]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/nfs/inode.c
SUNRPC: Respond promptly to server TCP resets
[mirror_ubuntu-artful-kernel.git] / fs / nfs / inode.c
1 /*
2 * linux/fs/nfs/inode.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs inode and superblock handling functions
7 *
8 * Modularised by Alan Cox <alan@lxorguk.ukuu.org.uk>, while hacking some
9 * experimental NFS changes. Modularisation taken straight from SYS5 fs.
10 *
11 * Change to nfs_read_super() to permit NFS mounts to multi-homed hosts.
12 * J.S.Peatfield@damtp.cam.ac.uk
13 *
14 */
15
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/time.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/string.h>
23 #include <linux/stat.h>
24 #include <linux/errno.h>
25 #include <linux/unistd.h>
26 #include <linux/sunrpc/clnt.h>
27 #include <linux/sunrpc/stats.h>
28 #include <linux/sunrpc/metrics.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/nfs4_mount.h>
32 #include <linux/lockd/bind.h>
33 #include <linux/smp_lock.h>
34 #include <linux/seq_file.h>
35 #include <linux/mount.h>
36 #include <linux/nfs_idmap.h>
37 #include <linux/vfs.h>
38 #include <linux/inet.h>
39 #include <linux/nfs_xdr.h>
40
41 #include <asm/system.h>
42 #include <asm/uaccess.h>
43
44 #include "nfs4_fs.h"
45 #include "callback.h"
46 #include "delegation.h"
47 #include "iostat.h"
48 #include "internal.h"
49
50 #define NFSDBG_FACILITY NFSDBG_VFS
51
52 #define NFS_64_BIT_INODE_NUMBERS_ENABLED 1
53
54 /* Default is to see 64-bit inode numbers */
55 static int enable_ino64 = NFS_64_BIT_INODE_NUMBERS_ENABLED;
56
57 static void nfs_invalidate_inode(struct inode *);
58 static int nfs_update_inode(struct inode *, struct nfs_fattr *);
59
60 static struct kmem_cache * nfs_inode_cachep;
61
62 static inline unsigned long
63 nfs_fattr_to_ino_t(struct nfs_fattr *fattr)
64 {
65 return nfs_fileid_to_ino_t(fattr->fileid);
66 }
67
68 /**
69 * nfs_compat_user_ino64 - returns the user-visible inode number
70 * @fileid: 64-bit fileid
71 *
72 * This function returns a 32-bit inode number if the boot parameter
73 * nfs.enable_ino64 is zero.
74 */
75 u64 nfs_compat_user_ino64(u64 fileid)
76 {
77 int ino;
78
79 if (enable_ino64)
80 return fileid;
81 ino = fileid;
82 if (sizeof(ino) < sizeof(fileid))
83 ino ^= fileid >> (sizeof(fileid)-sizeof(ino)) * 8;
84 return ino;
85 }
86
87 int nfs_write_inode(struct inode *inode, int sync)
88 {
89 int ret;
90
91 if (sync) {
92 ret = filemap_fdatawait(inode->i_mapping);
93 if (ret == 0)
94 ret = nfs_commit_inode(inode, FLUSH_SYNC);
95 } else
96 ret = nfs_commit_inode(inode, 0);
97 if (ret >= 0)
98 return 0;
99 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
100 return ret;
101 }
102
103 void nfs_clear_inode(struct inode *inode)
104 {
105 /*
106 * The following should never happen...
107 */
108 BUG_ON(nfs_have_writebacks(inode));
109 BUG_ON(!list_empty(&NFS_I(inode)->open_files));
110 nfs_zap_acl_cache(inode);
111 nfs_access_zap_cache(inode);
112 }
113
114 /**
115 * nfs_sync_mapping - helper to flush all mmapped dirty data to disk
116 */
117 int nfs_sync_mapping(struct address_space *mapping)
118 {
119 int ret;
120
121 if (mapping->nrpages == 0)
122 return 0;
123 unmap_mapping_range(mapping, 0, 0, 0);
124 ret = filemap_write_and_wait(mapping);
125 if (ret != 0)
126 goto out;
127 ret = nfs_wb_all(mapping->host);
128 out:
129 return ret;
130 }
131
132 /*
133 * Invalidate the local caches
134 */
135 static void nfs_zap_caches_locked(struct inode *inode)
136 {
137 struct nfs_inode *nfsi = NFS_I(inode);
138 int mode = inode->i_mode;
139
140 nfs_inc_stats(inode, NFSIOS_ATTRINVALIDATE);
141
142 nfsi->attrtimeo = NFS_MINATTRTIMEO(inode);
143 nfsi->attrtimeo_timestamp = jiffies;
144
145 memset(NFS_COOKIEVERF(inode), 0, sizeof(NFS_COOKIEVERF(inode)));
146 if (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))
147 nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA|NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL|NFS_INO_REVAL_PAGECACHE;
148 else
149 nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL|NFS_INO_REVAL_PAGECACHE;
150 }
151
152 void nfs_zap_caches(struct inode *inode)
153 {
154 spin_lock(&inode->i_lock);
155 nfs_zap_caches_locked(inode);
156 spin_unlock(&inode->i_lock);
157 }
158
159 void nfs_zap_mapping(struct inode *inode, struct address_space *mapping)
160 {
161 if (mapping->nrpages != 0) {
162 spin_lock(&inode->i_lock);
163 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
164 spin_unlock(&inode->i_lock);
165 }
166 }
167
168 void nfs_zap_acl_cache(struct inode *inode)
169 {
170 void (*clear_acl_cache)(struct inode *);
171
172 clear_acl_cache = NFS_PROTO(inode)->clear_acl_cache;
173 if (clear_acl_cache != NULL)
174 clear_acl_cache(inode);
175 spin_lock(&inode->i_lock);
176 NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_ACL;
177 spin_unlock(&inode->i_lock);
178 }
179
180 void nfs_invalidate_atime(struct inode *inode)
181 {
182 spin_lock(&inode->i_lock);
183 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
184 spin_unlock(&inode->i_lock);
185 }
186
187 /*
188 * Invalidate, but do not unhash, the inode.
189 * NB: must be called with inode->i_lock held!
190 */
191 static void nfs_invalidate_inode(struct inode *inode)
192 {
193 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
194 nfs_zap_caches_locked(inode);
195 }
196
197 struct nfs_find_desc {
198 struct nfs_fh *fh;
199 struct nfs_fattr *fattr;
200 };
201
202 /*
203 * In NFSv3 we can have 64bit inode numbers. In order to support
204 * this, and re-exported directories (also seen in NFSv2)
205 * we are forced to allow 2 different inodes to have the same
206 * i_ino.
207 */
208 static int
209 nfs_find_actor(struct inode *inode, void *opaque)
210 {
211 struct nfs_find_desc *desc = (struct nfs_find_desc *)opaque;
212 struct nfs_fh *fh = desc->fh;
213 struct nfs_fattr *fattr = desc->fattr;
214
215 if (NFS_FILEID(inode) != fattr->fileid)
216 return 0;
217 if (nfs_compare_fh(NFS_FH(inode), fh))
218 return 0;
219 if (is_bad_inode(inode) || NFS_STALE(inode))
220 return 0;
221 return 1;
222 }
223
224 static int
225 nfs_init_locked(struct inode *inode, void *opaque)
226 {
227 struct nfs_find_desc *desc = (struct nfs_find_desc *)opaque;
228 struct nfs_fattr *fattr = desc->fattr;
229
230 set_nfs_fileid(inode, fattr->fileid);
231 nfs_copy_fh(NFS_FH(inode), desc->fh);
232 return 0;
233 }
234
235 /* Don't use READDIRPLUS on directories that we believe are too large */
236 #define NFS_LIMIT_READDIRPLUS (8*PAGE_SIZE)
237
238 /*
239 * This is our front-end to iget that looks up inodes by file handle
240 * instead of inode number.
241 */
242 struct inode *
243 nfs_fhget(struct super_block *sb, struct nfs_fh *fh, struct nfs_fattr *fattr)
244 {
245 struct nfs_find_desc desc = {
246 .fh = fh,
247 .fattr = fattr
248 };
249 struct inode *inode = ERR_PTR(-ENOENT);
250 unsigned long hash;
251
252 if ((fattr->valid & NFS_ATTR_FATTR) == 0)
253 goto out_no_inode;
254
255 if (!fattr->nlink) {
256 printk("NFS: Buggy server - nlink == 0!\n");
257 goto out_no_inode;
258 }
259
260 hash = nfs_fattr_to_ino_t(fattr);
261
262 inode = iget5_locked(sb, hash, nfs_find_actor, nfs_init_locked, &desc);
263 if (inode == NULL) {
264 inode = ERR_PTR(-ENOMEM);
265 goto out_no_inode;
266 }
267
268 if (inode->i_state & I_NEW) {
269 struct nfs_inode *nfsi = NFS_I(inode);
270 unsigned long now = jiffies;
271
272 /* We set i_ino for the few things that still rely on it,
273 * such as stat(2) */
274 inode->i_ino = hash;
275
276 /* We can't support update_atime(), since the server will reset it */
277 inode->i_flags |= S_NOATIME|S_NOCMTIME;
278 inode->i_mode = fattr->mode;
279 /* Why so? Because we want revalidate for devices/FIFOs, and
280 * that's precisely what we have in nfs_file_inode_operations.
281 */
282 inode->i_op = NFS_SB(sb)->nfs_client->rpc_ops->file_inode_ops;
283 if (S_ISREG(inode->i_mode)) {
284 inode->i_fop = &nfs_file_operations;
285 inode->i_data.a_ops = &nfs_file_aops;
286 inode->i_data.backing_dev_info = &NFS_SB(sb)->backing_dev_info;
287 } else if (S_ISDIR(inode->i_mode)) {
288 inode->i_op = NFS_SB(sb)->nfs_client->rpc_ops->dir_inode_ops;
289 inode->i_fop = &nfs_dir_operations;
290 if (nfs_server_capable(inode, NFS_CAP_READDIRPLUS)
291 && fattr->size <= NFS_LIMIT_READDIRPLUS)
292 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
293 /* Deal with crossing mountpoints */
294 if (!nfs_fsid_equal(&NFS_SB(sb)->fsid, &fattr->fsid)) {
295 if (fattr->valid & NFS_ATTR_FATTR_V4_REFERRAL)
296 inode->i_op = &nfs_referral_inode_operations;
297 else
298 inode->i_op = &nfs_mountpoint_inode_operations;
299 inode->i_fop = NULL;
300 set_bit(NFS_INO_MOUNTPOINT, &nfsi->flags);
301 }
302 } else if (S_ISLNK(inode->i_mode))
303 inode->i_op = &nfs_symlink_inode_operations;
304 else
305 init_special_inode(inode, inode->i_mode, fattr->rdev);
306
307 nfsi->read_cache_jiffies = fattr->time_start;
308 nfsi->attr_gencount = fattr->gencount;
309 inode->i_atime = fattr->atime;
310 inode->i_mtime = fattr->mtime;
311 inode->i_ctime = fattr->ctime;
312 if (fattr->valid & NFS_ATTR_FATTR_V4)
313 nfsi->change_attr = fattr->change_attr;
314 inode->i_size = nfs_size_to_loff_t(fattr->size);
315 inode->i_nlink = fattr->nlink;
316 inode->i_uid = fattr->uid;
317 inode->i_gid = fattr->gid;
318 if (fattr->valid & (NFS_ATTR_FATTR_V3 | NFS_ATTR_FATTR_V4)) {
319 /*
320 * report the blocks in 512byte units
321 */
322 inode->i_blocks = nfs_calc_block_size(fattr->du.nfs3.used);
323 } else {
324 inode->i_blocks = fattr->du.nfs2.blocks;
325 }
326 nfsi->attrtimeo = NFS_MINATTRTIMEO(inode);
327 nfsi->attrtimeo_timestamp = now;
328 memset(nfsi->cookieverf, 0, sizeof(nfsi->cookieverf));
329 nfsi->access_cache = RB_ROOT;
330
331 unlock_new_inode(inode);
332 } else
333 nfs_refresh_inode(inode, fattr);
334 dprintk("NFS: nfs_fhget(%s/%Ld ct=%d)\n",
335 inode->i_sb->s_id,
336 (long long)NFS_FILEID(inode),
337 atomic_read(&inode->i_count));
338
339 out:
340 return inode;
341
342 out_no_inode:
343 dprintk("nfs_fhget: iget failed with error %ld\n", PTR_ERR(inode));
344 goto out;
345 }
346
347 #define NFS_VALID_ATTRS (ATTR_MODE|ATTR_UID|ATTR_GID|ATTR_SIZE|ATTR_ATIME|ATTR_ATIME_SET|ATTR_MTIME|ATTR_MTIME_SET|ATTR_FILE)
348
349 int
350 nfs_setattr(struct dentry *dentry, struct iattr *attr)
351 {
352 struct inode *inode = dentry->d_inode;
353 struct nfs_fattr fattr;
354 int error;
355
356 nfs_inc_stats(inode, NFSIOS_VFSSETATTR);
357
358 /* skip mode change if it's just for clearing setuid/setgid */
359 if (attr->ia_valid & (ATTR_KILL_SUID | ATTR_KILL_SGID))
360 attr->ia_valid &= ~ATTR_MODE;
361
362 if (attr->ia_valid & ATTR_SIZE) {
363 if (!S_ISREG(inode->i_mode) || attr->ia_size == i_size_read(inode))
364 attr->ia_valid &= ~ATTR_SIZE;
365 }
366
367 /* Optimization: if the end result is no change, don't RPC */
368 attr->ia_valid &= NFS_VALID_ATTRS;
369 if ((attr->ia_valid & ~ATTR_FILE) == 0)
370 return 0;
371
372 /* Write all dirty data */
373 if (S_ISREG(inode->i_mode)) {
374 filemap_write_and_wait(inode->i_mapping);
375 nfs_wb_all(inode);
376 }
377 /*
378 * Return any delegations if we're going to change ACLs
379 */
380 if ((attr->ia_valid & (ATTR_MODE|ATTR_UID|ATTR_GID)) != 0)
381 nfs_inode_return_delegation(inode);
382 error = NFS_PROTO(inode)->setattr(dentry, &fattr, attr);
383 if (error == 0)
384 nfs_refresh_inode(inode, &fattr);
385 return error;
386 }
387
388 /**
389 * nfs_vmtruncate - unmap mappings "freed" by truncate() syscall
390 * @inode: inode of the file used
391 * @offset: file offset to start truncating
392 *
393 * This is a copy of the common vmtruncate, but with the locking
394 * corrected to take into account the fact that NFS requires
395 * inode->i_size to be updated under the inode->i_lock.
396 */
397 static int nfs_vmtruncate(struct inode * inode, loff_t offset)
398 {
399 if (i_size_read(inode) < offset) {
400 unsigned long limit;
401
402 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
403 if (limit != RLIM_INFINITY && offset > limit)
404 goto out_sig;
405 if (offset > inode->i_sb->s_maxbytes)
406 goto out_big;
407 spin_lock(&inode->i_lock);
408 i_size_write(inode, offset);
409 spin_unlock(&inode->i_lock);
410 } else {
411 struct address_space *mapping = inode->i_mapping;
412
413 /*
414 * truncation of in-use swapfiles is disallowed - it would
415 * cause subsequent swapout to scribble on the now-freed
416 * blocks.
417 */
418 if (IS_SWAPFILE(inode))
419 return -ETXTBSY;
420 spin_lock(&inode->i_lock);
421 i_size_write(inode, offset);
422 spin_unlock(&inode->i_lock);
423
424 /*
425 * unmap_mapping_range is called twice, first simply for
426 * efficiency so that truncate_inode_pages does fewer
427 * single-page unmaps. However after this first call, and
428 * before truncate_inode_pages finishes, it is possible for
429 * private pages to be COWed, which remain after
430 * truncate_inode_pages finishes, hence the second
431 * unmap_mapping_range call must be made for correctness.
432 */
433 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
434 truncate_inode_pages(mapping, offset);
435 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
436 }
437 return 0;
438 out_sig:
439 send_sig(SIGXFSZ, current, 0);
440 out_big:
441 return -EFBIG;
442 }
443
444 /**
445 * nfs_setattr_update_inode - Update inode metadata after a setattr call.
446 * @inode: pointer to struct inode
447 * @attr: pointer to struct iattr
448 *
449 * Note: we do this in the *proc.c in order to ensure that
450 * it works for things like exclusive creates too.
451 */
452 void nfs_setattr_update_inode(struct inode *inode, struct iattr *attr)
453 {
454 if ((attr->ia_valid & (ATTR_MODE|ATTR_UID|ATTR_GID)) != 0) {
455 spin_lock(&inode->i_lock);
456 if ((attr->ia_valid & ATTR_MODE) != 0) {
457 int mode = attr->ia_mode & S_IALLUGO;
458 mode |= inode->i_mode & ~S_IALLUGO;
459 inode->i_mode = mode;
460 }
461 if ((attr->ia_valid & ATTR_UID) != 0)
462 inode->i_uid = attr->ia_uid;
463 if ((attr->ia_valid & ATTR_GID) != 0)
464 inode->i_gid = attr->ia_gid;
465 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL;
466 spin_unlock(&inode->i_lock);
467 }
468 if ((attr->ia_valid & ATTR_SIZE) != 0) {
469 nfs_inc_stats(inode, NFSIOS_SETATTRTRUNC);
470 nfs_vmtruncate(inode, attr->ia_size);
471 }
472 }
473
474 int nfs_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
475 {
476 struct inode *inode = dentry->d_inode;
477 int need_atime = NFS_I(inode)->cache_validity & NFS_INO_INVALID_ATIME;
478 int err;
479
480 /*
481 * Flush out writes to the server in order to update c/mtime.
482 *
483 * Hold the i_mutex to suspend application writes temporarily;
484 * this prevents long-running writing applications from blocking
485 * nfs_wb_nocommit.
486 */
487 if (S_ISREG(inode->i_mode)) {
488 mutex_lock(&inode->i_mutex);
489 nfs_wb_nocommit(inode);
490 mutex_unlock(&inode->i_mutex);
491 }
492
493 /*
494 * We may force a getattr if the user cares about atime.
495 *
496 * Note that we only have to check the vfsmount flags here:
497 * - NFS always sets S_NOATIME by so checking it would give a
498 * bogus result
499 * - NFS never sets MS_NOATIME or MS_NODIRATIME so there is
500 * no point in checking those.
501 */
502 if ((mnt->mnt_flags & MNT_NOATIME) ||
503 ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
504 need_atime = 0;
505
506 if (need_atime)
507 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
508 else
509 err = nfs_revalidate_inode(NFS_SERVER(inode), inode);
510 if (!err) {
511 generic_fillattr(inode, stat);
512 stat->ino = nfs_compat_user_ino64(NFS_FILEID(inode));
513 }
514 return err;
515 }
516
517 static struct nfs_open_context *alloc_nfs_open_context(struct vfsmount *mnt, struct dentry *dentry, struct rpc_cred *cred)
518 {
519 struct nfs_open_context *ctx;
520
521 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
522 if (ctx != NULL) {
523 ctx->path.dentry = dget(dentry);
524 ctx->path.mnt = mntget(mnt);
525 ctx->cred = get_rpccred(cred);
526 ctx->state = NULL;
527 ctx->lockowner = current->files;
528 ctx->flags = 0;
529 ctx->error = 0;
530 ctx->dir_cookie = 0;
531 atomic_set(&ctx->count, 1);
532 }
533 return ctx;
534 }
535
536 struct nfs_open_context *get_nfs_open_context(struct nfs_open_context *ctx)
537 {
538 if (ctx != NULL)
539 atomic_inc(&ctx->count);
540 return ctx;
541 }
542
543 static void __put_nfs_open_context(struct nfs_open_context *ctx, int wait)
544 {
545 struct inode *inode;
546
547 if (ctx == NULL)
548 return;
549
550 inode = ctx->path.dentry->d_inode;
551 if (!atomic_dec_and_lock(&ctx->count, &inode->i_lock))
552 return;
553 list_del(&ctx->list);
554 spin_unlock(&inode->i_lock);
555 if (ctx->state != NULL) {
556 if (wait)
557 nfs4_close_sync(&ctx->path, ctx->state, ctx->mode);
558 else
559 nfs4_close_state(&ctx->path, ctx->state, ctx->mode);
560 }
561 if (ctx->cred != NULL)
562 put_rpccred(ctx->cred);
563 path_put(&ctx->path);
564 kfree(ctx);
565 }
566
567 void put_nfs_open_context(struct nfs_open_context *ctx)
568 {
569 __put_nfs_open_context(ctx, 0);
570 }
571
572 static void put_nfs_open_context_sync(struct nfs_open_context *ctx)
573 {
574 __put_nfs_open_context(ctx, 1);
575 }
576
577 /*
578 * Ensure that mmap has a recent RPC credential for use when writing out
579 * shared pages
580 */
581 static void nfs_file_set_open_context(struct file *filp, struct nfs_open_context *ctx)
582 {
583 struct inode *inode = filp->f_path.dentry->d_inode;
584 struct nfs_inode *nfsi = NFS_I(inode);
585
586 filp->private_data = get_nfs_open_context(ctx);
587 spin_lock(&inode->i_lock);
588 list_add(&ctx->list, &nfsi->open_files);
589 spin_unlock(&inode->i_lock);
590 }
591
592 /*
593 * Given an inode, search for an open context with the desired characteristics
594 */
595 struct nfs_open_context *nfs_find_open_context(struct inode *inode, struct rpc_cred *cred, int mode)
596 {
597 struct nfs_inode *nfsi = NFS_I(inode);
598 struct nfs_open_context *pos, *ctx = NULL;
599
600 spin_lock(&inode->i_lock);
601 list_for_each_entry(pos, &nfsi->open_files, list) {
602 if (cred != NULL && pos->cred != cred)
603 continue;
604 if ((pos->mode & mode) == mode) {
605 ctx = get_nfs_open_context(pos);
606 break;
607 }
608 }
609 spin_unlock(&inode->i_lock);
610 return ctx;
611 }
612
613 static void nfs_file_clear_open_context(struct file *filp)
614 {
615 struct inode *inode = filp->f_path.dentry->d_inode;
616 struct nfs_open_context *ctx = nfs_file_open_context(filp);
617
618 if (ctx) {
619 filp->private_data = NULL;
620 spin_lock(&inode->i_lock);
621 list_move_tail(&ctx->list, &NFS_I(inode)->open_files);
622 spin_unlock(&inode->i_lock);
623 put_nfs_open_context_sync(ctx);
624 }
625 }
626
627 /*
628 * These allocate and release file read/write context information.
629 */
630 int nfs_open(struct inode *inode, struct file *filp)
631 {
632 struct nfs_open_context *ctx;
633 struct rpc_cred *cred;
634
635 cred = rpc_lookup_cred();
636 if (IS_ERR(cred))
637 return PTR_ERR(cred);
638 ctx = alloc_nfs_open_context(filp->f_path.mnt, filp->f_path.dentry, cred);
639 put_rpccred(cred);
640 if (ctx == NULL)
641 return -ENOMEM;
642 ctx->mode = filp->f_mode;
643 nfs_file_set_open_context(filp, ctx);
644 put_nfs_open_context(ctx);
645 return 0;
646 }
647
648 int nfs_release(struct inode *inode, struct file *filp)
649 {
650 nfs_file_clear_open_context(filp);
651 return 0;
652 }
653
654 /*
655 * This function is called whenever some part of NFS notices that
656 * the cached attributes have to be refreshed.
657 */
658 int
659 __nfs_revalidate_inode(struct nfs_server *server, struct inode *inode)
660 {
661 int status = -ESTALE;
662 struct nfs_fattr fattr;
663 struct nfs_inode *nfsi = NFS_I(inode);
664
665 dfprintk(PAGECACHE, "NFS: revalidating (%s/%Ld)\n",
666 inode->i_sb->s_id, (long long)NFS_FILEID(inode));
667
668 if (is_bad_inode(inode))
669 goto out;
670 if (NFS_STALE(inode))
671 goto out;
672
673 if (NFS_STALE(inode))
674 goto out;
675
676 nfs_inc_stats(inode, NFSIOS_INODEREVALIDATE);
677 status = NFS_PROTO(inode)->getattr(server, NFS_FH(inode), &fattr);
678 if (status != 0) {
679 dfprintk(PAGECACHE, "nfs_revalidate_inode: (%s/%Ld) getattr failed, error=%d\n",
680 inode->i_sb->s_id,
681 (long long)NFS_FILEID(inode), status);
682 if (status == -ESTALE) {
683 nfs_zap_caches(inode);
684 if (!S_ISDIR(inode->i_mode))
685 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
686 }
687 goto out;
688 }
689
690 status = nfs_refresh_inode(inode, &fattr);
691 if (status) {
692 dfprintk(PAGECACHE, "nfs_revalidate_inode: (%s/%Ld) refresh failed, error=%d\n",
693 inode->i_sb->s_id,
694 (long long)NFS_FILEID(inode), status);
695 goto out;
696 }
697
698 if (nfsi->cache_validity & NFS_INO_INVALID_ACL)
699 nfs_zap_acl_cache(inode);
700
701 dfprintk(PAGECACHE, "NFS: (%s/%Ld) revalidation complete\n",
702 inode->i_sb->s_id,
703 (long long)NFS_FILEID(inode));
704
705 out:
706 return status;
707 }
708
709 int nfs_attribute_timeout(struct inode *inode)
710 {
711 struct nfs_inode *nfsi = NFS_I(inode);
712
713 if (nfs_have_delegation(inode, FMODE_READ))
714 return 0;
715 /*
716 * Special case: if the attribute timeout is set to 0, then always
717 * treat the cache as having expired (unless holding
718 * a delegation).
719 */
720 if (nfsi->attrtimeo == 0)
721 return 1;
722 return !time_in_range(jiffies, nfsi->read_cache_jiffies, nfsi->read_cache_jiffies + nfsi->attrtimeo);
723 }
724
725 /**
726 * nfs_revalidate_inode - Revalidate the inode attributes
727 * @server - pointer to nfs_server struct
728 * @inode - pointer to inode struct
729 *
730 * Updates inode attribute information by retrieving the data from the server.
731 */
732 int nfs_revalidate_inode(struct nfs_server *server, struct inode *inode)
733 {
734 if (!(NFS_I(inode)->cache_validity & NFS_INO_INVALID_ATTR)
735 && !nfs_attribute_timeout(inode))
736 return NFS_STALE(inode) ? -ESTALE : 0;
737 return __nfs_revalidate_inode(server, inode);
738 }
739
740 static int nfs_invalidate_mapping_nolock(struct inode *inode, struct address_space *mapping)
741 {
742 struct nfs_inode *nfsi = NFS_I(inode);
743
744 if (mapping->nrpages != 0) {
745 int ret = invalidate_inode_pages2(mapping);
746 if (ret < 0)
747 return ret;
748 }
749 spin_lock(&inode->i_lock);
750 nfsi->cache_validity &= ~NFS_INO_INVALID_DATA;
751 if (S_ISDIR(inode->i_mode))
752 memset(nfsi->cookieverf, 0, sizeof(nfsi->cookieverf));
753 spin_unlock(&inode->i_lock);
754 nfs_inc_stats(inode, NFSIOS_DATAINVALIDATE);
755 dfprintk(PAGECACHE, "NFS: (%s/%Ld) data cache invalidated\n",
756 inode->i_sb->s_id, (long long)NFS_FILEID(inode));
757 return 0;
758 }
759
760 static int nfs_invalidate_mapping(struct inode *inode, struct address_space *mapping)
761 {
762 int ret = 0;
763
764 mutex_lock(&inode->i_mutex);
765 if (NFS_I(inode)->cache_validity & NFS_INO_INVALID_DATA) {
766 ret = nfs_sync_mapping(mapping);
767 if (ret == 0)
768 ret = nfs_invalidate_mapping_nolock(inode, mapping);
769 }
770 mutex_unlock(&inode->i_mutex);
771 return ret;
772 }
773
774 /**
775 * nfs_revalidate_mapping_nolock - Revalidate the pagecache
776 * @inode - pointer to host inode
777 * @mapping - pointer to mapping
778 */
779 int nfs_revalidate_mapping_nolock(struct inode *inode, struct address_space *mapping)
780 {
781 struct nfs_inode *nfsi = NFS_I(inode);
782 int ret = 0;
783
784 if ((nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
785 || nfs_attribute_timeout(inode) || NFS_STALE(inode)) {
786 ret = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
787 if (ret < 0)
788 goto out;
789 }
790 if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
791 ret = nfs_invalidate_mapping_nolock(inode, mapping);
792 out:
793 return ret;
794 }
795
796 /**
797 * nfs_revalidate_mapping - Revalidate the pagecache
798 * @inode - pointer to host inode
799 * @mapping - pointer to mapping
800 *
801 * This version of the function will take the inode->i_mutex and attempt to
802 * flush out all dirty data if it needs to invalidate the page cache.
803 */
804 int nfs_revalidate_mapping(struct inode *inode, struct address_space *mapping)
805 {
806 struct nfs_inode *nfsi = NFS_I(inode);
807 int ret = 0;
808
809 if ((nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
810 || nfs_attribute_timeout(inode) || NFS_STALE(inode)) {
811 ret = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
812 if (ret < 0)
813 goto out;
814 }
815 if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
816 ret = nfs_invalidate_mapping(inode, mapping);
817 out:
818 return ret;
819 }
820
821 static void nfs_wcc_update_inode(struct inode *inode, struct nfs_fattr *fattr)
822 {
823 struct nfs_inode *nfsi = NFS_I(inode);
824
825 if ((fattr->valid & NFS_ATTR_WCC_V4) != 0 &&
826 nfsi->change_attr == fattr->pre_change_attr) {
827 nfsi->change_attr = fattr->change_attr;
828 if (S_ISDIR(inode->i_mode))
829 nfsi->cache_validity |= NFS_INO_INVALID_DATA;
830 }
831 /* If we have atomic WCC data, we may update some attributes */
832 if ((fattr->valid & NFS_ATTR_WCC) != 0) {
833 if (timespec_equal(&inode->i_ctime, &fattr->pre_ctime))
834 memcpy(&inode->i_ctime, &fattr->ctime, sizeof(inode->i_ctime));
835 if (timespec_equal(&inode->i_mtime, &fattr->pre_mtime)) {
836 memcpy(&inode->i_mtime, &fattr->mtime, sizeof(inode->i_mtime));
837 if (S_ISDIR(inode->i_mode))
838 nfsi->cache_validity |= NFS_INO_INVALID_DATA;
839 }
840 if (i_size_read(inode) == nfs_size_to_loff_t(fattr->pre_size) &&
841 nfsi->npages == 0)
842 i_size_write(inode, nfs_size_to_loff_t(fattr->size));
843 }
844 }
845
846 /**
847 * nfs_check_inode_attributes - verify consistency of the inode attribute cache
848 * @inode - pointer to inode
849 * @fattr - updated attributes
850 *
851 * Verifies the attribute cache. If we have just changed the attributes,
852 * so that fattr carries weak cache consistency data, then it may
853 * also update the ctime/mtime/change_attribute.
854 */
855 static int nfs_check_inode_attributes(struct inode *inode, struct nfs_fattr *fattr)
856 {
857 struct nfs_inode *nfsi = NFS_I(inode);
858 loff_t cur_size, new_isize;
859 unsigned long invalid = 0;
860
861
862 /* Has the inode gone and changed behind our back? */
863 if (nfsi->fileid != fattr->fileid
864 || (inode->i_mode & S_IFMT) != (fattr->mode & S_IFMT)) {
865 return -EIO;
866 }
867
868 if ((fattr->valid & NFS_ATTR_FATTR_V4) != 0 &&
869 nfsi->change_attr != fattr->change_attr)
870 invalid |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE;
871
872 /* Verify a few of the more important attributes */
873 if (!timespec_equal(&inode->i_mtime, &fattr->mtime))
874 invalid |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE;
875
876 cur_size = i_size_read(inode);
877 new_isize = nfs_size_to_loff_t(fattr->size);
878 if (cur_size != new_isize && nfsi->npages == 0)
879 invalid |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE;
880
881 /* Have any file permissions changed? */
882 if ((inode->i_mode & S_IALLUGO) != (fattr->mode & S_IALLUGO)
883 || inode->i_uid != fattr->uid
884 || inode->i_gid != fattr->gid)
885 invalid |= NFS_INO_INVALID_ATTR | NFS_INO_INVALID_ACCESS | NFS_INO_INVALID_ACL;
886
887 /* Has the link count changed? */
888 if (inode->i_nlink != fattr->nlink)
889 invalid |= NFS_INO_INVALID_ATTR;
890
891 if (!timespec_equal(&inode->i_atime, &fattr->atime))
892 invalid |= NFS_INO_INVALID_ATIME;
893
894 if (invalid != 0)
895 nfsi->cache_validity |= invalid;
896
897 nfsi->read_cache_jiffies = fattr->time_start;
898 return 0;
899 }
900
901 static int nfs_ctime_need_update(const struct inode *inode, const struct nfs_fattr *fattr)
902 {
903 return timespec_compare(&fattr->ctime, &inode->i_ctime) > 0;
904 }
905
906 static int nfs_size_need_update(const struct inode *inode, const struct nfs_fattr *fattr)
907 {
908 return nfs_size_to_loff_t(fattr->size) > i_size_read(inode);
909 }
910
911 static unsigned long nfs_attr_generation_counter;
912
913 static unsigned long nfs_read_attr_generation_counter(void)
914 {
915 smp_rmb();
916 return nfs_attr_generation_counter;
917 }
918
919 unsigned long nfs_inc_attr_generation_counter(void)
920 {
921 unsigned long ret;
922 smp_rmb();
923 ret = ++nfs_attr_generation_counter;
924 smp_wmb();
925 return ret;
926 }
927
928 void nfs_fattr_init(struct nfs_fattr *fattr)
929 {
930 fattr->valid = 0;
931 fattr->time_start = jiffies;
932 fattr->gencount = nfs_inc_attr_generation_counter();
933 }
934
935 /**
936 * nfs_inode_attrs_need_update - check if the inode attributes need updating
937 * @inode - pointer to inode
938 * @fattr - attributes
939 *
940 * Attempt to divine whether or not an RPC call reply carrying stale
941 * attributes got scheduled after another call carrying updated ones.
942 *
943 * To do so, the function first assumes that a more recent ctime means
944 * that the attributes in fattr are newer, however it also attempt to
945 * catch the case where ctime either didn't change, or went backwards
946 * (if someone reset the clock on the server) by looking at whether
947 * or not this RPC call was started after the inode was last updated.
948 * Note also the check for wraparound of 'attr_gencount'
949 *
950 * The function returns 'true' if it thinks the attributes in 'fattr' are
951 * more recent than the ones cached in the inode.
952 *
953 */
954 static int nfs_inode_attrs_need_update(const struct inode *inode, const struct nfs_fattr *fattr)
955 {
956 const struct nfs_inode *nfsi = NFS_I(inode);
957
958 return ((long)fattr->gencount - (long)nfsi->attr_gencount) > 0 ||
959 nfs_ctime_need_update(inode, fattr) ||
960 nfs_size_need_update(inode, fattr) ||
961 ((long)nfsi->attr_gencount - (long)nfs_read_attr_generation_counter() > 0);
962 }
963
964 static int nfs_refresh_inode_locked(struct inode *inode, struct nfs_fattr *fattr)
965 {
966 if (nfs_inode_attrs_need_update(inode, fattr))
967 return nfs_update_inode(inode, fattr);
968 return nfs_check_inode_attributes(inode, fattr);
969 }
970
971 /**
972 * nfs_refresh_inode - try to update the inode attribute cache
973 * @inode - pointer to inode
974 * @fattr - updated attributes
975 *
976 * Check that an RPC call that returned attributes has not overlapped with
977 * other recent updates of the inode metadata, then decide whether it is
978 * safe to do a full update of the inode attributes, or whether just to
979 * call nfs_check_inode_attributes.
980 */
981 int nfs_refresh_inode(struct inode *inode, struct nfs_fattr *fattr)
982 {
983 int status;
984
985 if ((fattr->valid & NFS_ATTR_FATTR) == 0)
986 return 0;
987 spin_lock(&inode->i_lock);
988 status = nfs_refresh_inode_locked(inode, fattr);
989 spin_unlock(&inode->i_lock);
990 return status;
991 }
992
993 static int nfs_post_op_update_inode_locked(struct inode *inode, struct nfs_fattr *fattr)
994 {
995 struct nfs_inode *nfsi = NFS_I(inode);
996
997 nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE;
998 if (S_ISDIR(inode->i_mode))
999 nfsi->cache_validity |= NFS_INO_INVALID_DATA;
1000 if ((fattr->valid & NFS_ATTR_FATTR) == 0)
1001 return 0;
1002 return nfs_refresh_inode_locked(inode, fattr);
1003 }
1004
1005 /**
1006 * nfs_post_op_update_inode - try to update the inode attribute cache
1007 * @inode - pointer to inode
1008 * @fattr - updated attributes
1009 *
1010 * After an operation that has changed the inode metadata, mark the
1011 * attribute cache as being invalid, then try to update it.
1012 *
1013 * NB: if the server didn't return any post op attributes, this
1014 * function will force the retrieval of attributes before the next
1015 * NFS request. Thus it should be used only for operations that
1016 * are expected to change one or more attributes, to avoid
1017 * unnecessary NFS requests and trips through nfs_update_inode().
1018 */
1019 int nfs_post_op_update_inode(struct inode *inode, struct nfs_fattr *fattr)
1020 {
1021 int status;
1022
1023 spin_lock(&inode->i_lock);
1024 status = nfs_post_op_update_inode_locked(inode, fattr);
1025 spin_unlock(&inode->i_lock);
1026 return status;
1027 }
1028
1029 /**
1030 * nfs_post_op_update_inode_force_wcc - try to update the inode attribute cache
1031 * @inode - pointer to inode
1032 * @fattr - updated attributes
1033 *
1034 * After an operation that has changed the inode metadata, mark the
1035 * attribute cache as being invalid, then try to update it. Fake up
1036 * weak cache consistency data, if none exist.
1037 *
1038 * This function is mainly designed to be used by the ->write_done() functions.
1039 */
1040 int nfs_post_op_update_inode_force_wcc(struct inode *inode, struct nfs_fattr *fattr)
1041 {
1042 int status;
1043
1044 spin_lock(&inode->i_lock);
1045 /* Don't do a WCC update if these attributes are already stale */
1046 if ((fattr->valid & NFS_ATTR_FATTR) == 0 ||
1047 !nfs_inode_attrs_need_update(inode, fattr)) {
1048 fattr->valid &= ~(NFS_ATTR_WCC_V4|NFS_ATTR_WCC);
1049 goto out_noforce;
1050 }
1051 if ((fattr->valid & NFS_ATTR_FATTR_V4) != 0 &&
1052 (fattr->valid & NFS_ATTR_WCC_V4) == 0) {
1053 fattr->pre_change_attr = NFS_I(inode)->change_attr;
1054 fattr->valid |= NFS_ATTR_WCC_V4;
1055 }
1056 if ((fattr->valid & NFS_ATTR_FATTR) != 0 &&
1057 (fattr->valid & NFS_ATTR_WCC) == 0) {
1058 memcpy(&fattr->pre_ctime, &inode->i_ctime, sizeof(fattr->pre_ctime));
1059 memcpy(&fattr->pre_mtime, &inode->i_mtime, sizeof(fattr->pre_mtime));
1060 fattr->pre_size = i_size_read(inode);
1061 fattr->valid |= NFS_ATTR_WCC;
1062 }
1063 out_noforce:
1064 status = nfs_post_op_update_inode_locked(inode, fattr);
1065 spin_unlock(&inode->i_lock);
1066 return status;
1067 }
1068
1069 /*
1070 * Many nfs protocol calls return the new file attributes after
1071 * an operation. Here we update the inode to reflect the state
1072 * of the server's inode.
1073 *
1074 * This is a bit tricky because we have to make sure all dirty pages
1075 * have been sent off to the server before calling invalidate_inode_pages.
1076 * To make sure no other process adds more write requests while we try
1077 * our best to flush them, we make them sleep during the attribute refresh.
1078 *
1079 * A very similar scenario holds for the dir cache.
1080 */
1081 static int nfs_update_inode(struct inode *inode, struct nfs_fattr *fattr)
1082 {
1083 struct nfs_server *server;
1084 struct nfs_inode *nfsi = NFS_I(inode);
1085 loff_t cur_isize, new_isize;
1086 unsigned long invalid = 0;
1087 unsigned long now = jiffies;
1088
1089 dfprintk(VFS, "NFS: %s(%s/%ld ct=%d info=0x%x)\n",
1090 __func__, inode->i_sb->s_id, inode->i_ino,
1091 atomic_read(&inode->i_count), fattr->valid);
1092
1093 if (nfsi->fileid != fattr->fileid)
1094 goto out_fileid;
1095
1096 /*
1097 * Make sure the inode's type hasn't changed.
1098 */
1099 if ((inode->i_mode & S_IFMT) != (fattr->mode & S_IFMT))
1100 goto out_changed;
1101
1102 server = NFS_SERVER(inode);
1103 /* Update the fsid? */
1104 if (S_ISDIR(inode->i_mode) &&
1105 !nfs_fsid_equal(&server->fsid, &fattr->fsid) &&
1106 !test_bit(NFS_INO_MOUNTPOINT, &nfsi->flags))
1107 server->fsid = fattr->fsid;
1108
1109 /*
1110 * Update the read time so we don't revalidate too often.
1111 */
1112 nfsi->read_cache_jiffies = fattr->time_start;
1113
1114 nfsi->cache_validity &= ~(NFS_INO_INVALID_ATTR | NFS_INO_INVALID_ATIME
1115 | NFS_INO_REVAL_PAGECACHE);
1116
1117 /* Do atomic weak cache consistency updates */
1118 nfs_wcc_update_inode(inode, fattr);
1119
1120 /* More cache consistency checks */
1121 if (!(fattr->valid & NFS_ATTR_FATTR_V4)) {
1122 /* NFSv2/v3: Check if the mtime agrees */
1123 if (!timespec_equal(&inode->i_mtime, &fattr->mtime)) {
1124 dprintk("NFS: mtime change on server for file %s/%ld\n",
1125 inode->i_sb->s_id, inode->i_ino);
1126 invalid |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA;
1127 if (S_ISDIR(inode->i_mode))
1128 nfs_force_lookup_revalidate(inode);
1129 }
1130 /* If ctime has changed we should definitely clear access+acl caches */
1131 if (!timespec_equal(&inode->i_ctime, &fattr->ctime))
1132 invalid |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL;
1133 } else if (nfsi->change_attr != fattr->change_attr) {
1134 dprintk("NFS: change_attr change on server for file %s/%ld\n",
1135 inode->i_sb->s_id, inode->i_ino);
1136 invalid |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA|NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL;
1137 if (S_ISDIR(inode->i_mode))
1138 nfs_force_lookup_revalidate(inode);
1139 }
1140
1141 /* Check if our cached file size is stale */
1142 new_isize = nfs_size_to_loff_t(fattr->size);
1143 cur_isize = i_size_read(inode);
1144 if (new_isize != cur_isize) {
1145 /* Do we perhaps have any outstanding writes, or has
1146 * the file grown beyond our last write? */
1147 if (nfsi->npages == 0 || new_isize > cur_isize) {
1148 i_size_write(inode, new_isize);
1149 invalid |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA;
1150 }
1151 dprintk("NFS: isize change on server for file %s/%ld\n",
1152 inode->i_sb->s_id, inode->i_ino);
1153 }
1154
1155
1156 memcpy(&inode->i_mtime, &fattr->mtime, sizeof(inode->i_mtime));
1157 memcpy(&inode->i_ctime, &fattr->ctime, sizeof(inode->i_ctime));
1158 memcpy(&inode->i_atime, &fattr->atime, sizeof(inode->i_atime));
1159 nfsi->change_attr = fattr->change_attr;
1160
1161 if ((inode->i_mode & S_IALLUGO) != (fattr->mode & S_IALLUGO) ||
1162 inode->i_uid != fattr->uid ||
1163 inode->i_gid != fattr->gid)
1164 invalid |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL;
1165
1166 if (inode->i_nlink != fattr->nlink)
1167 invalid |= NFS_INO_INVALID_ATTR;
1168
1169 inode->i_mode = fattr->mode;
1170 inode->i_nlink = fattr->nlink;
1171 inode->i_uid = fattr->uid;
1172 inode->i_gid = fattr->gid;
1173
1174 if (fattr->valid & (NFS_ATTR_FATTR_V3 | NFS_ATTR_FATTR_V4)) {
1175 /*
1176 * report the blocks in 512byte units
1177 */
1178 inode->i_blocks = nfs_calc_block_size(fattr->du.nfs3.used);
1179 } else {
1180 inode->i_blocks = fattr->du.nfs2.blocks;
1181 }
1182
1183 /* Update attrtimeo value if we're out of the unstable period */
1184 if (invalid & NFS_INO_INVALID_ATTR) {
1185 nfs_inc_stats(inode, NFSIOS_ATTRINVALIDATE);
1186 nfsi->attrtimeo = NFS_MINATTRTIMEO(inode);
1187 nfsi->attrtimeo_timestamp = now;
1188 nfsi->attr_gencount = nfs_inc_attr_generation_counter();
1189 } else {
1190 if (!time_in_range(now, nfsi->attrtimeo_timestamp, nfsi->attrtimeo_timestamp + nfsi->attrtimeo)) {
1191 if ((nfsi->attrtimeo <<= 1) > NFS_MAXATTRTIMEO(inode))
1192 nfsi->attrtimeo = NFS_MAXATTRTIMEO(inode);
1193 nfsi->attrtimeo_timestamp = now;
1194 }
1195 }
1196 invalid &= ~NFS_INO_INVALID_ATTR;
1197 /* Don't invalidate the data if we were to blame */
1198 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
1199 || S_ISLNK(inode->i_mode)))
1200 invalid &= ~NFS_INO_INVALID_DATA;
1201 if (!nfs_have_delegation(inode, FMODE_READ) ||
1202 (nfsi->cache_validity & NFS_INO_REVAL_FORCED))
1203 nfsi->cache_validity |= invalid;
1204 nfsi->cache_validity &= ~NFS_INO_REVAL_FORCED;
1205
1206 return 0;
1207 out_changed:
1208 /*
1209 * Big trouble! The inode has become a different object.
1210 */
1211 printk(KERN_DEBUG "%s: inode %ld mode changed, %07o to %07o\n",
1212 __func__, inode->i_ino, inode->i_mode, fattr->mode);
1213 out_err:
1214 /*
1215 * No need to worry about unhashing the dentry, as the
1216 * lookup validation will know that the inode is bad.
1217 * (But we fall through to invalidate the caches.)
1218 */
1219 nfs_invalidate_inode(inode);
1220 return -ESTALE;
1221
1222 out_fileid:
1223 printk(KERN_ERR "NFS: server %s error: fileid changed\n"
1224 "fsid %s: expected fileid 0x%Lx, got 0x%Lx\n",
1225 NFS_SERVER(inode)->nfs_client->cl_hostname, inode->i_sb->s_id,
1226 (long long)nfsi->fileid, (long long)fattr->fileid);
1227 goto out_err;
1228 }
1229
1230
1231 #ifdef CONFIG_NFS_V4
1232
1233 /*
1234 * Clean out any remaining NFSv4 state that might be left over due
1235 * to open() calls that passed nfs_atomic_lookup, but failed to call
1236 * nfs_open().
1237 */
1238 void nfs4_clear_inode(struct inode *inode)
1239 {
1240 /* If we are holding a delegation, return it! */
1241 nfs_inode_return_delegation_noreclaim(inode);
1242 /* First call standard NFS clear_inode() code */
1243 nfs_clear_inode(inode);
1244 }
1245 #endif
1246
1247 struct inode *nfs_alloc_inode(struct super_block *sb)
1248 {
1249 struct nfs_inode *nfsi;
1250 nfsi = (struct nfs_inode *)kmem_cache_alloc(nfs_inode_cachep, GFP_KERNEL);
1251 if (!nfsi)
1252 return NULL;
1253 nfsi->flags = 0UL;
1254 nfsi->cache_validity = 0UL;
1255 #ifdef CONFIG_NFS_V3_ACL
1256 nfsi->acl_access = ERR_PTR(-EAGAIN);
1257 nfsi->acl_default = ERR_PTR(-EAGAIN);
1258 #endif
1259 #ifdef CONFIG_NFS_V4
1260 nfsi->nfs4_acl = NULL;
1261 #endif /* CONFIG_NFS_V4 */
1262 return &nfsi->vfs_inode;
1263 }
1264
1265 void nfs_destroy_inode(struct inode *inode)
1266 {
1267 kmem_cache_free(nfs_inode_cachep, NFS_I(inode));
1268 }
1269
1270 static inline void nfs4_init_once(struct nfs_inode *nfsi)
1271 {
1272 #ifdef CONFIG_NFS_V4
1273 INIT_LIST_HEAD(&nfsi->open_states);
1274 nfsi->delegation = NULL;
1275 nfsi->delegation_state = 0;
1276 init_rwsem(&nfsi->rwsem);
1277 #endif
1278 }
1279
1280 static void init_once(void *foo)
1281 {
1282 struct nfs_inode *nfsi = (struct nfs_inode *) foo;
1283
1284 inode_init_once(&nfsi->vfs_inode);
1285 INIT_LIST_HEAD(&nfsi->open_files);
1286 INIT_LIST_HEAD(&nfsi->access_cache_entry_lru);
1287 INIT_LIST_HEAD(&nfsi->access_cache_inode_lru);
1288 INIT_RADIX_TREE(&nfsi->nfs_page_tree, GFP_ATOMIC);
1289 nfsi->ncommit = 0;
1290 nfsi->npages = 0;
1291 atomic_set(&nfsi->silly_count, 1);
1292 INIT_HLIST_HEAD(&nfsi->silly_list);
1293 init_waitqueue_head(&nfsi->waitqueue);
1294 nfs4_init_once(nfsi);
1295 }
1296
1297 static int __init nfs_init_inodecache(void)
1298 {
1299 nfs_inode_cachep = kmem_cache_create("nfs_inode_cache",
1300 sizeof(struct nfs_inode),
1301 0, (SLAB_RECLAIM_ACCOUNT|
1302 SLAB_MEM_SPREAD),
1303 init_once);
1304 if (nfs_inode_cachep == NULL)
1305 return -ENOMEM;
1306
1307 return 0;
1308 }
1309
1310 static void nfs_destroy_inodecache(void)
1311 {
1312 kmem_cache_destroy(nfs_inode_cachep);
1313 }
1314
1315 struct workqueue_struct *nfsiod_workqueue;
1316
1317 /*
1318 * start up the nfsiod workqueue
1319 */
1320 static int nfsiod_start(void)
1321 {
1322 struct workqueue_struct *wq;
1323 dprintk("RPC: creating workqueue nfsiod\n");
1324 wq = create_singlethread_workqueue("nfsiod");
1325 if (wq == NULL)
1326 return -ENOMEM;
1327 nfsiod_workqueue = wq;
1328 return 0;
1329 }
1330
1331 /*
1332 * Destroy the nfsiod workqueue
1333 */
1334 static void nfsiod_stop(void)
1335 {
1336 struct workqueue_struct *wq;
1337
1338 wq = nfsiod_workqueue;
1339 if (wq == NULL)
1340 return;
1341 nfsiod_workqueue = NULL;
1342 destroy_workqueue(wq);
1343 }
1344
1345 /*
1346 * Initialize NFS
1347 */
1348 static int __init init_nfs_fs(void)
1349 {
1350 int err;
1351
1352 err = nfsiod_start();
1353 if (err)
1354 goto out6;
1355
1356 err = nfs_fs_proc_init();
1357 if (err)
1358 goto out5;
1359
1360 err = nfs_init_nfspagecache();
1361 if (err)
1362 goto out4;
1363
1364 err = nfs_init_inodecache();
1365 if (err)
1366 goto out3;
1367
1368 err = nfs_init_readpagecache();
1369 if (err)
1370 goto out2;
1371
1372 err = nfs_init_writepagecache();
1373 if (err)
1374 goto out1;
1375
1376 err = nfs_init_directcache();
1377 if (err)
1378 goto out0;
1379
1380 #ifdef CONFIG_PROC_FS
1381 rpc_proc_register(&nfs_rpcstat);
1382 #endif
1383 if ((err = register_nfs_fs()) != 0)
1384 goto out;
1385 return 0;
1386 out:
1387 #ifdef CONFIG_PROC_FS
1388 rpc_proc_unregister("nfs");
1389 #endif
1390 nfs_destroy_directcache();
1391 out0:
1392 nfs_destroy_writepagecache();
1393 out1:
1394 nfs_destroy_readpagecache();
1395 out2:
1396 nfs_destroy_inodecache();
1397 out3:
1398 nfs_destroy_nfspagecache();
1399 out4:
1400 nfs_fs_proc_exit();
1401 out5:
1402 nfsiod_stop();
1403 out6:
1404 return err;
1405 }
1406
1407 static void __exit exit_nfs_fs(void)
1408 {
1409 nfs_destroy_directcache();
1410 nfs_destroy_writepagecache();
1411 nfs_destroy_readpagecache();
1412 nfs_destroy_inodecache();
1413 nfs_destroy_nfspagecache();
1414 #ifdef CONFIG_PROC_FS
1415 rpc_proc_unregister("nfs");
1416 #endif
1417 unregister_nfs_fs();
1418 nfs_fs_proc_exit();
1419 nfsiod_stop();
1420 }
1421
1422 /* Not quite true; I just maintain it */
1423 MODULE_AUTHOR("Olaf Kirch <okir@monad.swb.de>");
1424 MODULE_LICENSE("GPL");
1425 module_param(enable_ino64, bool, 0644);
1426
1427 module_init(init_nfs_fs)
1428 module_exit(exit_nfs_fs)