 if (status < 0)
427 return status;
428 NFS_I(mapping->host)->write_io += copied;
429
430 if (nfs_ctx_key_to_expire(ctx)) {
431 status = nfs_wb_all(mapping->host);
432 if (status < 0)
433 return status;
434 }
435
436 return copied;
437 }
438
439 /*
440 * Partially or wholly invalidate a page
441 * - Release the private state associated with a page if undergoing complete
442 * page invalidation
443 * - Called if either PG_private or PG_fscache is set on the page
444 * - Caller holds page lock
445 */
446 static void nfs_invalidate_page(struct page *page, unsigned int offset,
447 unsigned int length)
448 {
449 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
450 page, offset, length);
451
452 if (offset != 0 || length < PAGE_CACHE_SIZE)
453 return;
454 /* Cancel any unstarted writes on this page */
455 nfs_wb_page_cancel(page_file_mapping(page)->host, page);
456
457 nfs_fscache_invalidate_page(page, page->mapping->host);
458 }
459
460 /*
461 * Attempt to release the private state associated with a page
462 * - Called if either PG_private or PG_fscache is set on the page
463 * - Caller holds page lock
464 * - Return true (may release page) or false (may not)
465 */
466 static int nfs_release_page(struct page *page, gfp_t gfp)
467 {
468 struct address_space *mapping = page->mapping;
469
470 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
471
472 /* Only do I/O if gfp is a superset of GFP_KERNEL, and we're not
473 * doing this memory reclaim for a fs-related allocation.
474 */
475 if (mapping && (gfp & GFP_KERNEL) == GFP_KERNEL &&
476 !(current->flags & PF_FSTRANS)) {
477 int how = FLUSH_SYNC;
478
479 /* Don't let kswapd deadlock waiting for OOM RPC calls */
480 if (current_is_kswapd())
481 how = 0;
482 nfs_commit_inode(mapping->host, how);
483 }
484 /* If PagePrivate() is set, then the page is not freeable */
485 if (PagePrivate(page))
486 return 0;
487 return nfs_fscache_release_page(page, gfp);
488 }
489
490 static void nfs_check_dirty_writeback(struct page *page,
491 bool *dirty, bool *writeback)
492 {
493 struct nfs_inode *nfsi;
494 struct address_space *mapping = page_file_mapping(page);
495
496 if (!mapping || PageSwapCache(page))
497 return;
498
499 /*
500 * Check if an unstable page is currently being committed and
501 * if so, have the VM treat it as if the page is under writeback
502 * so it will not block due to pages that will shortly be freeable.
503 */
504 nfsi = NFS_I(mapping->host);
505 if (test_bit(NFS_INO_COMMIT, &nfsi->flags)) {
506 *writeback = true;
507 return;
508 }
509
510 /*
511 * If PagePrivate() is set, then the page is not freeable and as the
512 * inode is not being committed, it's not going to be cleaned in the
513 * near future so treat it as dirty
514 */
515 if (PagePrivate(page))
516 *dirty = true;
517 }
518
519 /*
520 * Attempt to clear the private state associated with a page when an error
521 * occurs that requires the cached contents of an inode to be written back or
522 * destroyed
523 * - Called if either PG_private or fscache is set on the page
524 * - Caller holds page lock
525 * - Return 0 if successful, -error otherwise
526 */
527 static int nfs_launder_page(struct page *page)
528 {
529 struct inode *inode = page_file_mapping(page)->host;
530 struct nfs_inode *nfsi = NFS_I(inode);
531
532 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
533 inode->i_ino, (long long)page_offset(page));
534
535 nfs_fscache_wait_on_page_write(nfsi, page);
536 return nfs_wb_page(inode, page);
537 }
538
539 #ifdef CONFIG_NFS_SWAP
540 static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
541 sector_t *span)
542 {
543 *span = sis->pages;
544 return xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 1);
545 }
546
547 static void nfs_swap_deactivate(struct file *file)
548 {
549 xs_swapper(NFS_CLIENT(file->f_mapping->host)->cl_xprt, 0);
550 }
551 #endif
552
553 const struct address_space_operations nfs_file_aops = {
554 .readpage = nfs_readpage,
555 .readpages = nfs_readpages,
556 .set_page_dirty = __set_page_dirty_nobuffers,
557 .writepage = nfs_writepage,
558 .writepages = nfs_writepages,
559 .write_begin = nfs_write_begin,
560 .write_end = nfs_write_end,
561 .invalidatepage = nfs_invalidate_page,
562 .releasepage = nfs_release_page,
563 .direct_IO = nfs_direct_IO,
564 .migratepage = nfs_migrate_page,
565 .launder_page = nfs_launder_page,
566 .is_dirty_writeback = nfs_check_dirty_writeback,
567 .error_remove_page = generic_error_remove_page,
568 #ifdef CONFIG_NFS_SWAP
569 .swap_activate = nfs_swap_activate,
570 .swap_deactivate = nfs_swap_deactivate,
571 #endif
572 };
573
574 /*
575 * Notification that a PTE pointing to an NFS page is about to be made
576 * writable, implying that someone is about to modify the page through a
577 * shared-writable mapping
578 */
579 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
580 {
581 struct page *page = vmf->page;
582 struct file *filp = vma->vm_file;
583 struct inode *inode = file_inode(filp);
584 unsigned pagelen;
585 int ret = VM_FAULT_NOPAGE;
586 struct address_space *mapping;
587
588 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
589 filp, filp->f_mapping->host->i_ino,
590 (long long)page_offset(page));
591
592 /* make sure the cache has finished storing the page */
593 nfs_fscache_wait_on_page_write(NFS_I(inode), page);
594
595 lock_page(page);
596 mapping = page_file_mapping(page);
597 if (mapping != inode->i_mapping)
598 goto out_unlock;
599
600 wait_on_page_writeback(page);
601
602 pagelen = nfs_page_length(page);
603 if (pagelen == 0)
604 goto out_unlock;
605
606 ret = VM_FAULT_LOCKED;
607 if (nfs_flush_incompatible(filp, page) == 0 &&
608 nfs_updatepage(filp, page, 0, pagelen) == 0)
609 goto out;
610
611 ret = VM_FAULT_SIGBUS;
612 out_unlock:
613 unlock_page(page);
614 out:
615 return ret;
616 }
617
618 static const struct vm_operations_struct nfs_file_vm_ops = {
619 .fault = filemap_fault,
620 .page_mkwrite = nfs_vm_page_mkwrite,
621 .remap_pages = generic_file_remap_pages,
622 };
623
624 static int nfs_need_sync_write(struct file *filp, struct inode *inode)
625 {
626 struct nfs_open_context *ctx;
627
628 if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
629 return 1;
630 ctx = nfs_file_open_context(filp);
631 if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
632 nfs_ctx_key_to_expire(ctx))
633 return 1;
634 return 0;
635 }
636
637 ssize_t nfs_file_write(struct kiocb *iocb, const struct iovec *iov,
638 unsigned long nr_segs, loff_t pos)
639 {
640 struct file *file = iocb->ki_filp;
641 struct inode *inode = file_inode(file);
642 unsigned long written = 0;
643 ssize_t result;
644 size_t count = iov_length(iov, nr_segs);
645
646 result = nfs_key_timeout_notify(file, inode);
647 if (result)
648 return result;
649
650 if (file->f_flags & O_DIRECT)
651 return nfs_file_direct_write(iocb, iov, nr_segs, pos, true);
652
653 dprintk("NFS: write(%pD2, %lu@%Ld)\n",
654 file, (unsigned long) count, (long long) pos);
655
656 result = -EBUSY;
657 if (IS_SWAPFILE(inode))
658 goto out_swapfile;
659 /*
660 * O_APPEND implies that we must revalidate the file length.
661 */
662 if (file->f_flags & O_APPEND) {
663 result = nfs_revalidate_file_size(inode, file);
664 if (result)
665 goto out;
666 }
667
668 result = count;
669 if (!count)
670 goto out;
671
672 result = generic_file_aio_write(iocb, iov, nr_segs, pos);
673 if (result > 0)
674 written = result;
675
676 /* Return error values for O_DSYNC and IS_SYNC() */
677 if (result >= 0 && nfs_need_sync_write(file, inode)) {
678 int err = vfs_fsync(file, 0);
679 if (err < 0)
680 result = err;
681 }
682 if (result > 0)
683 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
684 out:
685 return result;
686
687 out_swapfile:
688 printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
689 goto out;
690 }
691 EXPORT_SYMBOL_GPL(nfs_file_write);
692
693 ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe,
694 struct file *filp, loff_t *ppos,
695 size_t count, unsigned int flags)
696 {
697 struct inode *inode = file_inode(filp);
698 unsigned long written = 0;
699 ssize_t ret;
700
701 dprintk("NFS splice_write(%pD2, %lu@%llu)\n",
702 filp, (unsigned long) count, (unsigned long long) *ppos);
703
704 /*
705 * The combination of splice and an O_APPEND destination is disallowed.
706 */
707
708 ret = generic_file_splice_write(pipe, filp, ppos, count, flags);
709 if (ret > 0)
710 written = ret;
711
712 if (ret >= 0 && nfs_need_sync_write(filp, inode)) {
713 int err = vfs_fsync(filp, 0);
714 if (err < 0)
715 ret = err;
716 }
717 if (ret > 0)
718 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
719 return ret;
720 }
721 EXPORT_SYMBOL_GPL(nfs_file_splice_write);
722
723 static int
724 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
725 {
726 struct inode *inode = filp->f_mapping->host;
727 int status = 0;
728 unsigned int saved_type = fl->fl_type;
729
730 /* Try local locking first */
731 posix_test_lock(filp, fl);
732 if (fl->fl_type != F_UNLCK) {
733 /* found a conflict */
734 goto out;
735 }
736 fl->fl_type = saved_type;
737
738 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
739 goto out_noconflict;
740
741 if (is_local)
742 goto out_noconflict;
743
744 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
745 out:
746 return status;
747 out_noconflict:
748 fl->fl_type = F_UNLCK;
749 goto out;
750 }
751
752 static int do_vfs_lock(struct file *file, struct file_lock *fl)
753 {
754 int res = 0;
755 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
756 case FL_POSIX:
757 res = posix_lock_file_wait(file, fl);
758 break;
759 case FL_FLOCK:
760 res = flock_lock_file_wait(file, fl);
761 break;
762 default:
763 BUG();
764 }
765 return res;
766 }
767
768 static int
769 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
770 {
771 struct inode *inode = filp->f_mapping->host;
772 struct nfs_lock_context *l_ctx;
773 int status;
774
775 /*
776 * Flush all pending writes before doing anything
777 * with locks..
778 */
779 nfs_sync_mapping(filp->f_mapping);
780
781 l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
782 if (!IS_ERR(l_ctx)) {
783 status = nfs_iocounter_wait(&l_ctx->io_count);
784 nfs_put_lock_context(l_ctx);
785 if (status < 0)
786 return status;
787 }
788
789 /* NOTE: special case
790 * If we're signalled while cleaning up locks on process exit, we
791 * still need to complete the unlock.
792 */
793 /*
794 * Use local locking if mounted with "-onolock" or with appropriate
795 * "-olocal_lock="
796 */
797 if (!is_local)
798 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
799 else
800 status = do_vfs_lock(filp, fl);
801 return status;
802 }
803
804 static int
805 is_time_granular(struct timespec *ts) {
806 return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
807 }
808
809 static int
810 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
811 {
812 struct inode *inode = filp->f_mapping->host;
813 int status;
814
815 /*
816 * Flush all pending writes before doing anything
817 * with locks..
818 */
819 status = nfs_sync_mapping(filp->f_mapping);
820 if (status != 0)
821 goto out;
822
823 /*
824 * Use local locking if mounted with "-onolock" or with appropriate
825 * "-olocal_lock="
826 */
827 if (!is_local)
828 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
829 else
830 status = do_vfs_lock(filp, fl);
831 if (status < 0)
832 goto out;
833
834 /*
835 * Revalidate the cache if the server has time stamps granular
836 * enough to detect subsecond changes. Otherwise, clear the
837 * cache to prevent missing any changes.
838 *
839 * This makes locking act as a cache coherency point.
840 */
841 nfs_sync_mapping(filp->f_mapping);
842 if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
843 if (is_time_granular(&NFS_SERVER(inode)->time_delta))
844 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
845 else
846 nfs_zap_caches(inode);
847 }
848 out:
849 return status;
850 }
851
852 /*
853 * Lock a (portion of) a file
854 */
855 int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
856 {
857 struct inode *inode = filp->f_mapping->host;
858 int ret = -ENOLCK;
859 int is_local = 0;
860
861 dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
862 filp, fl->fl_type, fl->fl_flags,
863 (long long)fl->fl_start, (long long)fl->fl_end);
864
865 nfs_inc_stats(inode, NFSIOS_VFSLOCK);
866
867 /* No mandatory locks over NFS */
868 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
869 goto out_err;
870
871 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
872 is_local = 1;
873
874 if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
875 ret = NFS_PROTO(inode)->lock_check_bounds(fl);
876 if (ret < 0)
877 goto out_err;
878 }
879
880 if (IS_GETLK(cmd))
881 ret = do_getlk(filp, cmd, fl, is_local);
882 else if (fl->fl_type == F_UNLCK)
883 ret = do_unlk(filp, cmd, fl, is_local);
884 else
885 ret = do_setlk(filp, cmd, fl, is_local);
886 out_err:
887 return ret;
888 }
889 EXPORT_SYMBOL_GPL(nfs_lock);
890
891 /*
892 * Lock a (portion of) a file
893 */
894 int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
895 {
896 struct inode *inode = filp->f_mapping->host;
897 int is_local = 0;
898
899 dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
900 filp, fl->fl_type, fl->fl_flags);
901
902 if (!(fl->fl_flags & FL_FLOCK))
903 return -ENOLCK;
904
905 /*
906 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
907 * any standard. In principle we might be able to support LOCK_MAND
908 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
909 * NFS code is not set up for it.
910 */
911 if (fl->fl_type & LOCK_MAND)
912 return -EINVAL;
913
914 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
915 is_local = 1;
916
917 /* We're simulating flock() locks using posix locks on the server */
918 fl->fl_owner = (fl_owner_t)filp;
919 fl->fl_start = 0;
920 fl->fl_end = OFFSET_MAX;
921
922 if (fl->fl_type == F_UNLCK)
923 return do_unlk(filp, cmd, fl, is_local);
924 return do_setlk(filp, cmd, fl, is_local);
925 }
926 EXPORT_SYMBOL_GPL(nfs_flock);
927
928 /*
929 * There is no protocol support for leases, so we have no way to implement
930 * them correctly in the face of opens by other clients.
931 */
932 int nfs_setlease(struct file *file, long arg, struct file_lock **fl)
933 {
934 dprintk("NFS: setlease(%pD2, arg=%ld)\n", file, arg);
935 return -EINVAL;
936 }
937 EXPORT_SYMBOL_GPL(nfs_setlease);
938
939 const struct file_operations nfs_file_operations = {
940 .llseek = nfs_file_llseek,
941 .read = do_sync_read,
942 .write = do_sync_write,
943 .aio_read = nfs_file_read,
944 .aio_write = nfs_file_write,
945 .mmap = nfs_file_mmap,
946 .open = nfs_file_open,
947 .flush = nfs_file_flush,
948 .release = nfs_file_release,
949 .fsync = nfs_file_fsync,
950 .lock = nfs_lock,
951 .flock = nfs_flock,
952 .splice_read = nfs_file_splice_read,
953 .splice_write = nfs_file_splice_write,
954 .check_flags = nfs_check_flags,
955 .setlease = nfs_setlease,
956 };
957 EXPORT_SYMBOL_GPL(nfs_file_operations);