]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/nfs/nfs4proc.c
NFS: Use dentry->d_time to store the parent directory verifier.
[mirror_ubuntu-hirsute-kernel.git] / fs / nfs / nfs4proc.c
1 /*
2 * fs/nfs/nfs4proc.c
3 *
4 * Client-side procedure declarations for NFSv4.
5 *
6 * Copyright (c) 2002 The Regents of the University of Michigan.
7 * All rights reserved.
8 *
9 * Kendrick Smith <kmsmith@umich.edu>
10 * Andy Adamson <andros@umich.edu>
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 *
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #include <linux/mm.h>
39 #include <linux/utsname.h>
40 #include <linux/delay.h>
41 #include <linux/errno.h>
42 #include <linux/string.h>
43 #include <linux/sunrpc/clnt.h>
44 #include <linux/nfs.h>
45 #include <linux/nfs4.h>
46 #include <linux/nfs_fs.h>
47 #include <linux/nfs_page.h>
48 #include <linux/smp_lock.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51
52 #include "nfs4_fs.h"
53 #include "delegation.h"
54 #include "iostat.h"
55
56 #define NFSDBG_FACILITY NFSDBG_PROC
57
58 #define NFS4_POLL_RETRY_MIN (HZ/10)
59 #define NFS4_POLL_RETRY_MAX (15*HZ)
60
61 struct nfs4_opendata;
62 static int _nfs4_proc_open(struct nfs4_opendata *data);
63 static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *);
64 static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *);
65 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry);
66 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception);
67 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs_client *clp);
68 static int _nfs4_do_access(struct inode *inode, struct rpc_cred *cred, int openflags);
69 static int _nfs4_proc_lookup(struct inode *dir, const struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr);
70 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr);
71
72 /* Prevent leaks of NFSv4 errors into userland */
73 int nfs4_map_errors(int err)
74 {
75 if (err < -1000) {
76 dprintk("%s could not handle NFSv4 error %d\n",
77 __FUNCTION__, -err);
78 return -EIO;
79 }
80 return err;
81 }
82
83 /*
84 * This is our standard bitmap for GETATTR requests.
85 */
86 const u32 nfs4_fattr_bitmap[2] = {
87 FATTR4_WORD0_TYPE
88 | FATTR4_WORD0_CHANGE
89 | FATTR4_WORD0_SIZE
90 | FATTR4_WORD0_FSID
91 | FATTR4_WORD0_FILEID,
92 FATTR4_WORD1_MODE
93 | FATTR4_WORD1_NUMLINKS
94 | FATTR4_WORD1_OWNER
95 | FATTR4_WORD1_OWNER_GROUP
96 | FATTR4_WORD1_RAWDEV
97 | FATTR4_WORD1_SPACE_USED
98 | FATTR4_WORD1_TIME_ACCESS
99 | FATTR4_WORD1_TIME_METADATA
100 | FATTR4_WORD1_TIME_MODIFY
101 };
102
103 const u32 nfs4_statfs_bitmap[2] = {
104 FATTR4_WORD0_FILES_AVAIL
105 | FATTR4_WORD0_FILES_FREE
106 | FATTR4_WORD0_FILES_TOTAL,
107 FATTR4_WORD1_SPACE_AVAIL
108 | FATTR4_WORD1_SPACE_FREE
109 | FATTR4_WORD1_SPACE_TOTAL
110 };
111
112 const u32 nfs4_pathconf_bitmap[2] = {
113 FATTR4_WORD0_MAXLINK
114 | FATTR4_WORD0_MAXNAME,
115 0
116 };
117
118 const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE
119 | FATTR4_WORD0_MAXREAD
120 | FATTR4_WORD0_MAXWRITE
121 | FATTR4_WORD0_LEASE_TIME,
122 0
123 };
124
125 const u32 nfs4_fs_locations_bitmap[2] = {
126 FATTR4_WORD0_TYPE
127 | FATTR4_WORD0_CHANGE
128 | FATTR4_WORD0_SIZE
129 | FATTR4_WORD0_FSID
130 | FATTR4_WORD0_FILEID
131 | FATTR4_WORD0_FS_LOCATIONS,
132 FATTR4_WORD1_MODE
133 | FATTR4_WORD1_NUMLINKS
134 | FATTR4_WORD1_OWNER
135 | FATTR4_WORD1_OWNER_GROUP
136 | FATTR4_WORD1_RAWDEV
137 | FATTR4_WORD1_SPACE_USED
138 | FATTR4_WORD1_TIME_ACCESS
139 | FATTR4_WORD1_TIME_METADATA
140 | FATTR4_WORD1_TIME_MODIFY
141 | FATTR4_WORD1_MOUNTED_ON_FILEID
142 };
143
144 static void nfs4_setup_readdir(u64 cookie, __be32 *verifier, struct dentry *dentry,
145 struct nfs4_readdir_arg *readdir)
146 {
147 __be32 *start, *p;
148
149 BUG_ON(readdir->count < 80);
150 if (cookie > 2) {
151 readdir->cookie = cookie;
152 memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier));
153 return;
154 }
155
156 readdir->cookie = 0;
157 memset(&readdir->verifier, 0, sizeof(readdir->verifier));
158 if (cookie == 2)
159 return;
160
161 /*
162 * NFSv4 servers do not return entries for '.' and '..'
163 * Therefore, we fake these entries here. We let '.'
164 * have cookie 0 and '..' have cookie 1. Note that
165 * when talking to the server, we always send cookie 0
166 * instead of 1 or 2.
167 */
168 start = p = kmap_atomic(*readdir->pages, KM_USER0);
169
170 if (cookie == 0) {
171 *p++ = xdr_one; /* next */
172 *p++ = xdr_zero; /* cookie, first word */
173 *p++ = xdr_one; /* cookie, second word */
174 *p++ = xdr_one; /* entry len */
175 memcpy(p, ".\0\0\0", 4); /* entry */
176 p++;
177 *p++ = xdr_one; /* bitmap length */
178 *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */
179 *p++ = htonl(8); /* attribute buffer length */
180 p = xdr_encode_hyper(p, dentry->d_inode->i_ino);
181 }
182
183 *p++ = xdr_one; /* next */
184 *p++ = xdr_zero; /* cookie, first word */
185 *p++ = xdr_two; /* cookie, second word */
186 *p++ = xdr_two; /* entry len */
187 memcpy(p, "..\0\0", 4); /* entry */
188 p++;
189 *p++ = xdr_one; /* bitmap length */
190 *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */
191 *p++ = htonl(8); /* attribute buffer length */
192 p = xdr_encode_hyper(p, dentry->d_parent->d_inode->i_ino);
193
194 readdir->pgbase = (char *)p - (char *)start;
195 readdir->count -= readdir->pgbase;
196 kunmap_atomic(start, KM_USER0);
197 }
198
199 static void renew_lease(const struct nfs_server *server, unsigned long timestamp)
200 {
201 struct nfs_client *clp = server->nfs_client;
202 spin_lock(&clp->cl_lock);
203 if (time_before(clp->cl_last_renewal,timestamp))
204 clp->cl_last_renewal = timestamp;
205 spin_unlock(&clp->cl_lock);
206 }
207
208 static void update_changeattr(struct inode *dir, struct nfs4_change_info *cinfo)
209 {
210 struct nfs_inode *nfsi = NFS_I(dir);
211
212 spin_lock(&dir->i_lock);
213 nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA;
214 if (cinfo->before == nfsi->change_attr && cinfo->atomic)
215 nfsi->change_attr = cinfo->after;
216 spin_unlock(&dir->i_lock);
217 }
218
219 struct nfs4_opendata {
220 struct kref kref;
221 struct nfs_openargs o_arg;
222 struct nfs_openres o_res;
223 struct nfs_open_confirmargs c_arg;
224 struct nfs_open_confirmres c_res;
225 struct nfs_fattr f_attr;
226 struct nfs_fattr dir_attr;
227 struct path path;
228 struct dentry *dir;
229 struct nfs4_state_owner *owner;
230 struct nfs4_state *state;
231 struct iattr attrs;
232 unsigned long timestamp;
233 unsigned int rpc_done : 1;
234 int rpc_status;
235 int cancelled;
236 };
237
238
239 static void nfs4_init_opendata_res(struct nfs4_opendata *p)
240 {
241 p->o_res.f_attr = &p->f_attr;
242 p->o_res.dir_attr = &p->dir_attr;
243 p->o_res.server = p->o_arg.server;
244 nfs_fattr_init(&p->f_attr);
245 nfs_fattr_init(&p->dir_attr);
246 }
247
248 static struct nfs4_opendata *nfs4_opendata_alloc(struct path *path,
249 struct nfs4_state_owner *sp, int flags,
250 const struct iattr *attrs)
251 {
252 struct dentry *parent = dget_parent(path->dentry);
253 struct inode *dir = parent->d_inode;
254 struct nfs_server *server = NFS_SERVER(dir);
255 struct nfs4_opendata *p;
256
257 p = kzalloc(sizeof(*p), GFP_KERNEL);
258 if (p == NULL)
259 goto err;
260 p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
261 if (p->o_arg.seqid == NULL)
262 goto err_free;
263 p->path.mnt = mntget(path->mnt);
264 p->path.dentry = dget(path->dentry);
265 p->dir = parent;
266 p->owner = sp;
267 atomic_inc(&sp->so_count);
268 p->o_arg.fh = NFS_FH(dir);
269 p->o_arg.open_flags = flags,
270 p->o_arg.clientid = server->nfs_client->cl_clientid;
271 p->o_arg.id = sp->so_owner_id.id;
272 p->o_arg.name = &p->path.dentry->d_name;
273 p->o_arg.server = server;
274 p->o_arg.bitmask = server->attr_bitmask;
275 p->o_arg.claim = NFS4_OPEN_CLAIM_NULL;
276 if (flags & O_EXCL) {
277 u32 *s = (u32 *) p->o_arg.u.verifier.data;
278 s[0] = jiffies;
279 s[1] = current->pid;
280 } else if (flags & O_CREAT) {
281 p->o_arg.u.attrs = &p->attrs;
282 memcpy(&p->attrs, attrs, sizeof(p->attrs));
283 }
284 p->c_arg.fh = &p->o_res.fh;
285 p->c_arg.stateid = &p->o_res.stateid;
286 p->c_arg.seqid = p->o_arg.seqid;
287 nfs4_init_opendata_res(p);
288 kref_init(&p->kref);
289 return p;
290 err_free:
291 kfree(p);
292 err:
293 dput(parent);
294 return NULL;
295 }
296
297 static void nfs4_opendata_free(struct kref *kref)
298 {
299 struct nfs4_opendata *p = container_of(kref,
300 struct nfs4_opendata, kref);
301
302 nfs_free_seqid(p->o_arg.seqid);
303 if (p->state != NULL)
304 nfs4_put_open_state(p->state);
305 nfs4_put_state_owner(p->owner);
306 dput(p->dir);
307 dput(p->path.dentry);
308 mntput(p->path.mnt);
309 kfree(p);
310 }
311
312 static void nfs4_opendata_put(struct nfs4_opendata *p)
313 {
314 if (p != NULL)
315 kref_put(&p->kref, nfs4_opendata_free);
316 }
317
318 static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task)
319 {
320 sigset_t oldset;
321 int ret;
322
323 rpc_clnt_sigmask(task->tk_client, &oldset);
324 ret = rpc_wait_for_completion_task(task);
325 rpc_clnt_sigunmask(task->tk_client, &oldset);
326 return ret;
327 }
328
329 static int can_open_cached(struct nfs4_state *state, int mode)
330 {
331 int ret = 0;
332 switch (mode & (FMODE_READ|FMODE_WRITE|O_EXCL)) {
333 case FMODE_READ:
334 ret |= test_bit(NFS_O_RDONLY_STATE, &state->flags) != 0;
335 ret |= test_bit(NFS_O_RDWR_STATE, &state->flags) != 0;
336 break;
337 case FMODE_WRITE:
338 ret |= test_bit(NFS_O_WRONLY_STATE, &state->flags) != 0;
339 ret |= test_bit(NFS_O_RDWR_STATE, &state->flags) != 0;
340 break;
341 case FMODE_READ|FMODE_WRITE:
342 ret |= test_bit(NFS_O_RDWR_STATE, &state->flags) != 0;
343 }
344 return ret;
345 }
346
347 static int can_open_delegated(struct nfs_delegation *delegation, mode_t open_flags)
348 {
349 if ((delegation->type & open_flags) != open_flags)
350 return 0;
351 if (delegation->flags & NFS_DELEGATION_NEED_RECLAIM)
352 return 0;
353 return 1;
354 }
355
356 static void update_open_stateflags(struct nfs4_state *state, mode_t open_flags)
357 {
358 switch (open_flags) {
359 case FMODE_WRITE:
360 state->n_wronly++;
361 break;
362 case FMODE_READ:
363 state->n_rdonly++;
364 break;
365 case FMODE_READ|FMODE_WRITE:
366 state->n_rdwr++;
367 }
368 nfs4_state_set_mode_locked(state, state->state | open_flags);
369 }
370
371 static void nfs_set_open_stateid_locked(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags)
372 {
373 if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0)
374 memcpy(state->stateid.data, stateid->data, sizeof(state->stateid.data));
375 memcpy(state->open_stateid.data, stateid->data, sizeof(state->open_stateid.data));
376 switch (open_flags) {
377 case FMODE_READ:
378 set_bit(NFS_O_RDONLY_STATE, &state->flags);
379 break;
380 case FMODE_WRITE:
381 set_bit(NFS_O_WRONLY_STATE, &state->flags);
382 break;
383 case FMODE_READ|FMODE_WRITE:
384 set_bit(NFS_O_RDWR_STATE, &state->flags);
385 }
386 }
387
388 static void nfs_set_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags)
389 {
390 write_seqlock(&state->seqlock);
391 nfs_set_open_stateid_locked(state, stateid, open_flags);
392 write_sequnlock(&state->seqlock);
393 }
394
395 static void update_open_stateid(struct nfs4_state *state, nfs4_stateid *open_stateid, nfs4_stateid *deleg_stateid, int open_flags)
396 {
397 open_flags &= (FMODE_READ|FMODE_WRITE);
398 /*
399 * Protect the call to nfs4_state_set_mode_locked and
400 * serialise the stateid update
401 */
402 write_seqlock(&state->seqlock);
403 if (deleg_stateid != NULL) {
404 memcpy(state->stateid.data, deleg_stateid->data, sizeof(state->stateid.data));
405 set_bit(NFS_DELEGATED_STATE, &state->flags);
406 }
407 if (open_stateid != NULL)
408 nfs_set_open_stateid_locked(state, open_stateid, open_flags);
409 write_sequnlock(&state->seqlock);
410 spin_lock(&state->owner->so_lock);
411 update_open_stateflags(state, open_flags);
412 spin_unlock(&state->owner->so_lock);
413 }
414
415 static void nfs4_return_incompatible_delegation(struct inode *inode, mode_t open_flags)
416 {
417 struct nfs_delegation *delegation;
418
419 rcu_read_lock();
420 delegation = rcu_dereference(NFS_I(inode)->delegation);
421 if (delegation == NULL || (delegation->type & open_flags) == open_flags) {
422 rcu_read_unlock();
423 return;
424 }
425 rcu_read_unlock();
426 nfs_inode_return_delegation(inode);
427 }
428
429 static struct nfs4_state *nfs4_try_open_cached(struct nfs4_opendata *opendata)
430 {
431 struct nfs4_state *state = opendata->state;
432 struct nfs_inode *nfsi = NFS_I(state->inode);
433 struct nfs_delegation *delegation;
434 int open_mode = opendata->o_arg.open_flags & (FMODE_READ|FMODE_WRITE|O_EXCL);
435 nfs4_stateid stateid;
436 int ret = -EAGAIN;
437
438 rcu_read_lock();
439 delegation = rcu_dereference(nfsi->delegation);
440 for (;;) {
441 if (can_open_cached(state, open_mode)) {
442 spin_lock(&state->owner->so_lock);
443 if (can_open_cached(state, open_mode)) {
444 update_open_stateflags(state, open_mode);
445 spin_unlock(&state->owner->so_lock);
446 rcu_read_unlock();
447 goto out_return_state;
448 }
449 spin_unlock(&state->owner->so_lock);
450 }
451 if (delegation == NULL)
452 break;
453 if (!can_open_delegated(delegation, open_mode))
454 break;
455 /* Save the delegation */
456 memcpy(stateid.data, delegation->stateid.data, sizeof(stateid.data));
457 rcu_read_unlock();
458 lock_kernel();
459 ret = _nfs4_do_access(state->inode, state->owner->so_cred, open_mode);
460 unlock_kernel();
461 if (ret != 0)
462 goto out;
463 ret = -EAGAIN;
464 rcu_read_lock();
465 delegation = rcu_dereference(nfsi->delegation);
466 /* If no delegation, try a cached open */
467 if (delegation == NULL)
468 continue;
469 /* Is the delegation still valid? */
470 if (memcmp(stateid.data, delegation->stateid.data, sizeof(stateid.data)) != 0)
471 continue;
472 rcu_read_unlock();
473 update_open_stateid(state, NULL, &stateid, open_mode);
474 goto out_return_state;
475 }
476 rcu_read_unlock();
477 out:
478 return ERR_PTR(ret);
479 out_return_state:
480 atomic_inc(&state->count);
481 return state;
482 }
483
484 static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data)
485 {
486 struct inode *inode;
487 struct nfs4_state *state = NULL;
488 struct nfs_delegation *delegation;
489 nfs4_stateid *deleg_stateid = NULL;
490 int ret;
491
492 if (!data->rpc_done) {
493 state = nfs4_try_open_cached(data);
494 goto out;
495 }
496
497 ret = -EAGAIN;
498 if (!(data->f_attr.valid & NFS_ATTR_FATTR))
499 goto err;
500 inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr);
501 ret = PTR_ERR(inode);
502 if (IS_ERR(inode))
503 goto err;
504 ret = -ENOMEM;
505 state = nfs4_get_open_state(inode, data->owner);
506 if (state == NULL)
507 goto err_put_inode;
508 if (data->o_res.delegation_type != 0) {
509 int delegation_flags = 0;
510
511 rcu_read_lock();
512 delegation = rcu_dereference(NFS_I(inode)->delegation);
513 if (delegation)
514 delegation_flags = delegation->flags;
515 rcu_read_unlock();
516 if (!(delegation_flags & NFS_DELEGATION_NEED_RECLAIM))
517 nfs_inode_set_delegation(state->inode,
518 data->owner->so_cred,
519 &data->o_res);
520 else
521 nfs_inode_reclaim_delegation(state->inode,
522 data->owner->so_cred,
523 &data->o_res);
524 }
525 rcu_read_lock();
526 delegation = rcu_dereference(NFS_I(inode)->delegation);
527 if (delegation != NULL)
528 deleg_stateid = &delegation->stateid;
529 update_open_stateid(state, &data->o_res.stateid, deleg_stateid, data->o_arg.open_flags);
530 rcu_read_unlock();
531 iput(inode);
532 out:
533 return state;
534 err_put_inode:
535 iput(inode);
536 err:
537 return ERR_PTR(ret);
538 }
539
540 static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state)
541 {
542 struct nfs_inode *nfsi = NFS_I(state->inode);
543 struct nfs_open_context *ctx;
544
545 spin_lock(&state->inode->i_lock);
546 list_for_each_entry(ctx, &nfsi->open_files, list) {
547 if (ctx->state != state)
548 continue;
549 get_nfs_open_context(ctx);
550 spin_unlock(&state->inode->i_lock);
551 return ctx;
552 }
553 spin_unlock(&state->inode->i_lock);
554 return ERR_PTR(-ENOENT);
555 }
556
557 static struct nfs4_opendata *nfs4_open_recoverdata_alloc(struct nfs_open_context *ctx, struct nfs4_state *state)
558 {
559 struct nfs4_opendata *opendata;
560
561 opendata = nfs4_opendata_alloc(&ctx->path, state->owner, 0, NULL);
562 if (opendata == NULL)
563 return ERR_PTR(-ENOMEM);
564 opendata->state = state;
565 atomic_inc(&state->count);
566 return opendata;
567 }
568
569 static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, mode_t openflags, struct nfs4_state **res)
570 {
571 struct nfs4_state *newstate;
572 int ret;
573
574 opendata->o_arg.open_flags = openflags;
575 memset(&opendata->o_res, 0, sizeof(opendata->o_res));
576 memset(&opendata->c_res, 0, sizeof(opendata->c_res));
577 nfs4_init_opendata_res(opendata);
578 ret = _nfs4_proc_open(opendata);
579 if (ret != 0)
580 return ret;
581 newstate = nfs4_opendata_to_nfs4_state(opendata);
582 if (IS_ERR(newstate))
583 return PTR_ERR(newstate);
584 nfs4_close_state(&opendata->path, newstate, openflags);
585 *res = newstate;
586 return 0;
587 }
588
589 static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state)
590 {
591 struct nfs4_state *newstate;
592 int ret;
593
594 /* memory barrier prior to reading state->n_* */
595 clear_bit(NFS_DELEGATED_STATE, &state->flags);
596 smp_rmb();
597 if (state->n_rdwr != 0) {
598 ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &newstate);
599 if (ret != 0)
600 return ret;
601 if (newstate != state)
602 return -ESTALE;
603 }
604 if (state->n_wronly != 0) {
605 ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &newstate);
606 if (ret != 0)
607 return ret;
608 if (newstate != state)
609 return -ESTALE;
610 }
611 if (state->n_rdonly != 0) {
612 ret = nfs4_open_recover_helper(opendata, FMODE_READ, &newstate);
613 if (ret != 0)
614 return ret;
615 if (newstate != state)
616 return -ESTALE;
617 }
618 /*
619 * We may have performed cached opens for all three recoveries.
620 * Check if we need to update the current stateid.
621 */
622 if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0 &&
623 memcmp(state->stateid.data, state->open_stateid.data, sizeof(state->stateid.data)) != 0) {
624 write_seqlock(&state->seqlock);
625 if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0)
626 memcpy(state->stateid.data, state->open_stateid.data, sizeof(state->stateid.data));
627 write_sequnlock(&state->seqlock);
628 }
629 return 0;
630 }
631
632 /*
633 * OPEN_RECLAIM:
634 * reclaim state on the server after a reboot.
635 */
636 static int _nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state)
637 {
638 struct nfs_delegation *delegation;
639 struct nfs4_opendata *opendata;
640 int delegation_type = 0;
641 int status;
642
643 opendata = nfs4_open_recoverdata_alloc(ctx, state);
644 if (IS_ERR(opendata))
645 return PTR_ERR(opendata);
646 opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS;
647 opendata->o_arg.fh = NFS_FH(state->inode);
648 rcu_read_lock();
649 delegation = rcu_dereference(NFS_I(state->inode)->delegation);
650 if (delegation != NULL && (delegation->flags & NFS_DELEGATION_NEED_RECLAIM) != 0)
651 delegation_type = delegation->flags;
652 rcu_read_unlock();
653 opendata->o_arg.u.delegation_type = delegation_type;
654 status = nfs4_open_recover(opendata, state);
655 nfs4_opendata_put(opendata);
656 return status;
657 }
658
659 static int nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state)
660 {
661 struct nfs_server *server = NFS_SERVER(state->inode);
662 struct nfs4_exception exception = { };
663 int err;
664 do {
665 err = _nfs4_do_open_reclaim(ctx, state);
666 if (err != -NFS4ERR_DELAY)
667 break;
668 nfs4_handle_exception(server, err, &exception);
669 } while (exception.retry);
670 return err;
671 }
672
673 static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
674 {
675 struct nfs_open_context *ctx;
676 int ret;
677
678 ctx = nfs4_state_find_open_context(state);
679 if (IS_ERR(ctx))
680 return PTR_ERR(ctx);
681 ret = nfs4_do_open_reclaim(ctx, state);
682 put_nfs_open_context(ctx);
683 return ret;
684 }
685
686 static int _nfs4_open_delegation_recall(struct nfs_open_context *ctx, struct nfs4_state *state, const nfs4_stateid *stateid)
687 {
688 struct nfs4_opendata *opendata;
689 int ret;
690
691 opendata = nfs4_open_recoverdata_alloc(ctx, state);
692 if (IS_ERR(opendata))
693 return PTR_ERR(opendata);
694 opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR;
695 memcpy(opendata->o_arg.u.delegation.data, stateid->data,
696 sizeof(opendata->o_arg.u.delegation.data));
697 ret = nfs4_open_recover(opendata, state);
698 nfs4_opendata_put(opendata);
699 return ret;
700 }
701
702 int nfs4_open_delegation_recall(struct nfs_open_context *ctx, struct nfs4_state *state, const nfs4_stateid *stateid)
703 {
704 struct nfs4_exception exception = { };
705 struct nfs_server *server = NFS_SERVER(state->inode);
706 int err;
707 do {
708 err = _nfs4_open_delegation_recall(ctx, state, stateid);
709 switch (err) {
710 case 0:
711 return err;
712 case -NFS4ERR_STALE_CLIENTID:
713 case -NFS4ERR_STALE_STATEID:
714 case -NFS4ERR_EXPIRED:
715 /* Don't recall a delegation if it was lost */
716 nfs4_schedule_state_recovery(server->nfs_client);
717 return err;
718 }
719 err = nfs4_handle_exception(server, err, &exception);
720 } while (exception.retry);
721 return err;
722 }
723
724 static void nfs4_open_confirm_prepare(struct rpc_task *task, void *calldata)
725 {
726 struct nfs4_opendata *data = calldata;
727 struct rpc_message msg = {
728 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM],
729 .rpc_argp = &data->c_arg,
730 .rpc_resp = &data->c_res,
731 .rpc_cred = data->owner->so_cred,
732 };
733 data->timestamp = jiffies;
734 rpc_call_setup(task, &msg, 0);
735 }
736
737 static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata)
738 {
739 struct nfs4_opendata *data = calldata;
740
741 data->rpc_status = task->tk_status;
742 if (RPC_ASSASSINATED(task))
743 return;
744 if (data->rpc_status == 0) {
745 memcpy(data->o_res.stateid.data, data->c_res.stateid.data,
746 sizeof(data->o_res.stateid.data));
747 renew_lease(data->o_res.server, data->timestamp);
748 data->rpc_done = 1;
749 }
750 nfs_confirm_seqid(&data->owner->so_seqid, data->rpc_status);
751 nfs_increment_open_seqid(data->rpc_status, data->c_arg.seqid);
752 }
753
754 static void nfs4_open_confirm_release(void *calldata)
755 {
756 struct nfs4_opendata *data = calldata;
757 struct nfs4_state *state = NULL;
758
759 /* If this request hasn't been cancelled, do nothing */
760 if (data->cancelled == 0)
761 goto out_free;
762 /* In case of error, no cleanup! */
763 if (!data->rpc_done)
764 goto out_free;
765 nfs_confirm_seqid(&data->owner->so_seqid, 0);
766 state = nfs4_opendata_to_nfs4_state(data);
767 if (!IS_ERR(state))
768 nfs4_close_state(&data->path, state, data->o_arg.open_flags);
769 out_free:
770 nfs4_opendata_put(data);
771 }
772
773 static const struct rpc_call_ops nfs4_open_confirm_ops = {
774 .rpc_call_prepare = nfs4_open_confirm_prepare,
775 .rpc_call_done = nfs4_open_confirm_done,
776 .rpc_release = nfs4_open_confirm_release,
777 };
778
779 /*
780 * Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata
781 */
782 static int _nfs4_proc_open_confirm(struct nfs4_opendata *data)
783 {
784 struct nfs_server *server = NFS_SERVER(data->dir->d_inode);
785 struct rpc_task *task;
786 int status;
787
788 kref_get(&data->kref);
789 data->rpc_done = 0;
790 data->rpc_status = 0;
791 task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_confirm_ops, data);
792 if (IS_ERR(task))
793 return PTR_ERR(task);
794 status = nfs4_wait_for_completion_rpc_task(task);
795 if (status != 0) {
796 data->cancelled = 1;
797 smp_wmb();
798 } else
799 status = data->rpc_status;
800 rpc_put_task(task);
801 return status;
802 }
803
804 static void nfs4_open_prepare(struct rpc_task *task, void *calldata)
805 {
806 struct nfs4_opendata *data = calldata;
807 struct nfs4_state_owner *sp = data->owner;
808 struct rpc_message msg = {
809 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN],
810 .rpc_argp = &data->o_arg,
811 .rpc_resp = &data->o_res,
812 .rpc_cred = sp->so_cred,
813 };
814
815 if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0)
816 return;
817 /*
818 * Check if we still need to send an OPEN call, or if we can use
819 * a delegation instead.
820 */
821 if (data->state != NULL) {
822 struct nfs_delegation *delegation;
823
824 if (can_open_cached(data->state, data->o_arg.open_flags & (FMODE_READ|FMODE_WRITE|O_EXCL)))
825 goto out_no_action;
826 rcu_read_lock();
827 delegation = rcu_dereference(NFS_I(data->state->inode)->delegation);
828 if (delegation != NULL &&
829 (delegation->flags & NFS_DELEGATION_NEED_RECLAIM) == 0) {
830 rcu_read_unlock();
831 goto out_no_action;
832 }
833 rcu_read_unlock();
834 }
835 /* Update sequence id. */
836 data->o_arg.id = sp->so_owner_id.id;
837 data->o_arg.clientid = sp->so_client->cl_clientid;
838 if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS) {
839 msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR];
840 nfs_copy_fh(&data->o_res.fh, data->o_arg.fh);
841 }
842 data->timestamp = jiffies;
843 rpc_call_setup(task, &msg, 0);
844 return;
845 out_no_action:
846 task->tk_action = NULL;
847
848 }
849
850 static void nfs4_open_done(struct rpc_task *task, void *calldata)
851 {
852 struct nfs4_opendata *data = calldata;
853
854 data->rpc_status = task->tk_status;
855 if (RPC_ASSASSINATED(task))
856 return;
857 if (task->tk_status == 0) {
858 switch (data->o_res.f_attr->mode & S_IFMT) {
859 case S_IFREG:
860 break;
861 case S_IFLNK:
862 data->rpc_status = -ELOOP;
863 break;
864 case S_IFDIR:
865 data->rpc_status = -EISDIR;
866 break;
867 default:
868 data->rpc_status = -ENOTDIR;
869 }
870 renew_lease(data->o_res.server, data->timestamp);
871 if (!(data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM))
872 nfs_confirm_seqid(&data->owner->so_seqid, 0);
873 }
874 nfs_increment_open_seqid(data->rpc_status, data->o_arg.seqid);
875 data->rpc_done = 1;
876 }
877
878 static void nfs4_open_release(void *calldata)
879 {
880 struct nfs4_opendata *data = calldata;
881 struct nfs4_state *state = NULL;
882
883 /* If this request hasn't been cancelled, do nothing */
884 if (data->cancelled == 0)
885 goto out_free;
886 /* In case of error, no cleanup! */
887 if (data->rpc_status != 0 || !data->rpc_done)
888 goto out_free;
889 /* In case we need an open_confirm, no cleanup! */
890 if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)
891 goto out_free;
892 nfs_confirm_seqid(&data->owner->so_seqid, 0);
893 state = nfs4_opendata_to_nfs4_state(data);
894 if (!IS_ERR(state))
895 nfs4_close_state(&data->path, state, data->o_arg.open_flags);
896 out_free:
897 nfs4_opendata_put(data);
898 }
899
900 static const struct rpc_call_ops nfs4_open_ops = {
901 .rpc_call_prepare = nfs4_open_prepare,
902 .rpc_call_done = nfs4_open_done,
903 .rpc_release = nfs4_open_release,
904 };
905
906 /*
907 * Note: On error, nfs4_proc_open will free the struct nfs4_opendata
908 */
909 static int _nfs4_proc_open(struct nfs4_opendata *data)
910 {
911 struct inode *dir = data->dir->d_inode;
912 struct nfs_server *server = NFS_SERVER(dir);
913 struct nfs_openargs *o_arg = &data->o_arg;
914 struct nfs_openres *o_res = &data->o_res;
915 struct rpc_task *task;
916 int status;
917
918 kref_get(&data->kref);
919 data->rpc_done = 0;
920 data->rpc_status = 0;
921 data->cancelled = 0;
922 task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_ops, data);
923 if (IS_ERR(task))
924 return PTR_ERR(task);
925 status = nfs4_wait_for_completion_rpc_task(task);
926 if (status != 0) {
927 data->cancelled = 1;
928 smp_wmb();
929 } else
930 status = data->rpc_status;
931 rpc_put_task(task);
932 if (status != 0 || !data->rpc_done)
933 return status;
934
935 if (o_res->fh.size == 0)
936 _nfs4_proc_lookup(dir, o_arg->name, &o_res->fh, o_res->f_attr);
937
938 if (o_arg->open_flags & O_CREAT) {
939 update_changeattr(dir, &o_res->cinfo);
940 nfs_post_op_update_inode(dir, o_res->dir_attr);
941 } else
942 nfs_refresh_inode(dir, o_res->dir_attr);
943 if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
944 status = _nfs4_proc_open_confirm(data);
945 if (status != 0)
946 return status;
947 }
948 if (!(o_res->f_attr->valid & NFS_ATTR_FATTR))
949 _nfs4_proc_getattr(server, &o_res->fh, o_res->f_attr);
950 return 0;
951 }
952
953 static int _nfs4_do_access(struct inode *inode, struct rpc_cred *cred, int openflags)
954 {
955 struct nfs_access_entry cache;
956 int mask = 0;
957 int status;
958
959 if (openflags & FMODE_READ)
960 mask |= MAY_READ;
961 if (openflags & FMODE_WRITE)
962 mask |= MAY_WRITE;
963 if (openflags & FMODE_EXEC)
964 mask |= MAY_EXEC;
965 status = nfs_access_get_cached(inode, cred, &cache);
966 if (status == 0)
967 goto out;
968
969 /* Be clever: ask server to check for all possible rights */
970 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
971 cache.cred = cred;
972 cache.jiffies = jiffies;
973 status = _nfs4_proc_access(inode, &cache);
974 if (status != 0)
975 return status;
976 nfs_access_add_cache(inode, &cache);
977 out:
978 if ((cache.mask & mask) == mask)
979 return 0;
980 return -EACCES;
981 }
982
983 static int nfs4_recover_expired_lease(struct nfs_server *server)
984 {
985 struct nfs_client *clp = server->nfs_client;
986 int ret;
987
988 for (;;) {
989 ret = nfs4_wait_clnt_recover(server->client, clp);
990 if (ret != 0)
991 return ret;
992 if (!test_and_clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state))
993 break;
994 nfs4_schedule_state_recovery(clp);
995 }
996 return 0;
997 }
998
999 /*
1000 * OPEN_EXPIRED:
1001 * reclaim state on the server after a network partition.
1002 * Assumes caller holds the appropriate lock
1003 */
1004 static int _nfs4_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state)
1005 {
1006 struct nfs4_opendata *opendata;
1007 int ret;
1008
1009 opendata = nfs4_open_recoverdata_alloc(ctx, state);
1010 if (IS_ERR(opendata))
1011 return PTR_ERR(opendata);
1012 ret = nfs4_open_recover(opendata, state);
1013 if (ret == -ESTALE) {
1014 /* Invalidate the state owner so we don't ever use it again */
1015 nfs4_drop_state_owner(state->owner);
1016 d_drop(ctx->path.dentry);
1017 }
1018 nfs4_opendata_put(opendata);
1019 return ret;
1020 }
1021
1022 static inline int nfs4_do_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state)
1023 {
1024 struct nfs_server *server = NFS_SERVER(state->inode);
1025 struct nfs4_exception exception = { };
1026 int err;
1027
1028 do {
1029 err = _nfs4_open_expired(ctx, state);
1030 if (err == -NFS4ERR_DELAY)
1031 nfs4_handle_exception(server, err, &exception);
1032 } while (exception.retry);
1033 return err;
1034 }
1035
1036 static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
1037 {
1038 struct nfs_open_context *ctx;
1039 int ret;
1040
1041 ctx = nfs4_state_find_open_context(state);
1042 if (IS_ERR(ctx))
1043 return PTR_ERR(ctx);
1044 ret = nfs4_do_open_expired(ctx, state);
1045 put_nfs_open_context(ctx);
1046 return ret;
1047 }
1048
1049 /*
1050 * on an EXCLUSIVE create, the server should send back a bitmask with FATTR4-*
1051 * fields corresponding to attributes that were used to store the verifier.
1052 * Make sure we clobber those fields in the later setattr call
1053 */
1054 static inline void nfs4_exclusive_attrset(struct nfs4_opendata *opendata, struct iattr *sattr)
1055 {
1056 if ((opendata->o_res.attrset[1] & FATTR4_WORD1_TIME_ACCESS) &&
1057 !(sattr->ia_valid & ATTR_ATIME_SET))
1058 sattr->ia_valid |= ATTR_ATIME;
1059
1060 if ((opendata->o_res.attrset[1] & FATTR4_WORD1_TIME_MODIFY) &&
1061 !(sattr->ia_valid & ATTR_MTIME_SET))
1062 sattr->ia_valid |= ATTR_MTIME;
1063 }
1064
1065 /*
1066 * Returns a referenced nfs4_state
1067 */
1068 static int _nfs4_do_open(struct inode *dir, struct path *path, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res)
1069 {
1070 struct nfs4_state_owner *sp;
1071 struct nfs4_state *state = NULL;
1072 struct nfs_server *server = NFS_SERVER(dir);
1073 struct nfs_client *clp = server->nfs_client;
1074 struct nfs4_opendata *opendata;
1075 int status;
1076
1077 /* Protect against reboot recovery conflicts */
1078 status = -ENOMEM;
1079 if (!(sp = nfs4_get_state_owner(server, cred))) {
1080 dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n");
1081 goto out_err;
1082 }
1083 status = nfs4_recover_expired_lease(server);
1084 if (status != 0)
1085 goto err_put_state_owner;
1086 if (path->dentry->d_inode != NULL)
1087 nfs4_return_incompatible_delegation(path->dentry->d_inode, flags & (FMODE_READ|FMODE_WRITE));
1088 down_read(&clp->cl_sem);
1089 status = -ENOMEM;
1090 opendata = nfs4_opendata_alloc(path, sp, flags, sattr);
1091 if (opendata == NULL)
1092 goto err_release_rwsem;
1093
1094 if (path->dentry->d_inode != NULL)
1095 opendata->state = nfs4_get_open_state(path->dentry->d_inode, sp);
1096
1097 status = _nfs4_proc_open(opendata);
1098 if (status != 0)
1099 goto err_opendata_put;
1100
1101 if (opendata->o_arg.open_flags & O_EXCL)
1102 nfs4_exclusive_attrset(opendata, sattr);
1103
1104 state = nfs4_opendata_to_nfs4_state(opendata);
1105 status = PTR_ERR(state);
1106 if (IS_ERR(state))
1107 goto err_opendata_put;
1108 nfs4_opendata_put(opendata);
1109 nfs4_put_state_owner(sp);
1110 up_read(&clp->cl_sem);
1111 *res = state;
1112 return 0;
1113 err_opendata_put:
1114 nfs4_opendata_put(opendata);
1115 err_release_rwsem:
1116 up_read(&clp->cl_sem);
1117 err_put_state_owner:
1118 nfs4_put_state_owner(sp);
1119 out_err:
1120 *res = NULL;
1121 return status;
1122 }
1123
1124
1125 static struct nfs4_state *nfs4_do_open(struct inode *dir, struct path *path, int flags, struct iattr *sattr, struct rpc_cred *cred)
1126 {
1127 struct nfs4_exception exception = { };
1128 struct nfs4_state *res;
1129 int status;
1130
1131 do {
1132 status = _nfs4_do_open(dir, path, flags, sattr, cred, &res);
1133 if (status == 0)
1134 break;
1135 /* NOTE: BAD_SEQID means the server and client disagree about the
1136 * book-keeping w.r.t. state-changing operations
1137 * (OPEN/CLOSE/LOCK/LOCKU...)
1138 * It is actually a sign of a bug on the client or on the server.
1139 *
1140 * If we receive a BAD_SEQID error in the particular case of
1141 * doing an OPEN, we assume that nfs_increment_open_seqid() will
1142 * have unhashed the old state_owner for us, and that we can
1143 * therefore safely retry using a new one. We should still warn
1144 * the user though...
1145 */
1146 if (status == -NFS4ERR_BAD_SEQID) {
1147 printk(KERN_WARNING "NFS: v4 server %s "
1148 " returned a bad sequence-id error!\n",
1149 NFS_SERVER(dir)->nfs_client->cl_hostname);
1150 exception.retry = 1;
1151 continue;
1152 }
1153 /*
1154 * BAD_STATEID on OPEN means that the server cancelled our
1155 * state before it received the OPEN_CONFIRM.
1156 * Recover by retrying the request as per the discussion
1157 * on Page 181 of RFC3530.
1158 */
1159 if (status == -NFS4ERR_BAD_STATEID) {
1160 exception.retry = 1;
1161 continue;
1162 }
1163 if (status == -EAGAIN) {
1164 /* We must have found a delegation */
1165 exception.retry = 1;
1166 continue;
1167 }
1168 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir),
1169 status, &exception));
1170 } while (exception.retry);
1171 return res;
1172 }
1173
1174 static int _nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1175 struct iattr *sattr, struct nfs4_state *state)
1176 {
1177 struct nfs_server *server = NFS_SERVER(inode);
1178 struct nfs_setattrargs arg = {
1179 .fh = NFS_FH(inode),
1180 .iap = sattr,
1181 .server = server,
1182 .bitmask = server->attr_bitmask,
1183 };
1184 struct nfs_setattrres res = {
1185 .fattr = fattr,
1186 .server = server,
1187 };
1188 struct rpc_message msg = {
1189 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
1190 .rpc_argp = &arg,
1191 .rpc_resp = &res,
1192 };
1193 unsigned long timestamp = jiffies;
1194 int status;
1195
1196 nfs_fattr_init(fattr);
1197
1198 if (nfs4_copy_delegation_stateid(&arg.stateid, inode)) {
1199 /* Use that stateid */
1200 } else if (state != NULL) {
1201 msg.rpc_cred = state->owner->so_cred;
1202 nfs4_copy_stateid(&arg.stateid, state, current->files);
1203 } else
1204 memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid));
1205
1206 status = rpc_call_sync(server->client, &msg, 0);
1207 if (status == 0 && state != NULL)
1208 renew_lease(server, timestamp);
1209 return status;
1210 }
1211
1212 static int nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1213 struct iattr *sattr, struct nfs4_state *state)
1214 {
1215 struct nfs_server *server = NFS_SERVER(inode);
1216 struct nfs4_exception exception = { };
1217 int err;
1218 do {
1219 err = nfs4_handle_exception(server,
1220 _nfs4_do_setattr(inode, fattr, sattr, state),
1221 &exception);
1222 } while (exception.retry);
1223 return err;
1224 }
1225
1226 struct nfs4_closedata {
1227 struct path path;
1228 struct inode *inode;
1229 struct nfs4_state *state;
1230 struct nfs_closeargs arg;
1231 struct nfs_closeres res;
1232 struct nfs_fattr fattr;
1233 unsigned long timestamp;
1234 };
1235
1236 static void nfs4_free_closedata(void *data)
1237 {
1238 struct nfs4_closedata *calldata = data;
1239 struct nfs4_state_owner *sp = calldata->state->owner;
1240
1241 nfs4_put_open_state(calldata->state);
1242 nfs_free_seqid(calldata->arg.seqid);
1243 nfs4_put_state_owner(sp);
1244 dput(calldata->path.dentry);
1245 mntput(calldata->path.mnt);
1246 kfree(calldata);
1247 }
1248
1249 static void nfs4_close_done(struct rpc_task *task, void *data)
1250 {
1251 struct nfs4_closedata *calldata = data;
1252 struct nfs4_state *state = calldata->state;
1253 struct nfs_server *server = NFS_SERVER(calldata->inode);
1254
1255 if (RPC_ASSASSINATED(task))
1256 return;
1257 /* hmm. we are done with the inode, and in the process of freeing
1258 * the state_owner. we keep this around to process errors
1259 */
1260 nfs_increment_open_seqid(task->tk_status, calldata->arg.seqid);
1261 switch (task->tk_status) {
1262 case 0:
1263 nfs_set_open_stateid(state, &calldata->res.stateid, calldata->arg.open_flags);
1264 renew_lease(server, calldata->timestamp);
1265 break;
1266 case -NFS4ERR_STALE_STATEID:
1267 case -NFS4ERR_EXPIRED:
1268 break;
1269 default:
1270 if (nfs4_async_handle_error(task, server) == -EAGAIN) {
1271 rpc_restart_call(task);
1272 return;
1273 }
1274 }
1275 nfs_refresh_inode(calldata->inode, calldata->res.fattr);
1276 }
1277
1278 static void nfs4_close_prepare(struct rpc_task *task, void *data)
1279 {
1280 struct nfs4_closedata *calldata = data;
1281 struct nfs4_state *state = calldata->state;
1282 struct rpc_message msg = {
1283 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE],
1284 .rpc_argp = &calldata->arg,
1285 .rpc_resp = &calldata->res,
1286 .rpc_cred = state->owner->so_cred,
1287 };
1288 int clear_rd, clear_wr, clear_rdwr;
1289 int mode;
1290
1291 if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
1292 return;
1293
1294 mode = FMODE_READ|FMODE_WRITE;
1295 clear_rd = clear_wr = clear_rdwr = 0;
1296 spin_lock(&state->owner->so_lock);
1297 /* Calculate the change in open mode */
1298 if (state->n_rdwr == 0) {
1299 if (state->n_rdonly == 0) {
1300 mode &= ~FMODE_READ;
1301 clear_rd |= test_and_clear_bit(NFS_O_RDONLY_STATE, &state->flags);
1302 clear_rdwr |= test_and_clear_bit(NFS_O_RDWR_STATE, &state->flags);
1303 }
1304 if (state->n_wronly == 0) {
1305 mode &= ~FMODE_WRITE;
1306 clear_wr |= test_and_clear_bit(NFS_O_WRONLY_STATE, &state->flags);
1307 clear_rdwr |= test_and_clear_bit(NFS_O_RDWR_STATE, &state->flags);
1308 }
1309 }
1310 spin_unlock(&state->owner->so_lock);
1311 if (!clear_rd && !clear_wr && !clear_rdwr) {
1312 /* Note: exit _without_ calling nfs4_close_done */
1313 task->tk_action = NULL;
1314 return;
1315 }
1316 nfs_fattr_init(calldata->res.fattr);
1317 if (mode != 0)
1318 msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
1319 calldata->arg.open_flags = mode;
1320 calldata->timestamp = jiffies;
1321 rpc_call_setup(task, &msg, 0);
1322 }
1323
1324 static const struct rpc_call_ops nfs4_close_ops = {
1325 .rpc_call_prepare = nfs4_close_prepare,
1326 .rpc_call_done = nfs4_close_done,
1327 .rpc_release = nfs4_free_closedata,
1328 };
1329
1330 /*
1331 * It is possible for data to be read/written from a mem-mapped file
1332 * after the sys_close call (which hits the vfs layer as a flush).
1333 * This means that we can't safely call nfsv4 close on a file until
1334 * the inode is cleared. This in turn means that we are not good
1335 * NFSv4 citizens - we do not indicate to the server to update the file's
1336 * share state even when we are done with one of the three share
1337 * stateid's in the inode.
1338 *
1339 * NOTE: Caller must be holding the sp->so_owner semaphore!
1340 */
1341 int nfs4_do_close(struct path *path, struct nfs4_state *state)
1342 {
1343 struct nfs_server *server = NFS_SERVER(state->inode);
1344 struct nfs4_closedata *calldata;
1345 struct nfs4_state_owner *sp = state->owner;
1346 struct rpc_task *task;
1347 int status = -ENOMEM;
1348
1349 calldata = kmalloc(sizeof(*calldata), GFP_KERNEL);
1350 if (calldata == NULL)
1351 goto out;
1352 calldata->inode = state->inode;
1353 calldata->state = state;
1354 calldata->arg.fh = NFS_FH(state->inode);
1355 calldata->arg.stateid = &state->open_stateid;
1356 /* Serialization for the sequence id */
1357 calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid);
1358 if (calldata->arg.seqid == NULL)
1359 goto out_free_calldata;
1360 calldata->arg.bitmask = server->attr_bitmask;
1361 calldata->res.fattr = &calldata->fattr;
1362 calldata->res.server = server;
1363 calldata->path.mnt = mntget(path->mnt);
1364 calldata->path.dentry = dget(path->dentry);
1365
1366 task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_close_ops, calldata);
1367 if (IS_ERR(task))
1368 return PTR_ERR(task);
1369 rpc_put_task(task);
1370 return 0;
1371 out_free_calldata:
1372 kfree(calldata);
1373 out:
1374 nfs4_put_open_state(state);
1375 nfs4_put_state_owner(sp);
1376 return status;
1377 }
1378
1379 static int nfs4_intent_set_file(struct nameidata *nd, struct path *path, struct nfs4_state *state)
1380 {
1381 struct file *filp;
1382 int ret;
1383
1384 /* If the open_intent is for execute, we have an extra check to make */
1385 if (nd->intent.open.flags & FMODE_EXEC) {
1386 ret = _nfs4_do_access(state->inode,
1387 state->owner->so_cred,
1388 nd->intent.open.flags);
1389 if (ret < 0)
1390 goto out_close;
1391 }
1392 filp = lookup_instantiate_filp(nd, path->dentry, NULL);
1393 if (!IS_ERR(filp)) {
1394 struct nfs_open_context *ctx;
1395 ctx = (struct nfs_open_context *)filp->private_data;
1396 ctx->state = state;
1397 return 0;
1398 }
1399 ret = PTR_ERR(filp);
1400 out_close:
1401 nfs4_close_state(path, state, nd->intent.open.flags);
1402 return ret;
1403 }
1404
1405 struct dentry *
1406 nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1407 {
1408 struct path path = {
1409 .mnt = nd->mnt,
1410 .dentry = dentry,
1411 };
1412 struct iattr attr;
1413 struct rpc_cred *cred;
1414 struct nfs4_state *state;
1415 struct dentry *res;
1416
1417 if (nd->flags & LOOKUP_CREATE) {
1418 attr.ia_mode = nd->intent.open.create_mode;
1419 attr.ia_valid = ATTR_MODE;
1420 if (!IS_POSIXACL(dir))
1421 attr.ia_mode &= ~current->fs->umask;
1422 } else {
1423 attr.ia_valid = 0;
1424 BUG_ON(nd->intent.open.flags & O_CREAT);
1425 }
1426
1427 cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
1428 if (IS_ERR(cred))
1429 return (struct dentry *)cred;
1430 state = nfs4_do_open(dir, &path, nd->intent.open.flags, &attr, cred);
1431 put_rpccred(cred);
1432 if (IS_ERR(state)) {
1433 if (PTR_ERR(state) == -ENOENT)
1434 d_add(dentry, NULL);
1435 return (struct dentry *)state;
1436 }
1437 res = d_add_unique(dentry, igrab(state->inode));
1438 if (res != NULL)
1439 dentry = res;
1440 nfs4_intent_set_file(nd, &path, state);
1441 return res;
1442 }
1443
1444 int
1445 nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd)
1446 {
1447 struct path path = {
1448 .mnt = nd->mnt,
1449 .dentry = dentry,
1450 };
1451 struct rpc_cred *cred;
1452 struct nfs4_state *state;
1453
1454 cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
1455 if (IS_ERR(cred))
1456 return PTR_ERR(cred);
1457 state = nfs4_do_open(dir, &path, openflags, NULL, cred);
1458 put_rpccred(cred);
1459 if (IS_ERR(state)) {
1460 switch (PTR_ERR(state)) {
1461 case -EPERM:
1462 case -EACCES:
1463 case -EDQUOT:
1464 case -ENOSPC:
1465 case -EROFS:
1466 lookup_instantiate_filp(nd, (struct dentry *)state, NULL);
1467 return 1;
1468 default:
1469 goto out_drop;
1470 }
1471 }
1472 if (state->inode == dentry->d_inode) {
1473 nfs4_intent_set_file(nd, &path, state);
1474 return 1;
1475 }
1476 nfs4_close_state(&path, state, openflags);
1477 out_drop:
1478 d_drop(dentry);
1479 return 0;
1480 }
1481
1482
1483 static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1484 {
1485 struct nfs4_server_caps_res res = {};
1486 struct rpc_message msg = {
1487 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS],
1488 .rpc_argp = fhandle,
1489 .rpc_resp = &res,
1490 };
1491 int status;
1492
1493 status = rpc_call_sync(server->client, &msg, 0);
1494 if (status == 0) {
1495 memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask));
1496 if (res.attr_bitmask[0] & FATTR4_WORD0_ACL)
1497 server->caps |= NFS_CAP_ACLS;
1498 if (res.has_links != 0)
1499 server->caps |= NFS_CAP_HARDLINKS;
1500 if (res.has_symlinks != 0)
1501 server->caps |= NFS_CAP_SYMLINKS;
1502 server->acl_bitmask = res.acl_bitmask;
1503 }
1504 return status;
1505 }
1506
1507 int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1508 {
1509 struct nfs4_exception exception = { };
1510 int err;
1511 do {
1512 err = nfs4_handle_exception(server,
1513 _nfs4_server_capabilities(server, fhandle),
1514 &exception);
1515 } while (exception.retry);
1516 return err;
1517 }
1518
1519 static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1520 struct nfs_fsinfo *info)
1521 {
1522 struct nfs4_lookup_root_arg args = {
1523 .bitmask = nfs4_fattr_bitmap,
1524 };
1525 struct nfs4_lookup_res res = {
1526 .server = server,
1527 .fattr = info->fattr,
1528 .fh = fhandle,
1529 };
1530 struct rpc_message msg = {
1531 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT],
1532 .rpc_argp = &args,
1533 .rpc_resp = &res,
1534 };
1535 nfs_fattr_init(info->fattr);
1536 return rpc_call_sync(server->client, &msg, 0);
1537 }
1538
1539 static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1540 struct nfs_fsinfo *info)
1541 {
1542 struct nfs4_exception exception = { };
1543 int err;
1544 do {
1545 err = nfs4_handle_exception(server,
1546 _nfs4_lookup_root(server, fhandle, info),
1547 &exception);
1548 } while (exception.retry);
1549 return err;
1550 }
1551
1552 /*
1553 * get the file handle for the "/" directory on the server
1554 */
1555 static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle,
1556 struct nfs_fsinfo *info)
1557 {
1558 int status;
1559
1560 status = nfs4_lookup_root(server, fhandle, info);
1561 if (status == 0)
1562 status = nfs4_server_capabilities(server, fhandle);
1563 if (status == 0)
1564 status = nfs4_do_fsinfo(server, fhandle, info);
1565 return nfs4_map_errors(status);
1566 }
1567
1568 /*
1569 * Get locations and (maybe) other attributes of a referral.
1570 * Note that we'll actually follow the referral later when
1571 * we detect fsid mismatch in inode revalidation
1572 */
1573 static int nfs4_get_referral(struct inode *dir, const struct qstr *name, struct nfs_fattr *fattr, struct nfs_fh *fhandle)
1574 {
1575 int status = -ENOMEM;
1576 struct page *page = NULL;
1577 struct nfs4_fs_locations *locations = NULL;
1578
1579 page = alloc_page(GFP_KERNEL);
1580 if (page == NULL)
1581 goto out;
1582 locations = kmalloc(sizeof(struct nfs4_fs_locations), GFP_KERNEL);
1583 if (locations == NULL)
1584 goto out;
1585
1586 status = nfs4_proc_fs_locations(dir, name, locations, page);
1587 if (status != 0)
1588 goto out;
1589 /* Make sure server returned a different fsid for the referral */
1590 if (nfs_fsid_equal(&NFS_SERVER(dir)->fsid, &locations->fattr.fsid)) {
1591 dprintk("%s: server did not return a different fsid for a referral at %s\n", __FUNCTION__, name->name);
1592 status = -EIO;
1593 goto out;
1594 }
1595
1596 memcpy(fattr, &locations->fattr, sizeof(struct nfs_fattr));
1597 fattr->valid |= NFS_ATTR_FATTR_V4_REFERRAL;
1598 if (!fattr->mode)
1599 fattr->mode = S_IFDIR;
1600 memset(fhandle, 0, sizeof(struct nfs_fh));
1601 out:
1602 if (page)
1603 __free_page(page);
1604 if (locations)
1605 kfree(locations);
1606 return status;
1607 }
1608
1609 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1610 {
1611 struct nfs4_getattr_arg args = {
1612 .fh = fhandle,
1613 .bitmask = server->attr_bitmask,
1614 };
1615 struct nfs4_getattr_res res = {
1616 .fattr = fattr,
1617 .server = server,
1618 };
1619 struct rpc_message msg = {
1620 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
1621 .rpc_argp = &args,
1622 .rpc_resp = &res,
1623 };
1624
1625 nfs_fattr_init(fattr);
1626 return rpc_call_sync(server->client, &msg, 0);
1627 }
1628
1629 static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1630 {
1631 struct nfs4_exception exception = { };
1632 int err;
1633 do {
1634 err = nfs4_handle_exception(server,
1635 _nfs4_proc_getattr(server, fhandle, fattr),
1636 &exception);
1637 } while (exception.retry);
1638 return err;
1639 }
1640
1641 /*
1642 * The file is not closed if it is opened due to the a request to change
1643 * the size of the file. The open call will not be needed once the
1644 * VFS layer lookup-intents are implemented.
1645 *
1646 * Close is called when the inode is destroyed.
1647 * If we haven't opened the file for O_WRONLY, we
1648 * need to in the size_change case to obtain a stateid.
1649 *
1650 * Got race?
1651 * Because OPEN is always done by name in nfsv4, it is
1652 * possible that we opened a different file by the same
1653 * name. We can recognize this race condition, but we
1654 * can't do anything about it besides returning an error.
1655 *
1656 * This will be fixed with VFS changes (lookup-intent).
1657 */
1658 static int
1659 nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
1660 struct iattr *sattr)
1661 {
1662 struct rpc_cred *cred;
1663 struct inode *inode = dentry->d_inode;
1664 struct nfs_open_context *ctx;
1665 struct nfs4_state *state = NULL;
1666 int status;
1667
1668 nfs_fattr_init(fattr);
1669
1670 cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1671 if (IS_ERR(cred))
1672 return PTR_ERR(cred);
1673
1674 /* Search for an existing open(O_WRITE) file */
1675 ctx = nfs_find_open_context(inode, cred, FMODE_WRITE);
1676 if (ctx != NULL)
1677 state = ctx->state;
1678
1679 status = nfs4_do_setattr(inode, fattr, sattr, state);
1680 if (status == 0)
1681 nfs_setattr_update_inode(inode, sattr);
1682 if (ctx != NULL)
1683 put_nfs_open_context(ctx);
1684 put_rpccred(cred);
1685 return status;
1686 }
1687
1688 static int _nfs4_proc_lookupfh(struct nfs_server *server, const struct nfs_fh *dirfh,
1689 const struct qstr *name, struct nfs_fh *fhandle,
1690 struct nfs_fattr *fattr)
1691 {
1692 int status;
1693 struct nfs4_lookup_arg args = {
1694 .bitmask = server->attr_bitmask,
1695 .dir_fh = dirfh,
1696 .name = name,
1697 };
1698 struct nfs4_lookup_res res = {
1699 .server = server,
1700 .fattr = fattr,
1701 .fh = fhandle,
1702 };
1703 struct rpc_message msg = {
1704 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1705 .rpc_argp = &args,
1706 .rpc_resp = &res,
1707 };
1708
1709 nfs_fattr_init(fattr);
1710
1711 dprintk("NFS call lookupfh %s\n", name->name);
1712 status = rpc_call_sync(server->client, &msg, 0);
1713 dprintk("NFS reply lookupfh: %d\n", status);
1714 return status;
1715 }
1716
1717 static int nfs4_proc_lookupfh(struct nfs_server *server, struct nfs_fh *dirfh,
1718 struct qstr *name, struct nfs_fh *fhandle,
1719 struct nfs_fattr *fattr)
1720 {
1721 struct nfs4_exception exception = { };
1722 int err;
1723 do {
1724 err = _nfs4_proc_lookupfh(server, dirfh, name, fhandle, fattr);
1725 /* FIXME: !!!! */
1726 if (err == -NFS4ERR_MOVED) {
1727 err = -EREMOTE;
1728 break;
1729 }
1730 err = nfs4_handle_exception(server, err, &exception);
1731 } while (exception.retry);
1732 return err;
1733 }
1734
1735 static int _nfs4_proc_lookup(struct inode *dir, const struct qstr *name,
1736 struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1737 {
1738 int status;
1739
1740 dprintk("NFS call lookup %s\n", name->name);
1741 status = _nfs4_proc_lookupfh(NFS_SERVER(dir), NFS_FH(dir), name, fhandle, fattr);
1742 if (status == -NFS4ERR_MOVED)
1743 status = nfs4_get_referral(dir, name, fattr, fhandle);
1744 dprintk("NFS reply lookup: %d\n", status);
1745 return status;
1746 }
1747
1748 static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1749 {
1750 struct nfs4_exception exception = { };
1751 int err;
1752 do {
1753 err = nfs4_handle_exception(NFS_SERVER(dir),
1754 _nfs4_proc_lookup(dir, name, fhandle, fattr),
1755 &exception);
1756 } while (exception.retry);
1757 return err;
1758 }
1759
1760 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1761 {
1762 struct nfs4_accessargs args = {
1763 .fh = NFS_FH(inode),
1764 };
1765 struct nfs4_accessres res = { 0 };
1766 struct rpc_message msg = {
1767 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS],
1768 .rpc_argp = &args,
1769 .rpc_resp = &res,
1770 .rpc_cred = entry->cred,
1771 };
1772 int mode = entry->mask;
1773 int status;
1774
1775 /*
1776 * Determine which access bits we want to ask for...
1777 */
1778 if (mode & MAY_READ)
1779 args.access |= NFS4_ACCESS_READ;
1780 if (S_ISDIR(inode->i_mode)) {
1781 if (mode & MAY_WRITE)
1782 args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE;
1783 if (mode & MAY_EXEC)
1784 args.access |= NFS4_ACCESS_LOOKUP;
1785 } else {
1786 if (mode & MAY_WRITE)
1787 args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND;
1788 if (mode & MAY_EXEC)
1789 args.access |= NFS4_ACCESS_EXECUTE;
1790 }
1791 status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1792 if (!status) {
1793 entry->mask = 0;
1794 if (res.access & NFS4_ACCESS_READ)
1795 entry->mask |= MAY_READ;
1796 if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
1797 entry->mask |= MAY_WRITE;
1798 if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
1799 entry->mask |= MAY_EXEC;
1800 }
1801 return status;
1802 }
1803
1804 static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1805 {
1806 struct nfs4_exception exception = { };
1807 int err;
1808 do {
1809 err = nfs4_handle_exception(NFS_SERVER(inode),
1810 _nfs4_proc_access(inode, entry),
1811 &exception);
1812 } while (exception.retry);
1813 return err;
1814 }
1815
1816 /*
1817 * TODO: For the time being, we don't try to get any attributes
1818 * along with any of the zero-copy operations READ, READDIR,
1819 * READLINK, WRITE.
1820 *
1821 * In the case of the first three, we want to put the GETATTR
1822 * after the read-type operation -- this is because it is hard
1823 * to predict the length of a GETATTR response in v4, and thus
1824 * align the READ data correctly. This means that the GETATTR
1825 * may end up partially falling into the page cache, and we should
1826 * shift it into the 'tail' of the xdr_buf before processing.
1827 * To do this efficiently, we need to know the total length
1828 * of data received, which doesn't seem to be available outside
1829 * of the RPC layer.
1830 *
1831 * In the case of WRITE, we also want to put the GETATTR after
1832 * the operation -- in this case because we want to make sure
1833 * we get the post-operation mtime and size. This means that
1834 * we can't use xdr_encode_pages() as written: we need a variant
1835 * of it which would leave room in the 'tail' iovec.
1836 *
1837 * Both of these changes to the XDR layer would in fact be quite
1838 * minor, but I decided to leave them for a subsequent patch.
1839 */
1840 static int _nfs4_proc_readlink(struct inode *inode, struct page *page,
1841 unsigned int pgbase, unsigned int pglen)
1842 {
1843 struct nfs4_readlink args = {
1844 .fh = NFS_FH(inode),
1845 .pgbase = pgbase,
1846 .pglen = pglen,
1847 .pages = &page,
1848 };
1849 struct rpc_message msg = {
1850 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK],
1851 .rpc_argp = &args,
1852 .rpc_resp = NULL,
1853 };
1854
1855 return rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1856 }
1857
1858 static int nfs4_proc_readlink(struct inode *inode, struct page *page,
1859 unsigned int pgbase, unsigned int pglen)
1860 {
1861 struct nfs4_exception exception = { };
1862 int err;
1863 do {
1864 err = nfs4_handle_exception(NFS_SERVER(inode),
1865 _nfs4_proc_readlink(inode, page, pgbase, pglen),
1866 &exception);
1867 } while (exception.retry);
1868 return err;
1869 }
1870
1871 /*
1872 * Got race?
1873 * We will need to arrange for the VFS layer to provide an atomic open.
1874 * Until then, this create/open method is prone to inefficiency and race
1875 * conditions due to the lookup, create, and open VFS calls from sys_open()
1876 * placed on the wire.
1877 *
1878 * Given the above sorry state of affairs, I'm simply sending an OPEN.
1879 * The file will be opened again in the subsequent VFS open call
1880 * (nfs4_proc_file_open).
1881 *
1882 * The open for read will just hang around to be used by any process that
1883 * opens the file O_RDONLY. This will all be resolved with the VFS changes.
1884 */
1885
1886 static int
1887 nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
1888 int flags, struct nameidata *nd)
1889 {
1890 struct path path = {
1891 .mnt = nd->mnt,
1892 .dentry = dentry,
1893 };
1894 struct nfs4_state *state;
1895 struct rpc_cred *cred;
1896 int status = 0;
1897
1898 cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
1899 if (IS_ERR(cred)) {
1900 status = PTR_ERR(cred);
1901 goto out;
1902 }
1903 state = nfs4_do_open(dir, &path, flags, sattr, cred);
1904 put_rpccred(cred);
1905 if (IS_ERR(state)) {
1906 status = PTR_ERR(state);
1907 goto out;
1908 }
1909 d_instantiate(dentry, igrab(state->inode));
1910 if (flags & O_EXCL) {
1911 struct nfs_fattr fattr;
1912 status = nfs4_do_setattr(state->inode, &fattr, sattr, state);
1913 if (status == 0)
1914 nfs_setattr_update_inode(state->inode, sattr);
1915 nfs_post_op_update_inode(state->inode, &fattr);
1916 }
1917 if (status == 0 && (nd->flags & LOOKUP_OPEN) != 0)
1918 status = nfs4_intent_set_file(nd, &path, state);
1919 else
1920 nfs4_close_state(&path, state, flags);
1921 out:
1922 return status;
1923 }
1924
1925 static int _nfs4_proc_remove(struct inode *dir, struct qstr *name)
1926 {
1927 struct nfs_server *server = NFS_SERVER(dir);
1928 struct nfs4_remove_arg args = {
1929 .fh = NFS_FH(dir),
1930 .name = name,
1931 .bitmask = server->attr_bitmask,
1932 };
1933 struct nfs_fattr dir_attr;
1934 struct nfs4_remove_res res = {
1935 .server = server,
1936 .dir_attr = &dir_attr,
1937 };
1938 struct rpc_message msg = {
1939 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE],
1940 .rpc_argp = &args,
1941 .rpc_resp = &res,
1942 };
1943 int status;
1944
1945 nfs_fattr_init(res.dir_attr);
1946 status = rpc_call_sync(server->client, &msg, 0);
1947 if (status == 0) {
1948 update_changeattr(dir, &res.cinfo);
1949 nfs_post_op_update_inode(dir, res.dir_attr);
1950 }
1951 return status;
1952 }
1953
1954 static int nfs4_proc_remove(struct inode *dir, struct qstr *name)
1955 {
1956 struct nfs4_exception exception = { };
1957 int err;
1958 do {
1959 err = nfs4_handle_exception(NFS_SERVER(dir),
1960 _nfs4_proc_remove(dir, name),
1961 &exception);
1962 } while (exception.retry);
1963 return err;
1964 }
1965
1966 struct unlink_desc {
1967 struct nfs4_remove_arg args;
1968 struct nfs4_remove_res res;
1969 struct nfs_fattr dir_attr;
1970 };
1971
1972 static int nfs4_proc_unlink_setup(struct rpc_message *msg, struct dentry *dir,
1973 struct qstr *name)
1974 {
1975 struct nfs_server *server = NFS_SERVER(dir->d_inode);
1976 struct unlink_desc *up;
1977
1978 up = kmalloc(sizeof(*up), GFP_KERNEL);
1979 if (!up)
1980 return -ENOMEM;
1981
1982 up->args.fh = NFS_FH(dir->d_inode);
1983 up->args.name = name;
1984 up->args.bitmask = server->attr_bitmask;
1985 up->res.server = server;
1986 up->res.dir_attr = &up->dir_attr;
1987
1988 msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE];
1989 msg->rpc_argp = &up->args;
1990 msg->rpc_resp = &up->res;
1991 return 0;
1992 }
1993
1994 static int nfs4_proc_unlink_done(struct dentry *dir, struct rpc_task *task)
1995 {
1996 struct rpc_message *msg = &task->tk_msg;
1997 struct unlink_desc *up;
1998
1999 if (msg->rpc_resp != NULL) {
2000 up = container_of(msg->rpc_resp, struct unlink_desc, res);
2001 update_changeattr(dir->d_inode, &up->res.cinfo);
2002 nfs_post_op_update_inode(dir->d_inode, up->res.dir_attr);
2003 kfree(up);
2004 msg->rpc_resp = NULL;
2005 msg->rpc_argp = NULL;
2006 }
2007 return 0;
2008 }
2009
2010 static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
2011 struct inode *new_dir, struct qstr *new_name)
2012 {
2013 struct nfs_server *server = NFS_SERVER(old_dir);
2014 struct nfs4_rename_arg arg = {
2015 .old_dir = NFS_FH(old_dir),
2016 .new_dir = NFS_FH(new_dir),
2017 .old_name = old_name,
2018 .new_name = new_name,
2019 .bitmask = server->attr_bitmask,
2020 };
2021 struct nfs_fattr old_fattr, new_fattr;
2022 struct nfs4_rename_res res = {
2023 .server = server,
2024 .old_fattr = &old_fattr,
2025 .new_fattr = &new_fattr,
2026 };
2027 struct rpc_message msg = {
2028 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME],
2029 .rpc_argp = &arg,
2030 .rpc_resp = &res,
2031 };
2032 int status;
2033
2034 nfs_fattr_init(res.old_fattr);
2035 nfs_fattr_init(res.new_fattr);
2036 status = rpc_call_sync(server->client, &msg, 0);
2037
2038 if (!status) {
2039 update_changeattr(old_dir, &res.old_cinfo);
2040 nfs_post_op_update_inode(old_dir, res.old_fattr);
2041 update_changeattr(new_dir, &res.new_cinfo);
2042 nfs_post_op_update_inode(new_dir, res.new_fattr);
2043 }
2044 return status;
2045 }
2046
2047 static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
2048 struct inode *new_dir, struct qstr *new_name)
2049 {
2050 struct nfs4_exception exception = { };
2051 int err;
2052 do {
2053 err = nfs4_handle_exception(NFS_SERVER(old_dir),
2054 _nfs4_proc_rename(old_dir, old_name,
2055 new_dir, new_name),
2056 &exception);
2057 } while (exception.retry);
2058 return err;
2059 }
2060
2061 static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
2062 {
2063 struct nfs_server *server = NFS_SERVER(inode);
2064 struct nfs4_link_arg arg = {
2065 .fh = NFS_FH(inode),
2066 .dir_fh = NFS_FH(dir),
2067 .name = name,
2068 .bitmask = server->attr_bitmask,
2069 };
2070 struct nfs_fattr fattr, dir_attr;
2071 struct nfs4_link_res res = {
2072 .server = server,
2073 .fattr = &fattr,
2074 .dir_attr = &dir_attr,
2075 };
2076 struct rpc_message msg = {
2077 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK],
2078 .rpc_argp = &arg,
2079 .rpc_resp = &res,
2080 };
2081 int status;
2082
2083 nfs_fattr_init(res.fattr);
2084 nfs_fattr_init(res.dir_attr);
2085 status = rpc_call_sync(server->client, &msg, 0);
2086 if (!status) {
2087 update_changeattr(dir, &res.cinfo);
2088 nfs_post_op_update_inode(dir, res.dir_attr);
2089 nfs_post_op_update_inode(inode, res.fattr);
2090 }
2091
2092 return status;
2093 }
2094
2095 static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
2096 {
2097 struct nfs4_exception exception = { };
2098 int err;
2099 do {
2100 err = nfs4_handle_exception(NFS_SERVER(inode),
2101 _nfs4_proc_link(inode, dir, name),
2102 &exception);
2103 } while (exception.retry);
2104 return err;
2105 }
2106
2107 static int _nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
2108 struct page *page, unsigned int len, struct iattr *sattr)
2109 {
2110 struct nfs_server *server = NFS_SERVER(dir);
2111 struct nfs_fh fhandle;
2112 struct nfs_fattr fattr, dir_fattr;
2113 struct nfs4_create_arg arg = {
2114 .dir_fh = NFS_FH(dir),
2115 .server = server,
2116 .name = &dentry->d_name,
2117 .attrs = sattr,
2118 .ftype = NF4LNK,
2119 .bitmask = server->attr_bitmask,
2120 };
2121 struct nfs4_create_res res = {
2122 .server = server,
2123 .fh = &fhandle,
2124 .fattr = &fattr,
2125 .dir_fattr = &dir_fattr,
2126 };
2127 struct rpc_message msg = {
2128 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK],
2129 .rpc_argp = &arg,
2130 .rpc_resp = &res,
2131 };
2132 int status;
2133
2134 if (len > NFS4_MAXPATHLEN)
2135 return -ENAMETOOLONG;
2136
2137 arg.u.symlink.pages = &page;
2138 arg.u.symlink.len = len;
2139 nfs_fattr_init(&fattr);
2140 nfs_fattr_init(&dir_fattr);
2141
2142 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2143 if (!status) {
2144 update_changeattr(dir, &res.dir_cinfo);
2145 nfs_post_op_update_inode(dir, res.dir_fattr);
2146 status = nfs_instantiate(dentry, &fhandle, &fattr);
2147 }
2148 return status;
2149 }
2150
2151 static int nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
2152 struct page *page, unsigned int len, struct iattr *sattr)
2153 {
2154 struct nfs4_exception exception = { };
2155 int err;
2156 do {
2157 err = nfs4_handle_exception(NFS_SERVER(dir),
2158 _nfs4_proc_symlink(dir, dentry, page,
2159 len, sattr),
2160 &exception);
2161 } while (exception.retry);
2162 return err;
2163 }
2164
2165 static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2166 struct iattr *sattr)
2167 {
2168 struct nfs_server *server = NFS_SERVER(dir);
2169 struct nfs_fh fhandle;
2170 struct nfs_fattr fattr, dir_fattr;
2171 struct nfs4_create_arg arg = {
2172 .dir_fh = NFS_FH(dir),
2173 .server = server,
2174 .name = &dentry->d_name,
2175 .attrs = sattr,
2176 .ftype = NF4DIR,
2177 .bitmask = server->attr_bitmask,
2178 };
2179 struct nfs4_create_res res = {
2180 .server = server,
2181 .fh = &fhandle,
2182 .fattr = &fattr,
2183 .dir_fattr = &dir_fattr,
2184 };
2185 struct rpc_message msg = {
2186 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2187 .rpc_argp = &arg,
2188 .rpc_resp = &res,
2189 };
2190 int status;
2191
2192 nfs_fattr_init(&fattr);
2193 nfs_fattr_init(&dir_fattr);
2194
2195 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2196 if (!status) {
2197 update_changeattr(dir, &res.dir_cinfo);
2198 nfs_post_op_update_inode(dir, res.dir_fattr);
2199 status = nfs_instantiate(dentry, &fhandle, &fattr);
2200 }
2201 return status;
2202 }
2203
2204 static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2205 struct iattr *sattr)
2206 {
2207 struct nfs4_exception exception = { };
2208 int err;
2209 do {
2210 err = nfs4_handle_exception(NFS_SERVER(dir),
2211 _nfs4_proc_mkdir(dir, dentry, sattr),
2212 &exception);
2213 } while (exception.retry);
2214 return err;
2215 }
2216
2217 static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2218 u64 cookie, struct page *page, unsigned int count, int plus)
2219 {
2220 struct inode *dir = dentry->d_inode;
2221 struct nfs4_readdir_arg args = {
2222 .fh = NFS_FH(dir),
2223 .pages = &page,
2224 .pgbase = 0,
2225 .count = count,
2226 .bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask,
2227 };
2228 struct nfs4_readdir_res res;
2229 struct rpc_message msg = {
2230 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR],
2231 .rpc_argp = &args,
2232 .rpc_resp = &res,
2233 .rpc_cred = cred,
2234 };
2235 int status;
2236
2237 dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __FUNCTION__,
2238 dentry->d_parent->d_name.name,
2239 dentry->d_name.name,
2240 (unsigned long long)cookie);
2241 nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args);
2242 res.pgbase = args.pgbase;
2243 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2244 if (status == 0)
2245 memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE);
2246 dprintk("%s: returns %d\n", __FUNCTION__, status);
2247 return status;
2248 }
2249
2250 static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2251 u64 cookie, struct page *page, unsigned int count, int plus)
2252 {
2253 struct nfs4_exception exception = { };
2254 int err;
2255 do {
2256 err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode),
2257 _nfs4_proc_readdir(dentry, cred, cookie,
2258 page, count, plus),
2259 &exception);
2260 } while (exception.retry);
2261 return err;
2262 }
2263
2264 static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2265 struct iattr *sattr, dev_t rdev)
2266 {
2267 struct nfs_server *server = NFS_SERVER(dir);
2268 struct nfs_fh fh;
2269 struct nfs_fattr fattr, dir_fattr;
2270 struct nfs4_create_arg arg = {
2271 .dir_fh = NFS_FH(dir),
2272 .server = server,
2273 .name = &dentry->d_name,
2274 .attrs = sattr,
2275 .bitmask = server->attr_bitmask,
2276 };
2277 struct nfs4_create_res res = {
2278 .server = server,
2279 .fh = &fh,
2280 .fattr = &fattr,
2281 .dir_fattr = &dir_fattr,
2282 };
2283 struct rpc_message msg = {
2284 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2285 .rpc_argp = &arg,
2286 .rpc_resp = &res,
2287 };
2288 int status;
2289 int mode = sattr->ia_mode;
2290
2291 nfs_fattr_init(&fattr);
2292 nfs_fattr_init(&dir_fattr);
2293
2294 BUG_ON(!(sattr->ia_valid & ATTR_MODE));
2295 BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode));
2296 if (S_ISFIFO(mode))
2297 arg.ftype = NF4FIFO;
2298 else if (S_ISBLK(mode)) {
2299 arg.ftype = NF4BLK;
2300 arg.u.device.specdata1 = MAJOR(rdev);
2301 arg.u.device.specdata2 = MINOR(rdev);
2302 }
2303 else if (S_ISCHR(mode)) {
2304 arg.ftype = NF4CHR;
2305 arg.u.device.specdata1 = MAJOR(rdev);
2306 arg.u.device.specdata2 = MINOR(rdev);
2307 }
2308 else
2309 arg.ftype = NF4SOCK;
2310
2311 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2312 if (status == 0) {
2313 update_changeattr(dir, &res.dir_cinfo);
2314 nfs_post_op_update_inode(dir, res.dir_fattr);
2315 status = nfs_instantiate(dentry, &fh, &fattr);
2316 }
2317 return status;
2318 }
2319
2320 static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2321 struct iattr *sattr, dev_t rdev)
2322 {
2323 struct nfs4_exception exception = { };
2324 int err;
2325 do {
2326 err = nfs4_handle_exception(NFS_SERVER(dir),
2327 _nfs4_proc_mknod(dir, dentry, sattr, rdev),
2328 &exception);
2329 } while (exception.retry);
2330 return err;
2331 }
2332
2333 static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
2334 struct nfs_fsstat *fsstat)
2335 {
2336 struct nfs4_statfs_arg args = {
2337 .fh = fhandle,
2338 .bitmask = server->attr_bitmask,
2339 };
2340 struct rpc_message msg = {
2341 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS],
2342 .rpc_argp = &args,
2343 .rpc_resp = fsstat,
2344 };
2345
2346 nfs_fattr_init(fsstat->fattr);
2347 return rpc_call_sync(server->client, &msg, 0);
2348 }
2349
2350 static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat)
2351 {
2352 struct nfs4_exception exception = { };
2353 int err;
2354 do {
2355 err = nfs4_handle_exception(server,
2356 _nfs4_proc_statfs(server, fhandle, fsstat),
2357 &exception);
2358 } while (exception.retry);
2359 return err;
2360 }
2361
2362 static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
2363 struct nfs_fsinfo *fsinfo)
2364 {
2365 struct nfs4_fsinfo_arg args = {
2366 .fh = fhandle,
2367 .bitmask = server->attr_bitmask,
2368 };
2369 struct rpc_message msg = {
2370 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO],
2371 .rpc_argp = &args,
2372 .rpc_resp = fsinfo,
2373 };
2374
2375 return rpc_call_sync(server->client, &msg, 0);
2376 }
2377
2378 static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2379 {
2380 struct nfs4_exception exception = { };
2381 int err;
2382
2383 do {
2384 err = nfs4_handle_exception(server,
2385 _nfs4_do_fsinfo(server, fhandle, fsinfo),
2386 &exception);
2387 } while (exception.retry);
2388 return err;
2389 }
2390
2391 static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2392 {
2393 nfs_fattr_init(fsinfo->fattr);
2394 return nfs4_do_fsinfo(server, fhandle, fsinfo);
2395 }
2396
2397 static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2398 struct nfs_pathconf *pathconf)
2399 {
2400 struct nfs4_pathconf_arg args = {
2401 .fh = fhandle,
2402 .bitmask = server->attr_bitmask,
2403 };
2404 struct rpc_message msg = {
2405 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF],
2406 .rpc_argp = &args,
2407 .rpc_resp = pathconf,
2408 };
2409
2410 /* None of the pathconf attributes are mandatory to implement */
2411 if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) {
2412 memset(pathconf, 0, sizeof(*pathconf));
2413 return 0;
2414 }
2415
2416 nfs_fattr_init(pathconf->fattr);
2417 return rpc_call_sync(server->client, &msg, 0);
2418 }
2419
2420 static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2421 struct nfs_pathconf *pathconf)
2422 {
2423 struct nfs4_exception exception = { };
2424 int err;
2425
2426 do {
2427 err = nfs4_handle_exception(server,
2428 _nfs4_proc_pathconf(server, fhandle, pathconf),
2429 &exception);
2430 } while (exception.retry);
2431 return err;
2432 }
2433
2434 static int nfs4_read_done(struct rpc_task *task, struct nfs_read_data *data)
2435 {
2436 struct nfs_server *server = NFS_SERVER(data->inode);
2437
2438 if (nfs4_async_handle_error(task, server) == -EAGAIN) {
2439 rpc_restart_call(task);
2440 return -EAGAIN;
2441 }
2442 if (task->tk_status > 0)
2443 renew_lease(server, data->timestamp);
2444 return 0;
2445 }
2446
2447 static void nfs4_proc_read_setup(struct nfs_read_data *data)
2448 {
2449 struct rpc_message msg = {
2450 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ],
2451 .rpc_argp = &data->args,
2452 .rpc_resp = &data->res,
2453 .rpc_cred = data->cred,
2454 };
2455
2456 data->timestamp = jiffies;
2457
2458 rpc_call_setup(&data->task, &msg, 0);
2459 }
2460
2461 static int nfs4_write_done(struct rpc_task *task, struct nfs_write_data *data)
2462 {
2463 struct inode *inode = data->inode;
2464
2465 if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2466 rpc_restart_call(task);
2467 return -EAGAIN;
2468 }
2469 if (task->tk_status >= 0) {
2470 renew_lease(NFS_SERVER(inode), data->timestamp);
2471 nfs_post_op_update_inode(inode, data->res.fattr);
2472 }
2473 return 0;
2474 }
2475
2476 static void nfs4_proc_write_setup(struct nfs_write_data *data, int how)
2477 {
2478 struct rpc_message msg = {
2479 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
2480 .rpc_argp = &data->args,
2481 .rpc_resp = &data->res,
2482 .rpc_cred = data->cred,
2483 };
2484 struct inode *inode = data->inode;
2485 struct nfs_server *server = NFS_SERVER(inode);
2486 int stable;
2487
2488 if (how & FLUSH_STABLE) {
2489 if (!NFS_I(inode)->ncommit)
2490 stable = NFS_FILE_SYNC;
2491 else
2492 stable = NFS_DATA_SYNC;
2493 } else
2494 stable = NFS_UNSTABLE;
2495 data->args.stable = stable;
2496 data->args.bitmask = server->attr_bitmask;
2497 data->res.server = server;
2498
2499 data->timestamp = jiffies;
2500
2501 /* Finalize the task. */
2502 rpc_call_setup(&data->task, &msg, 0);
2503 }
2504
2505 static int nfs4_commit_done(struct rpc_task *task, struct nfs_write_data *data)
2506 {
2507 struct inode *inode = data->inode;
2508
2509 if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2510 rpc_restart_call(task);
2511 return -EAGAIN;
2512 }
2513 if (task->tk_status >= 0)
2514 nfs_post_op_update_inode(inode, data->res.fattr);
2515 return 0;
2516 }
2517
2518 static void nfs4_proc_commit_setup(struct nfs_write_data *data, int how)
2519 {
2520 struct rpc_message msg = {
2521 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
2522 .rpc_argp = &data->args,
2523 .rpc_resp = &data->res,
2524 .rpc_cred = data->cred,
2525 };
2526 struct nfs_server *server = NFS_SERVER(data->inode);
2527
2528 data->args.bitmask = server->attr_bitmask;
2529 data->res.server = server;
2530
2531 rpc_call_setup(&data->task, &msg, 0);
2532 }
2533
2534 /*
2535 * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special
2536 * standalone procedure for queueing an asynchronous RENEW.
2537 */
2538 static void nfs4_renew_done(struct rpc_task *task, void *data)
2539 {
2540 struct nfs_client *clp = (struct nfs_client *)task->tk_msg.rpc_argp;
2541 unsigned long timestamp = (unsigned long)data;
2542
2543 if (task->tk_status < 0) {
2544 switch (task->tk_status) {
2545 case -NFS4ERR_STALE_CLIENTID:
2546 case -NFS4ERR_EXPIRED:
2547 case -NFS4ERR_CB_PATH_DOWN:
2548 nfs4_schedule_state_recovery(clp);
2549 }
2550 return;
2551 }
2552 spin_lock(&clp->cl_lock);
2553 if (time_before(clp->cl_last_renewal,timestamp))
2554 clp->cl_last_renewal = timestamp;
2555 spin_unlock(&clp->cl_lock);
2556 }
2557
2558 static const struct rpc_call_ops nfs4_renew_ops = {
2559 .rpc_call_done = nfs4_renew_done,
2560 };
2561
2562 int nfs4_proc_async_renew(struct nfs_client *clp, struct rpc_cred *cred)
2563 {
2564 struct rpc_message msg = {
2565 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2566 .rpc_argp = clp,
2567 .rpc_cred = cred,
2568 };
2569
2570 return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT,
2571 &nfs4_renew_ops, (void *)jiffies);
2572 }
2573
2574 int nfs4_proc_renew(struct nfs_client *clp, struct rpc_cred *cred)
2575 {
2576 struct rpc_message msg = {
2577 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2578 .rpc_argp = clp,
2579 .rpc_cred = cred,
2580 };
2581 unsigned long now = jiffies;
2582 int status;
2583
2584 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2585 if (status < 0)
2586 return status;
2587 spin_lock(&clp->cl_lock);
2588 if (time_before(clp->cl_last_renewal,now))
2589 clp->cl_last_renewal = now;
2590 spin_unlock(&clp->cl_lock);
2591 return 0;
2592 }
2593
2594 static inline int nfs4_server_supports_acls(struct nfs_server *server)
2595 {
2596 return (server->caps & NFS_CAP_ACLS)
2597 && (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL)
2598 && (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL);
2599 }
2600
2601 /* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that
2602 * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on
2603 * the stack.
2604 */
2605 #define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT)
2606
2607 static void buf_to_pages(const void *buf, size_t buflen,
2608 struct page **pages, unsigned int *pgbase)
2609 {
2610 const void *p = buf;
2611
2612 *pgbase = offset_in_page(buf);
2613 p -= *pgbase;
2614 while (p < buf + buflen) {
2615 *(pages++) = virt_to_page(p);
2616 p += PAGE_CACHE_SIZE;
2617 }
2618 }
2619
2620 struct nfs4_cached_acl {
2621 int cached;
2622 size_t len;
2623 char data[0];
2624 };
2625
2626 static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl)
2627 {
2628 struct nfs_inode *nfsi = NFS_I(inode);
2629
2630 spin_lock(&inode->i_lock);
2631 kfree(nfsi->nfs4_acl);
2632 nfsi->nfs4_acl = acl;
2633 spin_unlock(&inode->i_lock);
2634 }
2635
2636 static void nfs4_zap_acl_attr(struct inode *inode)
2637 {
2638 nfs4_set_cached_acl(inode, NULL);
2639 }
2640
2641 static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen)
2642 {
2643 struct nfs_inode *nfsi = NFS_I(inode);
2644 struct nfs4_cached_acl *acl;
2645 int ret = -ENOENT;
2646
2647 spin_lock(&inode->i_lock);
2648 acl = nfsi->nfs4_acl;
2649 if (acl == NULL)
2650 goto out;
2651 if (buf == NULL) /* user is just asking for length */
2652 goto out_len;
2653 if (acl->cached == 0)
2654 goto out;
2655 ret = -ERANGE; /* see getxattr(2) man page */
2656 if (acl->len > buflen)
2657 goto out;
2658 memcpy(buf, acl->data, acl->len);
2659 out_len:
2660 ret = acl->len;
2661 out:
2662 spin_unlock(&inode->i_lock);
2663 return ret;
2664 }
2665
2666 static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len)
2667 {
2668 struct nfs4_cached_acl *acl;
2669
2670 if (buf && acl_len <= PAGE_SIZE) {
2671 acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL);
2672 if (acl == NULL)
2673 goto out;
2674 acl->cached = 1;
2675 memcpy(acl->data, buf, acl_len);
2676 } else {
2677 acl = kmalloc(sizeof(*acl), GFP_KERNEL);
2678 if (acl == NULL)
2679 goto out;
2680 acl->cached = 0;
2681 }
2682 acl->len = acl_len;
2683 out:
2684 nfs4_set_cached_acl(inode, acl);
2685 }
2686
2687 static ssize_t __nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2688 {
2689 struct page *pages[NFS4ACL_MAXPAGES];
2690 struct nfs_getaclargs args = {
2691 .fh = NFS_FH(inode),
2692 .acl_pages = pages,
2693 .acl_len = buflen,
2694 };
2695 size_t resp_len = buflen;
2696 void *resp_buf;
2697 struct rpc_message msg = {
2698 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL],
2699 .rpc_argp = &args,
2700 .rpc_resp = &resp_len,
2701 };
2702 struct page *localpage = NULL;
2703 int ret;
2704
2705 if (buflen < PAGE_SIZE) {
2706 /* As long as we're doing a round trip to the server anyway,
2707 * let's be prepared for a page of acl data. */
2708 localpage = alloc_page(GFP_KERNEL);
2709 resp_buf = page_address(localpage);
2710 if (localpage == NULL)
2711 return -ENOMEM;
2712 args.acl_pages[0] = localpage;
2713 args.acl_pgbase = 0;
2714 resp_len = args.acl_len = PAGE_SIZE;
2715 } else {
2716 resp_buf = buf;
2717 buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase);
2718 }
2719 ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2720 if (ret)
2721 goto out_free;
2722 if (resp_len > args.acl_len)
2723 nfs4_write_cached_acl(inode, NULL, resp_len);
2724 else
2725 nfs4_write_cached_acl(inode, resp_buf, resp_len);
2726 if (buf) {
2727 ret = -ERANGE;
2728 if (resp_len > buflen)
2729 goto out_free;
2730 if (localpage)
2731 memcpy(buf, resp_buf, resp_len);
2732 }
2733 ret = resp_len;
2734 out_free:
2735 if (localpage)
2736 __free_page(localpage);
2737 return ret;
2738 }
2739
2740 static ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2741 {
2742 struct nfs4_exception exception = { };
2743 ssize_t ret;
2744 do {
2745 ret = __nfs4_get_acl_uncached(inode, buf, buflen);
2746 if (ret >= 0)
2747 break;
2748 ret = nfs4_handle_exception(NFS_SERVER(inode), ret, &exception);
2749 } while (exception.retry);
2750 return ret;
2751 }
2752
2753 static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen)
2754 {
2755 struct nfs_server *server = NFS_SERVER(inode);
2756 int ret;
2757
2758 if (!nfs4_server_supports_acls(server))
2759 return -EOPNOTSUPP;
2760 ret = nfs_revalidate_inode(server, inode);
2761 if (ret < 0)
2762 return ret;
2763 ret = nfs4_read_cached_acl(inode, buf, buflen);
2764 if (ret != -ENOENT)
2765 return ret;
2766 return nfs4_get_acl_uncached(inode, buf, buflen);
2767 }
2768
2769 static int __nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2770 {
2771 struct nfs_server *server = NFS_SERVER(inode);
2772 struct page *pages[NFS4ACL_MAXPAGES];
2773 struct nfs_setaclargs arg = {
2774 .fh = NFS_FH(inode),
2775 .acl_pages = pages,
2776 .acl_len = buflen,
2777 };
2778 struct rpc_message msg = {
2779 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETACL],
2780 .rpc_argp = &arg,
2781 .rpc_resp = NULL,
2782 };
2783 int ret;
2784
2785 if (!nfs4_server_supports_acls(server))
2786 return -EOPNOTSUPP;
2787 nfs_inode_return_delegation(inode);
2788 buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase);
2789 ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2790 nfs_zap_caches(inode);
2791 return ret;
2792 }
2793
2794 static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2795 {
2796 struct nfs4_exception exception = { };
2797 int err;
2798 do {
2799 err = nfs4_handle_exception(NFS_SERVER(inode),
2800 __nfs4_proc_set_acl(inode, buf, buflen),
2801 &exception);
2802 } while (exception.retry);
2803 return err;
2804 }
2805
2806 static int
2807 nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server)
2808 {
2809 struct nfs_client *clp = server->nfs_client;
2810
2811 if (!clp || task->tk_status >= 0)
2812 return 0;
2813 switch(task->tk_status) {
2814 case -NFS4ERR_STALE_CLIENTID:
2815 case -NFS4ERR_STALE_STATEID:
2816 case -NFS4ERR_EXPIRED:
2817 rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL, NULL);
2818 nfs4_schedule_state_recovery(clp);
2819 if (test_bit(NFS4CLNT_STATE_RECOVER, &clp->cl_state) == 0)
2820 rpc_wake_up_task(task);
2821 task->tk_status = 0;
2822 return -EAGAIN;
2823 case -NFS4ERR_DELAY:
2824 nfs_inc_server_stats((struct nfs_server *) server,
2825 NFSIOS_DELAY);
2826 case -NFS4ERR_GRACE:
2827 rpc_delay(task, NFS4_POLL_RETRY_MAX);
2828 task->tk_status = 0;
2829 return -EAGAIN;
2830 case -NFS4ERR_OLD_STATEID:
2831 task->tk_status = 0;
2832 return -EAGAIN;
2833 }
2834 task->tk_status = nfs4_map_errors(task->tk_status);
2835 return 0;
2836 }
2837
2838 static int nfs4_wait_bit_interruptible(void *word)
2839 {
2840 if (signal_pending(current))
2841 return -ERESTARTSYS;
2842 schedule();
2843 return 0;
2844 }
2845
2846 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs_client *clp)
2847 {
2848 sigset_t oldset;
2849 int res;
2850
2851 might_sleep();
2852
2853 rwsem_acquire(&clp->cl_sem.dep_map, 0, 0, _RET_IP_);
2854
2855 rpc_clnt_sigmask(clnt, &oldset);
2856 res = wait_on_bit(&clp->cl_state, NFS4CLNT_STATE_RECOVER,
2857 nfs4_wait_bit_interruptible,
2858 TASK_INTERRUPTIBLE);
2859 rpc_clnt_sigunmask(clnt, &oldset);
2860
2861 rwsem_release(&clp->cl_sem.dep_map, 1, _RET_IP_);
2862 return res;
2863 }
2864
2865 static int nfs4_delay(struct rpc_clnt *clnt, long *timeout)
2866 {
2867 sigset_t oldset;
2868 int res = 0;
2869
2870 might_sleep();
2871
2872 if (*timeout <= 0)
2873 *timeout = NFS4_POLL_RETRY_MIN;
2874 if (*timeout > NFS4_POLL_RETRY_MAX)
2875 *timeout = NFS4_POLL_RETRY_MAX;
2876 rpc_clnt_sigmask(clnt, &oldset);
2877 if (clnt->cl_intr) {
2878 schedule_timeout_interruptible(*timeout);
2879 if (signalled())
2880 res = -ERESTARTSYS;
2881 } else
2882 schedule_timeout_uninterruptible(*timeout);
2883 rpc_clnt_sigunmask(clnt, &oldset);
2884 *timeout <<= 1;
2885 return res;
2886 }
2887
2888 /* This is the error handling routine for processes that are allowed
2889 * to sleep.
2890 */
2891 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception)
2892 {
2893 struct nfs_client *clp = server->nfs_client;
2894 int ret = errorcode;
2895
2896 exception->retry = 0;
2897 switch(errorcode) {
2898 case 0:
2899 return 0;
2900 case -NFS4ERR_STALE_CLIENTID:
2901 case -NFS4ERR_STALE_STATEID:
2902 case -NFS4ERR_EXPIRED:
2903 nfs4_schedule_state_recovery(clp);
2904 ret = nfs4_wait_clnt_recover(server->client, clp);
2905 if (ret == 0)
2906 exception->retry = 1;
2907 break;
2908 case -NFS4ERR_FILE_OPEN:
2909 case -NFS4ERR_GRACE:
2910 case -NFS4ERR_DELAY:
2911 ret = nfs4_delay(server->client, &exception->timeout);
2912 if (ret != 0)
2913 break;
2914 case -NFS4ERR_OLD_STATEID:
2915 exception->retry = 1;
2916 }
2917 /* We failed to handle the error */
2918 return nfs4_map_errors(ret);
2919 }
2920
2921 int nfs4_proc_setclientid(struct nfs_client *clp, u32 program, unsigned short port, struct rpc_cred *cred)
2922 {
2923 nfs4_verifier sc_verifier;
2924 struct nfs4_setclientid setclientid = {
2925 .sc_verifier = &sc_verifier,
2926 .sc_prog = program,
2927 };
2928 struct rpc_message msg = {
2929 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID],
2930 .rpc_argp = &setclientid,
2931 .rpc_resp = clp,
2932 .rpc_cred = cred,
2933 };
2934 __be32 *p;
2935 int loop = 0;
2936 int status;
2937
2938 p = (__be32*)sc_verifier.data;
2939 *p++ = htonl((u32)clp->cl_boot_time.tv_sec);
2940 *p = htonl((u32)clp->cl_boot_time.tv_nsec);
2941
2942 for(;;) {
2943 setclientid.sc_name_len = scnprintf(setclientid.sc_name,
2944 sizeof(setclientid.sc_name), "%s/%u.%u.%u.%u %s %u",
2945 clp->cl_ipaddr, NIPQUAD(clp->cl_addr.sin_addr),
2946 cred->cr_ops->cr_name,
2947 clp->cl_id_uniquifier);
2948 setclientid.sc_netid_len = scnprintf(setclientid.sc_netid,
2949 sizeof(setclientid.sc_netid), "tcp");
2950 setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr,
2951 sizeof(setclientid.sc_uaddr), "%s.%d.%d",
2952 clp->cl_ipaddr, port >> 8, port & 255);
2953
2954 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2955 if (status != -NFS4ERR_CLID_INUSE)
2956 break;
2957 if (signalled())
2958 break;
2959 if (loop++ & 1)
2960 ssleep(clp->cl_lease_time + 1);
2961 else
2962 if (++clp->cl_id_uniquifier == 0)
2963 break;
2964 }
2965 return status;
2966 }
2967
2968 static int _nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred)
2969 {
2970 struct nfs_fsinfo fsinfo;
2971 struct rpc_message msg = {
2972 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM],
2973 .rpc_argp = clp,
2974 .rpc_resp = &fsinfo,
2975 .rpc_cred = cred,
2976 };
2977 unsigned long now;
2978 int status;
2979
2980 now = jiffies;
2981 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2982 if (status == 0) {
2983 spin_lock(&clp->cl_lock);
2984 clp->cl_lease_time = fsinfo.lease_time * HZ;
2985 clp->cl_last_renewal = now;
2986 clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state);
2987 spin_unlock(&clp->cl_lock);
2988 }
2989 return status;
2990 }
2991
2992 int nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred)
2993 {
2994 long timeout;
2995 int err;
2996 do {
2997 err = _nfs4_proc_setclientid_confirm(clp, cred);
2998 switch (err) {
2999 case 0:
3000 return err;
3001 case -NFS4ERR_RESOURCE:
3002 /* The IBM lawyers misread another document! */
3003 case -NFS4ERR_DELAY:
3004 err = nfs4_delay(clp->cl_rpcclient, &timeout);
3005 }
3006 } while (err == 0);
3007 return err;
3008 }
3009
3010 struct nfs4_delegreturndata {
3011 struct nfs4_delegreturnargs args;
3012 struct nfs4_delegreturnres res;
3013 struct nfs_fh fh;
3014 nfs4_stateid stateid;
3015 struct rpc_cred *cred;
3016 unsigned long timestamp;
3017 struct nfs_fattr fattr;
3018 int rpc_status;
3019 };
3020
3021 static void nfs4_delegreturn_prepare(struct rpc_task *task, void *calldata)
3022 {
3023 struct nfs4_delegreturndata *data = calldata;
3024 struct rpc_message msg = {
3025 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN],
3026 .rpc_argp = &data->args,
3027 .rpc_resp = &data->res,
3028 .rpc_cred = data->cred,
3029 };
3030 nfs_fattr_init(data->res.fattr);
3031 rpc_call_setup(task, &msg, 0);
3032 }
3033
3034 static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata)
3035 {
3036 struct nfs4_delegreturndata *data = calldata;
3037 data->rpc_status = task->tk_status;
3038 if (data->rpc_status == 0)
3039 renew_lease(data->res.server, data->timestamp);
3040 }
3041
3042 static void nfs4_delegreturn_release(void *calldata)
3043 {
3044 struct nfs4_delegreturndata *data = calldata;
3045
3046 put_rpccred(data->cred);
3047 kfree(calldata);
3048 }
3049
3050 static const struct rpc_call_ops nfs4_delegreturn_ops = {
3051 .rpc_call_prepare = nfs4_delegreturn_prepare,
3052 .rpc_call_done = nfs4_delegreturn_done,
3053 .rpc_release = nfs4_delegreturn_release,
3054 };
3055
3056 static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
3057 {
3058 struct nfs4_delegreturndata *data;
3059 struct nfs_server *server = NFS_SERVER(inode);
3060 struct rpc_task *task;
3061 int status;
3062
3063 data = kmalloc(sizeof(*data), GFP_KERNEL);
3064 if (data == NULL)
3065 return -ENOMEM;
3066 data->args.fhandle = &data->fh;
3067 data->args.stateid = &data->stateid;
3068 data->args.bitmask = server->attr_bitmask;
3069 nfs_copy_fh(&data->fh, NFS_FH(inode));
3070 memcpy(&data->stateid, stateid, sizeof(data->stateid));
3071 data->res.fattr = &data->fattr;
3072 data->res.server = server;
3073 data->cred = get_rpccred(cred);
3074 data->timestamp = jiffies;
3075 data->rpc_status = 0;
3076
3077 task = rpc_run_task(NFS_CLIENT(inode), RPC_TASK_ASYNC, &nfs4_delegreturn_ops, data);
3078 if (IS_ERR(task))
3079 return PTR_ERR(task);
3080 status = nfs4_wait_for_completion_rpc_task(task);
3081 if (status == 0) {
3082 status = data->rpc_status;
3083 if (status == 0)
3084 nfs_post_op_update_inode(inode, &data->fattr);
3085 }
3086 rpc_put_task(task);
3087 return status;
3088 }
3089
3090 int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
3091 {
3092 struct nfs_server *server = NFS_SERVER(inode);
3093 struct nfs4_exception exception = { };
3094 int err;
3095 do {
3096 err = _nfs4_proc_delegreturn(inode, cred, stateid);
3097 switch (err) {
3098 case -NFS4ERR_STALE_STATEID:
3099 case -NFS4ERR_EXPIRED:
3100 case 0:
3101 return 0;
3102 }
3103 err = nfs4_handle_exception(server, err, &exception);
3104 } while (exception.retry);
3105 return err;
3106 }
3107
3108 #define NFS4_LOCK_MINTIMEOUT (1 * HZ)
3109 #define NFS4_LOCK_MAXTIMEOUT (30 * HZ)
3110
3111 /*
3112 * sleep, with exponential backoff, and retry the LOCK operation.
3113 */
3114 static unsigned long
3115 nfs4_set_lock_task_retry(unsigned long timeout)
3116 {
3117 schedule_timeout_interruptible(timeout);
3118 timeout <<= 1;
3119 if (timeout > NFS4_LOCK_MAXTIMEOUT)
3120 return NFS4_LOCK_MAXTIMEOUT;
3121 return timeout;
3122 }
3123
3124 static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3125 {
3126 struct inode *inode = state->inode;
3127 struct nfs_server *server = NFS_SERVER(inode);
3128 struct nfs_client *clp = server->nfs_client;
3129 struct nfs_lockt_args arg = {
3130 .fh = NFS_FH(inode),
3131 .fl = request,
3132 };
3133 struct nfs_lockt_res res = {
3134 .denied = request,
3135 };
3136 struct rpc_message msg = {
3137 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKT],
3138 .rpc_argp = &arg,
3139 .rpc_resp = &res,
3140 .rpc_cred = state->owner->so_cred,
3141 };
3142 struct nfs4_lock_state *lsp;
3143 int status;
3144
3145 down_read(&clp->cl_sem);
3146 arg.lock_owner.clientid = clp->cl_clientid;
3147 status = nfs4_set_lock_state(state, request);
3148 if (status != 0)
3149 goto out;
3150 lsp = request->fl_u.nfs4_fl.owner;
3151 arg.lock_owner.id = lsp->ls_id.id;
3152 status = rpc_call_sync(server->client, &msg, 0);
3153 switch (status) {
3154 case 0:
3155 request->fl_type = F_UNLCK;
3156 break;
3157 case -NFS4ERR_DENIED:
3158 status = 0;
3159 }
3160 request->fl_ops->fl_release_private(request);
3161 out:
3162 up_read(&clp->cl_sem);
3163 return status;
3164 }
3165
3166 static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3167 {
3168 struct nfs4_exception exception = { };
3169 int err;
3170
3171 do {
3172 err = nfs4_handle_exception(NFS_SERVER(state->inode),
3173 _nfs4_proc_getlk(state, cmd, request),
3174 &exception);
3175 } while (exception.retry);
3176 return err;
3177 }
3178
3179 static int do_vfs_lock(struct file *file, struct file_lock *fl)
3180 {
3181 int res = 0;
3182 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
3183 case FL_POSIX:
3184 res = posix_lock_file_wait(file, fl);
3185 break;
3186 case FL_FLOCK:
3187 res = flock_lock_file_wait(file, fl);
3188 break;
3189 default:
3190 BUG();
3191 }
3192 return res;
3193 }
3194
3195 struct nfs4_unlockdata {
3196 struct nfs_locku_args arg;
3197 struct nfs_locku_res res;
3198 struct nfs4_lock_state *lsp;
3199 struct nfs_open_context *ctx;
3200 struct file_lock fl;
3201 const struct nfs_server *server;
3202 unsigned long timestamp;
3203 };
3204
3205 static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl,
3206 struct nfs_open_context *ctx,
3207 struct nfs4_lock_state *lsp,
3208 struct nfs_seqid *seqid)
3209 {
3210 struct nfs4_unlockdata *p;
3211 struct inode *inode = lsp->ls_state->inode;
3212
3213 p = kmalloc(sizeof(*p), GFP_KERNEL);
3214 if (p == NULL)
3215 return NULL;
3216 p->arg.fh = NFS_FH(inode);
3217 p->arg.fl = &p->fl;
3218 p->arg.seqid = seqid;
3219 p->arg.stateid = &lsp->ls_stateid;
3220 p->lsp = lsp;
3221 atomic_inc(&lsp->ls_count);
3222 /* Ensure we don't close file until we're done freeing locks! */
3223 p->ctx = get_nfs_open_context(ctx);
3224 memcpy(&p->fl, fl, sizeof(p->fl));
3225 p->server = NFS_SERVER(inode);
3226 return p;
3227 }
3228
3229 static void nfs4_locku_release_calldata(void *data)
3230 {
3231 struct nfs4_unlockdata *calldata = data;
3232 nfs_free_seqid(calldata->arg.seqid);
3233 nfs4_put_lock_state(calldata->lsp);
3234 put_nfs_open_context(calldata->ctx);
3235 kfree(calldata);
3236 }
3237
3238 static void nfs4_locku_done(struct rpc_task *task, void *data)
3239 {
3240 struct nfs4_unlockdata *calldata = data;
3241
3242 if (RPC_ASSASSINATED(task))
3243 return;
3244 nfs_increment_lock_seqid(task->tk_status, calldata->arg.seqid);
3245 switch (task->tk_status) {
3246 case 0:
3247 memcpy(calldata->lsp->ls_stateid.data,
3248 calldata->res.stateid.data,
3249 sizeof(calldata->lsp->ls_stateid.data));
3250 renew_lease(calldata->server, calldata->timestamp);
3251 break;
3252 case -NFS4ERR_STALE_STATEID:
3253 case -NFS4ERR_EXPIRED:
3254 break;
3255 default:
3256 if (nfs4_async_handle_error(task, calldata->server) == -EAGAIN)
3257 rpc_restart_call(task);
3258 }
3259 }
3260
3261 static void nfs4_locku_prepare(struct rpc_task *task, void *data)
3262 {
3263 struct nfs4_unlockdata *calldata = data;
3264 struct rpc_message msg = {
3265 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKU],
3266 .rpc_argp = &calldata->arg,
3267 .rpc_resp = &calldata->res,
3268 .rpc_cred = calldata->lsp->ls_state->owner->so_cred,
3269 };
3270
3271 if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
3272 return;
3273 if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) {
3274 /* Note: exit _without_ running nfs4_locku_done */
3275 task->tk_action = NULL;
3276 return;
3277 }
3278 calldata->timestamp = jiffies;
3279 rpc_call_setup(task, &msg, 0);
3280 }
3281
3282 static const struct rpc_call_ops nfs4_locku_ops = {
3283 .rpc_call_prepare = nfs4_locku_prepare,
3284 .rpc_call_done = nfs4_locku_done,
3285 .rpc_release = nfs4_locku_release_calldata,
3286 };
3287
3288 static struct rpc_task *nfs4_do_unlck(struct file_lock *fl,
3289 struct nfs_open_context *ctx,
3290 struct nfs4_lock_state *lsp,
3291 struct nfs_seqid *seqid)
3292 {
3293 struct nfs4_unlockdata *data;
3294
3295 /* Ensure this is an unlock - when canceling a lock, the
3296 * canceled lock is passed in, and it won't be an unlock.
3297 */
3298 fl->fl_type = F_UNLCK;
3299
3300 data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid);
3301 if (data == NULL) {
3302 nfs_free_seqid(seqid);
3303 return ERR_PTR(-ENOMEM);
3304 }
3305
3306 return rpc_run_task(NFS_CLIENT(lsp->ls_state->inode), RPC_TASK_ASYNC, &nfs4_locku_ops, data);
3307 }
3308
3309 static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request)
3310 {
3311 struct nfs_seqid *seqid;
3312 struct nfs4_lock_state *lsp;
3313 struct rpc_task *task;
3314 int status = 0;
3315
3316 status = nfs4_set_lock_state(state, request);
3317 /* Unlock _before_ we do the RPC call */
3318 request->fl_flags |= FL_EXISTS;
3319 if (do_vfs_lock(request->fl_file, request) == -ENOENT)
3320 goto out;
3321 if (status != 0)
3322 goto out;
3323 /* Is this a delegated lock? */
3324 if (test_bit(NFS_DELEGATED_STATE, &state->flags))
3325 goto out;
3326 lsp = request->fl_u.nfs4_fl.owner;
3327 seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3328 status = -ENOMEM;
3329 if (seqid == NULL)
3330 goto out;
3331 task = nfs4_do_unlck(request, request->fl_file->private_data, lsp, seqid);
3332 status = PTR_ERR(task);
3333 if (IS_ERR(task))
3334 goto out;
3335 status = nfs4_wait_for_completion_rpc_task(task);
3336 rpc_put_task(task);
3337 out:
3338 return status;
3339 }
3340
3341 struct nfs4_lockdata {
3342 struct nfs_lock_args arg;
3343 struct nfs_lock_res res;
3344 struct nfs4_lock_state *lsp;
3345 struct nfs_open_context *ctx;
3346 struct file_lock fl;
3347 unsigned long timestamp;
3348 int rpc_status;
3349 int cancelled;
3350 };
3351
3352 static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl,
3353 struct nfs_open_context *ctx, struct nfs4_lock_state *lsp)
3354 {
3355 struct nfs4_lockdata *p;
3356 struct inode *inode = lsp->ls_state->inode;
3357 struct nfs_server *server = NFS_SERVER(inode);
3358
3359 p = kzalloc(sizeof(*p), GFP_KERNEL);
3360 if (p == NULL)
3361 return NULL;
3362
3363 p->arg.fh = NFS_FH(inode);
3364 p->arg.fl = &p->fl;
3365 p->arg.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3366 if (p->arg.lock_seqid == NULL)
3367 goto out_free;
3368 p->arg.lock_stateid = &lsp->ls_stateid;
3369 p->arg.lock_owner.clientid = server->nfs_client->cl_clientid;
3370 p->arg.lock_owner.id = lsp->ls_id.id;
3371 p->lsp = lsp;
3372 atomic_inc(&lsp->ls_count);
3373 p->ctx = get_nfs_open_context(ctx);
3374 memcpy(&p->fl, fl, sizeof(p->fl));
3375 return p;
3376 out_free:
3377 kfree(p);
3378 return NULL;
3379 }
3380
3381 static void nfs4_lock_prepare(struct rpc_task *task, void *calldata)
3382 {
3383 struct nfs4_lockdata *data = calldata;
3384 struct nfs4_state *state = data->lsp->ls_state;
3385 struct nfs4_state_owner *sp = state->owner;
3386 struct rpc_message msg = {
3387 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK],
3388 .rpc_argp = &data->arg,
3389 .rpc_resp = &data->res,
3390 .rpc_cred = sp->so_cred,
3391 };
3392
3393 if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0)
3394 return;
3395 dprintk("%s: begin!\n", __FUNCTION__);
3396 /* Do we need to do an open_to_lock_owner? */
3397 if (!(data->arg.lock_seqid->sequence->flags & NFS_SEQID_CONFIRMED)) {
3398 data->arg.open_seqid = nfs_alloc_seqid(&sp->so_seqid);
3399 if (data->arg.open_seqid == NULL) {
3400 data->rpc_status = -ENOMEM;
3401 task->tk_action = NULL;
3402 goto out;
3403 }
3404 data->arg.open_stateid = &state->stateid;
3405 data->arg.new_lock_owner = 1;
3406 }
3407 data->timestamp = jiffies;
3408 rpc_call_setup(task, &msg, 0);
3409 out:
3410 dprintk("%s: done!, ret = %d\n", __FUNCTION__, data->rpc_status);
3411 }
3412
3413 static void nfs4_lock_done(struct rpc_task *task, void *calldata)
3414 {
3415 struct nfs4_lockdata *data = calldata;
3416
3417 dprintk("%s: begin!\n", __FUNCTION__);
3418
3419 data->rpc_status = task->tk_status;
3420 if (RPC_ASSASSINATED(task))
3421 goto out;
3422 if (data->arg.new_lock_owner != 0) {
3423 nfs_increment_open_seqid(data->rpc_status, data->arg.open_seqid);
3424 if (data->rpc_status == 0)
3425 nfs_confirm_seqid(&data->lsp->ls_seqid, 0);
3426 else
3427 goto out;
3428 }
3429 if (data->rpc_status == 0) {
3430 memcpy(data->lsp->ls_stateid.data, data->res.stateid.data,
3431 sizeof(data->lsp->ls_stateid.data));
3432 data->lsp->ls_flags |= NFS_LOCK_INITIALIZED;
3433 renew_lease(NFS_SERVER(data->ctx->path.dentry->d_inode), data->timestamp);
3434 }
3435 nfs_increment_lock_seqid(data->rpc_status, data->arg.lock_seqid);
3436 out:
3437 dprintk("%s: done, ret = %d!\n", __FUNCTION__, data->rpc_status);
3438 }
3439
3440 static void nfs4_lock_release(void *calldata)
3441 {
3442 struct nfs4_lockdata *data = calldata;
3443
3444 dprintk("%s: begin!\n", __FUNCTION__);
3445 if (data->arg.open_seqid != NULL)
3446 nfs_free_seqid(data->arg.open_seqid);
3447 if (data->cancelled != 0) {
3448 struct rpc_task *task;
3449 task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp,
3450 data->arg.lock_seqid);
3451 if (!IS_ERR(task))
3452 rpc_put_task(task);
3453 dprintk("%s: cancelling lock!\n", __FUNCTION__);
3454 } else
3455 nfs_free_seqid(data->arg.lock_seqid);
3456 nfs4_put_lock_state(data->lsp);
3457 put_nfs_open_context(data->ctx);
3458 kfree(data);
3459 dprintk("%s: done!\n", __FUNCTION__);
3460 }
3461
3462 static const struct rpc_call_ops nfs4_lock_ops = {
3463 .rpc_call_prepare = nfs4_lock_prepare,
3464 .rpc_call_done = nfs4_lock_done,
3465 .rpc_release = nfs4_lock_release,
3466 };
3467
3468 static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int reclaim)
3469 {
3470 struct nfs4_lockdata *data;
3471 struct rpc_task *task;
3472 int ret;
3473
3474 dprintk("%s: begin!\n", __FUNCTION__);
3475 data = nfs4_alloc_lockdata(fl, fl->fl_file->private_data,
3476 fl->fl_u.nfs4_fl.owner);
3477 if (data == NULL)
3478 return -ENOMEM;
3479 if (IS_SETLKW(cmd))
3480 data->arg.block = 1;
3481 if (reclaim != 0)
3482 data->arg.reclaim = 1;
3483 task = rpc_run_task(NFS_CLIENT(state->inode), RPC_TASK_ASYNC,
3484 &nfs4_lock_ops, data);
3485 if (IS_ERR(task))
3486 return PTR_ERR(task);
3487 ret = nfs4_wait_for_completion_rpc_task(task);
3488 if (ret == 0) {
3489 ret = data->rpc_status;
3490 if (ret == -NFS4ERR_DENIED)
3491 ret = -EAGAIN;
3492 } else
3493 data->cancelled = 1;
3494 rpc_put_task(task);
3495 dprintk("%s: done, ret = %d!\n", __FUNCTION__, ret);
3496 return ret;
3497 }
3498
3499 static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request)
3500 {
3501 struct nfs_server *server = NFS_SERVER(state->inode);
3502 struct nfs4_exception exception = { };
3503 int err;
3504
3505 do {
3506 /* Cache the lock if possible... */
3507 if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
3508 return 0;
3509 err = _nfs4_do_setlk(state, F_SETLK, request, 1);
3510 if (err != -NFS4ERR_DELAY)
3511 break;
3512 nfs4_handle_exception(server, err, &exception);
3513 } while (exception.retry);
3514 return err;
3515 }
3516
3517 static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request)
3518 {
3519 struct nfs_server *server = NFS_SERVER(state->inode);
3520 struct nfs4_exception exception = { };
3521 int err;
3522
3523 err = nfs4_set_lock_state(state, request);
3524 if (err != 0)
3525 return err;
3526 do {
3527 if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
3528 return 0;
3529 err = _nfs4_do_setlk(state, F_SETLK, request, 0);
3530 if (err != -NFS4ERR_DELAY)
3531 break;
3532 nfs4_handle_exception(server, err, &exception);
3533 } while (exception.retry);
3534 return err;
3535 }
3536
3537 static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3538 {
3539 struct nfs_client *clp = state->owner->so_client;
3540 unsigned char fl_flags = request->fl_flags;
3541 int status;
3542
3543 /* Is this a delegated open? */
3544 status = nfs4_set_lock_state(state, request);
3545 if (status != 0)
3546 goto out;
3547 request->fl_flags |= FL_ACCESS;
3548 status = do_vfs_lock(request->fl_file, request);
3549 if (status < 0)
3550 goto out;
3551 down_read(&clp->cl_sem);
3552 if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
3553 struct nfs_inode *nfsi = NFS_I(state->inode);
3554 /* Yes: cache locks! */
3555 down_read(&nfsi->rwsem);
3556 /* ...but avoid races with delegation recall... */
3557 if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
3558 request->fl_flags = fl_flags & ~FL_SLEEP;
3559 status = do_vfs_lock(request->fl_file, request);
3560 up_read(&nfsi->rwsem);
3561 goto out_unlock;
3562 }
3563 up_read(&nfsi->rwsem);
3564 }
3565 status = _nfs4_do_setlk(state, cmd, request, 0);
3566 if (status != 0)
3567 goto out_unlock;
3568 /* Note: we always want to sleep here! */
3569 request->fl_flags = fl_flags | FL_SLEEP;
3570 if (do_vfs_lock(request->fl_file, request) < 0)
3571 printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __FUNCTION__);
3572 out_unlock:
3573 up_read(&clp->cl_sem);
3574 out:
3575 request->fl_flags = fl_flags;
3576 return status;
3577 }
3578
3579 static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3580 {
3581 struct nfs4_exception exception = { };
3582 int err;
3583
3584 do {
3585 err = nfs4_handle_exception(NFS_SERVER(state->inode),
3586 _nfs4_proc_setlk(state, cmd, request),
3587 &exception);
3588 } while (exception.retry);
3589 return err;
3590 }
3591
3592 static int
3593 nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request)
3594 {
3595 struct nfs_open_context *ctx;
3596 struct nfs4_state *state;
3597 unsigned long timeout = NFS4_LOCK_MINTIMEOUT;
3598 int status;
3599
3600 /* verify open state */
3601 ctx = (struct nfs_open_context *)filp->private_data;
3602 state = ctx->state;
3603
3604 if (request->fl_start < 0 || request->fl_end < 0)
3605 return -EINVAL;
3606
3607 if (IS_GETLK(cmd))
3608 return nfs4_proc_getlk(state, F_GETLK, request);
3609
3610 if (!(IS_SETLK(cmd) || IS_SETLKW(cmd)))
3611 return -EINVAL;
3612
3613 if (request->fl_type == F_UNLCK)
3614 return nfs4_proc_unlck(state, cmd, request);
3615
3616 do {
3617 status = nfs4_proc_setlk(state, cmd, request);
3618 if ((status != -EAGAIN) || IS_SETLK(cmd))
3619 break;
3620 timeout = nfs4_set_lock_task_retry(timeout);
3621 status = -ERESTARTSYS;
3622 if (signalled())
3623 break;
3624 } while(status < 0);
3625 return status;
3626 }
3627
3628 int nfs4_lock_delegation_recall(struct nfs4_state *state, struct file_lock *fl)
3629 {
3630 struct nfs_server *server = NFS_SERVER(state->inode);
3631 struct nfs4_exception exception = { };
3632 int err;
3633
3634 err = nfs4_set_lock_state(state, fl);
3635 if (err != 0)
3636 goto out;
3637 do {
3638 err = _nfs4_do_setlk(state, F_SETLK, fl, 0);
3639 if (err != -NFS4ERR_DELAY)
3640 break;
3641 err = nfs4_handle_exception(server, err, &exception);
3642 } while (exception.retry);
3643 out:
3644 return err;
3645 }
3646
3647 #define XATTR_NAME_NFSV4_ACL "system.nfs4_acl"
3648
3649 int nfs4_setxattr(struct dentry *dentry, const char *key, const void *buf,
3650 size_t buflen, int flags)
3651 {
3652 struct inode *inode = dentry->d_inode;
3653
3654 if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3655 return -EOPNOTSUPP;
3656
3657 if (!S_ISREG(inode->i_mode) &&
3658 (!S_ISDIR(inode->i_mode) || inode->i_mode & S_ISVTX))
3659 return -EPERM;
3660
3661 return nfs4_proc_set_acl(inode, buf, buflen);
3662 }
3663
3664 /* The getxattr man page suggests returning -ENODATA for unknown attributes,
3665 * and that's what we'll do for e.g. user attributes that haven't been set.
3666 * But we'll follow ext2/ext3's lead by returning -EOPNOTSUPP for unsupported
3667 * attributes in kernel-managed attribute namespaces. */
3668 ssize_t nfs4_getxattr(struct dentry *dentry, const char *key, void *buf,
3669 size_t buflen)
3670 {
3671 struct inode *inode = dentry->d_inode;
3672
3673 if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3674 return -EOPNOTSUPP;
3675
3676 return nfs4_proc_get_acl(inode, buf, buflen);
3677 }
3678
3679 ssize_t nfs4_listxattr(struct dentry *dentry, char *buf, size_t buflen)
3680 {
3681 size_t len = strlen(XATTR_NAME_NFSV4_ACL) + 1;
3682
3683 if (!nfs4_server_supports_acls(NFS_SERVER(dentry->d_inode)))
3684 return 0;
3685 if (buf && buflen < len)
3686 return -ERANGE;
3687 if (buf)
3688 memcpy(buf, XATTR_NAME_NFSV4_ACL, len);
3689 return len;
3690 }
3691
3692 int nfs4_proc_fs_locations(struct inode *dir, const struct qstr *name,
3693 struct nfs4_fs_locations *fs_locations, struct page *page)
3694 {
3695 struct nfs_server *server = NFS_SERVER(dir);
3696 u32 bitmask[2] = {
3697 [0] = FATTR4_WORD0_FSID | FATTR4_WORD0_FS_LOCATIONS,
3698 [1] = FATTR4_WORD1_MOUNTED_ON_FILEID,
3699 };
3700 struct nfs4_fs_locations_arg args = {
3701 .dir_fh = NFS_FH(dir),
3702 .name = name,
3703 .page = page,
3704 .bitmask = bitmask,
3705 };
3706 struct rpc_message msg = {
3707 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS],
3708 .rpc_argp = &args,
3709 .rpc_resp = fs_locations,
3710 };
3711 int status;
3712
3713 dprintk("%s: start\n", __FUNCTION__);
3714 nfs_fattr_init(&fs_locations->fattr);
3715 fs_locations->server = server;
3716 fs_locations->nlocations = 0;
3717 status = rpc_call_sync(server->client, &msg, 0);
3718 dprintk("%s: returned status = %d\n", __FUNCTION__, status);
3719 return status;
3720 }
3721
3722 struct nfs4_state_recovery_ops nfs4_reboot_recovery_ops = {
3723 .recover_open = nfs4_open_reclaim,
3724 .recover_lock = nfs4_lock_reclaim,
3725 };
3726
3727 struct nfs4_state_recovery_ops nfs4_network_partition_recovery_ops = {
3728 .recover_open = nfs4_open_expired,
3729 .recover_lock = nfs4_lock_expired,
3730 };
3731
3732 static const struct inode_operations nfs4_file_inode_operations = {
3733 .permission = nfs_permission,
3734 .getattr = nfs_getattr,
3735 .setattr = nfs_setattr,
3736 .getxattr = nfs4_getxattr,
3737 .setxattr = nfs4_setxattr,
3738 .listxattr = nfs4_listxattr,
3739 };
3740
3741 const struct nfs_rpc_ops nfs_v4_clientops = {
3742 .version = 4, /* protocol version */
3743 .dentry_ops = &nfs4_dentry_operations,
3744 .dir_inode_ops = &nfs4_dir_inode_operations,
3745 .file_inode_ops = &nfs4_file_inode_operations,
3746 .getroot = nfs4_proc_get_root,
3747 .getattr = nfs4_proc_getattr,
3748 .setattr = nfs4_proc_setattr,
3749 .lookupfh = nfs4_proc_lookupfh,
3750 .lookup = nfs4_proc_lookup,
3751 .access = nfs4_proc_access,
3752 .readlink = nfs4_proc_readlink,
3753 .create = nfs4_proc_create,
3754 .remove = nfs4_proc_remove,
3755 .unlink_setup = nfs4_proc_unlink_setup,
3756 .unlink_done = nfs4_proc_unlink_done,
3757 .rename = nfs4_proc_rename,
3758 .link = nfs4_proc_link,
3759 .symlink = nfs4_proc_symlink,
3760 .mkdir = nfs4_proc_mkdir,
3761 .rmdir = nfs4_proc_remove,
3762 .readdir = nfs4_proc_readdir,
3763 .mknod = nfs4_proc_mknod,
3764 .statfs = nfs4_proc_statfs,
3765 .fsinfo = nfs4_proc_fsinfo,
3766 .pathconf = nfs4_proc_pathconf,
3767 .set_capabilities = nfs4_server_capabilities,
3768 .decode_dirent = nfs4_decode_dirent,
3769 .read_setup = nfs4_proc_read_setup,
3770 .read_done = nfs4_read_done,
3771 .write_setup = nfs4_proc_write_setup,
3772 .write_done = nfs4_write_done,
3773 .commit_setup = nfs4_proc_commit_setup,
3774 .commit_done = nfs4_commit_done,
3775 .file_open = nfs_open,
3776 .file_release = nfs_release,
3777 .lock = nfs4_proc_lock,
3778 .clear_acl_cache = nfs4_zap_acl_attr,
3779 };
3780
3781 /*
3782 * Local variables:
3783 * c-basic-offset: 8
3784 * End:
3785 */