]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/nfs/nfs4proc.c
NFSv4: Fix up a bug in nfs4_open_recover()
[mirror_ubuntu-hirsute-kernel.git] / fs / nfs / nfs4proc.c
1 /*
2 * fs/nfs/nfs4proc.c
3 *
4 * Client-side procedure declarations for NFSv4.
5 *
6 * Copyright (c) 2002 The Regents of the University of Michigan.
7 * All rights reserved.
8 *
9 * Kendrick Smith <kmsmith@umich.edu>
10 * Andy Adamson <andros@umich.edu>
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 *
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #include <linux/mm.h>
39 #include <linux/utsname.h>
40 #include <linux/delay.h>
41 #include <linux/errno.h>
42 #include <linux/string.h>
43 #include <linux/sunrpc/clnt.h>
44 #include <linux/nfs.h>
45 #include <linux/nfs4.h>
46 #include <linux/nfs_fs.h>
47 #include <linux/nfs_page.h>
48 #include <linux/smp_lock.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51
52 #include "nfs4_fs.h"
53 #include "delegation.h"
54 #include "iostat.h"
55
56 #define NFSDBG_FACILITY NFSDBG_PROC
57
58 #define NFS4_POLL_RETRY_MIN (HZ/10)
59 #define NFS4_POLL_RETRY_MAX (15*HZ)
60
61 struct nfs4_opendata;
62 static int _nfs4_proc_open(struct nfs4_opendata *data);
63 static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *);
64 static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *);
65 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry);
66 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception);
67 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs_client *clp);
68
69 /* Prevent leaks of NFSv4 errors into userland */
70 int nfs4_map_errors(int err)
71 {
72 if (err < -1000) {
73 dprintk("%s could not handle NFSv4 error %d\n",
74 __FUNCTION__, -err);
75 return -EIO;
76 }
77 return err;
78 }
79
80 /*
81 * This is our standard bitmap for GETATTR requests.
82 */
83 const u32 nfs4_fattr_bitmap[2] = {
84 FATTR4_WORD0_TYPE
85 | FATTR4_WORD0_CHANGE
86 | FATTR4_WORD0_SIZE
87 | FATTR4_WORD0_FSID
88 | FATTR4_WORD0_FILEID,
89 FATTR4_WORD1_MODE
90 | FATTR4_WORD1_NUMLINKS
91 | FATTR4_WORD1_OWNER
92 | FATTR4_WORD1_OWNER_GROUP
93 | FATTR4_WORD1_RAWDEV
94 | FATTR4_WORD1_SPACE_USED
95 | FATTR4_WORD1_TIME_ACCESS
96 | FATTR4_WORD1_TIME_METADATA
97 | FATTR4_WORD1_TIME_MODIFY
98 };
99
100 const u32 nfs4_statfs_bitmap[2] = {
101 FATTR4_WORD0_FILES_AVAIL
102 | FATTR4_WORD0_FILES_FREE
103 | FATTR4_WORD0_FILES_TOTAL,
104 FATTR4_WORD1_SPACE_AVAIL
105 | FATTR4_WORD1_SPACE_FREE
106 | FATTR4_WORD1_SPACE_TOTAL
107 };
108
109 const u32 nfs4_pathconf_bitmap[2] = {
110 FATTR4_WORD0_MAXLINK
111 | FATTR4_WORD0_MAXNAME,
112 0
113 };
114
115 const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE
116 | FATTR4_WORD0_MAXREAD
117 | FATTR4_WORD0_MAXWRITE
118 | FATTR4_WORD0_LEASE_TIME,
119 0
120 };
121
122 const u32 nfs4_fs_locations_bitmap[2] = {
123 FATTR4_WORD0_TYPE
124 | FATTR4_WORD0_CHANGE
125 | FATTR4_WORD0_SIZE
126 | FATTR4_WORD0_FSID
127 | FATTR4_WORD0_FILEID
128 | FATTR4_WORD0_FS_LOCATIONS,
129 FATTR4_WORD1_MODE
130 | FATTR4_WORD1_NUMLINKS
131 | FATTR4_WORD1_OWNER
132 | FATTR4_WORD1_OWNER_GROUP
133 | FATTR4_WORD1_RAWDEV
134 | FATTR4_WORD1_SPACE_USED
135 | FATTR4_WORD1_TIME_ACCESS
136 | FATTR4_WORD1_TIME_METADATA
137 | FATTR4_WORD1_TIME_MODIFY
138 | FATTR4_WORD1_MOUNTED_ON_FILEID
139 };
140
141 static void nfs4_setup_readdir(u64 cookie, __be32 *verifier, struct dentry *dentry,
142 struct nfs4_readdir_arg *readdir)
143 {
144 __be32 *start, *p;
145
146 BUG_ON(readdir->count < 80);
147 if (cookie > 2) {
148 readdir->cookie = cookie;
149 memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier));
150 return;
151 }
152
153 readdir->cookie = 0;
154 memset(&readdir->verifier, 0, sizeof(readdir->verifier));
155 if (cookie == 2)
156 return;
157
158 /*
159 * NFSv4 servers do not return entries for '.' and '..'
160 * Therefore, we fake these entries here. We let '.'
161 * have cookie 0 and '..' have cookie 1. Note that
162 * when talking to the server, we always send cookie 0
163 * instead of 1 or 2.
164 */
165 start = p = kmap_atomic(*readdir->pages, KM_USER0);
166
167 if (cookie == 0) {
168 *p++ = xdr_one; /* next */
169 *p++ = xdr_zero; /* cookie, first word */
170 *p++ = xdr_one; /* cookie, second word */
171 *p++ = xdr_one; /* entry len */
172 memcpy(p, ".\0\0\0", 4); /* entry */
173 p++;
174 *p++ = xdr_one; /* bitmap length */
175 *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */
176 *p++ = htonl(8); /* attribute buffer length */
177 p = xdr_encode_hyper(p, dentry->d_inode->i_ino);
178 }
179
180 *p++ = xdr_one; /* next */
181 *p++ = xdr_zero; /* cookie, first word */
182 *p++ = xdr_two; /* cookie, second word */
183 *p++ = xdr_two; /* entry len */
184 memcpy(p, "..\0\0", 4); /* entry */
185 p++;
186 *p++ = xdr_one; /* bitmap length */
187 *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */
188 *p++ = htonl(8); /* attribute buffer length */
189 p = xdr_encode_hyper(p, dentry->d_parent->d_inode->i_ino);
190
191 readdir->pgbase = (char *)p - (char *)start;
192 readdir->count -= readdir->pgbase;
193 kunmap_atomic(start, KM_USER0);
194 }
195
196 static void renew_lease(const struct nfs_server *server, unsigned long timestamp)
197 {
198 struct nfs_client *clp = server->nfs_client;
199 spin_lock(&clp->cl_lock);
200 if (time_before(clp->cl_last_renewal,timestamp))
201 clp->cl_last_renewal = timestamp;
202 spin_unlock(&clp->cl_lock);
203 }
204
205 static void update_changeattr(struct inode *dir, struct nfs4_change_info *cinfo)
206 {
207 struct nfs_inode *nfsi = NFS_I(dir);
208
209 spin_lock(&dir->i_lock);
210 nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA;
211 if (cinfo->before == nfsi->change_attr && cinfo->atomic)
212 nfsi->change_attr = cinfo->after;
213 spin_unlock(&dir->i_lock);
214 }
215
216 struct nfs4_opendata {
217 struct kref kref;
218 struct nfs_openargs o_arg;
219 struct nfs_openres o_res;
220 struct nfs_open_confirmargs c_arg;
221 struct nfs_open_confirmres c_res;
222 struct nfs_fattr f_attr;
223 struct nfs_fattr dir_attr;
224 struct path path;
225 struct dentry *dir;
226 struct nfs4_state_owner *owner;
227 struct iattr attrs;
228 unsigned long timestamp;
229 int rpc_status;
230 int cancelled;
231 };
232
233
234 static void nfs4_init_opendata_res(struct nfs4_opendata *p)
235 {
236 p->o_res.f_attr = &p->f_attr;
237 p->o_res.dir_attr = &p->dir_attr;
238 p->o_res.server = p->o_arg.server;
239 nfs_fattr_init(&p->f_attr);
240 nfs_fattr_init(&p->dir_attr);
241 }
242
243 static struct nfs4_opendata *nfs4_opendata_alloc(struct path *path,
244 struct nfs4_state_owner *sp, int flags,
245 const struct iattr *attrs)
246 {
247 struct dentry *parent = dget_parent(path->dentry);
248 struct inode *dir = parent->d_inode;
249 struct nfs_server *server = NFS_SERVER(dir);
250 struct nfs4_opendata *p;
251
252 p = kzalloc(sizeof(*p), GFP_KERNEL);
253 if (p == NULL)
254 goto err;
255 p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
256 if (p->o_arg.seqid == NULL)
257 goto err_free;
258 p->path.mnt = mntget(path->mnt);
259 p->path.dentry = dget(path->dentry);
260 p->dir = parent;
261 p->owner = sp;
262 atomic_inc(&sp->so_count);
263 p->o_arg.fh = NFS_FH(dir);
264 p->o_arg.open_flags = flags,
265 p->o_arg.clientid = server->nfs_client->cl_clientid;
266 p->o_arg.id = sp->so_owner_id.id;
267 p->o_arg.name = &p->path.dentry->d_name;
268 p->o_arg.server = server;
269 p->o_arg.bitmask = server->attr_bitmask;
270 p->o_arg.claim = NFS4_OPEN_CLAIM_NULL;
271 if (flags & O_EXCL) {
272 u32 *s = (u32 *) p->o_arg.u.verifier.data;
273 s[0] = jiffies;
274 s[1] = current->pid;
275 } else if (flags & O_CREAT) {
276 p->o_arg.u.attrs = &p->attrs;
277 memcpy(&p->attrs, attrs, sizeof(p->attrs));
278 }
279 p->c_arg.fh = &p->o_res.fh;
280 p->c_arg.stateid = &p->o_res.stateid;
281 p->c_arg.seqid = p->o_arg.seqid;
282 nfs4_init_opendata_res(p);
283 kref_init(&p->kref);
284 return p;
285 err_free:
286 kfree(p);
287 err:
288 dput(parent);
289 return NULL;
290 }
291
292 static void nfs4_opendata_free(struct kref *kref)
293 {
294 struct nfs4_opendata *p = container_of(kref,
295 struct nfs4_opendata, kref);
296
297 nfs_free_seqid(p->o_arg.seqid);
298 nfs4_put_state_owner(p->owner);
299 dput(p->dir);
300 dput(p->path.dentry);
301 mntput(p->path.mnt);
302 kfree(p);
303 }
304
305 static void nfs4_opendata_put(struct nfs4_opendata *p)
306 {
307 if (p != NULL)
308 kref_put(&p->kref, nfs4_opendata_free);
309 }
310
311 static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task)
312 {
313 sigset_t oldset;
314 int ret;
315
316 rpc_clnt_sigmask(task->tk_client, &oldset);
317 ret = rpc_wait_for_completion_task(task);
318 rpc_clnt_sigunmask(task->tk_client, &oldset);
319 return ret;
320 }
321
322 static inline void update_open_stateflags(struct nfs4_state *state, mode_t open_flags)
323 {
324 switch (open_flags) {
325 case FMODE_WRITE:
326 state->n_wronly++;
327 break;
328 case FMODE_READ:
329 state->n_rdonly++;
330 break;
331 case FMODE_READ|FMODE_WRITE:
332 state->n_rdwr++;
333 }
334 }
335
336 static void update_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags)
337 {
338 struct inode *inode = state->inode;
339
340 open_flags &= (FMODE_READ|FMODE_WRITE);
341 /* Protect against nfs4_find_state_byowner() */
342 spin_lock(&state->owner->so_lock);
343 spin_lock(&inode->i_lock);
344 memcpy(&state->stateid, stateid, sizeof(state->stateid));
345 update_open_stateflags(state, open_flags);
346 nfs4_state_set_mode_locked(state, state->state | open_flags);
347 spin_unlock(&inode->i_lock);
348 spin_unlock(&state->owner->so_lock);
349 }
350
351 static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data)
352 {
353 struct inode *inode;
354 struct nfs4_state *state = NULL;
355
356 if (!(data->f_attr.valid & NFS_ATTR_FATTR))
357 goto out;
358 inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr);
359 if (IS_ERR(inode))
360 goto out;
361 state = nfs4_get_open_state(inode, data->owner);
362 if (state == NULL)
363 goto put_inode;
364 update_open_stateid(state, &data->o_res.stateid, data->o_arg.open_flags);
365 if (data->o_res.delegation_type != 0) {
366 struct nfs_inode *nfsi = NFS_I(inode);
367 int delegation_flags = 0;
368
369 if (nfsi->delegation)
370 delegation_flags = nfsi->delegation->flags;
371 if (!(delegation_flags & NFS_DELEGATION_NEED_RECLAIM))
372 nfs_inode_set_delegation(state->inode,
373 data->owner->so_cred,
374 &data->o_res);
375 else
376 nfs_inode_reclaim_delegation(state->inode,
377 data->owner->so_cred,
378 &data->o_res);
379 }
380 put_inode:
381 iput(inode);
382 out:
383 return state;
384 }
385
386 static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state)
387 {
388 struct nfs_inode *nfsi = NFS_I(state->inode);
389 struct nfs_open_context *ctx;
390
391 spin_lock(&state->inode->i_lock);
392 list_for_each_entry(ctx, &nfsi->open_files, list) {
393 if (ctx->state != state)
394 continue;
395 get_nfs_open_context(ctx);
396 spin_unlock(&state->inode->i_lock);
397 return ctx;
398 }
399 spin_unlock(&state->inode->i_lock);
400 return ERR_PTR(-ENOENT);
401 }
402
403 static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, mode_t openflags, struct nfs4_state **res)
404 {
405 struct nfs4_state *newstate;
406 int ret;
407
408 opendata->o_arg.open_flags = openflags;
409 memset(&opendata->o_res, 0, sizeof(opendata->o_res));
410 memset(&opendata->c_res, 0, sizeof(opendata->c_res));
411 nfs4_init_opendata_res(opendata);
412 ret = _nfs4_proc_open(opendata);
413 if (ret != 0)
414 return ret;
415 newstate = nfs4_opendata_to_nfs4_state(opendata);
416 if (newstate != NULL)
417 nfs4_close_state(&opendata->path, newstate, openflags);
418 *res = newstate;
419 return 0;
420 }
421
422 static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state)
423 {
424 struct nfs4_state *newstate;
425 int ret;
426
427 /* memory barrier prior to reading state->n_* */
428 clear_bit(NFS_DELEGATED_STATE, &state->flags);
429 smp_rmb();
430 if (state->n_rdwr != 0) {
431 ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &newstate);
432 if (ret != 0)
433 return ret;
434 if (newstate != state)
435 return -ESTALE;
436 }
437 if (state->n_wronly != 0) {
438 ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &newstate);
439 if (ret != 0)
440 return ret;
441 if (newstate != state)
442 return -ESTALE;
443 }
444 if (state->n_rdonly != 0) {
445 ret = nfs4_open_recover_helper(opendata, FMODE_READ, &newstate);
446 if (ret != 0)
447 return ret;
448 if (newstate != state)
449 return -ESTALE;
450 }
451 return 0;
452 }
453
454 /*
455 * OPEN_RECLAIM:
456 * reclaim state on the server after a reboot.
457 */
458 static int _nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state)
459 {
460 struct nfs_delegation *delegation = NFS_I(state->inode)->delegation;
461 struct nfs4_opendata *opendata;
462 int delegation_type = 0;
463 int status;
464
465 if (delegation != NULL) {
466 if (!(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
467 memcpy(&state->stateid, &delegation->stateid,
468 sizeof(state->stateid));
469 set_bit(NFS_DELEGATED_STATE, &state->flags);
470 return 0;
471 }
472 delegation_type = delegation->type;
473 }
474 opendata = nfs4_opendata_alloc(&ctx->path, state->owner, 0, NULL);
475 if (opendata == NULL)
476 return -ENOMEM;
477 opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS;
478 opendata->o_arg.fh = NFS_FH(state->inode);
479 nfs_copy_fh(&opendata->o_res.fh, opendata->o_arg.fh);
480 opendata->o_arg.u.delegation_type = delegation_type;
481 status = nfs4_open_recover(opendata, state);
482 nfs4_opendata_put(opendata);
483 return status;
484 }
485
486 static int nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state)
487 {
488 struct nfs_server *server = NFS_SERVER(state->inode);
489 struct nfs4_exception exception = { };
490 int err;
491 do {
492 err = _nfs4_do_open_reclaim(ctx, state);
493 if (err != -NFS4ERR_DELAY)
494 break;
495 nfs4_handle_exception(server, err, &exception);
496 } while (exception.retry);
497 return err;
498 }
499
500 static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
501 {
502 struct nfs_open_context *ctx;
503 int ret;
504
505 ctx = nfs4_state_find_open_context(state);
506 if (IS_ERR(ctx))
507 return PTR_ERR(ctx);
508 ret = nfs4_do_open_reclaim(ctx, state);
509 put_nfs_open_context(ctx);
510 return ret;
511 }
512
513 static int _nfs4_open_delegation_recall(struct nfs_open_context *ctx, struct nfs4_state *state)
514 {
515 struct nfs4_state_owner *sp = state->owner;
516 struct nfs4_opendata *opendata;
517 int ret;
518
519 if (!test_bit(NFS_DELEGATED_STATE, &state->flags))
520 return 0;
521 opendata = nfs4_opendata_alloc(&ctx->path, sp, 0, NULL);
522 if (opendata == NULL)
523 return -ENOMEM;
524 opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR;
525 memcpy(opendata->o_arg.u.delegation.data, state->stateid.data,
526 sizeof(opendata->o_arg.u.delegation.data));
527 ret = nfs4_open_recover(opendata, state);
528 nfs4_opendata_put(opendata);
529 return ret;
530 }
531
532 int nfs4_open_delegation_recall(struct nfs_open_context *ctx, struct nfs4_state *state)
533 {
534 struct nfs4_exception exception = { };
535 struct nfs_server *server = NFS_SERVER(state->inode);
536 int err;
537 do {
538 err = _nfs4_open_delegation_recall(ctx, state);
539 switch (err) {
540 case 0:
541 return err;
542 case -NFS4ERR_STALE_CLIENTID:
543 case -NFS4ERR_STALE_STATEID:
544 case -NFS4ERR_EXPIRED:
545 /* Don't recall a delegation if it was lost */
546 nfs4_schedule_state_recovery(server->nfs_client);
547 return err;
548 }
549 err = nfs4_handle_exception(server, err, &exception);
550 } while (exception.retry);
551 return err;
552 }
553
554 static void nfs4_open_confirm_prepare(struct rpc_task *task, void *calldata)
555 {
556 struct nfs4_opendata *data = calldata;
557 struct rpc_message msg = {
558 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM],
559 .rpc_argp = &data->c_arg,
560 .rpc_resp = &data->c_res,
561 .rpc_cred = data->owner->so_cred,
562 };
563 data->timestamp = jiffies;
564 rpc_call_setup(task, &msg, 0);
565 }
566
567 static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata)
568 {
569 struct nfs4_opendata *data = calldata;
570
571 data->rpc_status = task->tk_status;
572 if (RPC_ASSASSINATED(task))
573 return;
574 if (data->rpc_status == 0) {
575 memcpy(data->o_res.stateid.data, data->c_res.stateid.data,
576 sizeof(data->o_res.stateid.data));
577 renew_lease(data->o_res.server, data->timestamp);
578 }
579 nfs_increment_open_seqid(data->rpc_status, data->c_arg.seqid);
580 nfs_confirm_seqid(&data->owner->so_seqid, data->rpc_status);
581 }
582
583 static void nfs4_open_confirm_release(void *calldata)
584 {
585 struct nfs4_opendata *data = calldata;
586 struct nfs4_state *state = NULL;
587
588 /* If this request hasn't been cancelled, do nothing */
589 if (data->cancelled == 0)
590 goto out_free;
591 /* In case of error, no cleanup! */
592 if (data->rpc_status != 0)
593 goto out_free;
594 nfs_confirm_seqid(&data->owner->so_seqid, 0);
595 state = nfs4_opendata_to_nfs4_state(data);
596 if (state != NULL)
597 nfs4_close_state(&data->path, state, data->o_arg.open_flags);
598 out_free:
599 nfs4_opendata_put(data);
600 }
601
602 static const struct rpc_call_ops nfs4_open_confirm_ops = {
603 .rpc_call_prepare = nfs4_open_confirm_prepare,
604 .rpc_call_done = nfs4_open_confirm_done,
605 .rpc_release = nfs4_open_confirm_release,
606 };
607
608 /*
609 * Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata
610 */
611 static int _nfs4_proc_open_confirm(struct nfs4_opendata *data)
612 {
613 struct nfs_server *server = NFS_SERVER(data->dir->d_inode);
614 struct rpc_task *task;
615 int status;
616
617 kref_get(&data->kref);
618 /*
619 * If rpc_run_task() ends up calling ->rpc_release(), we
620 * want to ensure that it takes the 'error' code path.
621 */
622 data->rpc_status = -ENOMEM;
623 task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_confirm_ops, data);
624 if (IS_ERR(task))
625 return PTR_ERR(task);
626 status = nfs4_wait_for_completion_rpc_task(task);
627 if (status != 0) {
628 data->cancelled = 1;
629 smp_wmb();
630 } else
631 status = data->rpc_status;
632 rpc_put_task(task);
633 return status;
634 }
635
636 static void nfs4_open_prepare(struct rpc_task *task, void *calldata)
637 {
638 struct nfs4_opendata *data = calldata;
639 struct nfs4_state_owner *sp = data->owner;
640 struct rpc_message msg = {
641 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN],
642 .rpc_argp = &data->o_arg,
643 .rpc_resp = &data->o_res,
644 .rpc_cred = sp->so_cred,
645 };
646
647 if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0)
648 return;
649 /* Update sequence id. */
650 data->o_arg.id = sp->so_owner_id.id;
651 data->o_arg.clientid = sp->so_client->cl_clientid;
652 if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS)
653 msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR];
654 data->timestamp = jiffies;
655 rpc_call_setup(task, &msg, 0);
656 }
657
658 static void nfs4_open_done(struct rpc_task *task, void *calldata)
659 {
660 struct nfs4_opendata *data = calldata;
661
662 data->rpc_status = task->tk_status;
663 if (RPC_ASSASSINATED(task))
664 return;
665 if (task->tk_status == 0) {
666 switch (data->o_res.f_attr->mode & S_IFMT) {
667 case S_IFREG:
668 break;
669 case S_IFLNK:
670 data->rpc_status = -ELOOP;
671 break;
672 case S_IFDIR:
673 data->rpc_status = -EISDIR;
674 break;
675 default:
676 data->rpc_status = -ENOTDIR;
677 }
678 renew_lease(data->o_res.server, data->timestamp);
679 }
680 nfs_increment_open_seqid(data->rpc_status, data->o_arg.seqid);
681 }
682
683 static void nfs4_open_release(void *calldata)
684 {
685 struct nfs4_opendata *data = calldata;
686 struct nfs4_state *state = NULL;
687
688 /* If this request hasn't been cancelled, do nothing */
689 if (data->cancelled == 0)
690 goto out_free;
691 /* In case of error, no cleanup! */
692 if (data->rpc_status != 0)
693 goto out_free;
694 /* In case we need an open_confirm, no cleanup! */
695 if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)
696 goto out_free;
697 nfs_confirm_seqid(&data->owner->so_seqid, 0);
698 state = nfs4_opendata_to_nfs4_state(data);
699 if (state != NULL)
700 nfs4_close_state(&data->path, state, data->o_arg.open_flags);
701 out_free:
702 nfs4_opendata_put(data);
703 }
704
705 static const struct rpc_call_ops nfs4_open_ops = {
706 .rpc_call_prepare = nfs4_open_prepare,
707 .rpc_call_done = nfs4_open_done,
708 .rpc_release = nfs4_open_release,
709 };
710
711 /*
712 * Note: On error, nfs4_proc_open will free the struct nfs4_opendata
713 */
714 static int _nfs4_proc_open(struct nfs4_opendata *data)
715 {
716 struct inode *dir = data->dir->d_inode;
717 struct nfs_server *server = NFS_SERVER(dir);
718 struct nfs_openargs *o_arg = &data->o_arg;
719 struct nfs_openres *o_res = &data->o_res;
720 struct rpc_task *task;
721 int status;
722
723 kref_get(&data->kref);
724 /*
725 * If rpc_run_task() ends up calling ->rpc_release(), we
726 * want to ensure that it takes the 'error' code path.
727 */
728 data->rpc_status = -ENOMEM;
729 data->cancelled = 0;
730 task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_ops, data);
731 if (IS_ERR(task))
732 return PTR_ERR(task);
733 status = nfs4_wait_for_completion_rpc_task(task);
734 if (status != 0) {
735 data->cancelled = 1;
736 smp_wmb();
737 } else
738 status = data->rpc_status;
739 rpc_put_task(task);
740 if (status != 0)
741 return status;
742
743 if (o_arg->open_flags & O_CREAT) {
744 update_changeattr(dir, &o_res->cinfo);
745 nfs_post_op_update_inode(dir, o_res->dir_attr);
746 } else
747 nfs_refresh_inode(dir, o_res->dir_attr);
748 if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
749 status = _nfs4_proc_open_confirm(data);
750 if (status != 0)
751 return status;
752 }
753 nfs_confirm_seqid(&data->owner->so_seqid, 0);
754 if (!(o_res->f_attr->valid & NFS_ATTR_FATTR))
755 return server->nfs_client->rpc_ops->getattr(server, &o_res->fh, o_res->f_attr);
756 return 0;
757 }
758
759 static int _nfs4_do_access(struct inode *inode, struct rpc_cred *cred, int openflags)
760 {
761 struct nfs_access_entry cache;
762 int mask = 0;
763 int status;
764
765 if (openflags & FMODE_READ)
766 mask |= MAY_READ;
767 if (openflags & FMODE_WRITE)
768 mask |= MAY_WRITE;
769 if (openflags & FMODE_EXEC)
770 mask |= MAY_EXEC;
771 status = nfs_access_get_cached(inode, cred, &cache);
772 if (status == 0)
773 goto out;
774
775 /* Be clever: ask server to check for all possible rights */
776 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
777 cache.cred = cred;
778 cache.jiffies = jiffies;
779 status = _nfs4_proc_access(inode, &cache);
780 if (status != 0)
781 return status;
782 nfs_access_add_cache(inode, &cache);
783 out:
784 if ((cache.mask & mask) == mask)
785 return 0;
786 return -EACCES;
787 }
788
789 static int nfs4_recover_expired_lease(struct nfs_server *server)
790 {
791 struct nfs_client *clp = server->nfs_client;
792 int ret;
793
794 for (;;) {
795 ret = nfs4_wait_clnt_recover(server->client, clp);
796 if (ret != 0)
797 return ret;
798 if (!test_and_clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state))
799 break;
800 nfs4_schedule_state_recovery(clp);
801 }
802 return 0;
803 }
804
805 /*
806 * OPEN_EXPIRED:
807 * reclaim state on the server after a network partition.
808 * Assumes caller holds the appropriate lock
809 */
810 static int _nfs4_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state)
811 {
812 struct inode *inode = state->inode;
813 struct nfs_delegation *delegation = NFS_I(inode)->delegation;
814 struct nfs4_opendata *opendata;
815 int openflags = state->state & (FMODE_READ|FMODE_WRITE);
816 int ret;
817
818 if (delegation != NULL && !(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
819 ret = _nfs4_do_access(inode, ctx->cred, openflags);
820 if (ret < 0)
821 return ret;
822 memcpy(&state->stateid, &delegation->stateid, sizeof(state->stateid));
823 set_bit(NFS_DELEGATED_STATE, &state->flags);
824 return 0;
825 }
826 opendata = nfs4_opendata_alloc(&ctx->path, state->owner, openflags, NULL);
827 if (opendata == NULL)
828 return -ENOMEM;
829 ret = nfs4_open_recover(opendata, state);
830 if (ret == -ESTALE) {
831 /* Invalidate the state owner so we don't ever use it again */
832 nfs4_drop_state_owner(state->owner);
833 d_drop(ctx->path.dentry);
834 }
835 nfs4_opendata_put(opendata);
836 return ret;
837 }
838
839 static inline int nfs4_do_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state)
840 {
841 struct nfs_server *server = NFS_SERVER(state->inode);
842 struct nfs4_exception exception = { };
843 int err;
844
845 do {
846 err = _nfs4_open_expired(ctx, state);
847 if (err == -NFS4ERR_DELAY)
848 nfs4_handle_exception(server, err, &exception);
849 } while (exception.retry);
850 return err;
851 }
852
853 static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
854 {
855 struct nfs_open_context *ctx;
856 int ret;
857
858 ctx = nfs4_state_find_open_context(state);
859 if (IS_ERR(ctx))
860 return PTR_ERR(ctx);
861 ret = nfs4_do_open_expired(ctx, state);
862 put_nfs_open_context(ctx);
863 return ret;
864 }
865
866 /*
867 * Returns a referenced nfs4_state if there is an open delegation on the file
868 */
869 static int _nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred, struct nfs4_state **res)
870 {
871 struct nfs_delegation *delegation;
872 struct nfs_server *server = NFS_SERVER(inode);
873 struct nfs_client *clp = server->nfs_client;
874 struct nfs_inode *nfsi = NFS_I(inode);
875 struct nfs4_state_owner *sp = NULL;
876 struct nfs4_state *state = NULL;
877 int open_flags = flags & (FMODE_READ|FMODE_WRITE);
878 int err;
879
880 err = -ENOMEM;
881 if (!(sp = nfs4_get_state_owner(server, cred))) {
882 dprintk("%s: nfs4_get_state_owner failed!\n", __FUNCTION__);
883 return err;
884 }
885 err = nfs4_recover_expired_lease(server);
886 if (err != 0)
887 goto out_put_state_owner;
888 /* Protect against reboot recovery - NOTE ORDER! */
889 down_read(&clp->cl_sem);
890 /* Protect against delegation recall */
891 down_read(&nfsi->rwsem);
892 delegation = NFS_I(inode)->delegation;
893 err = -ENOENT;
894 if (delegation == NULL || (delegation->type & open_flags) != open_flags)
895 goto out_err;
896 err = -ENOMEM;
897 state = nfs4_get_open_state(inode, sp);
898 if (state == NULL)
899 goto out_err;
900
901 err = -ENOENT;
902 if ((state->state & open_flags) == open_flags) {
903 spin_lock(&inode->i_lock);
904 update_open_stateflags(state, open_flags);
905 spin_unlock(&inode->i_lock);
906 goto out_ok;
907 } else if (state->state != 0)
908 goto out_put_open_state;
909
910 lock_kernel();
911 err = _nfs4_do_access(inode, cred, open_flags);
912 unlock_kernel();
913 if (err != 0)
914 goto out_put_open_state;
915 set_bit(NFS_DELEGATED_STATE, &state->flags);
916 update_open_stateid(state, &delegation->stateid, open_flags);
917 out_ok:
918 nfs4_put_state_owner(sp);
919 up_read(&nfsi->rwsem);
920 up_read(&clp->cl_sem);
921 *res = state;
922 return 0;
923 out_put_open_state:
924 nfs4_put_open_state(state);
925 out_err:
926 up_read(&nfsi->rwsem);
927 up_read(&clp->cl_sem);
928 if (err != -EACCES)
929 nfs_inode_return_delegation(inode);
930 out_put_state_owner:
931 nfs4_put_state_owner(sp);
932 return err;
933 }
934
935 static struct nfs4_state *nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred)
936 {
937 struct nfs4_exception exception = { };
938 struct nfs4_state *res = ERR_PTR(-EIO);
939 int err;
940
941 do {
942 err = _nfs4_open_delegated(inode, flags, cred, &res);
943 if (err == 0)
944 break;
945 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(inode),
946 err, &exception));
947 } while (exception.retry);
948 return res;
949 }
950
951 /*
952 * on an EXCLUSIVE create, the server should send back a bitmask with FATTR4-*
953 * fields corresponding to attributes that were used to store the verifier.
954 * Make sure we clobber those fields in the later setattr call
955 */
956 static inline void nfs4_exclusive_attrset(struct nfs4_opendata *opendata, struct iattr *sattr)
957 {
958 if ((opendata->o_res.attrset[1] & FATTR4_WORD1_TIME_ACCESS) &&
959 !(sattr->ia_valid & ATTR_ATIME_SET))
960 sattr->ia_valid |= ATTR_ATIME;
961
962 if ((opendata->o_res.attrset[1] & FATTR4_WORD1_TIME_MODIFY) &&
963 !(sattr->ia_valid & ATTR_MTIME_SET))
964 sattr->ia_valid |= ATTR_MTIME;
965 }
966
967 /*
968 * Returns a referenced nfs4_state
969 */
970 static int _nfs4_do_open(struct inode *dir, struct path *path, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res)
971 {
972 struct nfs4_state_owner *sp;
973 struct nfs4_state *state = NULL;
974 struct nfs_server *server = NFS_SERVER(dir);
975 struct nfs_client *clp = server->nfs_client;
976 struct nfs4_opendata *opendata;
977 int status;
978
979 /* Protect against reboot recovery conflicts */
980 status = -ENOMEM;
981 if (!(sp = nfs4_get_state_owner(server, cred))) {
982 dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n");
983 goto out_err;
984 }
985 status = nfs4_recover_expired_lease(server);
986 if (status != 0)
987 goto err_put_state_owner;
988 down_read(&clp->cl_sem);
989 status = -ENOMEM;
990 opendata = nfs4_opendata_alloc(path, sp, flags, sattr);
991 if (opendata == NULL)
992 goto err_release_rwsem;
993
994 status = _nfs4_proc_open(opendata);
995 if (status != 0)
996 goto err_opendata_put;
997
998 if (opendata->o_arg.open_flags & O_EXCL)
999 nfs4_exclusive_attrset(opendata, sattr);
1000
1001 status = -ENOMEM;
1002 state = nfs4_opendata_to_nfs4_state(opendata);
1003 if (state == NULL)
1004 goto err_opendata_put;
1005 nfs4_opendata_put(opendata);
1006 nfs4_put_state_owner(sp);
1007 up_read(&clp->cl_sem);
1008 *res = state;
1009 return 0;
1010 err_opendata_put:
1011 nfs4_opendata_put(opendata);
1012 err_release_rwsem:
1013 up_read(&clp->cl_sem);
1014 err_put_state_owner:
1015 nfs4_put_state_owner(sp);
1016 out_err:
1017 *res = NULL;
1018 return status;
1019 }
1020
1021
1022 static struct nfs4_state *nfs4_do_open(struct inode *dir, struct path *path, int flags, struct iattr *sattr, struct rpc_cred *cred)
1023 {
1024 struct nfs4_exception exception = { };
1025 struct nfs4_state *res;
1026 int status;
1027
1028 do {
1029 status = _nfs4_do_open(dir, path, flags, sattr, cred, &res);
1030 if (status == 0)
1031 break;
1032 /* NOTE: BAD_SEQID means the server and client disagree about the
1033 * book-keeping w.r.t. state-changing operations
1034 * (OPEN/CLOSE/LOCK/LOCKU...)
1035 * It is actually a sign of a bug on the client or on the server.
1036 *
1037 * If we receive a BAD_SEQID error in the particular case of
1038 * doing an OPEN, we assume that nfs_increment_open_seqid() will
1039 * have unhashed the old state_owner for us, and that we can
1040 * therefore safely retry using a new one. We should still warn
1041 * the user though...
1042 */
1043 if (status == -NFS4ERR_BAD_SEQID) {
1044 printk(KERN_WARNING "NFS: v4 server returned a bad sequence-id error!\n");
1045 exception.retry = 1;
1046 continue;
1047 }
1048 /*
1049 * BAD_STATEID on OPEN means that the server cancelled our
1050 * state before it received the OPEN_CONFIRM.
1051 * Recover by retrying the request as per the discussion
1052 * on Page 181 of RFC3530.
1053 */
1054 if (status == -NFS4ERR_BAD_STATEID) {
1055 exception.retry = 1;
1056 continue;
1057 }
1058 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir),
1059 status, &exception));
1060 } while (exception.retry);
1061 return res;
1062 }
1063
1064 static int _nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1065 struct iattr *sattr, struct nfs4_state *state)
1066 {
1067 struct nfs_server *server = NFS_SERVER(inode);
1068 struct nfs_setattrargs arg = {
1069 .fh = NFS_FH(inode),
1070 .iap = sattr,
1071 .server = server,
1072 .bitmask = server->attr_bitmask,
1073 };
1074 struct nfs_setattrres res = {
1075 .fattr = fattr,
1076 .server = server,
1077 };
1078 struct rpc_message msg = {
1079 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
1080 .rpc_argp = &arg,
1081 .rpc_resp = &res,
1082 };
1083 unsigned long timestamp = jiffies;
1084 int status;
1085
1086 nfs_fattr_init(fattr);
1087
1088 if (nfs4_copy_delegation_stateid(&arg.stateid, inode)) {
1089 /* Use that stateid */
1090 } else if (state != NULL) {
1091 msg.rpc_cred = state->owner->so_cred;
1092 nfs4_copy_stateid(&arg.stateid, state, current->files);
1093 } else
1094 memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid));
1095
1096 status = rpc_call_sync(server->client, &msg, 0);
1097 if (status == 0 && state != NULL)
1098 renew_lease(server, timestamp);
1099 return status;
1100 }
1101
1102 static int nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1103 struct iattr *sattr, struct nfs4_state *state)
1104 {
1105 struct nfs_server *server = NFS_SERVER(inode);
1106 struct nfs4_exception exception = { };
1107 int err;
1108 do {
1109 err = nfs4_handle_exception(server,
1110 _nfs4_do_setattr(inode, fattr, sattr, state),
1111 &exception);
1112 } while (exception.retry);
1113 return err;
1114 }
1115
1116 struct nfs4_closedata {
1117 struct path path;
1118 struct inode *inode;
1119 struct nfs4_state *state;
1120 struct nfs_closeargs arg;
1121 struct nfs_closeres res;
1122 struct nfs_fattr fattr;
1123 unsigned long timestamp;
1124 };
1125
1126 static void nfs4_free_closedata(void *data)
1127 {
1128 struct nfs4_closedata *calldata = data;
1129 struct nfs4_state_owner *sp = calldata->state->owner;
1130
1131 nfs4_put_open_state(calldata->state);
1132 nfs_free_seqid(calldata->arg.seqid);
1133 nfs4_put_state_owner(sp);
1134 dput(calldata->path.dentry);
1135 mntput(calldata->path.mnt);
1136 kfree(calldata);
1137 }
1138
1139 static void nfs4_close_done(struct rpc_task *task, void *data)
1140 {
1141 struct nfs4_closedata *calldata = data;
1142 struct nfs4_state *state = calldata->state;
1143 struct nfs_server *server = NFS_SERVER(calldata->inode);
1144
1145 if (RPC_ASSASSINATED(task))
1146 return;
1147 /* hmm. we are done with the inode, and in the process of freeing
1148 * the state_owner. we keep this around to process errors
1149 */
1150 nfs_increment_open_seqid(task->tk_status, calldata->arg.seqid);
1151 switch (task->tk_status) {
1152 case 0:
1153 memcpy(&state->stateid, &calldata->res.stateid,
1154 sizeof(state->stateid));
1155 renew_lease(server, calldata->timestamp);
1156 break;
1157 case -NFS4ERR_STALE_STATEID:
1158 case -NFS4ERR_EXPIRED:
1159 break;
1160 default:
1161 if (nfs4_async_handle_error(task, server) == -EAGAIN) {
1162 rpc_restart_call(task);
1163 return;
1164 }
1165 }
1166 nfs_refresh_inode(calldata->inode, calldata->res.fattr);
1167 }
1168
1169 static void nfs4_close_prepare(struct rpc_task *task, void *data)
1170 {
1171 struct nfs4_closedata *calldata = data;
1172 struct nfs4_state *state = calldata->state;
1173 struct rpc_message msg = {
1174 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE],
1175 .rpc_argp = &calldata->arg,
1176 .rpc_resp = &calldata->res,
1177 .rpc_cred = state->owner->so_cred,
1178 };
1179 int mode = 0, old_mode;
1180
1181 if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
1182 return;
1183 /* Recalculate the new open mode in case someone reopened the file
1184 * while we were waiting in line to be scheduled.
1185 */
1186 spin_lock(&state->owner->so_lock);
1187 spin_lock(&calldata->inode->i_lock);
1188 mode = old_mode = state->state;
1189 if (state->n_rdwr == 0) {
1190 if (state->n_rdonly == 0)
1191 mode &= ~FMODE_READ;
1192 if (state->n_wronly == 0)
1193 mode &= ~FMODE_WRITE;
1194 }
1195 nfs4_state_set_mode_locked(state, mode);
1196 spin_unlock(&calldata->inode->i_lock);
1197 spin_unlock(&state->owner->so_lock);
1198 if (mode == old_mode || test_bit(NFS_DELEGATED_STATE, &state->flags)) {
1199 /* Note: exit _without_ calling nfs4_close_done */
1200 task->tk_action = NULL;
1201 return;
1202 }
1203 nfs_fattr_init(calldata->res.fattr);
1204 if (mode != 0)
1205 msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
1206 calldata->arg.open_flags = mode;
1207 calldata->timestamp = jiffies;
1208 rpc_call_setup(task, &msg, 0);
1209 }
1210
1211 static const struct rpc_call_ops nfs4_close_ops = {
1212 .rpc_call_prepare = nfs4_close_prepare,
1213 .rpc_call_done = nfs4_close_done,
1214 .rpc_release = nfs4_free_closedata,
1215 };
1216
1217 /*
1218 * It is possible for data to be read/written from a mem-mapped file
1219 * after the sys_close call (which hits the vfs layer as a flush).
1220 * This means that we can't safely call nfsv4 close on a file until
1221 * the inode is cleared. This in turn means that we are not good
1222 * NFSv4 citizens - we do not indicate to the server to update the file's
1223 * share state even when we are done with one of the three share
1224 * stateid's in the inode.
1225 *
1226 * NOTE: Caller must be holding the sp->so_owner semaphore!
1227 */
1228 int nfs4_do_close(struct path *path, struct nfs4_state *state)
1229 {
1230 struct nfs_server *server = NFS_SERVER(state->inode);
1231 struct nfs4_closedata *calldata;
1232 struct nfs4_state_owner *sp = state->owner;
1233 struct rpc_task *task;
1234 int status = -ENOMEM;
1235
1236 calldata = kmalloc(sizeof(*calldata), GFP_KERNEL);
1237 if (calldata == NULL)
1238 goto out;
1239 calldata->inode = state->inode;
1240 calldata->state = state;
1241 calldata->arg.fh = NFS_FH(state->inode);
1242 calldata->arg.stateid = &state->stateid;
1243 /* Serialization for the sequence id */
1244 calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid);
1245 if (calldata->arg.seqid == NULL)
1246 goto out_free_calldata;
1247 calldata->arg.bitmask = server->attr_bitmask;
1248 calldata->res.fattr = &calldata->fattr;
1249 calldata->res.server = server;
1250 calldata->path.mnt = mntget(path->mnt);
1251 calldata->path.dentry = dget(path->dentry);
1252
1253 task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_close_ops, calldata);
1254 if (IS_ERR(task))
1255 return PTR_ERR(task);
1256 rpc_put_task(task);
1257 return 0;
1258 out_free_calldata:
1259 kfree(calldata);
1260 out:
1261 nfs4_put_open_state(state);
1262 nfs4_put_state_owner(sp);
1263 return status;
1264 }
1265
1266 static int nfs4_intent_set_file(struct nameidata *nd, struct path *path, struct nfs4_state *state)
1267 {
1268 struct file *filp;
1269 int ret;
1270
1271 /* If the open_intent is for execute, we have an extra check to make */
1272 if (nd->intent.open.flags & FMODE_EXEC) {
1273 ret = _nfs4_do_access(state->inode,
1274 state->owner->so_cred,
1275 nd->intent.open.flags);
1276 if (ret < 0)
1277 goto out_close;
1278 }
1279 filp = lookup_instantiate_filp(nd, path->dentry, NULL);
1280 if (!IS_ERR(filp)) {
1281 struct nfs_open_context *ctx;
1282 ctx = (struct nfs_open_context *)filp->private_data;
1283 ctx->state = state;
1284 return 0;
1285 }
1286 ret = PTR_ERR(filp);
1287 out_close:
1288 nfs4_close_state(path, state, nd->intent.open.flags);
1289 return ret;
1290 }
1291
1292 struct dentry *
1293 nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1294 {
1295 struct path path = {
1296 .mnt = nd->mnt,
1297 .dentry = dentry,
1298 };
1299 struct iattr attr;
1300 struct rpc_cred *cred;
1301 struct nfs4_state *state;
1302 struct dentry *res;
1303
1304 if (nd->flags & LOOKUP_CREATE) {
1305 attr.ia_mode = nd->intent.open.create_mode;
1306 attr.ia_valid = ATTR_MODE;
1307 if (!IS_POSIXACL(dir))
1308 attr.ia_mode &= ~current->fs->umask;
1309 } else {
1310 attr.ia_valid = 0;
1311 BUG_ON(nd->intent.open.flags & O_CREAT);
1312 }
1313
1314 cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
1315 if (IS_ERR(cred))
1316 return (struct dentry *)cred;
1317 state = nfs4_do_open(dir, &path, nd->intent.open.flags, &attr, cred);
1318 put_rpccred(cred);
1319 if (IS_ERR(state)) {
1320 if (PTR_ERR(state) == -ENOENT)
1321 d_add(dentry, NULL);
1322 return (struct dentry *)state;
1323 }
1324 res = d_add_unique(dentry, igrab(state->inode));
1325 if (res != NULL)
1326 dentry = res;
1327 nfs4_intent_set_file(nd, &path, state);
1328 return res;
1329 }
1330
1331 int
1332 nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd)
1333 {
1334 struct path path = {
1335 .mnt = nd->mnt,
1336 .dentry = dentry,
1337 };
1338 struct rpc_cred *cred;
1339 struct nfs4_state *state;
1340
1341 cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
1342 if (IS_ERR(cred))
1343 return PTR_ERR(cred);
1344 state = nfs4_open_delegated(dentry->d_inode, openflags, cred);
1345 if (IS_ERR(state))
1346 state = nfs4_do_open(dir, &path, openflags, NULL, cred);
1347 put_rpccred(cred);
1348 if (IS_ERR(state)) {
1349 switch (PTR_ERR(state)) {
1350 case -EPERM:
1351 case -EACCES:
1352 case -EDQUOT:
1353 case -ENOSPC:
1354 case -EROFS:
1355 lookup_instantiate_filp(nd, (struct dentry *)state, NULL);
1356 return 1;
1357 default:
1358 goto out_drop;
1359 }
1360 }
1361 if (state->inode == dentry->d_inode) {
1362 nfs4_intent_set_file(nd, &path, state);
1363 return 1;
1364 }
1365 nfs4_close_state(&path, state, openflags);
1366 out_drop:
1367 d_drop(dentry);
1368 return 0;
1369 }
1370
1371
1372 static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1373 {
1374 struct nfs4_server_caps_res res = {};
1375 struct rpc_message msg = {
1376 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS],
1377 .rpc_argp = fhandle,
1378 .rpc_resp = &res,
1379 };
1380 int status;
1381
1382 status = rpc_call_sync(server->client, &msg, 0);
1383 if (status == 0) {
1384 memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask));
1385 if (res.attr_bitmask[0] & FATTR4_WORD0_ACL)
1386 server->caps |= NFS_CAP_ACLS;
1387 if (res.has_links != 0)
1388 server->caps |= NFS_CAP_HARDLINKS;
1389 if (res.has_symlinks != 0)
1390 server->caps |= NFS_CAP_SYMLINKS;
1391 server->acl_bitmask = res.acl_bitmask;
1392 }
1393 return status;
1394 }
1395
1396 int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1397 {
1398 struct nfs4_exception exception = { };
1399 int err;
1400 do {
1401 err = nfs4_handle_exception(server,
1402 _nfs4_server_capabilities(server, fhandle),
1403 &exception);
1404 } while (exception.retry);
1405 return err;
1406 }
1407
1408 static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1409 struct nfs_fsinfo *info)
1410 {
1411 struct nfs4_lookup_root_arg args = {
1412 .bitmask = nfs4_fattr_bitmap,
1413 };
1414 struct nfs4_lookup_res res = {
1415 .server = server,
1416 .fattr = info->fattr,
1417 .fh = fhandle,
1418 };
1419 struct rpc_message msg = {
1420 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT],
1421 .rpc_argp = &args,
1422 .rpc_resp = &res,
1423 };
1424 nfs_fattr_init(info->fattr);
1425 return rpc_call_sync(server->client, &msg, 0);
1426 }
1427
1428 static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1429 struct nfs_fsinfo *info)
1430 {
1431 struct nfs4_exception exception = { };
1432 int err;
1433 do {
1434 err = nfs4_handle_exception(server,
1435 _nfs4_lookup_root(server, fhandle, info),
1436 &exception);
1437 } while (exception.retry);
1438 return err;
1439 }
1440
1441 /*
1442 * get the file handle for the "/" directory on the server
1443 */
1444 static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle,
1445 struct nfs_fsinfo *info)
1446 {
1447 int status;
1448
1449 status = nfs4_lookup_root(server, fhandle, info);
1450 if (status == 0)
1451 status = nfs4_server_capabilities(server, fhandle);
1452 if (status == 0)
1453 status = nfs4_do_fsinfo(server, fhandle, info);
1454 return nfs4_map_errors(status);
1455 }
1456
1457 /*
1458 * Get locations and (maybe) other attributes of a referral.
1459 * Note that we'll actually follow the referral later when
1460 * we detect fsid mismatch in inode revalidation
1461 */
1462 static int nfs4_get_referral(struct inode *dir, struct qstr *name, struct nfs_fattr *fattr, struct nfs_fh *fhandle)
1463 {
1464 int status = -ENOMEM;
1465 struct page *page = NULL;
1466 struct nfs4_fs_locations *locations = NULL;
1467
1468 page = alloc_page(GFP_KERNEL);
1469 if (page == NULL)
1470 goto out;
1471 locations = kmalloc(sizeof(struct nfs4_fs_locations), GFP_KERNEL);
1472 if (locations == NULL)
1473 goto out;
1474
1475 status = nfs4_proc_fs_locations(dir, name, locations, page);
1476 if (status != 0)
1477 goto out;
1478 /* Make sure server returned a different fsid for the referral */
1479 if (nfs_fsid_equal(&NFS_SERVER(dir)->fsid, &locations->fattr.fsid)) {
1480 dprintk("%s: server did not return a different fsid for a referral at %s\n", __FUNCTION__, name->name);
1481 status = -EIO;
1482 goto out;
1483 }
1484
1485 memcpy(fattr, &locations->fattr, sizeof(struct nfs_fattr));
1486 fattr->valid |= NFS_ATTR_FATTR_V4_REFERRAL;
1487 if (!fattr->mode)
1488 fattr->mode = S_IFDIR;
1489 memset(fhandle, 0, sizeof(struct nfs_fh));
1490 out:
1491 if (page)
1492 __free_page(page);
1493 if (locations)
1494 kfree(locations);
1495 return status;
1496 }
1497
1498 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1499 {
1500 struct nfs4_getattr_arg args = {
1501 .fh = fhandle,
1502 .bitmask = server->attr_bitmask,
1503 };
1504 struct nfs4_getattr_res res = {
1505 .fattr = fattr,
1506 .server = server,
1507 };
1508 struct rpc_message msg = {
1509 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
1510 .rpc_argp = &args,
1511 .rpc_resp = &res,
1512 };
1513
1514 nfs_fattr_init(fattr);
1515 return rpc_call_sync(server->client, &msg, 0);
1516 }
1517
1518 static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1519 {
1520 struct nfs4_exception exception = { };
1521 int err;
1522 do {
1523 err = nfs4_handle_exception(server,
1524 _nfs4_proc_getattr(server, fhandle, fattr),
1525 &exception);
1526 } while (exception.retry);
1527 return err;
1528 }
1529
1530 /*
1531 * The file is not closed if it is opened due to the a request to change
1532 * the size of the file. The open call will not be needed once the
1533 * VFS layer lookup-intents are implemented.
1534 *
1535 * Close is called when the inode is destroyed.
1536 * If we haven't opened the file for O_WRONLY, we
1537 * need to in the size_change case to obtain a stateid.
1538 *
1539 * Got race?
1540 * Because OPEN is always done by name in nfsv4, it is
1541 * possible that we opened a different file by the same
1542 * name. We can recognize this race condition, but we
1543 * can't do anything about it besides returning an error.
1544 *
1545 * This will be fixed with VFS changes (lookup-intent).
1546 */
1547 static int
1548 nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
1549 struct iattr *sattr)
1550 {
1551 struct rpc_cred *cred;
1552 struct inode *inode = dentry->d_inode;
1553 struct nfs_open_context *ctx;
1554 struct nfs4_state *state = NULL;
1555 int status;
1556
1557 nfs_fattr_init(fattr);
1558
1559 cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1560 if (IS_ERR(cred))
1561 return PTR_ERR(cred);
1562
1563 /* Search for an existing open(O_WRITE) file */
1564 ctx = nfs_find_open_context(inode, cred, FMODE_WRITE);
1565 if (ctx != NULL)
1566 state = ctx->state;
1567
1568 status = nfs4_do_setattr(inode, fattr, sattr, state);
1569 if (status == 0)
1570 nfs_setattr_update_inode(inode, sattr);
1571 if (ctx != NULL)
1572 put_nfs_open_context(ctx);
1573 put_rpccred(cred);
1574 return status;
1575 }
1576
1577 static int _nfs4_proc_lookupfh(struct nfs_server *server, struct nfs_fh *dirfh,
1578 struct qstr *name, struct nfs_fh *fhandle,
1579 struct nfs_fattr *fattr)
1580 {
1581 int status;
1582 struct nfs4_lookup_arg args = {
1583 .bitmask = server->attr_bitmask,
1584 .dir_fh = dirfh,
1585 .name = name,
1586 };
1587 struct nfs4_lookup_res res = {
1588 .server = server,
1589 .fattr = fattr,
1590 .fh = fhandle,
1591 };
1592 struct rpc_message msg = {
1593 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1594 .rpc_argp = &args,
1595 .rpc_resp = &res,
1596 };
1597
1598 nfs_fattr_init(fattr);
1599
1600 dprintk("NFS call lookupfh %s\n", name->name);
1601 status = rpc_call_sync(server->client, &msg, 0);
1602 dprintk("NFS reply lookupfh: %d\n", status);
1603 return status;
1604 }
1605
1606 static int nfs4_proc_lookupfh(struct nfs_server *server, struct nfs_fh *dirfh,
1607 struct qstr *name, struct nfs_fh *fhandle,
1608 struct nfs_fattr *fattr)
1609 {
1610 struct nfs4_exception exception = { };
1611 int err;
1612 do {
1613 err = _nfs4_proc_lookupfh(server, dirfh, name, fhandle, fattr);
1614 /* FIXME: !!!! */
1615 if (err == -NFS4ERR_MOVED) {
1616 err = -EREMOTE;
1617 break;
1618 }
1619 err = nfs4_handle_exception(server, err, &exception);
1620 } while (exception.retry);
1621 return err;
1622 }
1623
1624 static int _nfs4_proc_lookup(struct inode *dir, struct qstr *name,
1625 struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1626 {
1627 int status;
1628
1629 dprintk("NFS call lookup %s\n", name->name);
1630 status = _nfs4_proc_lookupfh(NFS_SERVER(dir), NFS_FH(dir), name, fhandle, fattr);
1631 if (status == -NFS4ERR_MOVED)
1632 status = nfs4_get_referral(dir, name, fattr, fhandle);
1633 dprintk("NFS reply lookup: %d\n", status);
1634 return status;
1635 }
1636
1637 static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1638 {
1639 struct nfs4_exception exception = { };
1640 int err;
1641 do {
1642 err = nfs4_handle_exception(NFS_SERVER(dir),
1643 _nfs4_proc_lookup(dir, name, fhandle, fattr),
1644 &exception);
1645 } while (exception.retry);
1646 return err;
1647 }
1648
1649 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1650 {
1651 struct nfs4_accessargs args = {
1652 .fh = NFS_FH(inode),
1653 };
1654 struct nfs4_accessres res = { 0 };
1655 struct rpc_message msg = {
1656 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS],
1657 .rpc_argp = &args,
1658 .rpc_resp = &res,
1659 .rpc_cred = entry->cred,
1660 };
1661 int mode = entry->mask;
1662 int status;
1663
1664 /*
1665 * Determine which access bits we want to ask for...
1666 */
1667 if (mode & MAY_READ)
1668 args.access |= NFS4_ACCESS_READ;
1669 if (S_ISDIR(inode->i_mode)) {
1670 if (mode & MAY_WRITE)
1671 args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE;
1672 if (mode & MAY_EXEC)
1673 args.access |= NFS4_ACCESS_LOOKUP;
1674 } else {
1675 if (mode & MAY_WRITE)
1676 args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND;
1677 if (mode & MAY_EXEC)
1678 args.access |= NFS4_ACCESS_EXECUTE;
1679 }
1680 status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1681 if (!status) {
1682 entry->mask = 0;
1683 if (res.access & NFS4_ACCESS_READ)
1684 entry->mask |= MAY_READ;
1685 if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
1686 entry->mask |= MAY_WRITE;
1687 if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
1688 entry->mask |= MAY_EXEC;
1689 }
1690 return status;
1691 }
1692
1693 static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1694 {
1695 struct nfs4_exception exception = { };
1696 int err;
1697 do {
1698 err = nfs4_handle_exception(NFS_SERVER(inode),
1699 _nfs4_proc_access(inode, entry),
1700 &exception);
1701 } while (exception.retry);
1702 return err;
1703 }
1704
1705 /*
1706 * TODO: For the time being, we don't try to get any attributes
1707 * along with any of the zero-copy operations READ, READDIR,
1708 * READLINK, WRITE.
1709 *
1710 * In the case of the first three, we want to put the GETATTR
1711 * after the read-type operation -- this is because it is hard
1712 * to predict the length of a GETATTR response in v4, and thus
1713 * align the READ data correctly. This means that the GETATTR
1714 * may end up partially falling into the page cache, and we should
1715 * shift it into the 'tail' of the xdr_buf before processing.
1716 * To do this efficiently, we need to know the total length
1717 * of data received, which doesn't seem to be available outside
1718 * of the RPC layer.
1719 *
1720 * In the case of WRITE, we also want to put the GETATTR after
1721 * the operation -- in this case because we want to make sure
1722 * we get the post-operation mtime and size. This means that
1723 * we can't use xdr_encode_pages() as written: we need a variant
1724 * of it which would leave room in the 'tail' iovec.
1725 *
1726 * Both of these changes to the XDR layer would in fact be quite
1727 * minor, but I decided to leave them for a subsequent patch.
1728 */
1729 static int _nfs4_proc_readlink(struct inode *inode, struct page *page,
1730 unsigned int pgbase, unsigned int pglen)
1731 {
1732 struct nfs4_readlink args = {
1733 .fh = NFS_FH(inode),
1734 .pgbase = pgbase,
1735 .pglen = pglen,
1736 .pages = &page,
1737 };
1738 struct rpc_message msg = {
1739 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK],
1740 .rpc_argp = &args,
1741 .rpc_resp = NULL,
1742 };
1743
1744 return rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1745 }
1746
1747 static int nfs4_proc_readlink(struct inode *inode, struct page *page,
1748 unsigned int pgbase, unsigned int pglen)
1749 {
1750 struct nfs4_exception exception = { };
1751 int err;
1752 do {
1753 err = nfs4_handle_exception(NFS_SERVER(inode),
1754 _nfs4_proc_readlink(inode, page, pgbase, pglen),
1755 &exception);
1756 } while (exception.retry);
1757 return err;
1758 }
1759
1760 /*
1761 * Got race?
1762 * We will need to arrange for the VFS layer to provide an atomic open.
1763 * Until then, this create/open method is prone to inefficiency and race
1764 * conditions due to the lookup, create, and open VFS calls from sys_open()
1765 * placed on the wire.
1766 *
1767 * Given the above sorry state of affairs, I'm simply sending an OPEN.
1768 * The file will be opened again in the subsequent VFS open call
1769 * (nfs4_proc_file_open).
1770 *
1771 * The open for read will just hang around to be used by any process that
1772 * opens the file O_RDONLY. This will all be resolved with the VFS changes.
1773 */
1774
1775 static int
1776 nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
1777 int flags, struct nameidata *nd)
1778 {
1779 struct path path = {
1780 .mnt = nd->mnt,
1781 .dentry = dentry,
1782 };
1783 struct nfs4_state *state;
1784 struct rpc_cred *cred;
1785 int status = 0;
1786
1787 cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
1788 if (IS_ERR(cred)) {
1789 status = PTR_ERR(cred);
1790 goto out;
1791 }
1792 state = nfs4_do_open(dir, &path, flags, sattr, cred);
1793 put_rpccred(cred);
1794 if (IS_ERR(state)) {
1795 status = PTR_ERR(state);
1796 goto out;
1797 }
1798 d_instantiate(dentry, igrab(state->inode));
1799 if (flags & O_EXCL) {
1800 struct nfs_fattr fattr;
1801 status = nfs4_do_setattr(state->inode, &fattr, sattr, state);
1802 if (status == 0)
1803 nfs_setattr_update_inode(state->inode, sattr);
1804 nfs_post_op_update_inode(state->inode, &fattr);
1805 }
1806 if (status == 0 && (nd->flags & LOOKUP_OPEN) != 0)
1807 status = nfs4_intent_set_file(nd, &path, state);
1808 else
1809 nfs4_close_state(&path, state, flags);
1810 out:
1811 return status;
1812 }
1813
1814 static int _nfs4_proc_remove(struct inode *dir, struct qstr *name)
1815 {
1816 struct nfs_server *server = NFS_SERVER(dir);
1817 struct nfs4_remove_arg args = {
1818 .fh = NFS_FH(dir),
1819 .name = name,
1820 .bitmask = server->attr_bitmask,
1821 };
1822 struct nfs_fattr dir_attr;
1823 struct nfs4_remove_res res = {
1824 .server = server,
1825 .dir_attr = &dir_attr,
1826 };
1827 struct rpc_message msg = {
1828 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE],
1829 .rpc_argp = &args,
1830 .rpc_resp = &res,
1831 };
1832 int status;
1833
1834 nfs_fattr_init(res.dir_attr);
1835 status = rpc_call_sync(server->client, &msg, 0);
1836 if (status == 0) {
1837 update_changeattr(dir, &res.cinfo);
1838 nfs_post_op_update_inode(dir, res.dir_attr);
1839 }
1840 return status;
1841 }
1842
1843 static int nfs4_proc_remove(struct inode *dir, struct qstr *name)
1844 {
1845 struct nfs4_exception exception = { };
1846 int err;
1847 do {
1848 err = nfs4_handle_exception(NFS_SERVER(dir),
1849 _nfs4_proc_remove(dir, name),
1850 &exception);
1851 } while (exception.retry);
1852 return err;
1853 }
1854
1855 struct unlink_desc {
1856 struct nfs4_remove_arg args;
1857 struct nfs4_remove_res res;
1858 struct nfs_fattr dir_attr;
1859 };
1860
1861 static int nfs4_proc_unlink_setup(struct rpc_message *msg, struct dentry *dir,
1862 struct qstr *name)
1863 {
1864 struct nfs_server *server = NFS_SERVER(dir->d_inode);
1865 struct unlink_desc *up;
1866
1867 up = kmalloc(sizeof(*up), GFP_KERNEL);
1868 if (!up)
1869 return -ENOMEM;
1870
1871 up->args.fh = NFS_FH(dir->d_inode);
1872 up->args.name = name;
1873 up->args.bitmask = server->attr_bitmask;
1874 up->res.server = server;
1875 up->res.dir_attr = &up->dir_attr;
1876
1877 msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE];
1878 msg->rpc_argp = &up->args;
1879 msg->rpc_resp = &up->res;
1880 return 0;
1881 }
1882
1883 static int nfs4_proc_unlink_done(struct dentry *dir, struct rpc_task *task)
1884 {
1885 struct rpc_message *msg = &task->tk_msg;
1886 struct unlink_desc *up;
1887
1888 if (msg->rpc_resp != NULL) {
1889 up = container_of(msg->rpc_resp, struct unlink_desc, res);
1890 update_changeattr(dir->d_inode, &up->res.cinfo);
1891 nfs_post_op_update_inode(dir->d_inode, up->res.dir_attr);
1892 kfree(up);
1893 msg->rpc_resp = NULL;
1894 msg->rpc_argp = NULL;
1895 }
1896 return 0;
1897 }
1898
1899 static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1900 struct inode *new_dir, struct qstr *new_name)
1901 {
1902 struct nfs_server *server = NFS_SERVER(old_dir);
1903 struct nfs4_rename_arg arg = {
1904 .old_dir = NFS_FH(old_dir),
1905 .new_dir = NFS_FH(new_dir),
1906 .old_name = old_name,
1907 .new_name = new_name,
1908 .bitmask = server->attr_bitmask,
1909 };
1910 struct nfs_fattr old_fattr, new_fattr;
1911 struct nfs4_rename_res res = {
1912 .server = server,
1913 .old_fattr = &old_fattr,
1914 .new_fattr = &new_fattr,
1915 };
1916 struct rpc_message msg = {
1917 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME],
1918 .rpc_argp = &arg,
1919 .rpc_resp = &res,
1920 };
1921 int status;
1922
1923 nfs_fattr_init(res.old_fattr);
1924 nfs_fattr_init(res.new_fattr);
1925 status = rpc_call_sync(server->client, &msg, 0);
1926
1927 if (!status) {
1928 update_changeattr(old_dir, &res.old_cinfo);
1929 nfs_post_op_update_inode(old_dir, res.old_fattr);
1930 update_changeattr(new_dir, &res.new_cinfo);
1931 nfs_post_op_update_inode(new_dir, res.new_fattr);
1932 }
1933 return status;
1934 }
1935
1936 static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1937 struct inode *new_dir, struct qstr *new_name)
1938 {
1939 struct nfs4_exception exception = { };
1940 int err;
1941 do {
1942 err = nfs4_handle_exception(NFS_SERVER(old_dir),
1943 _nfs4_proc_rename(old_dir, old_name,
1944 new_dir, new_name),
1945 &exception);
1946 } while (exception.retry);
1947 return err;
1948 }
1949
1950 static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
1951 {
1952 struct nfs_server *server = NFS_SERVER(inode);
1953 struct nfs4_link_arg arg = {
1954 .fh = NFS_FH(inode),
1955 .dir_fh = NFS_FH(dir),
1956 .name = name,
1957 .bitmask = server->attr_bitmask,
1958 };
1959 struct nfs_fattr fattr, dir_attr;
1960 struct nfs4_link_res res = {
1961 .server = server,
1962 .fattr = &fattr,
1963 .dir_attr = &dir_attr,
1964 };
1965 struct rpc_message msg = {
1966 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK],
1967 .rpc_argp = &arg,
1968 .rpc_resp = &res,
1969 };
1970 int status;
1971
1972 nfs_fattr_init(res.fattr);
1973 nfs_fattr_init(res.dir_attr);
1974 status = rpc_call_sync(server->client, &msg, 0);
1975 if (!status) {
1976 update_changeattr(dir, &res.cinfo);
1977 nfs_post_op_update_inode(dir, res.dir_attr);
1978 nfs_post_op_update_inode(inode, res.fattr);
1979 }
1980
1981 return status;
1982 }
1983
1984 static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
1985 {
1986 struct nfs4_exception exception = { };
1987 int err;
1988 do {
1989 err = nfs4_handle_exception(NFS_SERVER(inode),
1990 _nfs4_proc_link(inode, dir, name),
1991 &exception);
1992 } while (exception.retry);
1993 return err;
1994 }
1995
1996 static int _nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
1997 struct page *page, unsigned int len, struct iattr *sattr)
1998 {
1999 struct nfs_server *server = NFS_SERVER(dir);
2000 struct nfs_fh fhandle;
2001 struct nfs_fattr fattr, dir_fattr;
2002 struct nfs4_create_arg arg = {
2003 .dir_fh = NFS_FH(dir),
2004 .server = server,
2005 .name = &dentry->d_name,
2006 .attrs = sattr,
2007 .ftype = NF4LNK,
2008 .bitmask = server->attr_bitmask,
2009 };
2010 struct nfs4_create_res res = {
2011 .server = server,
2012 .fh = &fhandle,
2013 .fattr = &fattr,
2014 .dir_fattr = &dir_fattr,
2015 };
2016 struct rpc_message msg = {
2017 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK],
2018 .rpc_argp = &arg,
2019 .rpc_resp = &res,
2020 };
2021 int status;
2022
2023 if (len > NFS4_MAXPATHLEN)
2024 return -ENAMETOOLONG;
2025
2026 arg.u.symlink.pages = &page;
2027 arg.u.symlink.len = len;
2028 nfs_fattr_init(&fattr);
2029 nfs_fattr_init(&dir_fattr);
2030
2031 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2032 if (!status) {
2033 update_changeattr(dir, &res.dir_cinfo);
2034 nfs_post_op_update_inode(dir, res.dir_fattr);
2035 status = nfs_instantiate(dentry, &fhandle, &fattr);
2036 }
2037 return status;
2038 }
2039
2040 static int nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
2041 struct page *page, unsigned int len, struct iattr *sattr)
2042 {
2043 struct nfs4_exception exception = { };
2044 int err;
2045 do {
2046 err = nfs4_handle_exception(NFS_SERVER(dir),
2047 _nfs4_proc_symlink(dir, dentry, page,
2048 len, sattr),
2049 &exception);
2050 } while (exception.retry);
2051 return err;
2052 }
2053
2054 static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2055 struct iattr *sattr)
2056 {
2057 struct nfs_server *server = NFS_SERVER(dir);
2058 struct nfs_fh fhandle;
2059 struct nfs_fattr fattr, dir_fattr;
2060 struct nfs4_create_arg arg = {
2061 .dir_fh = NFS_FH(dir),
2062 .server = server,
2063 .name = &dentry->d_name,
2064 .attrs = sattr,
2065 .ftype = NF4DIR,
2066 .bitmask = server->attr_bitmask,
2067 };
2068 struct nfs4_create_res res = {
2069 .server = server,
2070 .fh = &fhandle,
2071 .fattr = &fattr,
2072 .dir_fattr = &dir_fattr,
2073 };
2074 struct rpc_message msg = {
2075 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2076 .rpc_argp = &arg,
2077 .rpc_resp = &res,
2078 };
2079 int status;
2080
2081 nfs_fattr_init(&fattr);
2082 nfs_fattr_init(&dir_fattr);
2083
2084 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2085 if (!status) {
2086 update_changeattr(dir, &res.dir_cinfo);
2087 nfs_post_op_update_inode(dir, res.dir_fattr);
2088 status = nfs_instantiate(dentry, &fhandle, &fattr);
2089 }
2090 return status;
2091 }
2092
2093 static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2094 struct iattr *sattr)
2095 {
2096 struct nfs4_exception exception = { };
2097 int err;
2098 do {
2099 err = nfs4_handle_exception(NFS_SERVER(dir),
2100 _nfs4_proc_mkdir(dir, dentry, sattr),
2101 &exception);
2102 } while (exception.retry);
2103 return err;
2104 }
2105
2106 static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2107 u64 cookie, struct page *page, unsigned int count, int plus)
2108 {
2109 struct inode *dir = dentry->d_inode;
2110 struct nfs4_readdir_arg args = {
2111 .fh = NFS_FH(dir),
2112 .pages = &page,
2113 .pgbase = 0,
2114 .count = count,
2115 .bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask,
2116 };
2117 struct nfs4_readdir_res res;
2118 struct rpc_message msg = {
2119 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR],
2120 .rpc_argp = &args,
2121 .rpc_resp = &res,
2122 .rpc_cred = cred,
2123 };
2124 int status;
2125
2126 dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __FUNCTION__,
2127 dentry->d_parent->d_name.name,
2128 dentry->d_name.name,
2129 (unsigned long long)cookie);
2130 nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args);
2131 res.pgbase = args.pgbase;
2132 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2133 if (status == 0)
2134 memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE);
2135 dprintk("%s: returns %d\n", __FUNCTION__, status);
2136 return status;
2137 }
2138
2139 static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2140 u64 cookie, struct page *page, unsigned int count, int plus)
2141 {
2142 struct nfs4_exception exception = { };
2143 int err;
2144 do {
2145 err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode),
2146 _nfs4_proc_readdir(dentry, cred, cookie,
2147 page, count, plus),
2148 &exception);
2149 } while (exception.retry);
2150 return err;
2151 }
2152
2153 static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2154 struct iattr *sattr, dev_t rdev)
2155 {
2156 struct nfs_server *server = NFS_SERVER(dir);
2157 struct nfs_fh fh;
2158 struct nfs_fattr fattr, dir_fattr;
2159 struct nfs4_create_arg arg = {
2160 .dir_fh = NFS_FH(dir),
2161 .server = server,
2162 .name = &dentry->d_name,
2163 .attrs = sattr,
2164 .bitmask = server->attr_bitmask,
2165 };
2166 struct nfs4_create_res res = {
2167 .server = server,
2168 .fh = &fh,
2169 .fattr = &fattr,
2170 .dir_fattr = &dir_fattr,
2171 };
2172 struct rpc_message msg = {
2173 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2174 .rpc_argp = &arg,
2175 .rpc_resp = &res,
2176 };
2177 int status;
2178 int mode = sattr->ia_mode;
2179
2180 nfs_fattr_init(&fattr);
2181 nfs_fattr_init(&dir_fattr);
2182
2183 BUG_ON(!(sattr->ia_valid & ATTR_MODE));
2184 BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode));
2185 if (S_ISFIFO(mode))
2186 arg.ftype = NF4FIFO;
2187 else if (S_ISBLK(mode)) {
2188 arg.ftype = NF4BLK;
2189 arg.u.device.specdata1 = MAJOR(rdev);
2190 arg.u.device.specdata2 = MINOR(rdev);
2191 }
2192 else if (S_ISCHR(mode)) {
2193 arg.ftype = NF4CHR;
2194 arg.u.device.specdata1 = MAJOR(rdev);
2195 arg.u.device.specdata2 = MINOR(rdev);
2196 }
2197 else
2198 arg.ftype = NF4SOCK;
2199
2200 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2201 if (status == 0) {
2202 update_changeattr(dir, &res.dir_cinfo);
2203 nfs_post_op_update_inode(dir, res.dir_fattr);
2204 status = nfs_instantiate(dentry, &fh, &fattr);
2205 }
2206 return status;
2207 }
2208
2209 static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2210 struct iattr *sattr, dev_t rdev)
2211 {
2212 struct nfs4_exception exception = { };
2213 int err;
2214 do {
2215 err = nfs4_handle_exception(NFS_SERVER(dir),
2216 _nfs4_proc_mknod(dir, dentry, sattr, rdev),
2217 &exception);
2218 } while (exception.retry);
2219 return err;
2220 }
2221
2222 static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
2223 struct nfs_fsstat *fsstat)
2224 {
2225 struct nfs4_statfs_arg args = {
2226 .fh = fhandle,
2227 .bitmask = server->attr_bitmask,
2228 };
2229 struct rpc_message msg = {
2230 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS],
2231 .rpc_argp = &args,
2232 .rpc_resp = fsstat,
2233 };
2234
2235 nfs_fattr_init(fsstat->fattr);
2236 return rpc_call_sync(server->client, &msg, 0);
2237 }
2238
2239 static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat)
2240 {
2241 struct nfs4_exception exception = { };
2242 int err;
2243 do {
2244 err = nfs4_handle_exception(server,
2245 _nfs4_proc_statfs(server, fhandle, fsstat),
2246 &exception);
2247 } while (exception.retry);
2248 return err;
2249 }
2250
2251 static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
2252 struct nfs_fsinfo *fsinfo)
2253 {
2254 struct nfs4_fsinfo_arg args = {
2255 .fh = fhandle,
2256 .bitmask = server->attr_bitmask,
2257 };
2258 struct rpc_message msg = {
2259 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO],
2260 .rpc_argp = &args,
2261 .rpc_resp = fsinfo,
2262 };
2263
2264 return rpc_call_sync(server->client, &msg, 0);
2265 }
2266
2267 static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2268 {
2269 struct nfs4_exception exception = { };
2270 int err;
2271
2272 do {
2273 err = nfs4_handle_exception(server,
2274 _nfs4_do_fsinfo(server, fhandle, fsinfo),
2275 &exception);
2276 } while (exception.retry);
2277 return err;
2278 }
2279
2280 static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2281 {
2282 nfs_fattr_init(fsinfo->fattr);
2283 return nfs4_do_fsinfo(server, fhandle, fsinfo);
2284 }
2285
2286 static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2287 struct nfs_pathconf *pathconf)
2288 {
2289 struct nfs4_pathconf_arg args = {
2290 .fh = fhandle,
2291 .bitmask = server->attr_bitmask,
2292 };
2293 struct rpc_message msg = {
2294 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF],
2295 .rpc_argp = &args,
2296 .rpc_resp = pathconf,
2297 };
2298
2299 /* None of the pathconf attributes are mandatory to implement */
2300 if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) {
2301 memset(pathconf, 0, sizeof(*pathconf));
2302 return 0;
2303 }
2304
2305 nfs_fattr_init(pathconf->fattr);
2306 return rpc_call_sync(server->client, &msg, 0);
2307 }
2308
2309 static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2310 struct nfs_pathconf *pathconf)
2311 {
2312 struct nfs4_exception exception = { };
2313 int err;
2314
2315 do {
2316 err = nfs4_handle_exception(server,
2317 _nfs4_proc_pathconf(server, fhandle, pathconf),
2318 &exception);
2319 } while (exception.retry);
2320 return err;
2321 }
2322
2323 static int nfs4_read_done(struct rpc_task *task, struct nfs_read_data *data)
2324 {
2325 struct nfs_server *server = NFS_SERVER(data->inode);
2326
2327 if (nfs4_async_handle_error(task, server) == -EAGAIN) {
2328 rpc_restart_call(task);
2329 return -EAGAIN;
2330 }
2331 if (task->tk_status > 0)
2332 renew_lease(server, data->timestamp);
2333 return 0;
2334 }
2335
2336 static void nfs4_proc_read_setup(struct nfs_read_data *data)
2337 {
2338 struct rpc_message msg = {
2339 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ],
2340 .rpc_argp = &data->args,
2341 .rpc_resp = &data->res,
2342 .rpc_cred = data->cred,
2343 };
2344
2345 data->timestamp = jiffies;
2346
2347 rpc_call_setup(&data->task, &msg, 0);
2348 }
2349
2350 static int nfs4_write_done(struct rpc_task *task, struct nfs_write_data *data)
2351 {
2352 struct inode *inode = data->inode;
2353
2354 if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2355 rpc_restart_call(task);
2356 return -EAGAIN;
2357 }
2358 if (task->tk_status >= 0) {
2359 renew_lease(NFS_SERVER(inode), data->timestamp);
2360 nfs_post_op_update_inode(inode, data->res.fattr);
2361 }
2362 return 0;
2363 }
2364
2365 static void nfs4_proc_write_setup(struct nfs_write_data *data, int how)
2366 {
2367 struct rpc_message msg = {
2368 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
2369 .rpc_argp = &data->args,
2370 .rpc_resp = &data->res,
2371 .rpc_cred = data->cred,
2372 };
2373 struct inode *inode = data->inode;
2374 struct nfs_server *server = NFS_SERVER(inode);
2375 int stable;
2376
2377 if (how & FLUSH_STABLE) {
2378 if (!NFS_I(inode)->ncommit)
2379 stable = NFS_FILE_SYNC;
2380 else
2381 stable = NFS_DATA_SYNC;
2382 } else
2383 stable = NFS_UNSTABLE;
2384 data->args.stable = stable;
2385 data->args.bitmask = server->attr_bitmask;
2386 data->res.server = server;
2387
2388 data->timestamp = jiffies;
2389
2390 /* Finalize the task. */
2391 rpc_call_setup(&data->task, &msg, 0);
2392 }
2393
2394 static int nfs4_commit_done(struct rpc_task *task, struct nfs_write_data *data)
2395 {
2396 struct inode *inode = data->inode;
2397
2398 if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2399 rpc_restart_call(task);
2400 return -EAGAIN;
2401 }
2402 if (task->tk_status >= 0)
2403 nfs_post_op_update_inode(inode, data->res.fattr);
2404 return 0;
2405 }
2406
2407 static void nfs4_proc_commit_setup(struct nfs_write_data *data, int how)
2408 {
2409 struct rpc_message msg = {
2410 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
2411 .rpc_argp = &data->args,
2412 .rpc_resp = &data->res,
2413 .rpc_cred = data->cred,
2414 };
2415 struct nfs_server *server = NFS_SERVER(data->inode);
2416
2417 data->args.bitmask = server->attr_bitmask;
2418 data->res.server = server;
2419
2420 rpc_call_setup(&data->task, &msg, 0);
2421 }
2422
2423 /*
2424 * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special
2425 * standalone procedure for queueing an asynchronous RENEW.
2426 */
2427 static void nfs4_renew_done(struct rpc_task *task, void *data)
2428 {
2429 struct nfs_client *clp = (struct nfs_client *)task->tk_msg.rpc_argp;
2430 unsigned long timestamp = (unsigned long)data;
2431
2432 if (task->tk_status < 0) {
2433 switch (task->tk_status) {
2434 case -NFS4ERR_STALE_CLIENTID:
2435 case -NFS4ERR_EXPIRED:
2436 case -NFS4ERR_CB_PATH_DOWN:
2437 nfs4_schedule_state_recovery(clp);
2438 }
2439 return;
2440 }
2441 spin_lock(&clp->cl_lock);
2442 if (time_before(clp->cl_last_renewal,timestamp))
2443 clp->cl_last_renewal = timestamp;
2444 spin_unlock(&clp->cl_lock);
2445 }
2446
2447 static const struct rpc_call_ops nfs4_renew_ops = {
2448 .rpc_call_done = nfs4_renew_done,
2449 };
2450
2451 int nfs4_proc_async_renew(struct nfs_client *clp, struct rpc_cred *cred)
2452 {
2453 struct rpc_message msg = {
2454 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2455 .rpc_argp = clp,
2456 .rpc_cred = cred,
2457 };
2458
2459 return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT,
2460 &nfs4_renew_ops, (void *)jiffies);
2461 }
2462
2463 int nfs4_proc_renew(struct nfs_client *clp, struct rpc_cred *cred)
2464 {
2465 struct rpc_message msg = {
2466 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2467 .rpc_argp = clp,
2468 .rpc_cred = cred,
2469 };
2470 unsigned long now = jiffies;
2471 int status;
2472
2473 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2474 if (status < 0)
2475 return status;
2476 spin_lock(&clp->cl_lock);
2477 if (time_before(clp->cl_last_renewal,now))
2478 clp->cl_last_renewal = now;
2479 spin_unlock(&clp->cl_lock);
2480 return 0;
2481 }
2482
2483 static inline int nfs4_server_supports_acls(struct nfs_server *server)
2484 {
2485 return (server->caps & NFS_CAP_ACLS)
2486 && (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL)
2487 && (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL);
2488 }
2489
2490 /* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that
2491 * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on
2492 * the stack.
2493 */
2494 #define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT)
2495
2496 static void buf_to_pages(const void *buf, size_t buflen,
2497 struct page **pages, unsigned int *pgbase)
2498 {
2499 const void *p = buf;
2500
2501 *pgbase = offset_in_page(buf);
2502 p -= *pgbase;
2503 while (p < buf + buflen) {
2504 *(pages++) = virt_to_page(p);
2505 p += PAGE_CACHE_SIZE;
2506 }
2507 }
2508
2509 struct nfs4_cached_acl {
2510 int cached;
2511 size_t len;
2512 char data[0];
2513 };
2514
2515 static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl)
2516 {
2517 struct nfs_inode *nfsi = NFS_I(inode);
2518
2519 spin_lock(&inode->i_lock);
2520 kfree(nfsi->nfs4_acl);
2521 nfsi->nfs4_acl = acl;
2522 spin_unlock(&inode->i_lock);
2523 }
2524
2525 static void nfs4_zap_acl_attr(struct inode *inode)
2526 {
2527 nfs4_set_cached_acl(inode, NULL);
2528 }
2529
2530 static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen)
2531 {
2532 struct nfs_inode *nfsi = NFS_I(inode);
2533 struct nfs4_cached_acl *acl;
2534 int ret = -ENOENT;
2535
2536 spin_lock(&inode->i_lock);
2537 acl = nfsi->nfs4_acl;
2538 if (acl == NULL)
2539 goto out;
2540 if (buf == NULL) /* user is just asking for length */
2541 goto out_len;
2542 if (acl->cached == 0)
2543 goto out;
2544 ret = -ERANGE; /* see getxattr(2) man page */
2545 if (acl->len > buflen)
2546 goto out;
2547 memcpy(buf, acl->data, acl->len);
2548 out_len:
2549 ret = acl->len;
2550 out:
2551 spin_unlock(&inode->i_lock);
2552 return ret;
2553 }
2554
2555 static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len)
2556 {
2557 struct nfs4_cached_acl *acl;
2558
2559 if (buf && acl_len <= PAGE_SIZE) {
2560 acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL);
2561 if (acl == NULL)
2562 goto out;
2563 acl->cached = 1;
2564 memcpy(acl->data, buf, acl_len);
2565 } else {
2566 acl = kmalloc(sizeof(*acl), GFP_KERNEL);
2567 if (acl == NULL)
2568 goto out;
2569 acl->cached = 0;
2570 }
2571 acl->len = acl_len;
2572 out:
2573 nfs4_set_cached_acl(inode, acl);
2574 }
2575
2576 static ssize_t __nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2577 {
2578 struct page *pages[NFS4ACL_MAXPAGES];
2579 struct nfs_getaclargs args = {
2580 .fh = NFS_FH(inode),
2581 .acl_pages = pages,
2582 .acl_len = buflen,
2583 };
2584 size_t resp_len = buflen;
2585 void *resp_buf;
2586 struct rpc_message msg = {
2587 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL],
2588 .rpc_argp = &args,
2589 .rpc_resp = &resp_len,
2590 };
2591 struct page *localpage = NULL;
2592 int ret;
2593
2594 if (buflen < PAGE_SIZE) {
2595 /* As long as we're doing a round trip to the server anyway,
2596 * let's be prepared for a page of acl data. */
2597 localpage = alloc_page(GFP_KERNEL);
2598 resp_buf = page_address(localpage);
2599 if (localpage == NULL)
2600 return -ENOMEM;
2601 args.acl_pages[0] = localpage;
2602 args.acl_pgbase = 0;
2603 resp_len = args.acl_len = PAGE_SIZE;
2604 } else {
2605 resp_buf = buf;
2606 buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase);
2607 }
2608 ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2609 if (ret)
2610 goto out_free;
2611 if (resp_len > args.acl_len)
2612 nfs4_write_cached_acl(inode, NULL, resp_len);
2613 else
2614 nfs4_write_cached_acl(inode, resp_buf, resp_len);
2615 if (buf) {
2616 ret = -ERANGE;
2617 if (resp_len > buflen)
2618 goto out_free;
2619 if (localpage)
2620 memcpy(buf, resp_buf, resp_len);
2621 }
2622 ret = resp_len;
2623 out_free:
2624 if (localpage)
2625 __free_page(localpage);
2626 return ret;
2627 }
2628
2629 static ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2630 {
2631 struct nfs4_exception exception = { };
2632 ssize_t ret;
2633 do {
2634 ret = __nfs4_get_acl_uncached(inode, buf, buflen);
2635 if (ret >= 0)
2636 break;
2637 ret = nfs4_handle_exception(NFS_SERVER(inode), ret, &exception);
2638 } while (exception.retry);
2639 return ret;
2640 }
2641
2642 static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen)
2643 {
2644 struct nfs_server *server = NFS_SERVER(inode);
2645 int ret;
2646
2647 if (!nfs4_server_supports_acls(server))
2648 return -EOPNOTSUPP;
2649 ret = nfs_revalidate_inode(server, inode);
2650 if (ret < 0)
2651 return ret;
2652 ret = nfs4_read_cached_acl(inode, buf, buflen);
2653 if (ret != -ENOENT)
2654 return ret;
2655 return nfs4_get_acl_uncached(inode, buf, buflen);
2656 }
2657
2658 static int __nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2659 {
2660 struct nfs_server *server = NFS_SERVER(inode);
2661 struct page *pages[NFS4ACL_MAXPAGES];
2662 struct nfs_setaclargs arg = {
2663 .fh = NFS_FH(inode),
2664 .acl_pages = pages,
2665 .acl_len = buflen,
2666 };
2667 struct rpc_message msg = {
2668 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETACL],
2669 .rpc_argp = &arg,
2670 .rpc_resp = NULL,
2671 };
2672 int ret;
2673
2674 if (!nfs4_server_supports_acls(server))
2675 return -EOPNOTSUPP;
2676 nfs_inode_return_delegation(inode);
2677 buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase);
2678 ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2679 nfs_zap_caches(inode);
2680 return ret;
2681 }
2682
2683 static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2684 {
2685 struct nfs4_exception exception = { };
2686 int err;
2687 do {
2688 err = nfs4_handle_exception(NFS_SERVER(inode),
2689 __nfs4_proc_set_acl(inode, buf, buflen),
2690 &exception);
2691 } while (exception.retry);
2692 return err;
2693 }
2694
2695 static int
2696 nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server)
2697 {
2698 struct nfs_client *clp = server->nfs_client;
2699
2700 if (!clp || task->tk_status >= 0)
2701 return 0;
2702 switch(task->tk_status) {
2703 case -NFS4ERR_STALE_CLIENTID:
2704 case -NFS4ERR_STALE_STATEID:
2705 case -NFS4ERR_EXPIRED:
2706 rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL, NULL);
2707 nfs4_schedule_state_recovery(clp);
2708 if (test_bit(NFS4CLNT_STATE_RECOVER, &clp->cl_state) == 0)
2709 rpc_wake_up_task(task);
2710 task->tk_status = 0;
2711 return -EAGAIN;
2712 case -NFS4ERR_DELAY:
2713 nfs_inc_server_stats((struct nfs_server *) server,
2714 NFSIOS_DELAY);
2715 case -NFS4ERR_GRACE:
2716 rpc_delay(task, NFS4_POLL_RETRY_MAX);
2717 task->tk_status = 0;
2718 return -EAGAIN;
2719 case -NFS4ERR_OLD_STATEID:
2720 task->tk_status = 0;
2721 return -EAGAIN;
2722 }
2723 task->tk_status = nfs4_map_errors(task->tk_status);
2724 return 0;
2725 }
2726
2727 static int nfs4_wait_bit_interruptible(void *word)
2728 {
2729 if (signal_pending(current))
2730 return -ERESTARTSYS;
2731 schedule();
2732 return 0;
2733 }
2734
2735 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs_client *clp)
2736 {
2737 sigset_t oldset;
2738 int res;
2739
2740 might_sleep();
2741
2742 rwsem_acquire(&clp->cl_sem.dep_map, 0, 0, _RET_IP_);
2743
2744 rpc_clnt_sigmask(clnt, &oldset);
2745 res = wait_on_bit(&clp->cl_state, NFS4CLNT_STATE_RECOVER,
2746 nfs4_wait_bit_interruptible,
2747 TASK_INTERRUPTIBLE);
2748 rpc_clnt_sigunmask(clnt, &oldset);
2749
2750 rwsem_release(&clp->cl_sem.dep_map, 1, _RET_IP_);
2751 return res;
2752 }
2753
2754 static int nfs4_delay(struct rpc_clnt *clnt, long *timeout)
2755 {
2756 sigset_t oldset;
2757 int res = 0;
2758
2759 might_sleep();
2760
2761 if (*timeout <= 0)
2762 *timeout = NFS4_POLL_RETRY_MIN;
2763 if (*timeout > NFS4_POLL_RETRY_MAX)
2764 *timeout = NFS4_POLL_RETRY_MAX;
2765 rpc_clnt_sigmask(clnt, &oldset);
2766 if (clnt->cl_intr) {
2767 schedule_timeout_interruptible(*timeout);
2768 if (signalled())
2769 res = -ERESTARTSYS;
2770 } else
2771 schedule_timeout_uninterruptible(*timeout);
2772 rpc_clnt_sigunmask(clnt, &oldset);
2773 *timeout <<= 1;
2774 return res;
2775 }
2776
2777 /* This is the error handling routine for processes that are allowed
2778 * to sleep.
2779 */
2780 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception)
2781 {
2782 struct nfs_client *clp = server->nfs_client;
2783 int ret = errorcode;
2784
2785 exception->retry = 0;
2786 switch(errorcode) {
2787 case 0:
2788 return 0;
2789 case -NFS4ERR_STALE_CLIENTID:
2790 case -NFS4ERR_STALE_STATEID:
2791 case -NFS4ERR_EXPIRED:
2792 nfs4_schedule_state_recovery(clp);
2793 ret = nfs4_wait_clnt_recover(server->client, clp);
2794 if (ret == 0)
2795 exception->retry = 1;
2796 break;
2797 case -NFS4ERR_FILE_OPEN:
2798 case -NFS4ERR_GRACE:
2799 case -NFS4ERR_DELAY:
2800 ret = nfs4_delay(server->client, &exception->timeout);
2801 if (ret != 0)
2802 break;
2803 case -NFS4ERR_OLD_STATEID:
2804 exception->retry = 1;
2805 }
2806 /* We failed to handle the error */
2807 return nfs4_map_errors(ret);
2808 }
2809
2810 int nfs4_proc_setclientid(struct nfs_client *clp, u32 program, unsigned short port, struct rpc_cred *cred)
2811 {
2812 nfs4_verifier sc_verifier;
2813 struct nfs4_setclientid setclientid = {
2814 .sc_verifier = &sc_verifier,
2815 .sc_prog = program,
2816 };
2817 struct rpc_message msg = {
2818 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID],
2819 .rpc_argp = &setclientid,
2820 .rpc_resp = clp,
2821 .rpc_cred = cred,
2822 };
2823 __be32 *p;
2824 int loop = 0;
2825 int status;
2826
2827 p = (__be32*)sc_verifier.data;
2828 *p++ = htonl((u32)clp->cl_boot_time.tv_sec);
2829 *p = htonl((u32)clp->cl_boot_time.tv_nsec);
2830
2831 for(;;) {
2832 setclientid.sc_name_len = scnprintf(setclientid.sc_name,
2833 sizeof(setclientid.sc_name), "%s/%u.%u.%u.%u %s %u",
2834 clp->cl_ipaddr, NIPQUAD(clp->cl_addr.sin_addr),
2835 cred->cr_ops->cr_name,
2836 clp->cl_id_uniquifier);
2837 setclientid.sc_netid_len = scnprintf(setclientid.sc_netid,
2838 sizeof(setclientid.sc_netid), "tcp");
2839 setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr,
2840 sizeof(setclientid.sc_uaddr), "%s.%d.%d",
2841 clp->cl_ipaddr, port >> 8, port & 255);
2842
2843 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2844 if (status != -NFS4ERR_CLID_INUSE)
2845 break;
2846 if (signalled())
2847 break;
2848 if (loop++ & 1)
2849 ssleep(clp->cl_lease_time + 1);
2850 else
2851 if (++clp->cl_id_uniquifier == 0)
2852 break;
2853 }
2854 return status;
2855 }
2856
2857 static int _nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred)
2858 {
2859 struct nfs_fsinfo fsinfo;
2860 struct rpc_message msg = {
2861 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM],
2862 .rpc_argp = clp,
2863 .rpc_resp = &fsinfo,
2864 .rpc_cred = cred,
2865 };
2866 unsigned long now;
2867 int status;
2868
2869 now = jiffies;
2870 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2871 if (status == 0) {
2872 spin_lock(&clp->cl_lock);
2873 clp->cl_lease_time = fsinfo.lease_time * HZ;
2874 clp->cl_last_renewal = now;
2875 clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state);
2876 spin_unlock(&clp->cl_lock);
2877 }
2878 return status;
2879 }
2880
2881 int nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred)
2882 {
2883 long timeout;
2884 int err;
2885 do {
2886 err = _nfs4_proc_setclientid_confirm(clp, cred);
2887 switch (err) {
2888 case 0:
2889 return err;
2890 case -NFS4ERR_RESOURCE:
2891 /* The IBM lawyers misread another document! */
2892 case -NFS4ERR_DELAY:
2893 err = nfs4_delay(clp->cl_rpcclient, &timeout);
2894 }
2895 } while (err == 0);
2896 return err;
2897 }
2898
2899 struct nfs4_delegreturndata {
2900 struct nfs4_delegreturnargs args;
2901 struct nfs4_delegreturnres res;
2902 struct nfs_fh fh;
2903 nfs4_stateid stateid;
2904 struct rpc_cred *cred;
2905 unsigned long timestamp;
2906 struct nfs_fattr fattr;
2907 int rpc_status;
2908 };
2909
2910 static void nfs4_delegreturn_prepare(struct rpc_task *task, void *calldata)
2911 {
2912 struct nfs4_delegreturndata *data = calldata;
2913 struct rpc_message msg = {
2914 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN],
2915 .rpc_argp = &data->args,
2916 .rpc_resp = &data->res,
2917 .rpc_cred = data->cred,
2918 };
2919 nfs_fattr_init(data->res.fattr);
2920 rpc_call_setup(task, &msg, 0);
2921 }
2922
2923 static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata)
2924 {
2925 struct nfs4_delegreturndata *data = calldata;
2926 data->rpc_status = task->tk_status;
2927 if (data->rpc_status == 0)
2928 renew_lease(data->res.server, data->timestamp);
2929 }
2930
2931 static void nfs4_delegreturn_release(void *calldata)
2932 {
2933 struct nfs4_delegreturndata *data = calldata;
2934
2935 put_rpccred(data->cred);
2936 kfree(calldata);
2937 }
2938
2939 static const struct rpc_call_ops nfs4_delegreturn_ops = {
2940 .rpc_call_prepare = nfs4_delegreturn_prepare,
2941 .rpc_call_done = nfs4_delegreturn_done,
2942 .rpc_release = nfs4_delegreturn_release,
2943 };
2944
2945 static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
2946 {
2947 struct nfs4_delegreturndata *data;
2948 struct nfs_server *server = NFS_SERVER(inode);
2949 struct rpc_task *task;
2950 int status;
2951
2952 data = kmalloc(sizeof(*data), GFP_KERNEL);
2953 if (data == NULL)
2954 return -ENOMEM;
2955 data->args.fhandle = &data->fh;
2956 data->args.stateid = &data->stateid;
2957 data->args.bitmask = server->attr_bitmask;
2958 nfs_copy_fh(&data->fh, NFS_FH(inode));
2959 memcpy(&data->stateid, stateid, sizeof(data->stateid));
2960 data->res.fattr = &data->fattr;
2961 data->res.server = server;
2962 data->cred = get_rpccred(cred);
2963 data->timestamp = jiffies;
2964 data->rpc_status = 0;
2965
2966 task = rpc_run_task(NFS_CLIENT(inode), RPC_TASK_ASYNC, &nfs4_delegreturn_ops, data);
2967 if (IS_ERR(task))
2968 return PTR_ERR(task);
2969 status = nfs4_wait_for_completion_rpc_task(task);
2970 if (status == 0) {
2971 status = data->rpc_status;
2972 if (status == 0)
2973 nfs_post_op_update_inode(inode, &data->fattr);
2974 }
2975 rpc_put_task(task);
2976 return status;
2977 }
2978
2979 int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
2980 {
2981 struct nfs_server *server = NFS_SERVER(inode);
2982 struct nfs4_exception exception = { };
2983 int err;
2984 do {
2985 err = _nfs4_proc_delegreturn(inode, cred, stateid);
2986 switch (err) {
2987 case -NFS4ERR_STALE_STATEID:
2988 case -NFS4ERR_EXPIRED:
2989 case 0:
2990 return 0;
2991 }
2992 err = nfs4_handle_exception(server, err, &exception);
2993 } while (exception.retry);
2994 return err;
2995 }
2996
2997 #define NFS4_LOCK_MINTIMEOUT (1 * HZ)
2998 #define NFS4_LOCK_MAXTIMEOUT (30 * HZ)
2999
3000 /*
3001 * sleep, with exponential backoff, and retry the LOCK operation.
3002 */
3003 static unsigned long
3004 nfs4_set_lock_task_retry(unsigned long timeout)
3005 {
3006 schedule_timeout_interruptible(timeout);
3007 timeout <<= 1;
3008 if (timeout > NFS4_LOCK_MAXTIMEOUT)
3009 return NFS4_LOCK_MAXTIMEOUT;
3010 return timeout;
3011 }
3012
3013 static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3014 {
3015 struct inode *inode = state->inode;
3016 struct nfs_server *server = NFS_SERVER(inode);
3017 struct nfs_client *clp = server->nfs_client;
3018 struct nfs_lockt_args arg = {
3019 .fh = NFS_FH(inode),
3020 .fl = request,
3021 };
3022 struct nfs_lockt_res res = {
3023 .denied = request,
3024 };
3025 struct rpc_message msg = {
3026 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKT],
3027 .rpc_argp = &arg,
3028 .rpc_resp = &res,
3029 .rpc_cred = state->owner->so_cred,
3030 };
3031 struct nfs4_lock_state *lsp;
3032 int status;
3033
3034 down_read(&clp->cl_sem);
3035 arg.lock_owner.clientid = clp->cl_clientid;
3036 status = nfs4_set_lock_state(state, request);
3037 if (status != 0)
3038 goto out;
3039 lsp = request->fl_u.nfs4_fl.owner;
3040 arg.lock_owner.id = lsp->ls_id.id;
3041 status = rpc_call_sync(server->client, &msg, 0);
3042 switch (status) {
3043 case 0:
3044 request->fl_type = F_UNLCK;
3045 break;
3046 case -NFS4ERR_DENIED:
3047 status = 0;
3048 }
3049 request->fl_ops->fl_release_private(request);
3050 out:
3051 up_read(&clp->cl_sem);
3052 return status;
3053 }
3054
3055 static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3056 {
3057 struct nfs4_exception exception = { };
3058 int err;
3059
3060 do {
3061 err = nfs4_handle_exception(NFS_SERVER(state->inode),
3062 _nfs4_proc_getlk(state, cmd, request),
3063 &exception);
3064 } while (exception.retry);
3065 return err;
3066 }
3067
3068 static int do_vfs_lock(struct file *file, struct file_lock *fl)
3069 {
3070 int res = 0;
3071 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
3072 case FL_POSIX:
3073 res = posix_lock_file_wait(file, fl);
3074 break;
3075 case FL_FLOCK:
3076 res = flock_lock_file_wait(file, fl);
3077 break;
3078 default:
3079 BUG();
3080 }
3081 return res;
3082 }
3083
3084 struct nfs4_unlockdata {
3085 struct nfs_locku_args arg;
3086 struct nfs_locku_res res;
3087 struct nfs4_lock_state *lsp;
3088 struct nfs_open_context *ctx;
3089 struct file_lock fl;
3090 const struct nfs_server *server;
3091 unsigned long timestamp;
3092 };
3093
3094 static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl,
3095 struct nfs_open_context *ctx,
3096 struct nfs4_lock_state *lsp,
3097 struct nfs_seqid *seqid)
3098 {
3099 struct nfs4_unlockdata *p;
3100 struct inode *inode = lsp->ls_state->inode;
3101
3102 p = kmalloc(sizeof(*p), GFP_KERNEL);
3103 if (p == NULL)
3104 return NULL;
3105 p->arg.fh = NFS_FH(inode);
3106 p->arg.fl = &p->fl;
3107 p->arg.seqid = seqid;
3108 p->arg.stateid = &lsp->ls_stateid;
3109 p->lsp = lsp;
3110 atomic_inc(&lsp->ls_count);
3111 /* Ensure we don't close file until we're done freeing locks! */
3112 p->ctx = get_nfs_open_context(ctx);
3113 memcpy(&p->fl, fl, sizeof(p->fl));
3114 p->server = NFS_SERVER(inode);
3115 return p;
3116 }
3117
3118 static void nfs4_locku_release_calldata(void *data)
3119 {
3120 struct nfs4_unlockdata *calldata = data;
3121 nfs_free_seqid(calldata->arg.seqid);
3122 nfs4_put_lock_state(calldata->lsp);
3123 put_nfs_open_context(calldata->ctx);
3124 kfree(calldata);
3125 }
3126
3127 static void nfs4_locku_done(struct rpc_task *task, void *data)
3128 {
3129 struct nfs4_unlockdata *calldata = data;
3130
3131 if (RPC_ASSASSINATED(task))
3132 return;
3133 nfs_increment_lock_seqid(task->tk_status, calldata->arg.seqid);
3134 switch (task->tk_status) {
3135 case 0:
3136 memcpy(calldata->lsp->ls_stateid.data,
3137 calldata->res.stateid.data,
3138 sizeof(calldata->lsp->ls_stateid.data));
3139 renew_lease(calldata->server, calldata->timestamp);
3140 break;
3141 case -NFS4ERR_STALE_STATEID:
3142 case -NFS4ERR_EXPIRED:
3143 break;
3144 default:
3145 if (nfs4_async_handle_error(task, calldata->server) == -EAGAIN)
3146 rpc_restart_call(task);
3147 }
3148 }
3149
3150 static void nfs4_locku_prepare(struct rpc_task *task, void *data)
3151 {
3152 struct nfs4_unlockdata *calldata = data;
3153 struct rpc_message msg = {
3154 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKU],
3155 .rpc_argp = &calldata->arg,
3156 .rpc_resp = &calldata->res,
3157 .rpc_cred = calldata->lsp->ls_state->owner->so_cred,
3158 };
3159
3160 if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
3161 return;
3162 if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) {
3163 /* Note: exit _without_ running nfs4_locku_done */
3164 task->tk_action = NULL;
3165 return;
3166 }
3167 calldata->timestamp = jiffies;
3168 rpc_call_setup(task, &msg, 0);
3169 }
3170
3171 static const struct rpc_call_ops nfs4_locku_ops = {
3172 .rpc_call_prepare = nfs4_locku_prepare,
3173 .rpc_call_done = nfs4_locku_done,
3174 .rpc_release = nfs4_locku_release_calldata,
3175 };
3176
3177 static struct rpc_task *nfs4_do_unlck(struct file_lock *fl,
3178 struct nfs_open_context *ctx,
3179 struct nfs4_lock_state *lsp,
3180 struct nfs_seqid *seqid)
3181 {
3182 struct nfs4_unlockdata *data;
3183
3184 data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid);
3185 if (data == NULL) {
3186 nfs_free_seqid(seqid);
3187 return ERR_PTR(-ENOMEM);
3188 }
3189
3190 return rpc_run_task(NFS_CLIENT(lsp->ls_state->inode), RPC_TASK_ASYNC, &nfs4_locku_ops, data);
3191 }
3192
3193 static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request)
3194 {
3195 struct nfs_seqid *seqid;
3196 struct nfs4_lock_state *lsp;
3197 struct rpc_task *task;
3198 int status = 0;
3199
3200 status = nfs4_set_lock_state(state, request);
3201 /* Unlock _before_ we do the RPC call */
3202 request->fl_flags |= FL_EXISTS;
3203 if (do_vfs_lock(request->fl_file, request) == -ENOENT)
3204 goto out;
3205 if (status != 0)
3206 goto out;
3207 /* Is this a delegated lock? */
3208 if (test_bit(NFS_DELEGATED_STATE, &state->flags))
3209 goto out;
3210 lsp = request->fl_u.nfs4_fl.owner;
3211 seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3212 status = -ENOMEM;
3213 if (seqid == NULL)
3214 goto out;
3215 task = nfs4_do_unlck(request, request->fl_file->private_data, lsp, seqid);
3216 status = PTR_ERR(task);
3217 if (IS_ERR(task))
3218 goto out;
3219 status = nfs4_wait_for_completion_rpc_task(task);
3220 rpc_put_task(task);
3221 out:
3222 return status;
3223 }
3224
3225 struct nfs4_lockdata {
3226 struct nfs_lock_args arg;
3227 struct nfs_lock_res res;
3228 struct nfs4_lock_state *lsp;
3229 struct nfs_open_context *ctx;
3230 struct file_lock fl;
3231 unsigned long timestamp;
3232 int rpc_status;
3233 int cancelled;
3234 };
3235
3236 static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl,
3237 struct nfs_open_context *ctx, struct nfs4_lock_state *lsp)
3238 {
3239 struct nfs4_lockdata *p;
3240 struct inode *inode = lsp->ls_state->inode;
3241 struct nfs_server *server = NFS_SERVER(inode);
3242
3243 p = kzalloc(sizeof(*p), GFP_KERNEL);
3244 if (p == NULL)
3245 return NULL;
3246
3247 p->arg.fh = NFS_FH(inode);
3248 p->arg.fl = &p->fl;
3249 p->arg.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3250 if (p->arg.lock_seqid == NULL)
3251 goto out_free;
3252 p->arg.lock_stateid = &lsp->ls_stateid;
3253 p->arg.lock_owner.clientid = server->nfs_client->cl_clientid;
3254 p->arg.lock_owner.id = lsp->ls_id.id;
3255 p->lsp = lsp;
3256 atomic_inc(&lsp->ls_count);
3257 p->ctx = get_nfs_open_context(ctx);
3258 memcpy(&p->fl, fl, sizeof(p->fl));
3259 return p;
3260 out_free:
3261 kfree(p);
3262 return NULL;
3263 }
3264
3265 static void nfs4_lock_prepare(struct rpc_task *task, void *calldata)
3266 {
3267 struct nfs4_lockdata *data = calldata;
3268 struct nfs4_state *state = data->lsp->ls_state;
3269 struct nfs4_state_owner *sp = state->owner;
3270 struct rpc_message msg = {
3271 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK],
3272 .rpc_argp = &data->arg,
3273 .rpc_resp = &data->res,
3274 .rpc_cred = sp->so_cred,
3275 };
3276
3277 if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0)
3278 return;
3279 dprintk("%s: begin!\n", __FUNCTION__);
3280 /* Do we need to do an open_to_lock_owner? */
3281 if (!(data->arg.lock_seqid->sequence->flags & NFS_SEQID_CONFIRMED)) {
3282 data->arg.open_seqid = nfs_alloc_seqid(&sp->so_seqid);
3283 if (data->arg.open_seqid == NULL) {
3284 data->rpc_status = -ENOMEM;
3285 task->tk_action = NULL;
3286 goto out;
3287 }
3288 data->arg.open_stateid = &state->stateid;
3289 data->arg.new_lock_owner = 1;
3290 }
3291 data->timestamp = jiffies;
3292 rpc_call_setup(task, &msg, 0);
3293 out:
3294 dprintk("%s: done!, ret = %d\n", __FUNCTION__, data->rpc_status);
3295 }
3296
3297 static void nfs4_lock_done(struct rpc_task *task, void *calldata)
3298 {
3299 struct nfs4_lockdata *data = calldata;
3300
3301 dprintk("%s: begin!\n", __FUNCTION__);
3302
3303 data->rpc_status = task->tk_status;
3304 if (RPC_ASSASSINATED(task))
3305 goto out;
3306 if (data->arg.new_lock_owner != 0) {
3307 nfs_increment_open_seqid(data->rpc_status, data->arg.open_seqid);
3308 if (data->rpc_status == 0)
3309 nfs_confirm_seqid(&data->lsp->ls_seqid, 0);
3310 else
3311 goto out;
3312 }
3313 if (data->rpc_status == 0) {
3314 memcpy(data->lsp->ls_stateid.data, data->res.stateid.data,
3315 sizeof(data->lsp->ls_stateid.data));
3316 data->lsp->ls_flags |= NFS_LOCK_INITIALIZED;
3317 renew_lease(NFS_SERVER(data->ctx->path.dentry->d_inode), data->timestamp);
3318 }
3319 nfs_increment_lock_seqid(data->rpc_status, data->arg.lock_seqid);
3320 out:
3321 dprintk("%s: done, ret = %d!\n", __FUNCTION__, data->rpc_status);
3322 }
3323
3324 static void nfs4_lock_release(void *calldata)
3325 {
3326 struct nfs4_lockdata *data = calldata;
3327
3328 dprintk("%s: begin!\n", __FUNCTION__);
3329 if (data->arg.open_seqid != NULL)
3330 nfs_free_seqid(data->arg.open_seqid);
3331 if (data->cancelled != 0) {
3332 struct rpc_task *task;
3333 task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp,
3334 data->arg.lock_seqid);
3335 if (!IS_ERR(task))
3336 rpc_put_task(task);
3337 dprintk("%s: cancelling lock!\n", __FUNCTION__);
3338 } else
3339 nfs_free_seqid(data->arg.lock_seqid);
3340 nfs4_put_lock_state(data->lsp);
3341 put_nfs_open_context(data->ctx);
3342 kfree(data);
3343 dprintk("%s: done!\n", __FUNCTION__);
3344 }
3345
3346 static const struct rpc_call_ops nfs4_lock_ops = {
3347 .rpc_call_prepare = nfs4_lock_prepare,
3348 .rpc_call_done = nfs4_lock_done,
3349 .rpc_release = nfs4_lock_release,
3350 };
3351
3352 static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int reclaim)
3353 {
3354 struct nfs4_lockdata *data;
3355 struct rpc_task *task;
3356 int ret;
3357
3358 dprintk("%s: begin!\n", __FUNCTION__);
3359 data = nfs4_alloc_lockdata(fl, fl->fl_file->private_data,
3360 fl->fl_u.nfs4_fl.owner);
3361 if (data == NULL)
3362 return -ENOMEM;
3363 if (IS_SETLKW(cmd))
3364 data->arg.block = 1;
3365 if (reclaim != 0)
3366 data->arg.reclaim = 1;
3367 task = rpc_run_task(NFS_CLIENT(state->inode), RPC_TASK_ASYNC,
3368 &nfs4_lock_ops, data);
3369 if (IS_ERR(task))
3370 return PTR_ERR(task);
3371 ret = nfs4_wait_for_completion_rpc_task(task);
3372 if (ret == 0) {
3373 ret = data->rpc_status;
3374 if (ret == -NFS4ERR_DENIED)
3375 ret = -EAGAIN;
3376 } else
3377 data->cancelled = 1;
3378 rpc_put_task(task);
3379 dprintk("%s: done, ret = %d!\n", __FUNCTION__, ret);
3380 return ret;
3381 }
3382
3383 static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request)
3384 {
3385 struct nfs_server *server = NFS_SERVER(state->inode);
3386 struct nfs4_exception exception = { };
3387 int err;
3388
3389 do {
3390 /* Cache the lock if possible... */
3391 if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
3392 return 0;
3393 err = _nfs4_do_setlk(state, F_SETLK, request, 1);
3394 if (err != -NFS4ERR_DELAY)
3395 break;
3396 nfs4_handle_exception(server, err, &exception);
3397 } while (exception.retry);
3398 return err;
3399 }
3400
3401 static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request)
3402 {
3403 struct nfs_server *server = NFS_SERVER(state->inode);
3404 struct nfs4_exception exception = { };
3405 int err;
3406
3407 err = nfs4_set_lock_state(state, request);
3408 if (err != 0)
3409 return err;
3410 do {
3411 if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
3412 return 0;
3413 err = _nfs4_do_setlk(state, F_SETLK, request, 0);
3414 if (err != -NFS4ERR_DELAY)
3415 break;
3416 nfs4_handle_exception(server, err, &exception);
3417 } while (exception.retry);
3418 return err;
3419 }
3420
3421 static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3422 {
3423 struct nfs_client *clp = state->owner->so_client;
3424 unsigned char fl_flags = request->fl_flags;
3425 int status;
3426
3427 /* Is this a delegated open? */
3428 status = nfs4_set_lock_state(state, request);
3429 if (status != 0)
3430 goto out;
3431 request->fl_flags |= FL_ACCESS;
3432 status = do_vfs_lock(request->fl_file, request);
3433 if (status < 0)
3434 goto out;
3435 down_read(&clp->cl_sem);
3436 if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
3437 struct nfs_inode *nfsi = NFS_I(state->inode);
3438 /* Yes: cache locks! */
3439 down_read(&nfsi->rwsem);
3440 /* ...but avoid races with delegation recall... */
3441 if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
3442 request->fl_flags = fl_flags & ~FL_SLEEP;
3443 status = do_vfs_lock(request->fl_file, request);
3444 up_read(&nfsi->rwsem);
3445 goto out_unlock;
3446 }
3447 up_read(&nfsi->rwsem);
3448 }
3449 status = _nfs4_do_setlk(state, cmd, request, 0);
3450 if (status != 0)
3451 goto out_unlock;
3452 /* Note: we always want to sleep here! */
3453 request->fl_flags = fl_flags | FL_SLEEP;
3454 if (do_vfs_lock(request->fl_file, request) < 0)
3455 printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __FUNCTION__);
3456 out_unlock:
3457 up_read(&clp->cl_sem);
3458 out:
3459 request->fl_flags = fl_flags;
3460 return status;
3461 }
3462
3463 static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3464 {
3465 struct nfs4_exception exception = { };
3466 int err;
3467
3468 do {
3469 err = nfs4_handle_exception(NFS_SERVER(state->inode),
3470 _nfs4_proc_setlk(state, cmd, request),
3471 &exception);
3472 } while (exception.retry);
3473 return err;
3474 }
3475
3476 static int
3477 nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request)
3478 {
3479 struct nfs_open_context *ctx;
3480 struct nfs4_state *state;
3481 unsigned long timeout = NFS4_LOCK_MINTIMEOUT;
3482 int status;
3483
3484 /* verify open state */
3485 ctx = (struct nfs_open_context *)filp->private_data;
3486 state = ctx->state;
3487
3488 if (request->fl_start < 0 || request->fl_end < 0)
3489 return -EINVAL;
3490
3491 if (IS_GETLK(cmd))
3492 return nfs4_proc_getlk(state, F_GETLK, request);
3493
3494 if (!(IS_SETLK(cmd) || IS_SETLKW(cmd)))
3495 return -EINVAL;
3496
3497 if (request->fl_type == F_UNLCK)
3498 return nfs4_proc_unlck(state, cmd, request);
3499
3500 do {
3501 status = nfs4_proc_setlk(state, cmd, request);
3502 if ((status != -EAGAIN) || IS_SETLK(cmd))
3503 break;
3504 timeout = nfs4_set_lock_task_retry(timeout);
3505 status = -ERESTARTSYS;
3506 if (signalled())
3507 break;
3508 } while(status < 0);
3509 return status;
3510 }
3511
3512 int nfs4_lock_delegation_recall(struct nfs4_state *state, struct file_lock *fl)
3513 {
3514 struct nfs_server *server = NFS_SERVER(state->inode);
3515 struct nfs4_exception exception = { };
3516 int err;
3517
3518 err = nfs4_set_lock_state(state, fl);
3519 if (err != 0)
3520 goto out;
3521 do {
3522 err = _nfs4_do_setlk(state, F_SETLK, fl, 0);
3523 if (err != -NFS4ERR_DELAY)
3524 break;
3525 err = nfs4_handle_exception(server, err, &exception);
3526 } while (exception.retry);
3527 out:
3528 return err;
3529 }
3530
3531 #define XATTR_NAME_NFSV4_ACL "system.nfs4_acl"
3532
3533 int nfs4_setxattr(struct dentry *dentry, const char *key, const void *buf,
3534 size_t buflen, int flags)
3535 {
3536 struct inode *inode = dentry->d_inode;
3537
3538 if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3539 return -EOPNOTSUPP;
3540
3541 if (!S_ISREG(inode->i_mode) &&
3542 (!S_ISDIR(inode->i_mode) || inode->i_mode & S_ISVTX))
3543 return -EPERM;
3544
3545 return nfs4_proc_set_acl(inode, buf, buflen);
3546 }
3547
3548 /* The getxattr man page suggests returning -ENODATA for unknown attributes,
3549 * and that's what we'll do for e.g. user attributes that haven't been set.
3550 * But we'll follow ext2/ext3's lead by returning -EOPNOTSUPP for unsupported
3551 * attributes in kernel-managed attribute namespaces. */
3552 ssize_t nfs4_getxattr(struct dentry *dentry, const char *key, void *buf,
3553 size_t buflen)
3554 {
3555 struct inode *inode = dentry->d_inode;
3556
3557 if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3558 return -EOPNOTSUPP;
3559
3560 return nfs4_proc_get_acl(inode, buf, buflen);
3561 }
3562
3563 ssize_t nfs4_listxattr(struct dentry *dentry, char *buf, size_t buflen)
3564 {
3565 size_t len = strlen(XATTR_NAME_NFSV4_ACL) + 1;
3566
3567 if (!nfs4_server_supports_acls(NFS_SERVER(dentry->d_inode)))
3568 return 0;
3569 if (buf && buflen < len)
3570 return -ERANGE;
3571 if (buf)
3572 memcpy(buf, XATTR_NAME_NFSV4_ACL, len);
3573 return len;
3574 }
3575
3576 int nfs4_proc_fs_locations(struct inode *dir, struct qstr *name,
3577 struct nfs4_fs_locations *fs_locations, struct page *page)
3578 {
3579 struct nfs_server *server = NFS_SERVER(dir);
3580 u32 bitmask[2] = {
3581 [0] = FATTR4_WORD0_FSID | FATTR4_WORD0_FS_LOCATIONS,
3582 [1] = FATTR4_WORD1_MOUNTED_ON_FILEID,
3583 };
3584 struct nfs4_fs_locations_arg args = {
3585 .dir_fh = NFS_FH(dir),
3586 .name = name,
3587 .page = page,
3588 .bitmask = bitmask,
3589 };
3590 struct rpc_message msg = {
3591 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS],
3592 .rpc_argp = &args,
3593 .rpc_resp = fs_locations,
3594 };
3595 int status;
3596
3597 dprintk("%s: start\n", __FUNCTION__);
3598 nfs_fattr_init(&fs_locations->fattr);
3599 fs_locations->server = server;
3600 fs_locations->nlocations = 0;
3601 status = rpc_call_sync(server->client, &msg, 0);
3602 dprintk("%s: returned status = %d\n", __FUNCTION__, status);
3603 return status;
3604 }
3605
3606 struct nfs4_state_recovery_ops nfs4_reboot_recovery_ops = {
3607 .recover_open = nfs4_open_reclaim,
3608 .recover_lock = nfs4_lock_reclaim,
3609 };
3610
3611 struct nfs4_state_recovery_ops nfs4_network_partition_recovery_ops = {
3612 .recover_open = nfs4_open_expired,
3613 .recover_lock = nfs4_lock_expired,
3614 };
3615
3616 static const struct inode_operations nfs4_file_inode_operations = {
3617 .permission = nfs_permission,
3618 .getattr = nfs_getattr,
3619 .setattr = nfs_setattr,
3620 .getxattr = nfs4_getxattr,
3621 .setxattr = nfs4_setxattr,
3622 .listxattr = nfs4_listxattr,
3623 };
3624
3625 const struct nfs_rpc_ops nfs_v4_clientops = {
3626 .version = 4, /* protocol version */
3627 .dentry_ops = &nfs4_dentry_operations,
3628 .dir_inode_ops = &nfs4_dir_inode_operations,
3629 .file_inode_ops = &nfs4_file_inode_operations,
3630 .getroot = nfs4_proc_get_root,
3631 .getattr = nfs4_proc_getattr,
3632 .setattr = nfs4_proc_setattr,
3633 .lookupfh = nfs4_proc_lookupfh,
3634 .lookup = nfs4_proc_lookup,
3635 .access = nfs4_proc_access,
3636 .readlink = nfs4_proc_readlink,
3637 .create = nfs4_proc_create,
3638 .remove = nfs4_proc_remove,
3639 .unlink_setup = nfs4_proc_unlink_setup,
3640 .unlink_done = nfs4_proc_unlink_done,
3641 .rename = nfs4_proc_rename,
3642 .link = nfs4_proc_link,
3643 .symlink = nfs4_proc_symlink,
3644 .mkdir = nfs4_proc_mkdir,
3645 .rmdir = nfs4_proc_remove,
3646 .readdir = nfs4_proc_readdir,
3647 .mknod = nfs4_proc_mknod,
3648 .statfs = nfs4_proc_statfs,
3649 .fsinfo = nfs4_proc_fsinfo,
3650 .pathconf = nfs4_proc_pathconf,
3651 .set_capabilities = nfs4_server_capabilities,
3652 .decode_dirent = nfs4_decode_dirent,
3653 .read_setup = nfs4_proc_read_setup,
3654 .read_done = nfs4_read_done,
3655 .write_setup = nfs4_proc_write_setup,
3656 .write_done = nfs4_write_done,
3657 .commit_setup = nfs4_proc_commit_setup,
3658 .commit_done = nfs4_commit_done,
3659 .file_open = nfs_open,
3660 .file_release = nfs_release,
3661 .lock = nfs4_proc_lock,
3662 .clear_acl_cache = nfs4_zap_acl_attr,
3663 };
3664
3665 /*
3666 * Local variables:
3667 * c-basic-offset: 8
3668 * End:
3669 */