]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/nfs/nfs4proc.c
Merge branch 'drm-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[mirror_ubuntu-bionic-kernel.git] / fs / nfs / nfs4proc.c
1 /*
2 * fs/nfs/nfs4proc.c
3 *
4 * Client-side procedure declarations for NFSv4.
5 *
6 * Copyright (c) 2002 The Regents of the University of Michigan.
7 * All rights reserved.
8 *
9 * Kendrick Smith <kmsmith@umich.edu>
10 * Andy Adamson <andros@umich.edu>
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 *
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #include <linux/mm.h>
39 #include <linux/utsname.h>
40 #include <linux/delay.h>
41 #include <linux/errno.h>
42 #include <linux/string.h>
43 #include <linux/sunrpc/clnt.h>
44 #include <linux/nfs.h>
45 #include <linux/nfs4.h>
46 #include <linux/nfs_fs.h>
47 #include <linux/nfs_page.h>
48 #include <linux/smp_lock.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51
52 #include "nfs4_fs.h"
53 #include "delegation.h"
54 #include "internal.h"
55 #include "iostat.h"
56
57 #define NFSDBG_FACILITY NFSDBG_PROC
58
59 #define NFS4_POLL_RETRY_MIN (HZ/10)
60 #define NFS4_POLL_RETRY_MAX (15*HZ)
61
62 struct nfs4_opendata;
63 static int _nfs4_proc_open(struct nfs4_opendata *data);
64 static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *);
65 static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *, struct nfs4_state *);
66 static int _nfs4_proc_lookup(struct inode *dir, const struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr);
67 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr);
68
69 /* Prevent leaks of NFSv4 errors into userland */
70 static int nfs4_map_errors(int err)
71 {
72 if (err < -1000) {
73 dprintk("%s could not handle NFSv4 error %d\n",
74 __func__, -err);
75 return -EIO;
76 }
77 return err;
78 }
79
80 /*
81 * This is our standard bitmap for GETATTR requests.
82 */
83 const u32 nfs4_fattr_bitmap[2] = {
84 FATTR4_WORD0_TYPE
85 | FATTR4_WORD0_CHANGE
86 | FATTR4_WORD0_SIZE
87 | FATTR4_WORD0_FSID
88 | FATTR4_WORD0_FILEID,
89 FATTR4_WORD1_MODE
90 | FATTR4_WORD1_NUMLINKS
91 | FATTR4_WORD1_OWNER
92 | FATTR4_WORD1_OWNER_GROUP
93 | FATTR4_WORD1_RAWDEV
94 | FATTR4_WORD1_SPACE_USED
95 | FATTR4_WORD1_TIME_ACCESS
96 | FATTR4_WORD1_TIME_METADATA
97 | FATTR4_WORD1_TIME_MODIFY
98 };
99
100 const u32 nfs4_statfs_bitmap[2] = {
101 FATTR4_WORD0_FILES_AVAIL
102 | FATTR4_WORD0_FILES_FREE
103 | FATTR4_WORD0_FILES_TOTAL,
104 FATTR4_WORD1_SPACE_AVAIL
105 | FATTR4_WORD1_SPACE_FREE
106 | FATTR4_WORD1_SPACE_TOTAL
107 };
108
109 const u32 nfs4_pathconf_bitmap[2] = {
110 FATTR4_WORD0_MAXLINK
111 | FATTR4_WORD0_MAXNAME,
112 0
113 };
114
115 const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE
116 | FATTR4_WORD0_MAXREAD
117 | FATTR4_WORD0_MAXWRITE
118 | FATTR4_WORD0_LEASE_TIME,
119 0
120 };
121
122 const u32 nfs4_fs_locations_bitmap[2] = {
123 FATTR4_WORD0_TYPE
124 | FATTR4_WORD0_CHANGE
125 | FATTR4_WORD0_SIZE
126 | FATTR4_WORD0_FSID
127 | FATTR4_WORD0_FILEID
128 | FATTR4_WORD0_FS_LOCATIONS,
129 FATTR4_WORD1_MODE
130 | FATTR4_WORD1_NUMLINKS
131 | FATTR4_WORD1_OWNER
132 | FATTR4_WORD1_OWNER_GROUP
133 | FATTR4_WORD1_RAWDEV
134 | FATTR4_WORD1_SPACE_USED
135 | FATTR4_WORD1_TIME_ACCESS
136 | FATTR4_WORD1_TIME_METADATA
137 | FATTR4_WORD1_TIME_MODIFY
138 | FATTR4_WORD1_MOUNTED_ON_FILEID
139 };
140
141 static void nfs4_setup_readdir(u64 cookie, __be32 *verifier, struct dentry *dentry,
142 struct nfs4_readdir_arg *readdir)
143 {
144 __be32 *start, *p;
145
146 BUG_ON(readdir->count < 80);
147 if (cookie > 2) {
148 readdir->cookie = cookie;
149 memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier));
150 return;
151 }
152
153 readdir->cookie = 0;
154 memset(&readdir->verifier, 0, sizeof(readdir->verifier));
155 if (cookie == 2)
156 return;
157
158 /*
159 * NFSv4 servers do not return entries for '.' and '..'
160 * Therefore, we fake these entries here. We let '.'
161 * have cookie 0 and '..' have cookie 1. Note that
162 * when talking to the server, we always send cookie 0
163 * instead of 1 or 2.
164 */
165 start = p = kmap_atomic(*readdir->pages, KM_USER0);
166
167 if (cookie == 0) {
168 *p++ = xdr_one; /* next */
169 *p++ = xdr_zero; /* cookie, first word */
170 *p++ = xdr_one; /* cookie, second word */
171 *p++ = xdr_one; /* entry len */
172 memcpy(p, ".\0\0\0", 4); /* entry */
173 p++;
174 *p++ = xdr_one; /* bitmap length */
175 *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */
176 *p++ = htonl(8); /* attribute buffer length */
177 p = xdr_encode_hyper(p, NFS_FILEID(dentry->d_inode));
178 }
179
180 *p++ = xdr_one; /* next */
181 *p++ = xdr_zero; /* cookie, first word */
182 *p++ = xdr_two; /* cookie, second word */
183 *p++ = xdr_two; /* entry len */
184 memcpy(p, "..\0\0", 4); /* entry */
185 p++;
186 *p++ = xdr_one; /* bitmap length */
187 *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */
188 *p++ = htonl(8); /* attribute buffer length */
189 p = xdr_encode_hyper(p, NFS_FILEID(dentry->d_parent->d_inode));
190
191 readdir->pgbase = (char *)p - (char *)start;
192 readdir->count -= readdir->pgbase;
193 kunmap_atomic(start, KM_USER0);
194 }
195
196 static int nfs4_wait_clnt_recover(struct nfs_client *clp)
197 {
198 int res;
199
200 might_sleep();
201
202 res = wait_on_bit(&clp->cl_state, NFS4CLNT_MANAGER_RUNNING,
203 nfs_wait_bit_killable, TASK_KILLABLE);
204 return res;
205 }
206
207 static int nfs4_delay(struct rpc_clnt *clnt, long *timeout)
208 {
209 int res = 0;
210
211 might_sleep();
212
213 if (*timeout <= 0)
214 *timeout = NFS4_POLL_RETRY_MIN;
215 if (*timeout > NFS4_POLL_RETRY_MAX)
216 *timeout = NFS4_POLL_RETRY_MAX;
217 schedule_timeout_killable(*timeout);
218 if (fatal_signal_pending(current))
219 res = -ERESTARTSYS;
220 *timeout <<= 1;
221 return res;
222 }
223
224 /* This is the error handling routine for processes that are allowed
225 * to sleep.
226 */
227 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception)
228 {
229 struct nfs_client *clp = server->nfs_client;
230 struct nfs4_state *state = exception->state;
231 int ret = errorcode;
232
233 exception->retry = 0;
234 switch(errorcode) {
235 case 0:
236 return 0;
237 case -NFS4ERR_ADMIN_REVOKED:
238 case -NFS4ERR_BAD_STATEID:
239 case -NFS4ERR_OPENMODE:
240 if (state == NULL)
241 break;
242 nfs4_state_mark_reclaim_nograce(clp, state);
243 case -NFS4ERR_STALE_CLIENTID:
244 case -NFS4ERR_STALE_STATEID:
245 case -NFS4ERR_EXPIRED:
246 nfs4_schedule_state_recovery(clp);
247 ret = nfs4_wait_clnt_recover(clp);
248 if (ret == 0)
249 exception->retry = 1;
250 break;
251 case -NFS4ERR_FILE_OPEN:
252 case -NFS4ERR_GRACE:
253 case -NFS4ERR_DELAY:
254 ret = nfs4_delay(server->client, &exception->timeout);
255 if (ret != 0)
256 break;
257 case -NFS4ERR_OLD_STATEID:
258 exception->retry = 1;
259 }
260 /* We failed to handle the error */
261 return nfs4_map_errors(ret);
262 }
263
264
265 static void renew_lease(const struct nfs_server *server, unsigned long timestamp)
266 {
267 struct nfs_client *clp = server->nfs_client;
268 spin_lock(&clp->cl_lock);
269 if (time_before(clp->cl_last_renewal,timestamp))
270 clp->cl_last_renewal = timestamp;
271 spin_unlock(&clp->cl_lock);
272 }
273
274 static void update_changeattr(struct inode *dir, struct nfs4_change_info *cinfo)
275 {
276 struct nfs_inode *nfsi = NFS_I(dir);
277
278 spin_lock(&dir->i_lock);
279 nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA;
280 if (!cinfo->atomic || cinfo->before != nfsi->change_attr)
281 nfs_force_lookup_revalidate(dir);
282 nfsi->change_attr = cinfo->after;
283 spin_unlock(&dir->i_lock);
284 }
285
286 struct nfs4_opendata {
287 struct kref kref;
288 struct nfs_openargs o_arg;
289 struct nfs_openres o_res;
290 struct nfs_open_confirmargs c_arg;
291 struct nfs_open_confirmres c_res;
292 struct nfs_fattr f_attr;
293 struct nfs_fattr dir_attr;
294 struct path path;
295 struct dentry *dir;
296 struct nfs4_state_owner *owner;
297 struct nfs4_state *state;
298 struct iattr attrs;
299 unsigned long timestamp;
300 unsigned int rpc_done : 1;
301 int rpc_status;
302 int cancelled;
303 };
304
305
306 static void nfs4_init_opendata_res(struct nfs4_opendata *p)
307 {
308 p->o_res.f_attr = &p->f_attr;
309 p->o_res.dir_attr = &p->dir_attr;
310 p->o_res.seqid = p->o_arg.seqid;
311 p->c_res.seqid = p->c_arg.seqid;
312 p->o_res.server = p->o_arg.server;
313 nfs_fattr_init(&p->f_attr);
314 nfs_fattr_init(&p->dir_attr);
315 }
316
317 static struct nfs4_opendata *nfs4_opendata_alloc(struct path *path,
318 struct nfs4_state_owner *sp, fmode_t fmode, int flags,
319 const struct iattr *attrs)
320 {
321 struct dentry *parent = dget_parent(path->dentry);
322 struct inode *dir = parent->d_inode;
323 struct nfs_server *server = NFS_SERVER(dir);
324 struct nfs4_opendata *p;
325
326 p = kzalloc(sizeof(*p), GFP_KERNEL);
327 if (p == NULL)
328 goto err;
329 p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
330 if (p->o_arg.seqid == NULL)
331 goto err_free;
332 p->path.mnt = mntget(path->mnt);
333 p->path.dentry = dget(path->dentry);
334 p->dir = parent;
335 p->owner = sp;
336 atomic_inc(&sp->so_count);
337 p->o_arg.fh = NFS_FH(dir);
338 p->o_arg.open_flags = flags;
339 p->o_arg.fmode = fmode & (FMODE_READ|FMODE_WRITE);
340 p->o_arg.clientid = server->nfs_client->cl_clientid;
341 p->o_arg.id = sp->so_owner_id.id;
342 p->o_arg.name = &p->path.dentry->d_name;
343 p->o_arg.server = server;
344 p->o_arg.bitmask = server->attr_bitmask;
345 p->o_arg.claim = NFS4_OPEN_CLAIM_NULL;
346 if (flags & O_EXCL) {
347 u32 *s = (u32 *) p->o_arg.u.verifier.data;
348 s[0] = jiffies;
349 s[1] = current->pid;
350 } else if (flags & O_CREAT) {
351 p->o_arg.u.attrs = &p->attrs;
352 memcpy(&p->attrs, attrs, sizeof(p->attrs));
353 }
354 p->c_arg.fh = &p->o_res.fh;
355 p->c_arg.stateid = &p->o_res.stateid;
356 p->c_arg.seqid = p->o_arg.seqid;
357 nfs4_init_opendata_res(p);
358 kref_init(&p->kref);
359 return p;
360 err_free:
361 kfree(p);
362 err:
363 dput(parent);
364 return NULL;
365 }
366
367 static void nfs4_opendata_free(struct kref *kref)
368 {
369 struct nfs4_opendata *p = container_of(kref,
370 struct nfs4_opendata, kref);
371
372 nfs_free_seqid(p->o_arg.seqid);
373 if (p->state != NULL)
374 nfs4_put_open_state(p->state);
375 nfs4_put_state_owner(p->owner);
376 dput(p->dir);
377 path_put(&p->path);
378 kfree(p);
379 }
380
381 static void nfs4_opendata_put(struct nfs4_opendata *p)
382 {
383 if (p != NULL)
384 kref_put(&p->kref, nfs4_opendata_free);
385 }
386
387 static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task)
388 {
389 int ret;
390
391 ret = rpc_wait_for_completion_task(task);
392 return ret;
393 }
394
395 static int can_open_cached(struct nfs4_state *state, fmode_t mode, int open_mode)
396 {
397 int ret = 0;
398
399 if (open_mode & O_EXCL)
400 goto out;
401 switch (mode & (FMODE_READ|FMODE_WRITE)) {
402 case FMODE_READ:
403 ret |= test_bit(NFS_O_RDONLY_STATE, &state->flags) != 0;
404 break;
405 case FMODE_WRITE:
406 ret |= test_bit(NFS_O_WRONLY_STATE, &state->flags) != 0;
407 break;
408 case FMODE_READ|FMODE_WRITE:
409 ret |= test_bit(NFS_O_RDWR_STATE, &state->flags) != 0;
410 }
411 out:
412 return ret;
413 }
414
415 static int can_open_delegated(struct nfs_delegation *delegation, fmode_t fmode)
416 {
417 if ((delegation->type & fmode) != fmode)
418 return 0;
419 if (test_bit(NFS_DELEGATION_NEED_RECLAIM, &delegation->flags))
420 return 0;
421 nfs_mark_delegation_referenced(delegation);
422 return 1;
423 }
424
425 static void update_open_stateflags(struct nfs4_state *state, fmode_t fmode)
426 {
427 switch (fmode) {
428 case FMODE_WRITE:
429 state->n_wronly++;
430 break;
431 case FMODE_READ:
432 state->n_rdonly++;
433 break;
434 case FMODE_READ|FMODE_WRITE:
435 state->n_rdwr++;
436 }
437 nfs4_state_set_mode_locked(state, state->state | fmode);
438 }
439
440 static void nfs_set_open_stateid_locked(struct nfs4_state *state, nfs4_stateid *stateid, fmode_t fmode)
441 {
442 if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0)
443 memcpy(state->stateid.data, stateid->data, sizeof(state->stateid.data));
444 memcpy(state->open_stateid.data, stateid->data, sizeof(state->open_stateid.data));
445 switch (fmode) {
446 case FMODE_READ:
447 set_bit(NFS_O_RDONLY_STATE, &state->flags);
448 break;
449 case FMODE_WRITE:
450 set_bit(NFS_O_WRONLY_STATE, &state->flags);
451 break;
452 case FMODE_READ|FMODE_WRITE:
453 set_bit(NFS_O_RDWR_STATE, &state->flags);
454 }
455 }
456
457 static void nfs_set_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, fmode_t fmode)
458 {
459 write_seqlock(&state->seqlock);
460 nfs_set_open_stateid_locked(state, stateid, fmode);
461 write_sequnlock(&state->seqlock);
462 }
463
464 static void __update_open_stateid(struct nfs4_state *state, nfs4_stateid *open_stateid, const nfs4_stateid *deleg_stateid, fmode_t fmode)
465 {
466 /*
467 * Protect the call to nfs4_state_set_mode_locked and
468 * serialise the stateid update
469 */
470 write_seqlock(&state->seqlock);
471 if (deleg_stateid != NULL) {
472 memcpy(state->stateid.data, deleg_stateid->data, sizeof(state->stateid.data));
473 set_bit(NFS_DELEGATED_STATE, &state->flags);
474 }
475 if (open_stateid != NULL)
476 nfs_set_open_stateid_locked(state, open_stateid, fmode);
477 write_sequnlock(&state->seqlock);
478 spin_lock(&state->owner->so_lock);
479 update_open_stateflags(state, fmode);
480 spin_unlock(&state->owner->so_lock);
481 }
482
483 static int update_open_stateid(struct nfs4_state *state, nfs4_stateid *open_stateid, nfs4_stateid *delegation, fmode_t fmode)
484 {
485 struct nfs_inode *nfsi = NFS_I(state->inode);
486 struct nfs_delegation *deleg_cur;
487 int ret = 0;
488
489 fmode &= (FMODE_READ|FMODE_WRITE);
490
491 rcu_read_lock();
492 deleg_cur = rcu_dereference(nfsi->delegation);
493 if (deleg_cur == NULL)
494 goto no_delegation;
495
496 spin_lock(&deleg_cur->lock);
497 if (nfsi->delegation != deleg_cur ||
498 (deleg_cur->type & fmode) != fmode)
499 goto no_delegation_unlock;
500
501 if (delegation == NULL)
502 delegation = &deleg_cur->stateid;
503 else if (memcmp(deleg_cur->stateid.data, delegation->data, NFS4_STATEID_SIZE) != 0)
504 goto no_delegation_unlock;
505
506 nfs_mark_delegation_referenced(deleg_cur);
507 __update_open_stateid(state, open_stateid, &deleg_cur->stateid, fmode);
508 ret = 1;
509 no_delegation_unlock:
510 spin_unlock(&deleg_cur->lock);
511 no_delegation:
512 rcu_read_unlock();
513
514 if (!ret && open_stateid != NULL) {
515 __update_open_stateid(state, open_stateid, NULL, fmode);
516 ret = 1;
517 }
518
519 return ret;
520 }
521
522
523 static void nfs4_return_incompatible_delegation(struct inode *inode, fmode_t fmode)
524 {
525 struct nfs_delegation *delegation;
526
527 rcu_read_lock();
528 delegation = rcu_dereference(NFS_I(inode)->delegation);
529 if (delegation == NULL || (delegation->type & fmode) == fmode) {
530 rcu_read_unlock();
531 return;
532 }
533 rcu_read_unlock();
534 nfs_inode_return_delegation(inode);
535 }
536
537 static struct nfs4_state *nfs4_try_open_cached(struct nfs4_opendata *opendata)
538 {
539 struct nfs4_state *state = opendata->state;
540 struct nfs_inode *nfsi = NFS_I(state->inode);
541 struct nfs_delegation *delegation;
542 int open_mode = opendata->o_arg.open_flags & O_EXCL;
543 fmode_t fmode = opendata->o_arg.fmode;
544 nfs4_stateid stateid;
545 int ret = -EAGAIN;
546
547 for (;;) {
548 if (can_open_cached(state, fmode, open_mode)) {
549 spin_lock(&state->owner->so_lock);
550 if (can_open_cached(state, fmode, open_mode)) {
551 update_open_stateflags(state, fmode);
552 spin_unlock(&state->owner->so_lock);
553 goto out_return_state;
554 }
555 spin_unlock(&state->owner->so_lock);
556 }
557 rcu_read_lock();
558 delegation = rcu_dereference(nfsi->delegation);
559 if (delegation == NULL ||
560 !can_open_delegated(delegation, fmode)) {
561 rcu_read_unlock();
562 break;
563 }
564 /* Save the delegation */
565 memcpy(stateid.data, delegation->stateid.data, sizeof(stateid.data));
566 rcu_read_unlock();
567 ret = nfs_may_open(state->inode, state->owner->so_cred, open_mode);
568 if (ret != 0)
569 goto out;
570 ret = -EAGAIN;
571
572 /* Try to update the stateid using the delegation */
573 if (update_open_stateid(state, NULL, &stateid, fmode))
574 goto out_return_state;
575 }
576 out:
577 return ERR_PTR(ret);
578 out_return_state:
579 atomic_inc(&state->count);
580 return state;
581 }
582
583 static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data)
584 {
585 struct inode *inode;
586 struct nfs4_state *state = NULL;
587 struct nfs_delegation *delegation;
588 int ret;
589
590 if (!data->rpc_done) {
591 state = nfs4_try_open_cached(data);
592 goto out;
593 }
594
595 ret = -EAGAIN;
596 if (!(data->f_attr.valid & NFS_ATTR_FATTR))
597 goto err;
598 inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr);
599 ret = PTR_ERR(inode);
600 if (IS_ERR(inode))
601 goto err;
602 ret = -ENOMEM;
603 state = nfs4_get_open_state(inode, data->owner);
604 if (state == NULL)
605 goto err_put_inode;
606 if (data->o_res.delegation_type != 0) {
607 int delegation_flags = 0;
608
609 rcu_read_lock();
610 delegation = rcu_dereference(NFS_I(inode)->delegation);
611 if (delegation)
612 delegation_flags = delegation->flags;
613 rcu_read_unlock();
614 if ((delegation_flags & 1UL<<NFS_DELEGATION_NEED_RECLAIM) == 0)
615 nfs_inode_set_delegation(state->inode,
616 data->owner->so_cred,
617 &data->o_res);
618 else
619 nfs_inode_reclaim_delegation(state->inode,
620 data->owner->so_cred,
621 &data->o_res);
622 }
623
624 update_open_stateid(state, &data->o_res.stateid, NULL,
625 data->o_arg.fmode);
626 iput(inode);
627 out:
628 return state;
629 err_put_inode:
630 iput(inode);
631 err:
632 return ERR_PTR(ret);
633 }
634
635 static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state)
636 {
637 struct nfs_inode *nfsi = NFS_I(state->inode);
638 struct nfs_open_context *ctx;
639
640 spin_lock(&state->inode->i_lock);
641 list_for_each_entry(ctx, &nfsi->open_files, list) {
642 if (ctx->state != state)
643 continue;
644 get_nfs_open_context(ctx);
645 spin_unlock(&state->inode->i_lock);
646 return ctx;
647 }
648 spin_unlock(&state->inode->i_lock);
649 return ERR_PTR(-ENOENT);
650 }
651
652 static struct nfs4_opendata *nfs4_open_recoverdata_alloc(struct nfs_open_context *ctx, struct nfs4_state *state)
653 {
654 struct nfs4_opendata *opendata;
655
656 opendata = nfs4_opendata_alloc(&ctx->path, state->owner, 0, 0, NULL);
657 if (opendata == NULL)
658 return ERR_PTR(-ENOMEM);
659 opendata->state = state;
660 atomic_inc(&state->count);
661 return opendata;
662 }
663
664 static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, fmode_t fmode, struct nfs4_state **res)
665 {
666 struct nfs4_state *newstate;
667 int ret;
668
669 opendata->o_arg.open_flags = 0;
670 opendata->o_arg.fmode = fmode;
671 memset(&opendata->o_res, 0, sizeof(opendata->o_res));
672 memset(&opendata->c_res, 0, sizeof(opendata->c_res));
673 nfs4_init_opendata_res(opendata);
674 ret = _nfs4_proc_open(opendata);
675 if (ret != 0)
676 return ret;
677 newstate = nfs4_opendata_to_nfs4_state(opendata);
678 if (IS_ERR(newstate))
679 return PTR_ERR(newstate);
680 nfs4_close_state(&opendata->path, newstate, fmode);
681 *res = newstate;
682 return 0;
683 }
684
685 static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state)
686 {
687 struct nfs4_state *newstate;
688 int ret;
689
690 /* memory barrier prior to reading state->n_* */
691 clear_bit(NFS_DELEGATED_STATE, &state->flags);
692 smp_rmb();
693 if (state->n_rdwr != 0) {
694 ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &newstate);
695 if (ret != 0)
696 return ret;
697 if (newstate != state)
698 return -ESTALE;
699 }
700 if (state->n_wronly != 0) {
701 ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &newstate);
702 if (ret != 0)
703 return ret;
704 if (newstate != state)
705 return -ESTALE;
706 }
707 if (state->n_rdonly != 0) {
708 ret = nfs4_open_recover_helper(opendata, FMODE_READ, &newstate);
709 if (ret != 0)
710 return ret;
711 if (newstate != state)
712 return -ESTALE;
713 }
714 /*
715 * We may have performed cached opens for all three recoveries.
716 * Check if we need to update the current stateid.
717 */
718 if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0 &&
719 memcmp(state->stateid.data, state->open_stateid.data, sizeof(state->stateid.data)) != 0) {
720 write_seqlock(&state->seqlock);
721 if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0)
722 memcpy(state->stateid.data, state->open_stateid.data, sizeof(state->stateid.data));
723 write_sequnlock(&state->seqlock);
724 }
725 return 0;
726 }
727
728 /*
729 * OPEN_RECLAIM:
730 * reclaim state on the server after a reboot.
731 */
732 static int _nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state)
733 {
734 struct nfs_delegation *delegation;
735 struct nfs4_opendata *opendata;
736 fmode_t delegation_type = 0;
737 int status;
738
739 opendata = nfs4_open_recoverdata_alloc(ctx, state);
740 if (IS_ERR(opendata))
741 return PTR_ERR(opendata);
742 opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS;
743 opendata->o_arg.fh = NFS_FH(state->inode);
744 rcu_read_lock();
745 delegation = rcu_dereference(NFS_I(state->inode)->delegation);
746 if (delegation != NULL && test_bit(NFS_DELEGATION_NEED_RECLAIM, &delegation->flags) != 0)
747 delegation_type = delegation->type;
748 rcu_read_unlock();
749 opendata->o_arg.u.delegation_type = delegation_type;
750 status = nfs4_open_recover(opendata, state);
751 nfs4_opendata_put(opendata);
752 return status;
753 }
754
755 static int nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state)
756 {
757 struct nfs_server *server = NFS_SERVER(state->inode);
758 struct nfs4_exception exception = { };
759 int err;
760 do {
761 err = _nfs4_do_open_reclaim(ctx, state);
762 if (err != -NFS4ERR_DELAY)
763 break;
764 nfs4_handle_exception(server, err, &exception);
765 } while (exception.retry);
766 return err;
767 }
768
769 static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
770 {
771 struct nfs_open_context *ctx;
772 int ret;
773
774 ctx = nfs4_state_find_open_context(state);
775 if (IS_ERR(ctx))
776 return PTR_ERR(ctx);
777 ret = nfs4_do_open_reclaim(ctx, state);
778 put_nfs_open_context(ctx);
779 return ret;
780 }
781
782 static int _nfs4_open_delegation_recall(struct nfs_open_context *ctx, struct nfs4_state *state, const nfs4_stateid *stateid)
783 {
784 struct nfs4_opendata *opendata;
785 int ret;
786
787 opendata = nfs4_open_recoverdata_alloc(ctx, state);
788 if (IS_ERR(opendata))
789 return PTR_ERR(opendata);
790 opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR;
791 memcpy(opendata->o_arg.u.delegation.data, stateid->data,
792 sizeof(opendata->o_arg.u.delegation.data));
793 ret = nfs4_open_recover(opendata, state);
794 nfs4_opendata_put(opendata);
795 return ret;
796 }
797
798 int nfs4_open_delegation_recall(struct nfs_open_context *ctx, struct nfs4_state *state, const nfs4_stateid *stateid)
799 {
800 struct nfs4_exception exception = { };
801 struct nfs_server *server = NFS_SERVER(state->inode);
802 int err;
803 do {
804 err = _nfs4_open_delegation_recall(ctx, state, stateid);
805 switch (err) {
806 case 0:
807 return err;
808 case -NFS4ERR_STALE_CLIENTID:
809 case -NFS4ERR_STALE_STATEID:
810 case -NFS4ERR_EXPIRED:
811 /* Don't recall a delegation if it was lost */
812 nfs4_schedule_state_recovery(server->nfs_client);
813 return err;
814 }
815 err = nfs4_handle_exception(server, err, &exception);
816 } while (exception.retry);
817 return err;
818 }
819
820 static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata)
821 {
822 struct nfs4_opendata *data = calldata;
823
824 data->rpc_status = task->tk_status;
825 if (RPC_ASSASSINATED(task))
826 return;
827 if (data->rpc_status == 0) {
828 memcpy(data->o_res.stateid.data, data->c_res.stateid.data,
829 sizeof(data->o_res.stateid.data));
830 nfs_confirm_seqid(&data->owner->so_seqid, 0);
831 renew_lease(data->o_res.server, data->timestamp);
832 data->rpc_done = 1;
833 }
834 }
835
836 static void nfs4_open_confirm_release(void *calldata)
837 {
838 struct nfs4_opendata *data = calldata;
839 struct nfs4_state *state = NULL;
840
841 /* If this request hasn't been cancelled, do nothing */
842 if (data->cancelled == 0)
843 goto out_free;
844 /* In case of error, no cleanup! */
845 if (!data->rpc_done)
846 goto out_free;
847 state = nfs4_opendata_to_nfs4_state(data);
848 if (!IS_ERR(state))
849 nfs4_close_state(&data->path, state, data->o_arg.fmode);
850 out_free:
851 nfs4_opendata_put(data);
852 }
853
854 static const struct rpc_call_ops nfs4_open_confirm_ops = {
855 .rpc_call_done = nfs4_open_confirm_done,
856 .rpc_release = nfs4_open_confirm_release,
857 };
858
859 /*
860 * Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata
861 */
862 static int _nfs4_proc_open_confirm(struct nfs4_opendata *data)
863 {
864 struct nfs_server *server = NFS_SERVER(data->dir->d_inode);
865 struct rpc_task *task;
866 struct rpc_message msg = {
867 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM],
868 .rpc_argp = &data->c_arg,
869 .rpc_resp = &data->c_res,
870 .rpc_cred = data->owner->so_cred,
871 };
872 struct rpc_task_setup task_setup_data = {
873 .rpc_client = server->client,
874 .rpc_message = &msg,
875 .callback_ops = &nfs4_open_confirm_ops,
876 .callback_data = data,
877 .workqueue = nfsiod_workqueue,
878 .flags = RPC_TASK_ASYNC,
879 };
880 int status;
881
882 kref_get(&data->kref);
883 data->rpc_done = 0;
884 data->rpc_status = 0;
885 data->timestamp = jiffies;
886 task = rpc_run_task(&task_setup_data);
887 if (IS_ERR(task))
888 return PTR_ERR(task);
889 status = nfs4_wait_for_completion_rpc_task(task);
890 if (status != 0) {
891 data->cancelled = 1;
892 smp_wmb();
893 } else
894 status = data->rpc_status;
895 rpc_put_task(task);
896 return status;
897 }
898
899 static void nfs4_open_prepare(struct rpc_task *task, void *calldata)
900 {
901 struct nfs4_opendata *data = calldata;
902 struct nfs4_state_owner *sp = data->owner;
903
904 if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0)
905 return;
906 /*
907 * Check if we still need to send an OPEN call, or if we can use
908 * a delegation instead.
909 */
910 if (data->state != NULL) {
911 struct nfs_delegation *delegation;
912
913 if (can_open_cached(data->state, data->o_arg.fmode, data->o_arg.open_flags))
914 goto out_no_action;
915 rcu_read_lock();
916 delegation = rcu_dereference(NFS_I(data->state->inode)->delegation);
917 if (delegation != NULL &&
918 test_bit(NFS_DELEGATION_NEED_RECLAIM, &delegation->flags) == 0) {
919 rcu_read_unlock();
920 goto out_no_action;
921 }
922 rcu_read_unlock();
923 }
924 /* Update sequence id. */
925 data->o_arg.id = sp->so_owner_id.id;
926 data->o_arg.clientid = sp->so_client->cl_clientid;
927 if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS) {
928 task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR];
929 nfs_copy_fh(&data->o_res.fh, data->o_arg.fh);
930 }
931 data->timestamp = jiffies;
932 rpc_call_start(task);
933 return;
934 out_no_action:
935 task->tk_action = NULL;
936
937 }
938
939 static void nfs4_open_done(struct rpc_task *task, void *calldata)
940 {
941 struct nfs4_opendata *data = calldata;
942
943 data->rpc_status = task->tk_status;
944 if (RPC_ASSASSINATED(task))
945 return;
946 if (task->tk_status == 0) {
947 switch (data->o_res.f_attr->mode & S_IFMT) {
948 case S_IFREG:
949 break;
950 case S_IFLNK:
951 data->rpc_status = -ELOOP;
952 break;
953 case S_IFDIR:
954 data->rpc_status = -EISDIR;
955 break;
956 default:
957 data->rpc_status = -ENOTDIR;
958 }
959 renew_lease(data->o_res.server, data->timestamp);
960 if (!(data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM))
961 nfs_confirm_seqid(&data->owner->so_seqid, 0);
962 }
963 data->rpc_done = 1;
964 }
965
966 static void nfs4_open_release(void *calldata)
967 {
968 struct nfs4_opendata *data = calldata;
969 struct nfs4_state *state = NULL;
970
971 /* If this request hasn't been cancelled, do nothing */
972 if (data->cancelled == 0)
973 goto out_free;
974 /* In case of error, no cleanup! */
975 if (data->rpc_status != 0 || !data->rpc_done)
976 goto out_free;
977 /* In case we need an open_confirm, no cleanup! */
978 if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)
979 goto out_free;
980 state = nfs4_opendata_to_nfs4_state(data);
981 if (!IS_ERR(state))
982 nfs4_close_state(&data->path, state, data->o_arg.fmode);
983 out_free:
984 nfs4_opendata_put(data);
985 }
986
987 static const struct rpc_call_ops nfs4_open_ops = {
988 .rpc_call_prepare = nfs4_open_prepare,
989 .rpc_call_done = nfs4_open_done,
990 .rpc_release = nfs4_open_release,
991 };
992
993 /*
994 * Note: On error, nfs4_proc_open will free the struct nfs4_opendata
995 */
996 static int _nfs4_proc_open(struct nfs4_opendata *data)
997 {
998 struct inode *dir = data->dir->d_inode;
999 struct nfs_server *server = NFS_SERVER(dir);
1000 struct nfs_openargs *o_arg = &data->o_arg;
1001 struct nfs_openres *o_res = &data->o_res;
1002 struct rpc_task *task;
1003 struct rpc_message msg = {
1004 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN],
1005 .rpc_argp = o_arg,
1006 .rpc_resp = o_res,
1007 .rpc_cred = data->owner->so_cred,
1008 };
1009 struct rpc_task_setup task_setup_data = {
1010 .rpc_client = server->client,
1011 .rpc_message = &msg,
1012 .callback_ops = &nfs4_open_ops,
1013 .callback_data = data,
1014 .workqueue = nfsiod_workqueue,
1015 .flags = RPC_TASK_ASYNC,
1016 };
1017 int status;
1018
1019 kref_get(&data->kref);
1020 data->rpc_done = 0;
1021 data->rpc_status = 0;
1022 data->cancelled = 0;
1023 task = rpc_run_task(&task_setup_data);
1024 if (IS_ERR(task))
1025 return PTR_ERR(task);
1026 status = nfs4_wait_for_completion_rpc_task(task);
1027 if (status != 0) {
1028 data->cancelled = 1;
1029 smp_wmb();
1030 } else
1031 status = data->rpc_status;
1032 rpc_put_task(task);
1033 if (status != 0 || !data->rpc_done)
1034 return status;
1035
1036 if (o_res->fh.size == 0)
1037 _nfs4_proc_lookup(dir, o_arg->name, &o_res->fh, o_res->f_attr);
1038
1039 if (o_arg->open_flags & O_CREAT) {
1040 update_changeattr(dir, &o_res->cinfo);
1041 nfs_post_op_update_inode(dir, o_res->dir_attr);
1042 } else
1043 nfs_refresh_inode(dir, o_res->dir_attr);
1044 if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
1045 status = _nfs4_proc_open_confirm(data);
1046 if (status != 0)
1047 return status;
1048 }
1049 if (!(o_res->f_attr->valid & NFS_ATTR_FATTR))
1050 _nfs4_proc_getattr(server, &o_res->fh, o_res->f_attr);
1051 return 0;
1052 }
1053
1054 static int nfs4_recover_expired_lease(struct nfs_server *server)
1055 {
1056 struct nfs_client *clp = server->nfs_client;
1057 int ret;
1058
1059 for (;;) {
1060 ret = nfs4_wait_clnt_recover(clp);
1061 if (ret != 0)
1062 return ret;
1063 if (!test_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state) &&
1064 !test_bit(NFS4CLNT_CHECK_LEASE,&clp->cl_state))
1065 break;
1066 nfs4_schedule_state_recovery(clp);
1067 }
1068 return 0;
1069 }
1070
1071 /*
1072 * OPEN_EXPIRED:
1073 * reclaim state on the server after a network partition.
1074 * Assumes caller holds the appropriate lock
1075 */
1076 static int _nfs4_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state)
1077 {
1078 struct nfs4_opendata *opendata;
1079 int ret;
1080
1081 opendata = nfs4_open_recoverdata_alloc(ctx, state);
1082 if (IS_ERR(opendata))
1083 return PTR_ERR(opendata);
1084 ret = nfs4_open_recover(opendata, state);
1085 if (ret == -ESTALE)
1086 d_drop(ctx->path.dentry);
1087 nfs4_opendata_put(opendata);
1088 return ret;
1089 }
1090
1091 static inline int nfs4_do_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state)
1092 {
1093 struct nfs_server *server = NFS_SERVER(state->inode);
1094 struct nfs4_exception exception = { };
1095 int err;
1096
1097 do {
1098 err = _nfs4_open_expired(ctx, state);
1099 if (err != -NFS4ERR_DELAY)
1100 break;
1101 nfs4_handle_exception(server, err, &exception);
1102 } while (exception.retry);
1103 return err;
1104 }
1105
1106 static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
1107 {
1108 struct nfs_open_context *ctx;
1109 int ret;
1110
1111 ctx = nfs4_state_find_open_context(state);
1112 if (IS_ERR(ctx))
1113 return PTR_ERR(ctx);
1114 ret = nfs4_do_open_expired(ctx, state);
1115 put_nfs_open_context(ctx);
1116 return ret;
1117 }
1118
1119 /*
1120 * on an EXCLUSIVE create, the server should send back a bitmask with FATTR4-*
1121 * fields corresponding to attributes that were used to store the verifier.
1122 * Make sure we clobber those fields in the later setattr call
1123 */
1124 static inline void nfs4_exclusive_attrset(struct nfs4_opendata *opendata, struct iattr *sattr)
1125 {
1126 if ((opendata->o_res.attrset[1] & FATTR4_WORD1_TIME_ACCESS) &&
1127 !(sattr->ia_valid & ATTR_ATIME_SET))
1128 sattr->ia_valid |= ATTR_ATIME;
1129
1130 if ((opendata->o_res.attrset[1] & FATTR4_WORD1_TIME_MODIFY) &&
1131 !(sattr->ia_valid & ATTR_MTIME_SET))
1132 sattr->ia_valid |= ATTR_MTIME;
1133 }
1134
1135 /*
1136 * Returns a referenced nfs4_state
1137 */
1138 static int _nfs4_do_open(struct inode *dir, struct path *path, fmode_t fmode, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res)
1139 {
1140 struct nfs4_state_owner *sp;
1141 struct nfs4_state *state = NULL;
1142 struct nfs_server *server = NFS_SERVER(dir);
1143 struct nfs4_opendata *opendata;
1144 int status;
1145
1146 /* Protect against reboot recovery conflicts */
1147 status = -ENOMEM;
1148 if (!(sp = nfs4_get_state_owner(server, cred))) {
1149 dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n");
1150 goto out_err;
1151 }
1152 status = nfs4_recover_expired_lease(server);
1153 if (status != 0)
1154 goto err_put_state_owner;
1155 if (path->dentry->d_inode != NULL)
1156 nfs4_return_incompatible_delegation(path->dentry->d_inode, fmode);
1157 status = -ENOMEM;
1158 opendata = nfs4_opendata_alloc(path, sp, fmode, flags, sattr);
1159 if (opendata == NULL)
1160 goto err_put_state_owner;
1161
1162 if (path->dentry->d_inode != NULL)
1163 opendata->state = nfs4_get_open_state(path->dentry->d_inode, sp);
1164
1165 status = _nfs4_proc_open(opendata);
1166 if (status != 0)
1167 goto err_opendata_put;
1168
1169 if (opendata->o_arg.open_flags & O_EXCL)
1170 nfs4_exclusive_attrset(opendata, sattr);
1171
1172 state = nfs4_opendata_to_nfs4_state(opendata);
1173 status = PTR_ERR(state);
1174 if (IS_ERR(state))
1175 goto err_opendata_put;
1176 nfs4_opendata_put(opendata);
1177 nfs4_put_state_owner(sp);
1178 *res = state;
1179 return 0;
1180 err_opendata_put:
1181 nfs4_opendata_put(opendata);
1182 err_put_state_owner:
1183 nfs4_put_state_owner(sp);
1184 out_err:
1185 *res = NULL;
1186 return status;
1187 }
1188
1189
1190 static struct nfs4_state *nfs4_do_open(struct inode *dir, struct path *path, fmode_t fmode, int flags, struct iattr *sattr, struct rpc_cred *cred)
1191 {
1192 struct nfs4_exception exception = { };
1193 struct nfs4_state *res;
1194 int status;
1195
1196 do {
1197 status = _nfs4_do_open(dir, path, fmode, flags, sattr, cred, &res);
1198 if (status == 0)
1199 break;
1200 /* NOTE: BAD_SEQID means the server and client disagree about the
1201 * book-keeping w.r.t. state-changing operations
1202 * (OPEN/CLOSE/LOCK/LOCKU...)
1203 * It is actually a sign of a bug on the client or on the server.
1204 *
1205 * If we receive a BAD_SEQID error in the particular case of
1206 * doing an OPEN, we assume that nfs_increment_open_seqid() will
1207 * have unhashed the old state_owner for us, and that we can
1208 * therefore safely retry using a new one. We should still warn
1209 * the user though...
1210 */
1211 if (status == -NFS4ERR_BAD_SEQID) {
1212 printk(KERN_WARNING "NFS: v4 server %s "
1213 " returned a bad sequence-id error!\n",
1214 NFS_SERVER(dir)->nfs_client->cl_hostname);
1215 exception.retry = 1;
1216 continue;
1217 }
1218 /*
1219 * BAD_STATEID on OPEN means that the server cancelled our
1220 * state before it received the OPEN_CONFIRM.
1221 * Recover by retrying the request as per the discussion
1222 * on Page 181 of RFC3530.
1223 */
1224 if (status == -NFS4ERR_BAD_STATEID) {
1225 exception.retry = 1;
1226 continue;
1227 }
1228 if (status == -EAGAIN) {
1229 /* We must have found a delegation */
1230 exception.retry = 1;
1231 continue;
1232 }
1233 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir),
1234 status, &exception));
1235 } while (exception.retry);
1236 return res;
1237 }
1238
1239 static int _nfs4_do_setattr(struct inode *inode, struct rpc_cred *cred,
1240 struct nfs_fattr *fattr, struct iattr *sattr,
1241 struct nfs4_state *state)
1242 {
1243 struct nfs_server *server = NFS_SERVER(inode);
1244 struct nfs_setattrargs arg = {
1245 .fh = NFS_FH(inode),
1246 .iap = sattr,
1247 .server = server,
1248 .bitmask = server->attr_bitmask,
1249 };
1250 struct nfs_setattrres res = {
1251 .fattr = fattr,
1252 .server = server,
1253 };
1254 struct rpc_message msg = {
1255 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
1256 .rpc_argp = &arg,
1257 .rpc_resp = &res,
1258 .rpc_cred = cred,
1259 };
1260 unsigned long timestamp = jiffies;
1261 int status;
1262
1263 nfs_fattr_init(fattr);
1264
1265 if (nfs4_copy_delegation_stateid(&arg.stateid, inode)) {
1266 /* Use that stateid */
1267 } else if (state != NULL) {
1268 nfs4_copy_stateid(&arg.stateid, state, current->files);
1269 } else
1270 memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid));
1271
1272 status = rpc_call_sync(server->client, &msg, 0);
1273 if (status == 0 && state != NULL)
1274 renew_lease(server, timestamp);
1275 return status;
1276 }
1277
1278 static int nfs4_do_setattr(struct inode *inode, struct rpc_cred *cred,
1279 struct nfs_fattr *fattr, struct iattr *sattr,
1280 struct nfs4_state *state)
1281 {
1282 struct nfs_server *server = NFS_SERVER(inode);
1283 struct nfs4_exception exception = { };
1284 int err;
1285 do {
1286 err = nfs4_handle_exception(server,
1287 _nfs4_do_setattr(inode, cred, fattr, sattr, state),
1288 &exception);
1289 } while (exception.retry);
1290 return err;
1291 }
1292
1293 struct nfs4_closedata {
1294 struct path path;
1295 struct inode *inode;
1296 struct nfs4_state *state;
1297 struct nfs_closeargs arg;
1298 struct nfs_closeres res;
1299 struct nfs_fattr fattr;
1300 unsigned long timestamp;
1301 };
1302
1303 static void nfs4_free_closedata(void *data)
1304 {
1305 struct nfs4_closedata *calldata = data;
1306 struct nfs4_state_owner *sp = calldata->state->owner;
1307
1308 nfs4_put_open_state(calldata->state);
1309 nfs_free_seqid(calldata->arg.seqid);
1310 nfs4_put_state_owner(sp);
1311 path_put(&calldata->path);
1312 kfree(calldata);
1313 }
1314
1315 static void nfs4_close_done(struct rpc_task *task, void *data)
1316 {
1317 struct nfs4_closedata *calldata = data;
1318 struct nfs4_state *state = calldata->state;
1319 struct nfs_server *server = NFS_SERVER(calldata->inode);
1320
1321 if (RPC_ASSASSINATED(task))
1322 return;
1323 /* hmm. we are done with the inode, and in the process of freeing
1324 * the state_owner. we keep this around to process errors
1325 */
1326 switch (task->tk_status) {
1327 case 0:
1328 nfs_set_open_stateid(state, &calldata->res.stateid, 0);
1329 renew_lease(server, calldata->timestamp);
1330 break;
1331 case -NFS4ERR_STALE_STATEID:
1332 case -NFS4ERR_OLD_STATEID:
1333 case -NFS4ERR_BAD_STATEID:
1334 case -NFS4ERR_EXPIRED:
1335 if (calldata->arg.fmode == 0)
1336 break;
1337 default:
1338 if (nfs4_async_handle_error(task, server, state) == -EAGAIN) {
1339 rpc_restart_call(task);
1340 return;
1341 }
1342 }
1343 nfs_refresh_inode(calldata->inode, calldata->res.fattr);
1344 }
1345
1346 static void nfs4_close_prepare(struct rpc_task *task, void *data)
1347 {
1348 struct nfs4_closedata *calldata = data;
1349 struct nfs4_state *state = calldata->state;
1350 int clear_rd, clear_wr, clear_rdwr;
1351
1352 if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
1353 return;
1354
1355 clear_rd = clear_wr = clear_rdwr = 0;
1356 spin_lock(&state->owner->so_lock);
1357 /* Calculate the change in open mode */
1358 if (state->n_rdwr == 0) {
1359 if (state->n_rdonly == 0) {
1360 clear_rd |= test_and_clear_bit(NFS_O_RDONLY_STATE, &state->flags);
1361 clear_rdwr |= test_and_clear_bit(NFS_O_RDWR_STATE, &state->flags);
1362 }
1363 if (state->n_wronly == 0) {
1364 clear_wr |= test_and_clear_bit(NFS_O_WRONLY_STATE, &state->flags);
1365 clear_rdwr |= test_and_clear_bit(NFS_O_RDWR_STATE, &state->flags);
1366 }
1367 }
1368 spin_unlock(&state->owner->so_lock);
1369 if (!clear_rd && !clear_wr && !clear_rdwr) {
1370 /* Note: exit _without_ calling nfs4_close_done */
1371 task->tk_action = NULL;
1372 return;
1373 }
1374 nfs_fattr_init(calldata->res.fattr);
1375 if (test_bit(NFS_O_RDONLY_STATE, &state->flags) != 0) {
1376 task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
1377 calldata->arg.fmode = FMODE_READ;
1378 } else if (test_bit(NFS_O_WRONLY_STATE, &state->flags) != 0) {
1379 task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
1380 calldata->arg.fmode = FMODE_WRITE;
1381 }
1382 calldata->timestamp = jiffies;
1383 rpc_call_start(task);
1384 }
1385
1386 static const struct rpc_call_ops nfs4_close_ops = {
1387 .rpc_call_prepare = nfs4_close_prepare,
1388 .rpc_call_done = nfs4_close_done,
1389 .rpc_release = nfs4_free_closedata,
1390 };
1391
1392 /*
1393 * It is possible for data to be read/written from a mem-mapped file
1394 * after the sys_close call (which hits the vfs layer as a flush).
1395 * This means that we can't safely call nfsv4 close on a file until
1396 * the inode is cleared. This in turn means that we are not good
1397 * NFSv4 citizens - we do not indicate to the server to update the file's
1398 * share state even when we are done with one of the three share
1399 * stateid's in the inode.
1400 *
1401 * NOTE: Caller must be holding the sp->so_owner semaphore!
1402 */
1403 int nfs4_do_close(struct path *path, struct nfs4_state *state, int wait)
1404 {
1405 struct nfs_server *server = NFS_SERVER(state->inode);
1406 struct nfs4_closedata *calldata;
1407 struct nfs4_state_owner *sp = state->owner;
1408 struct rpc_task *task;
1409 struct rpc_message msg = {
1410 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE],
1411 .rpc_cred = state->owner->so_cred,
1412 };
1413 struct rpc_task_setup task_setup_data = {
1414 .rpc_client = server->client,
1415 .rpc_message = &msg,
1416 .callback_ops = &nfs4_close_ops,
1417 .workqueue = nfsiod_workqueue,
1418 .flags = RPC_TASK_ASYNC,
1419 };
1420 int status = -ENOMEM;
1421
1422 calldata = kmalloc(sizeof(*calldata), GFP_KERNEL);
1423 if (calldata == NULL)
1424 goto out;
1425 calldata->inode = state->inode;
1426 calldata->state = state;
1427 calldata->arg.fh = NFS_FH(state->inode);
1428 calldata->arg.stateid = &state->open_stateid;
1429 /* Serialization for the sequence id */
1430 calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid);
1431 if (calldata->arg.seqid == NULL)
1432 goto out_free_calldata;
1433 calldata->arg.fmode = 0;
1434 calldata->arg.bitmask = server->cache_consistency_bitmask;
1435 calldata->res.fattr = &calldata->fattr;
1436 calldata->res.seqid = calldata->arg.seqid;
1437 calldata->res.server = server;
1438 calldata->path.mnt = mntget(path->mnt);
1439 calldata->path.dentry = dget(path->dentry);
1440
1441 msg.rpc_argp = &calldata->arg,
1442 msg.rpc_resp = &calldata->res,
1443 task_setup_data.callback_data = calldata;
1444 task = rpc_run_task(&task_setup_data);
1445 if (IS_ERR(task))
1446 return PTR_ERR(task);
1447 status = 0;
1448 if (wait)
1449 status = rpc_wait_for_completion_task(task);
1450 rpc_put_task(task);
1451 return status;
1452 out_free_calldata:
1453 kfree(calldata);
1454 out:
1455 nfs4_put_open_state(state);
1456 nfs4_put_state_owner(sp);
1457 return status;
1458 }
1459
1460 static int nfs4_intent_set_file(struct nameidata *nd, struct path *path, struct nfs4_state *state, fmode_t fmode)
1461 {
1462 struct file *filp;
1463 int ret;
1464
1465 /* If the open_intent is for execute, we have an extra check to make */
1466 if (fmode & FMODE_EXEC) {
1467 ret = nfs_may_open(state->inode,
1468 state->owner->so_cred,
1469 nd->intent.open.flags);
1470 if (ret < 0)
1471 goto out_close;
1472 }
1473 filp = lookup_instantiate_filp(nd, path->dentry, NULL);
1474 if (!IS_ERR(filp)) {
1475 struct nfs_open_context *ctx;
1476 ctx = nfs_file_open_context(filp);
1477 ctx->state = state;
1478 return 0;
1479 }
1480 ret = PTR_ERR(filp);
1481 out_close:
1482 nfs4_close_sync(path, state, fmode & (FMODE_READ|FMODE_WRITE));
1483 return ret;
1484 }
1485
1486 struct dentry *
1487 nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1488 {
1489 struct path path = {
1490 .mnt = nd->path.mnt,
1491 .dentry = dentry,
1492 };
1493 struct dentry *parent;
1494 struct iattr attr;
1495 struct rpc_cred *cred;
1496 struct nfs4_state *state;
1497 struct dentry *res;
1498 fmode_t fmode = nd->intent.open.flags & (FMODE_READ | FMODE_WRITE | FMODE_EXEC);
1499
1500 if (nd->flags & LOOKUP_CREATE) {
1501 attr.ia_mode = nd->intent.open.create_mode;
1502 attr.ia_valid = ATTR_MODE;
1503 if (!IS_POSIXACL(dir))
1504 attr.ia_mode &= ~current_umask();
1505 } else {
1506 attr.ia_valid = 0;
1507 BUG_ON(nd->intent.open.flags & O_CREAT);
1508 }
1509
1510 cred = rpc_lookup_cred();
1511 if (IS_ERR(cred))
1512 return (struct dentry *)cred;
1513 parent = dentry->d_parent;
1514 /* Protect against concurrent sillydeletes */
1515 nfs_block_sillyrename(parent);
1516 state = nfs4_do_open(dir, &path, fmode, nd->intent.open.flags, &attr, cred);
1517 put_rpccred(cred);
1518 if (IS_ERR(state)) {
1519 if (PTR_ERR(state) == -ENOENT) {
1520 d_add(dentry, NULL);
1521 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1522 }
1523 nfs_unblock_sillyrename(parent);
1524 return (struct dentry *)state;
1525 }
1526 res = d_add_unique(dentry, igrab(state->inode));
1527 if (res != NULL)
1528 path.dentry = res;
1529 nfs_set_verifier(path.dentry, nfs_save_change_attribute(dir));
1530 nfs_unblock_sillyrename(parent);
1531 nfs4_intent_set_file(nd, &path, state, fmode);
1532 return res;
1533 }
1534
1535 int
1536 nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd)
1537 {
1538 struct path path = {
1539 .mnt = nd->path.mnt,
1540 .dentry = dentry,
1541 };
1542 struct rpc_cred *cred;
1543 struct nfs4_state *state;
1544 fmode_t fmode = openflags & (FMODE_READ | FMODE_WRITE);
1545
1546 cred = rpc_lookup_cred();
1547 if (IS_ERR(cred))
1548 return PTR_ERR(cred);
1549 state = nfs4_do_open(dir, &path, fmode, openflags, NULL, cred);
1550 put_rpccred(cred);
1551 if (IS_ERR(state)) {
1552 switch (PTR_ERR(state)) {
1553 case -EPERM:
1554 case -EACCES:
1555 case -EDQUOT:
1556 case -ENOSPC:
1557 case -EROFS:
1558 lookup_instantiate_filp(nd, (struct dentry *)state, NULL);
1559 return 1;
1560 default:
1561 goto out_drop;
1562 }
1563 }
1564 if (state->inode == dentry->d_inode) {
1565 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1566 nfs4_intent_set_file(nd, &path, state, fmode);
1567 return 1;
1568 }
1569 nfs4_close_sync(&path, state, fmode);
1570 out_drop:
1571 d_drop(dentry);
1572 return 0;
1573 }
1574
1575 void nfs4_close_context(struct nfs_open_context *ctx, int is_sync)
1576 {
1577 if (ctx->state == NULL)
1578 return;
1579 if (is_sync)
1580 nfs4_close_sync(&ctx->path, ctx->state, ctx->mode);
1581 else
1582 nfs4_close_state(&ctx->path, ctx->state, ctx->mode);
1583 }
1584
1585 static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1586 {
1587 struct nfs4_server_caps_res res = {};
1588 struct rpc_message msg = {
1589 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS],
1590 .rpc_argp = fhandle,
1591 .rpc_resp = &res,
1592 };
1593 int status;
1594
1595 status = rpc_call_sync(server->client, &msg, 0);
1596 if (status == 0) {
1597 memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask));
1598 if (res.attr_bitmask[0] & FATTR4_WORD0_ACL)
1599 server->caps |= NFS_CAP_ACLS;
1600 if (res.has_links != 0)
1601 server->caps |= NFS_CAP_HARDLINKS;
1602 if (res.has_symlinks != 0)
1603 server->caps |= NFS_CAP_SYMLINKS;
1604 memcpy(server->cache_consistency_bitmask, res.attr_bitmask, sizeof(server->cache_consistency_bitmask));
1605 server->cache_consistency_bitmask[0] &= FATTR4_WORD0_CHANGE|FATTR4_WORD0_SIZE;
1606 server->cache_consistency_bitmask[1] &= FATTR4_WORD1_TIME_METADATA|FATTR4_WORD1_TIME_MODIFY;
1607 server->acl_bitmask = res.acl_bitmask;
1608 }
1609 return status;
1610 }
1611
1612 int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1613 {
1614 struct nfs4_exception exception = { };
1615 int err;
1616 do {
1617 err = nfs4_handle_exception(server,
1618 _nfs4_server_capabilities(server, fhandle),
1619 &exception);
1620 } while (exception.retry);
1621 return err;
1622 }
1623
1624 static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1625 struct nfs_fsinfo *info)
1626 {
1627 struct nfs4_lookup_root_arg args = {
1628 .bitmask = nfs4_fattr_bitmap,
1629 };
1630 struct nfs4_lookup_res res = {
1631 .server = server,
1632 .fattr = info->fattr,
1633 .fh = fhandle,
1634 };
1635 struct rpc_message msg = {
1636 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT],
1637 .rpc_argp = &args,
1638 .rpc_resp = &res,
1639 };
1640 nfs_fattr_init(info->fattr);
1641 return rpc_call_sync(server->client, &msg, 0);
1642 }
1643
1644 static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1645 struct nfs_fsinfo *info)
1646 {
1647 struct nfs4_exception exception = { };
1648 int err;
1649 do {
1650 err = nfs4_handle_exception(server,
1651 _nfs4_lookup_root(server, fhandle, info),
1652 &exception);
1653 } while (exception.retry);
1654 return err;
1655 }
1656
1657 /*
1658 * get the file handle for the "/" directory on the server
1659 */
1660 static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle,
1661 struct nfs_fsinfo *info)
1662 {
1663 int status;
1664
1665 status = nfs4_lookup_root(server, fhandle, info);
1666 if (status == 0)
1667 status = nfs4_server_capabilities(server, fhandle);
1668 if (status == 0)
1669 status = nfs4_do_fsinfo(server, fhandle, info);
1670 return nfs4_map_errors(status);
1671 }
1672
1673 /*
1674 * Get locations and (maybe) other attributes of a referral.
1675 * Note that we'll actually follow the referral later when
1676 * we detect fsid mismatch in inode revalidation
1677 */
1678 static int nfs4_get_referral(struct inode *dir, const struct qstr *name, struct nfs_fattr *fattr, struct nfs_fh *fhandle)
1679 {
1680 int status = -ENOMEM;
1681 struct page *page = NULL;
1682 struct nfs4_fs_locations *locations = NULL;
1683
1684 page = alloc_page(GFP_KERNEL);
1685 if (page == NULL)
1686 goto out;
1687 locations = kmalloc(sizeof(struct nfs4_fs_locations), GFP_KERNEL);
1688 if (locations == NULL)
1689 goto out;
1690
1691 status = nfs4_proc_fs_locations(dir, name, locations, page);
1692 if (status != 0)
1693 goto out;
1694 /* Make sure server returned a different fsid for the referral */
1695 if (nfs_fsid_equal(&NFS_SERVER(dir)->fsid, &locations->fattr.fsid)) {
1696 dprintk("%s: server did not return a different fsid for a referral at %s\n", __func__, name->name);
1697 status = -EIO;
1698 goto out;
1699 }
1700
1701 memcpy(fattr, &locations->fattr, sizeof(struct nfs_fattr));
1702 fattr->valid |= NFS_ATTR_FATTR_V4_REFERRAL;
1703 if (!fattr->mode)
1704 fattr->mode = S_IFDIR;
1705 memset(fhandle, 0, sizeof(struct nfs_fh));
1706 out:
1707 if (page)
1708 __free_page(page);
1709 if (locations)
1710 kfree(locations);
1711 return status;
1712 }
1713
1714 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1715 {
1716 struct nfs4_getattr_arg args = {
1717 .fh = fhandle,
1718 .bitmask = server->attr_bitmask,
1719 };
1720 struct nfs4_getattr_res res = {
1721 .fattr = fattr,
1722 .server = server,
1723 };
1724 struct rpc_message msg = {
1725 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
1726 .rpc_argp = &args,
1727 .rpc_resp = &res,
1728 };
1729
1730 nfs_fattr_init(fattr);
1731 return rpc_call_sync(server->client, &msg, 0);
1732 }
1733
1734 static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1735 {
1736 struct nfs4_exception exception = { };
1737 int err;
1738 do {
1739 err = nfs4_handle_exception(server,
1740 _nfs4_proc_getattr(server, fhandle, fattr),
1741 &exception);
1742 } while (exception.retry);
1743 return err;
1744 }
1745
1746 /*
1747 * The file is not closed if it is opened due to the a request to change
1748 * the size of the file. The open call will not be needed once the
1749 * VFS layer lookup-intents are implemented.
1750 *
1751 * Close is called when the inode is destroyed.
1752 * If we haven't opened the file for O_WRONLY, we
1753 * need to in the size_change case to obtain a stateid.
1754 *
1755 * Got race?
1756 * Because OPEN is always done by name in nfsv4, it is
1757 * possible that we opened a different file by the same
1758 * name. We can recognize this race condition, but we
1759 * can't do anything about it besides returning an error.
1760 *
1761 * This will be fixed with VFS changes (lookup-intent).
1762 */
1763 static int
1764 nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
1765 struct iattr *sattr)
1766 {
1767 struct inode *inode = dentry->d_inode;
1768 struct rpc_cred *cred = NULL;
1769 struct nfs4_state *state = NULL;
1770 int status;
1771
1772 nfs_fattr_init(fattr);
1773
1774 /* Search for an existing open(O_WRITE) file */
1775 if (sattr->ia_valid & ATTR_FILE) {
1776 struct nfs_open_context *ctx;
1777
1778 ctx = nfs_file_open_context(sattr->ia_file);
1779 if (ctx) {
1780 cred = ctx->cred;
1781 state = ctx->state;
1782 }
1783 }
1784
1785 status = nfs4_do_setattr(inode, cred, fattr, sattr, state);
1786 if (status == 0)
1787 nfs_setattr_update_inode(inode, sattr);
1788 return status;
1789 }
1790
1791 static int _nfs4_proc_lookupfh(struct nfs_server *server, const struct nfs_fh *dirfh,
1792 const struct qstr *name, struct nfs_fh *fhandle,
1793 struct nfs_fattr *fattr)
1794 {
1795 int status;
1796 struct nfs4_lookup_arg args = {
1797 .bitmask = server->attr_bitmask,
1798 .dir_fh = dirfh,
1799 .name = name,
1800 };
1801 struct nfs4_lookup_res res = {
1802 .server = server,
1803 .fattr = fattr,
1804 .fh = fhandle,
1805 };
1806 struct rpc_message msg = {
1807 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1808 .rpc_argp = &args,
1809 .rpc_resp = &res,
1810 };
1811
1812 nfs_fattr_init(fattr);
1813
1814 dprintk("NFS call lookupfh %s\n", name->name);
1815 status = rpc_call_sync(server->client, &msg, 0);
1816 dprintk("NFS reply lookupfh: %d\n", status);
1817 return status;
1818 }
1819
1820 static int nfs4_proc_lookupfh(struct nfs_server *server, struct nfs_fh *dirfh,
1821 struct qstr *name, struct nfs_fh *fhandle,
1822 struct nfs_fattr *fattr)
1823 {
1824 struct nfs4_exception exception = { };
1825 int err;
1826 do {
1827 err = _nfs4_proc_lookupfh(server, dirfh, name, fhandle, fattr);
1828 /* FIXME: !!!! */
1829 if (err == -NFS4ERR_MOVED) {
1830 err = -EREMOTE;
1831 break;
1832 }
1833 err = nfs4_handle_exception(server, err, &exception);
1834 } while (exception.retry);
1835 return err;
1836 }
1837
1838 static int _nfs4_proc_lookup(struct inode *dir, const struct qstr *name,
1839 struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1840 {
1841 int status;
1842
1843 dprintk("NFS call lookup %s\n", name->name);
1844 status = _nfs4_proc_lookupfh(NFS_SERVER(dir), NFS_FH(dir), name, fhandle, fattr);
1845 if (status == -NFS4ERR_MOVED)
1846 status = nfs4_get_referral(dir, name, fattr, fhandle);
1847 dprintk("NFS reply lookup: %d\n", status);
1848 return status;
1849 }
1850
1851 static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1852 {
1853 struct nfs4_exception exception = { };
1854 int err;
1855 do {
1856 err = nfs4_handle_exception(NFS_SERVER(dir),
1857 _nfs4_proc_lookup(dir, name, fhandle, fattr),
1858 &exception);
1859 } while (exception.retry);
1860 return err;
1861 }
1862
1863 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1864 {
1865 struct nfs_server *server = NFS_SERVER(inode);
1866 struct nfs_fattr fattr;
1867 struct nfs4_accessargs args = {
1868 .fh = NFS_FH(inode),
1869 .bitmask = server->attr_bitmask,
1870 };
1871 struct nfs4_accessres res = {
1872 .server = server,
1873 .fattr = &fattr,
1874 };
1875 struct rpc_message msg = {
1876 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS],
1877 .rpc_argp = &args,
1878 .rpc_resp = &res,
1879 .rpc_cred = entry->cred,
1880 };
1881 int mode = entry->mask;
1882 int status;
1883
1884 /*
1885 * Determine which access bits we want to ask for...
1886 */
1887 if (mode & MAY_READ)
1888 args.access |= NFS4_ACCESS_READ;
1889 if (S_ISDIR(inode->i_mode)) {
1890 if (mode & MAY_WRITE)
1891 args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE;
1892 if (mode & MAY_EXEC)
1893 args.access |= NFS4_ACCESS_LOOKUP;
1894 } else {
1895 if (mode & MAY_WRITE)
1896 args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND;
1897 if (mode & MAY_EXEC)
1898 args.access |= NFS4_ACCESS_EXECUTE;
1899 }
1900 nfs_fattr_init(&fattr);
1901 status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1902 if (!status) {
1903 entry->mask = 0;
1904 if (res.access & NFS4_ACCESS_READ)
1905 entry->mask |= MAY_READ;
1906 if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
1907 entry->mask |= MAY_WRITE;
1908 if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
1909 entry->mask |= MAY_EXEC;
1910 nfs_refresh_inode(inode, &fattr);
1911 }
1912 return status;
1913 }
1914
1915 static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1916 {
1917 struct nfs4_exception exception = { };
1918 int err;
1919 do {
1920 err = nfs4_handle_exception(NFS_SERVER(inode),
1921 _nfs4_proc_access(inode, entry),
1922 &exception);
1923 } while (exception.retry);
1924 return err;
1925 }
1926
1927 /*
1928 * TODO: For the time being, we don't try to get any attributes
1929 * along with any of the zero-copy operations READ, READDIR,
1930 * READLINK, WRITE.
1931 *
1932 * In the case of the first three, we want to put the GETATTR
1933 * after the read-type operation -- this is because it is hard
1934 * to predict the length of a GETATTR response in v4, and thus
1935 * align the READ data correctly. This means that the GETATTR
1936 * may end up partially falling into the page cache, and we should
1937 * shift it into the 'tail' of the xdr_buf before processing.
1938 * To do this efficiently, we need to know the total length
1939 * of data received, which doesn't seem to be available outside
1940 * of the RPC layer.
1941 *
1942 * In the case of WRITE, we also want to put the GETATTR after
1943 * the operation -- in this case because we want to make sure
1944 * we get the post-operation mtime and size. This means that
1945 * we can't use xdr_encode_pages() as written: we need a variant
1946 * of it which would leave room in the 'tail' iovec.
1947 *
1948 * Both of these changes to the XDR layer would in fact be quite
1949 * minor, but I decided to leave them for a subsequent patch.
1950 */
1951 static int _nfs4_proc_readlink(struct inode *inode, struct page *page,
1952 unsigned int pgbase, unsigned int pglen)
1953 {
1954 struct nfs4_readlink args = {
1955 .fh = NFS_FH(inode),
1956 .pgbase = pgbase,
1957 .pglen = pglen,
1958 .pages = &page,
1959 };
1960 struct rpc_message msg = {
1961 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK],
1962 .rpc_argp = &args,
1963 .rpc_resp = NULL,
1964 };
1965
1966 return rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1967 }
1968
1969 static int nfs4_proc_readlink(struct inode *inode, struct page *page,
1970 unsigned int pgbase, unsigned int pglen)
1971 {
1972 struct nfs4_exception exception = { };
1973 int err;
1974 do {
1975 err = nfs4_handle_exception(NFS_SERVER(inode),
1976 _nfs4_proc_readlink(inode, page, pgbase, pglen),
1977 &exception);
1978 } while (exception.retry);
1979 return err;
1980 }
1981
1982 /*
1983 * Got race?
1984 * We will need to arrange for the VFS layer to provide an atomic open.
1985 * Until then, this create/open method is prone to inefficiency and race
1986 * conditions due to the lookup, create, and open VFS calls from sys_open()
1987 * placed on the wire.
1988 *
1989 * Given the above sorry state of affairs, I'm simply sending an OPEN.
1990 * The file will be opened again in the subsequent VFS open call
1991 * (nfs4_proc_file_open).
1992 *
1993 * The open for read will just hang around to be used by any process that
1994 * opens the file O_RDONLY. This will all be resolved with the VFS changes.
1995 */
1996
1997 static int
1998 nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
1999 int flags, struct nameidata *nd)
2000 {
2001 struct path path = {
2002 .mnt = nd->path.mnt,
2003 .dentry = dentry,
2004 };
2005 struct nfs4_state *state;
2006 struct rpc_cred *cred;
2007 fmode_t fmode = flags & (FMODE_READ | FMODE_WRITE);
2008 int status = 0;
2009
2010 cred = rpc_lookup_cred();
2011 if (IS_ERR(cred)) {
2012 status = PTR_ERR(cred);
2013 goto out;
2014 }
2015 state = nfs4_do_open(dir, &path, fmode, flags, sattr, cred);
2016 d_drop(dentry);
2017 if (IS_ERR(state)) {
2018 status = PTR_ERR(state);
2019 goto out_putcred;
2020 }
2021 d_add(dentry, igrab(state->inode));
2022 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2023 if (flags & O_EXCL) {
2024 struct nfs_fattr fattr;
2025 status = nfs4_do_setattr(state->inode, cred, &fattr, sattr, state);
2026 if (status == 0)
2027 nfs_setattr_update_inode(state->inode, sattr);
2028 nfs_post_op_update_inode(state->inode, &fattr);
2029 }
2030 if (status == 0 && (nd->flags & LOOKUP_OPEN) != 0)
2031 status = nfs4_intent_set_file(nd, &path, state, fmode);
2032 else
2033 nfs4_close_sync(&path, state, fmode);
2034 out_putcred:
2035 put_rpccred(cred);
2036 out:
2037 return status;
2038 }
2039
2040 static int _nfs4_proc_remove(struct inode *dir, struct qstr *name)
2041 {
2042 struct nfs_server *server = NFS_SERVER(dir);
2043 struct nfs_removeargs args = {
2044 .fh = NFS_FH(dir),
2045 .name.len = name->len,
2046 .name.name = name->name,
2047 .bitmask = server->attr_bitmask,
2048 };
2049 struct nfs_removeres res = {
2050 .server = server,
2051 };
2052 struct rpc_message msg = {
2053 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE],
2054 .rpc_argp = &args,
2055 .rpc_resp = &res,
2056 };
2057 int status;
2058
2059 nfs_fattr_init(&res.dir_attr);
2060 status = rpc_call_sync(server->client, &msg, 0);
2061 if (status == 0) {
2062 update_changeattr(dir, &res.cinfo);
2063 nfs_post_op_update_inode(dir, &res.dir_attr);
2064 }
2065 return status;
2066 }
2067
2068 static int nfs4_proc_remove(struct inode *dir, struct qstr *name)
2069 {
2070 struct nfs4_exception exception = { };
2071 int err;
2072 do {
2073 err = nfs4_handle_exception(NFS_SERVER(dir),
2074 _nfs4_proc_remove(dir, name),
2075 &exception);
2076 } while (exception.retry);
2077 return err;
2078 }
2079
2080 static void nfs4_proc_unlink_setup(struct rpc_message *msg, struct inode *dir)
2081 {
2082 struct nfs_server *server = NFS_SERVER(dir);
2083 struct nfs_removeargs *args = msg->rpc_argp;
2084 struct nfs_removeres *res = msg->rpc_resp;
2085
2086 args->bitmask = server->cache_consistency_bitmask;
2087 res->server = server;
2088 msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE];
2089 }
2090
2091 static int nfs4_proc_unlink_done(struct rpc_task *task, struct inode *dir)
2092 {
2093 struct nfs_removeres *res = task->tk_msg.rpc_resp;
2094
2095 if (nfs4_async_handle_error(task, res->server, NULL) == -EAGAIN)
2096 return 0;
2097 update_changeattr(dir, &res->cinfo);
2098 nfs_post_op_update_inode(dir, &res->dir_attr);
2099 return 1;
2100 }
2101
2102 static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
2103 struct inode *new_dir, struct qstr *new_name)
2104 {
2105 struct nfs_server *server = NFS_SERVER(old_dir);
2106 struct nfs4_rename_arg arg = {
2107 .old_dir = NFS_FH(old_dir),
2108 .new_dir = NFS_FH(new_dir),
2109 .old_name = old_name,
2110 .new_name = new_name,
2111 .bitmask = server->attr_bitmask,
2112 };
2113 struct nfs_fattr old_fattr, new_fattr;
2114 struct nfs4_rename_res res = {
2115 .server = server,
2116 .old_fattr = &old_fattr,
2117 .new_fattr = &new_fattr,
2118 };
2119 struct rpc_message msg = {
2120 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME],
2121 .rpc_argp = &arg,
2122 .rpc_resp = &res,
2123 };
2124 int status;
2125
2126 nfs_fattr_init(res.old_fattr);
2127 nfs_fattr_init(res.new_fattr);
2128 status = rpc_call_sync(server->client, &msg, 0);
2129
2130 if (!status) {
2131 update_changeattr(old_dir, &res.old_cinfo);
2132 nfs_post_op_update_inode(old_dir, res.old_fattr);
2133 update_changeattr(new_dir, &res.new_cinfo);
2134 nfs_post_op_update_inode(new_dir, res.new_fattr);
2135 }
2136 return status;
2137 }
2138
2139 static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
2140 struct inode *new_dir, struct qstr *new_name)
2141 {
2142 struct nfs4_exception exception = { };
2143 int err;
2144 do {
2145 err = nfs4_handle_exception(NFS_SERVER(old_dir),
2146 _nfs4_proc_rename(old_dir, old_name,
2147 new_dir, new_name),
2148 &exception);
2149 } while (exception.retry);
2150 return err;
2151 }
2152
2153 static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
2154 {
2155 struct nfs_server *server = NFS_SERVER(inode);
2156 struct nfs4_link_arg arg = {
2157 .fh = NFS_FH(inode),
2158 .dir_fh = NFS_FH(dir),
2159 .name = name,
2160 .bitmask = server->attr_bitmask,
2161 };
2162 struct nfs_fattr fattr, dir_attr;
2163 struct nfs4_link_res res = {
2164 .server = server,
2165 .fattr = &fattr,
2166 .dir_attr = &dir_attr,
2167 };
2168 struct rpc_message msg = {
2169 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK],
2170 .rpc_argp = &arg,
2171 .rpc_resp = &res,
2172 };
2173 int status;
2174
2175 nfs_fattr_init(res.fattr);
2176 nfs_fattr_init(res.dir_attr);
2177 status = rpc_call_sync(server->client, &msg, 0);
2178 if (!status) {
2179 update_changeattr(dir, &res.cinfo);
2180 nfs_post_op_update_inode(dir, res.dir_attr);
2181 nfs_post_op_update_inode(inode, res.fattr);
2182 }
2183
2184 return status;
2185 }
2186
2187 static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
2188 {
2189 struct nfs4_exception exception = { };
2190 int err;
2191 do {
2192 err = nfs4_handle_exception(NFS_SERVER(inode),
2193 _nfs4_proc_link(inode, dir, name),
2194 &exception);
2195 } while (exception.retry);
2196 return err;
2197 }
2198
2199 struct nfs4_createdata {
2200 struct rpc_message msg;
2201 struct nfs4_create_arg arg;
2202 struct nfs4_create_res res;
2203 struct nfs_fh fh;
2204 struct nfs_fattr fattr;
2205 struct nfs_fattr dir_fattr;
2206 };
2207
2208 static struct nfs4_createdata *nfs4_alloc_createdata(struct inode *dir,
2209 struct qstr *name, struct iattr *sattr, u32 ftype)
2210 {
2211 struct nfs4_createdata *data;
2212
2213 data = kzalloc(sizeof(*data), GFP_KERNEL);
2214 if (data != NULL) {
2215 struct nfs_server *server = NFS_SERVER(dir);
2216
2217 data->msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE];
2218 data->msg.rpc_argp = &data->arg;
2219 data->msg.rpc_resp = &data->res;
2220 data->arg.dir_fh = NFS_FH(dir);
2221 data->arg.server = server;
2222 data->arg.name = name;
2223 data->arg.attrs = sattr;
2224 data->arg.ftype = ftype;
2225 data->arg.bitmask = server->attr_bitmask;
2226 data->res.server = server;
2227 data->res.fh = &data->fh;
2228 data->res.fattr = &data->fattr;
2229 data->res.dir_fattr = &data->dir_fattr;
2230 nfs_fattr_init(data->res.fattr);
2231 nfs_fattr_init(data->res.dir_fattr);
2232 }
2233 return data;
2234 }
2235
2236 static int nfs4_do_create(struct inode *dir, struct dentry *dentry, struct nfs4_createdata *data)
2237 {
2238 int status = rpc_call_sync(NFS_CLIENT(dir), &data->msg, 0);
2239 if (status == 0) {
2240 update_changeattr(dir, &data->res.dir_cinfo);
2241 nfs_post_op_update_inode(dir, data->res.dir_fattr);
2242 status = nfs_instantiate(dentry, data->res.fh, data->res.fattr);
2243 }
2244 return status;
2245 }
2246
2247 static void nfs4_free_createdata(struct nfs4_createdata *data)
2248 {
2249 kfree(data);
2250 }
2251
2252 static int _nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
2253 struct page *page, unsigned int len, struct iattr *sattr)
2254 {
2255 struct nfs4_createdata *data;
2256 int status = -ENAMETOOLONG;
2257
2258 if (len > NFS4_MAXPATHLEN)
2259 goto out;
2260
2261 status = -ENOMEM;
2262 data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4LNK);
2263 if (data == NULL)
2264 goto out;
2265
2266 data->msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK];
2267 data->arg.u.symlink.pages = &page;
2268 data->arg.u.symlink.len = len;
2269
2270 status = nfs4_do_create(dir, dentry, data);
2271
2272 nfs4_free_createdata(data);
2273 out:
2274 return status;
2275 }
2276
2277 static int nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
2278 struct page *page, unsigned int len, struct iattr *sattr)
2279 {
2280 struct nfs4_exception exception = { };
2281 int err;
2282 do {
2283 err = nfs4_handle_exception(NFS_SERVER(dir),
2284 _nfs4_proc_symlink(dir, dentry, page,
2285 len, sattr),
2286 &exception);
2287 } while (exception.retry);
2288 return err;
2289 }
2290
2291 static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2292 struct iattr *sattr)
2293 {
2294 struct nfs4_createdata *data;
2295 int status = -ENOMEM;
2296
2297 data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4DIR);
2298 if (data == NULL)
2299 goto out;
2300
2301 status = nfs4_do_create(dir, dentry, data);
2302
2303 nfs4_free_createdata(data);
2304 out:
2305 return status;
2306 }
2307
2308 static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2309 struct iattr *sattr)
2310 {
2311 struct nfs4_exception exception = { };
2312 int err;
2313 do {
2314 err = nfs4_handle_exception(NFS_SERVER(dir),
2315 _nfs4_proc_mkdir(dir, dentry, sattr),
2316 &exception);
2317 } while (exception.retry);
2318 return err;
2319 }
2320
2321 static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2322 u64 cookie, struct page *page, unsigned int count, int plus)
2323 {
2324 struct inode *dir = dentry->d_inode;
2325 struct nfs4_readdir_arg args = {
2326 .fh = NFS_FH(dir),
2327 .pages = &page,
2328 .pgbase = 0,
2329 .count = count,
2330 .bitmask = NFS_SERVER(dentry->d_inode)->cache_consistency_bitmask,
2331 };
2332 struct nfs4_readdir_res res;
2333 struct rpc_message msg = {
2334 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR],
2335 .rpc_argp = &args,
2336 .rpc_resp = &res,
2337 .rpc_cred = cred,
2338 };
2339 int status;
2340
2341 dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __func__,
2342 dentry->d_parent->d_name.name,
2343 dentry->d_name.name,
2344 (unsigned long long)cookie);
2345 nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args);
2346 res.pgbase = args.pgbase;
2347 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2348 if (status == 0)
2349 memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE);
2350
2351 nfs_invalidate_atime(dir);
2352
2353 dprintk("%s: returns %d\n", __func__, status);
2354 return status;
2355 }
2356
2357 static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2358 u64 cookie, struct page *page, unsigned int count, int plus)
2359 {
2360 struct nfs4_exception exception = { };
2361 int err;
2362 do {
2363 err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode),
2364 _nfs4_proc_readdir(dentry, cred, cookie,
2365 page, count, plus),
2366 &exception);
2367 } while (exception.retry);
2368 return err;
2369 }
2370
2371 static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2372 struct iattr *sattr, dev_t rdev)
2373 {
2374 struct nfs4_createdata *data;
2375 int mode = sattr->ia_mode;
2376 int status = -ENOMEM;
2377
2378 BUG_ON(!(sattr->ia_valid & ATTR_MODE));
2379 BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode));
2380
2381 data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4SOCK);
2382 if (data == NULL)
2383 goto out;
2384
2385 if (S_ISFIFO(mode))
2386 data->arg.ftype = NF4FIFO;
2387 else if (S_ISBLK(mode)) {
2388 data->arg.ftype = NF4BLK;
2389 data->arg.u.device.specdata1 = MAJOR(rdev);
2390 data->arg.u.device.specdata2 = MINOR(rdev);
2391 }
2392 else if (S_ISCHR(mode)) {
2393 data->arg.ftype = NF4CHR;
2394 data->arg.u.device.specdata1 = MAJOR(rdev);
2395 data->arg.u.device.specdata2 = MINOR(rdev);
2396 }
2397
2398 status = nfs4_do_create(dir, dentry, data);
2399
2400 nfs4_free_createdata(data);
2401 out:
2402 return status;
2403 }
2404
2405 static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2406 struct iattr *sattr, dev_t rdev)
2407 {
2408 struct nfs4_exception exception = { };
2409 int err;
2410 do {
2411 err = nfs4_handle_exception(NFS_SERVER(dir),
2412 _nfs4_proc_mknod(dir, dentry, sattr, rdev),
2413 &exception);
2414 } while (exception.retry);
2415 return err;
2416 }
2417
2418 static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
2419 struct nfs_fsstat *fsstat)
2420 {
2421 struct nfs4_statfs_arg args = {
2422 .fh = fhandle,
2423 .bitmask = server->attr_bitmask,
2424 };
2425 struct rpc_message msg = {
2426 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS],
2427 .rpc_argp = &args,
2428 .rpc_resp = fsstat,
2429 };
2430
2431 nfs_fattr_init(fsstat->fattr);
2432 return rpc_call_sync(server->client, &msg, 0);
2433 }
2434
2435 static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat)
2436 {
2437 struct nfs4_exception exception = { };
2438 int err;
2439 do {
2440 err = nfs4_handle_exception(server,
2441 _nfs4_proc_statfs(server, fhandle, fsstat),
2442 &exception);
2443 } while (exception.retry);
2444 return err;
2445 }
2446
2447 static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
2448 struct nfs_fsinfo *fsinfo)
2449 {
2450 struct nfs4_fsinfo_arg args = {
2451 .fh = fhandle,
2452 .bitmask = server->attr_bitmask,
2453 };
2454 struct rpc_message msg = {
2455 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO],
2456 .rpc_argp = &args,
2457 .rpc_resp = fsinfo,
2458 };
2459
2460 return rpc_call_sync(server->client, &msg, 0);
2461 }
2462
2463 static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2464 {
2465 struct nfs4_exception exception = { };
2466 int err;
2467
2468 do {
2469 err = nfs4_handle_exception(server,
2470 _nfs4_do_fsinfo(server, fhandle, fsinfo),
2471 &exception);
2472 } while (exception.retry);
2473 return err;
2474 }
2475
2476 static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2477 {
2478 nfs_fattr_init(fsinfo->fattr);
2479 return nfs4_do_fsinfo(server, fhandle, fsinfo);
2480 }
2481
2482 static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2483 struct nfs_pathconf *pathconf)
2484 {
2485 struct nfs4_pathconf_arg args = {
2486 .fh = fhandle,
2487 .bitmask = server->attr_bitmask,
2488 };
2489 struct rpc_message msg = {
2490 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF],
2491 .rpc_argp = &args,
2492 .rpc_resp = pathconf,
2493 };
2494
2495 /* None of the pathconf attributes are mandatory to implement */
2496 if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) {
2497 memset(pathconf, 0, sizeof(*pathconf));
2498 return 0;
2499 }
2500
2501 nfs_fattr_init(pathconf->fattr);
2502 return rpc_call_sync(server->client, &msg, 0);
2503 }
2504
2505 static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2506 struct nfs_pathconf *pathconf)
2507 {
2508 struct nfs4_exception exception = { };
2509 int err;
2510
2511 do {
2512 err = nfs4_handle_exception(server,
2513 _nfs4_proc_pathconf(server, fhandle, pathconf),
2514 &exception);
2515 } while (exception.retry);
2516 return err;
2517 }
2518
2519 static int nfs4_read_done(struct rpc_task *task, struct nfs_read_data *data)
2520 {
2521 struct nfs_server *server = NFS_SERVER(data->inode);
2522
2523 if (nfs4_async_handle_error(task, server, data->args.context->state) == -EAGAIN) {
2524 rpc_restart_call(task);
2525 return -EAGAIN;
2526 }
2527
2528 nfs_invalidate_atime(data->inode);
2529 if (task->tk_status > 0)
2530 renew_lease(server, data->timestamp);
2531 return 0;
2532 }
2533
2534 static void nfs4_proc_read_setup(struct nfs_read_data *data, struct rpc_message *msg)
2535 {
2536 data->timestamp = jiffies;
2537 msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ];
2538 }
2539
2540 static int nfs4_write_done(struct rpc_task *task, struct nfs_write_data *data)
2541 {
2542 struct inode *inode = data->inode;
2543
2544 if (nfs4_async_handle_error(task, NFS_SERVER(inode), data->args.context->state) == -EAGAIN) {
2545 rpc_restart_call(task);
2546 return -EAGAIN;
2547 }
2548 if (task->tk_status >= 0) {
2549 renew_lease(NFS_SERVER(inode), data->timestamp);
2550 nfs_post_op_update_inode_force_wcc(inode, data->res.fattr);
2551 }
2552 return 0;
2553 }
2554
2555 static void nfs4_proc_write_setup(struct nfs_write_data *data, struct rpc_message *msg)
2556 {
2557 struct nfs_server *server = NFS_SERVER(data->inode);
2558
2559 data->args.bitmask = server->cache_consistency_bitmask;
2560 data->res.server = server;
2561 data->timestamp = jiffies;
2562
2563 msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE];
2564 }
2565
2566 static int nfs4_commit_done(struct rpc_task *task, struct nfs_write_data *data)
2567 {
2568 struct inode *inode = data->inode;
2569
2570 if (nfs4_async_handle_error(task, NFS_SERVER(inode), NULL) == -EAGAIN) {
2571 rpc_restart_call(task);
2572 return -EAGAIN;
2573 }
2574 nfs_refresh_inode(inode, data->res.fattr);
2575 return 0;
2576 }
2577
2578 static void nfs4_proc_commit_setup(struct nfs_write_data *data, struct rpc_message *msg)
2579 {
2580 struct nfs_server *server = NFS_SERVER(data->inode);
2581
2582 data->args.bitmask = server->cache_consistency_bitmask;
2583 data->res.server = server;
2584 msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT];
2585 }
2586
2587 /*
2588 * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special
2589 * standalone procedure for queueing an asynchronous RENEW.
2590 */
2591 static void nfs4_renew_done(struct rpc_task *task, void *data)
2592 {
2593 struct nfs_client *clp = (struct nfs_client *)task->tk_msg.rpc_argp;
2594 unsigned long timestamp = (unsigned long)data;
2595
2596 if (task->tk_status < 0) {
2597 switch (task->tk_status) {
2598 case -NFS4ERR_STALE_CLIENTID:
2599 case -NFS4ERR_EXPIRED:
2600 case -NFS4ERR_CB_PATH_DOWN:
2601 nfs4_schedule_state_recovery(clp);
2602 }
2603 return;
2604 }
2605 spin_lock(&clp->cl_lock);
2606 if (time_before(clp->cl_last_renewal,timestamp))
2607 clp->cl_last_renewal = timestamp;
2608 spin_unlock(&clp->cl_lock);
2609 }
2610
2611 static const struct rpc_call_ops nfs4_renew_ops = {
2612 .rpc_call_done = nfs4_renew_done,
2613 };
2614
2615 int nfs4_proc_async_renew(struct nfs_client *clp, struct rpc_cred *cred)
2616 {
2617 struct rpc_message msg = {
2618 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2619 .rpc_argp = clp,
2620 .rpc_cred = cred,
2621 };
2622
2623 return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT,
2624 &nfs4_renew_ops, (void *)jiffies);
2625 }
2626
2627 int nfs4_proc_renew(struct nfs_client *clp, struct rpc_cred *cred)
2628 {
2629 struct rpc_message msg = {
2630 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2631 .rpc_argp = clp,
2632 .rpc_cred = cred,
2633 };
2634 unsigned long now = jiffies;
2635 int status;
2636
2637 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2638 if (status < 0)
2639 return status;
2640 spin_lock(&clp->cl_lock);
2641 if (time_before(clp->cl_last_renewal,now))
2642 clp->cl_last_renewal = now;
2643 spin_unlock(&clp->cl_lock);
2644 return 0;
2645 }
2646
2647 static inline int nfs4_server_supports_acls(struct nfs_server *server)
2648 {
2649 return (server->caps & NFS_CAP_ACLS)
2650 && (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL)
2651 && (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL);
2652 }
2653
2654 /* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that
2655 * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on
2656 * the stack.
2657 */
2658 #define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT)
2659
2660 static void buf_to_pages(const void *buf, size_t buflen,
2661 struct page **pages, unsigned int *pgbase)
2662 {
2663 const void *p = buf;
2664
2665 *pgbase = offset_in_page(buf);
2666 p -= *pgbase;
2667 while (p < buf + buflen) {
2668 *(pages++) = virt_to_page(p);
2669 p += PAGE_CACHE_SIZE;
2670 }
2671 }
2672
2673 struct nfs4_cached_acl {
2674 int cached;
2675 size_t len;
2676 char data[0];
2677 };
2678
2679 static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl)
2680 {
2681 struct nfs_inode *nfsi = NFS_I(inode);
2682
2683 spin_lock(&inode->i_lock);
2684 kfree(nfsi->nfs4_acl);
2685 nfsi->nfs4_acl = acl;
2686 spin_unlock(&inode->i_lock);
2687 }
2688
2689 static void nfs4_zap_acl_attr(struct inode *inode)
2690 {
2691 nfs4_set_cached_acl(inode, NULL);
2692 }
2693
2694 static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen)
2695 {
2696 struct nfs_inode *nfsi = NFS_I(inode);
2697 struct nfs4_cached_acl *acl;
2698 int ret = -ENOENT;
2699
2700 spin_lock(&inode->i_lock);
2701 acl = nfsi->nfs4_acl;
2702 if (acl == NULL)
2703 goto out;
2704 if (buf == NULL) /* user is just asking for length */
2705 goto out_len;
2706 if (acl->cached == 0)
2707 goto out;
2708 ret = -ERANGE; /* see getxattr(2) man page */
2709 if (acl->len > buflen)
2710 goto out;
2711 memcpy(buf, acl->data, acl->len);
2712 out_len:
2713 ret = acl->len;
2714 out:
2715 spin_unlock(&inode->i_lock);
2716 return ret;
2717 }
2718
2719 static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len)
2720 {
2721 struct nfs4_cached_acl *acl;
2722
2723 if (buf && acl_len <= PAGE_SIZE) {
2724 acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL);
2725 if (acl == NULL)
2726 goto out;
2727 acl->cached = 1;
2728 memcpy(acl->data, buf, acl_len);
2729 } else {
2730 acl = kmalloc(sizeof(*acl), GFP_KERNEL);
2731 if (acl == NULL)
2732 goto out;
2733 acl->cached = 0;
2734 }
2735 acl->len = acl_len;
2736 out:
2737 nfs4_set_cached_acl(inode, acl);
2738 }
2739
2740 static ssize_t __nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2741 {
2742 struct page *pages[NFS4ACL_MAXPAGES];
2743 struct nfs_getaclargs args = {
2744 .fh = NFS_FH(inode),
2745 .acl_pages = pages,
2746 .acl_len = buflen,
2747 };
2748 size_t resp_len = buflen;
2749 void *resp_buf;
2750 struct rpc_message msg = {
2751 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL],
2752 .rpc_argp = &args,
2753 .rpc_resp = &resp_len,
2754 };
2755 struct page *localpage = NULL;
2756 int ret;
2757
2758 if (buflen < PAGE_SIZE) {
2759 /* As long as we're doing a round trip to the server anyway,
2760 * let's be prepared for a page of acl data. */
2761 localpage = alloc_page(GFP_KERNEL);
2762 resp_buf = page_address(localpage);
2763 if (localpage == NULL)
2764 return -ENOMEM;
2765 args.acl_pages[0] = localpage;
2766 args.acl_pgbase = 0;
2767 resp_len = args.acl_len = PAGE_SIZE;
2768 } else {
2769 resp_buf = buf;
2770 buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase);
2771 }
2772 ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2773 if (ret)
2774 goto out_free;
2775 if (resp_len > args.acl_len)
2776 nfs4_write_cached_acl(inode, NULL, resp_len);
2777 else
2778 nfs4_write_cached_acl(inode, resp_buf, resp_len);
2779 if (buf) {
2780 ret = -ERANGE;
2781 if (resp_len > buflen)
2782 goto out_free;
2783 if (localpage)
2784 memcpy(buf, resp_buf, resp_len);
2785 }
2786 ret = resp_len;
2787 out_free:
2788 if (localpage)
2789 __free_page(localpage);
2790 return ret;
2791 }
2792
2793 static ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2794 {
2795 struct nfs4_exception exception = { };
2796 ssize_t ret;
2797 do {
2798 ret = __nfs4_get_acl_uncached(inode, buf, buflen);
2799 if (ret >= 0)
2800 break;
2801 ret = nfs4_handle_exception(NFS_SERVER(inode), ret, &exception);
2802 } while (exception.retry);
2803 return ret;
2804 }
2805
2806 static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen)
2807 {
2808 struct nfs_server *server = NFS_SERVER(inode);
2809 int ret;
2810
2811 if (!nfs4_server_supports_acls(server))
2812 return -EOPNOTSUPP;
2813 ret = nfs_revalidate_inode(server, inode);
2814 if (ret < 0)
2815 return ret;
2816 if (NFS_I(inode)->cache_validity & NFS_INO_INVALID_ACL)
2817 nfs_zap_acl_cache(inode);
2818 ret = nfs4_read_cached_acl(inode, buf, buflen);
2819 if (ret != -ENOENT)
2820 return ret;
2821 return nfs4_get_acl_uncached(inode, buf, buflen);
2822 }
2823
2824 static int __nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2825 {
2826 struct nfs_server *server = NFS_SERVER(inode);
2827 struct page *pages[NFS4ACL_MAXPAGES];
2828 struct nfs_setaclargs arg = {
2829 .fh = NFS_FH(inode),
2830 .acl_pages = pages,
2831 .acl_len = buflen,
2832 };
2833 struct rpc_message msg = {
2834 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETACL],
2835 .rpc_argp = &arg,
2836 .rpc_resp = NULL,
2837 };
2838 int ret;
2839
2840 if (!nfs4_server_supports_acls(server))
2841 return -EOPNOTSUPP;
2842 nfs_inode_return_delegation(inode);
2843 buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase);
2844 ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2845 nfs_access_zap_cache(inode);
2846 nfs_zap_acl_cache(inode);
2847 return ret;
2848 }
2849
2850 static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2851 {
2852 struct nfs4_exception exception = { };
2853 int err;
2854 do {
2855 err = nfs4_handle_exception(NFS_SERVER(inode),
2856 __nfs4_proc_set_acl(inode, buf, buflen),
2857 &exception);
2858 } while (exception.retry);
2859 return err;
2860 }
2861
2862 static int
2863 nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server, struct nfs4_state *state)
2864 {
2865 struct nfs_client *clp = server->nfs_client;
2866
2867 if (!clp || task->tk_status >= 0)
2868 return 0;
2869 switch(task->tk_status) {
2870 case -NFS4ERR_ADMIN_REVOKED:
2871 case -NFS4ERR_BAD_STATEID:
2872 case -NFS4ERR_OPENMODE:
2873 if (state == NULL)
2874 break;
2875 nfs4_state_mark_reclaim_nograce(clp, state);
2876 case -NFS4ERR_STALE_CLIENTID:
2877 case -NFS4ERR_STALE_STATEID:
2878 case -NFS4ERR_EXPIRED:
2879 rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL);
2880 nfs4_schedule_state_recovery(clp);
2881 if (test_bit(NFS4CLNT_MANAGER_RUNNING, &clp->cl_state) == 0)
2882 rpc_wake_up_queued_task(&clp->cl_rpcwaitq, task);
2883 task->tk_status = 0;
2884 return -EAGAIN;
2885 case -NFS4ERR_DELAY:
2886 nfs_inc_server_stats(server, NFSIOS_DELAY);
2887 case -NFS4ERR_GRACE:
2888 rpc_delay(task, NFS4_POLL_RETRY_MAX);
2889 task->tk_status = 0;
2890 return -EAGAIN;
2891 case -NFS4ERR_OLD_STATEID:
2892 task->tk_status = 0;
2893 return -EAGAIN;
2894 }
2895 task->tk_status = nfs4_map_errors(task->tk_status);
2896 return 0;
2897 }
2898
2899 int nfs4_proc_setclientid(struct nfs_client *clp, u32 program, unsigned short port, struct rpc_cred *cred)
2900 {
2901 nfs4_verifier sc_verifier;
2902 struct nfs4_setclientid setclientid = {
2903 .sc_verifier = &sc_verifier,
2904 .sc_prog = program,
2905 };
2906 struct rpc_message msg = {
2907 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID],
2908 .rpc_argp = &setclientid,
2909 .rpc_resp = clp,
2910 .rpc_cred = cred,
2911 };
2912 __be32 *p;
2913 int loop = 0;
2914 int status;
2915
2916 p = (__be32*)sc_verifier.data;
2917 *p++ = htonl((u32)clp->cl_boot_time.tv_sec);
2918 *p = htonl((u32)clp->cl_boot_time.tv_nsec);
2919
2920 for(;;) {
2921 setclientid.sc_name_len = scnprintf(setclientid.sc_name,
2922 sizeof(setclientid.sc_name), "%s/%s %s %s %u",
2923 clp->cl_ipaddr,
2924 rpc_peeraddr2str(clp->cl_rpcclient,
2925 RPC_DISPLAY_ADDR),
2926 rpc_peeraddr2str(clp->cl_rpcclient,
2927 RPC_DISPLAY_PROTO),
2928 clp->cl_rpcclient->cl_auth->au_ops->au_name,
2929 clp->cl_id_uniquifier);
2930 setclientid.sc_netid_len = scnprintf(setclientid.sc_netid,
2931 sizeof(setclientid.sc_netid),
2932 rpc_peeraddr2str(clp->cl_rpcclient,
2933 RPC_DISPLAY_NETID));
2934 setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr,
2935 sizeof(setclientid.sc_uaddr), "%s.%u.%u",
2936 clp->cl_ipaddr, port >> 8, port & 255);
2937
2938 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2939 if (status != -NFS4ERR_CLID_INUSE)
2940 break;
2941 if (signalled())
2942 break;
2943 if (loop++ & 1)
2944 ssleep(clp->cl_lease_time + 1);
2945 else
2946 if (++clp->cl_id_uniquifier == 0)
2947 break;
2948 }
2949 return status;
2950 }
2951
2952 static int _nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred)
2953 {
2954 struct nfs_fsinfo fsinfo;
2955 struct rpc_message msg = {
2956 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM],
2957 .rpc_argp = clp,
2958 .rpc_resp = &fsinfo,
2959 .rpc_cred = cred,
2960 };
2961 unsigned long now;
2962 int status;
2963
2964 now = jiffies;
2965 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2966 if (status == 0) {
2967 spin_lock(&clp->cl_lock);
2968 clp->cl_lease_time = fsinfo.lease_time * HZ;
2969 clp->cl_last_renewal = now;
2970 spin_unlock(&clp->cl_lock);
2971 }
2972 return status;
2973 }
2974
2975 int nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred)
2976 {
2977 long timeout = 0;
2978 int err;
2979 do {
2980 err = _nfs4_proc_setclientid_confirm(clp, cred);
2981 switch (err) {
2982 case 0:
2983 return err;
2984 case -NFS4ERR_RESOURCE:
2985 /* The IBM lawyers misread another document! */
2986 case -NFS4ERR_DELAY:
2987 err = nfs4_delay(clp->cl_rpcclient, &timeout);
2988 }
2989 } while (err == 0);
2990 return err;
2991 }
2992
2993 struct nfs4_delegreturndata {
2994 struct nfs4_delegreturnargs args;
2995 struct nfs4_delegreturnres res;
2996 struct nfs_fh fh;
2997 nfs4_stateid stateid;
2998 unsigned long timestamp;
2999 struct nfs_fattr fattr;
3000 int rpc_status;
3001 };
3002
3003 static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata)
3004 {
3005 struct nfs4_delegreturndata *data = calldata;
3006 data->rpc_status = task->tk_status;
3007 if (data->rpc_status == 0)
3008 renew_lease(data->res.server, data->timestamp);
3009 }
3010
3011 static void nfs4_delegreturn_release(void *calldata)
3012 {
3013 kfree(calldata);
3014 }
3015
3016 static const struct rpc_call_ops nfs4_delegreturn_ops = {
3017 .rpc_call_done = nfs4_delegreturn_done,
3018 .rpc_release = nfs4_delegreturn_release,
3019 };
3020
3021 static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid, int issync)
3022 {
3023 struct nfs4_delegreturndata *data;
3024 struct nfs_server *server = NFS_SERVER(inode);
3025 struct rpc_task *task;
3026 struct rpc_message msg = {
3027 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN],
3028 .rpc_cred = cred,
3029 };
3030 struct rpc_task_setup task_setup_data = {
3031 .rpc_client = server->client,
3032 .rpc_message = &msg,
3033 .callback_ops = &nfs4_delegreturn_ops,
3034 .flags = RPC_TASK_ASYNC,
3035 };
3036 int status = 0;
3037
3038 data = kmalloc(sizeof(*data), GFP_KERNEL);
3039 if (data == NULL)
3040 return -ENOMEM;
3041 data->args.fhandle = &data->fh;
3042 data->args.stateid = &data->stateid;
3043 data->args.bitmask = server->attr_bitmask;
3044 nfs_copy_fh(&data->fh, NFS_FH(inode));
3045 memcpy(&data->stateid, stateid, sizeof(data->stateid));
3046 data->res.fattr = &data->fattr;
3047 data->res.server = server;
3048 nfs_fattr_init(data->res.fattr);
3049 data->timestamp = jiffies;
3050 data->rpc_status = 0;
3051
3052 task_setup_data.callback_data = data;
3053 msg.rpc_argp = &data->args,
3054 msg.rpc_resp = &data->res,
3055 task = rpc_run_task(&task_setup_data);
3056 if (IS_ERR(task))
3057 return PTR_ERR(task);
3058 if (!issync)
3059 goto out;
3060 status = nfs4_wait_for_completion_rpc_task(task);
3061 if (status != 0)
3062 goto out;
3063 status = data->rpc_status;
3064 if (status != 0)
3065 goto out;
3066 nfs_refresh_inode(inode, &data->fattr);
3067 out:
3068 rpc_put_task(task);
3069 return status;
3070 }
3071
3072 int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid, int issync)
3073 {
3074 struct nfs_server *server = NFS_SERVER(inode);
3075 struct nfs4_exception exception = { };
3076 int err;
3077 do {
3078 err = _nfs4_proc_delegreturn(inode, cred, stateid, issync);
3079 switch (err) {
3080 case -NFS4ERR_STALE_STATEID:
3081 case -NFS4ERR_EXPIRED:
3082 case 0:
3083 return 0;
3084 }
3085 err = nfs4_handle_exception(server, err, &exception);
3086 } while (exception.retry);
3087 return err;
3088 }
3089
3090 #define NFS4_LOCK_MINTIMEOUT (1 * HZ)
3091 #define NFS4_LOCK_MAXTIMEOUT (30 * HZ)
3092
3093 /*
3094 * sleep, with exponential backoff, and retry the LOCK operation.
3095 */
3096 static unsigned long
3097 nfs4_set_lock_task_retry(unsigned long timeout)
3098 {
3099 schedule_timeout_killable(timeout);
3100 timeout <<= 1;
3101 if (timeout > NFS4_LOCK_MAXTIMEOUT)
3102 return NFS4_LOCK_MAXTIMEOUT;
3103 return timeout;
3104 }
3105
3106 static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3107 {
3108 struct inode *inode = state->inode;
3109 struct nfs_server *server = NFS_SERVER(inode);
3110 struct nfs_client *clp = server->nfs_client;
3111 struct nfs_lockt_args arg = {
3112 .fh = NFS_FH(inode),
3113 .fl = request,
3114 };
3115 struct nfs_lockt_res res = {
3116 .denied = request,
3117 };
3118 struct rpc_message msg = {
3119 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKT],
3120 .rpc_argp = &arg,
3121 .rpc_resp = &res,
3122 .rpc_cred = state->owner->so_cred,
3123 };
3124 struct nfs4_lock_state *lsp;
3125 int status;
3126
3127 arg.lock_owner.clientid = clp->cl_clientid;
3128 status = nfs4_set_lock_state(state, request);
3129 if (status != 0)
3130 goto out;
3131 lsp = request->fl_u.nfs4_fl.owner;
3132 arg.lock_owner.id = lsp->ls_id.id;
3133 status = rpc_call_sync(server->client, &msg, 0);
3134 switch (status) {
3135 case 0:
3136 request->fl_type = F_UNLCK;
3137 break;
3138 case -NFS4ERR_DENIED:
3139 status = 0;
3140 }
3141 request->fl_ops->fl_release_private(request);
3142 out:
3143 return status;
3144 }
3145
3146 static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3147 {
3148 struct nfs4_exception exception = { };
3149 int err;
3150
3151 do {
3152 err = nfs4_handle_exception(NFS_SERVER(state->inode),
3153 _nfs4_proc_getlk(state, cmd, request),
3154 &exception);
3155 } while (exception.retry);
3156 return err;
3157 }
3158
3159 static int do_vfs_lock(struct file *file, struct file_lock *fl)
3160 {
3161 int res = 0;
3162 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
3163 case FL_POSIX:
3164 res = posix_lock_file_wait(file, fl);
3165 break;
3166 case FL_FLOCK:
3167 res = flock_lock_file_wait(file, fl);
3168 break;
3169 default:
3170 BUG();
3171 }
3172 return res;
3173 }
3174
3175 struct nfs4_unlockdata {
3176 struct nfs_locku_args arg;
3177 struct nfs_locku_res res;
3178 struct nfs4_lock_state *lsp;
3179 struct nfs_open_context *ctx;
3180 struct file_lock fl;
3181 const struct nfs_server *server;
3182 unsigned long timestamp;
3183 };
3184
3185 static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl,
3186 struct nfs_open_context *ctx,
3187 struct nfs4_lock_state *lsp,
3188 struct nfs_seqid *seqid)
3189 {
3190 struct nfs4_unlockdata *p;
3191 struct inode *inode = lsp->ls_state->inode;
3192
3193 p = kmalloc(sizeof(*p), GFP_KERNEL);
3194 if (p == NULL)
3195 return NULL;
3196 p->arg.fh = NFS_FH(inode);
3197 p->arg.fl = &p->fl;
3198 p->arg.seqid = seqid;
3199 p->res.seqid = seqid;
3200 p->arg.stateid = &lsp->ls_stateid;
3201 p->lsp = lsp;
3202 atomic_inc(&lsp->ls_count);
3203 /* Ensure we don't close file until we're done freeing locks! */
3204 p->ctx = get_nfs_open_context(ctx);
3205 memcpy(&p->fl, fl, sizeof(p->fl));
3206 p->server = NFS_SERVER(inode);
3207 return p;
3208 }
3209
3210 static void nfs4_locku_release_calldata(void *data)
3211 {
3212 struct nfs4_unlockdata *calldata = data;
3213 nfs_free_seqid(calldata->arg.seqid);
3214 nfs4_put_lock_state(calldata->lsp);
3215 put_nfs_open_context(calldata->ctx);
3216 kfree(calldata);
3217 }
3218
3219 static void nfs4_locku_done(struct rpc_task *task, void *data)
3220 {
3221 struct nfs4_unlockdata *calldata = data;
3222
3223 if (RPC_ASSASSINATED(task))
3224 return;
3225 switch (task->tk_status) {
3226 case 0:
3227 memcpy(calldata->lsp->ls_stateid.data,
3228 calldata->res.stateid.data,
3229 sizeof(calldata->lsp->ls_stateid.data));
3230 renew_lease(calldata->server, calldata->timestamp);
3231 break;
3232 case -NFS4ERR_BAD_STATEID:
3233 case -NFS4ERR_OLD_STATEID:
3234 case -NFS4ERR_STALE_STATEID:
3235 case -NFS4ERR_EXPIRED:
3236 break;
3237 default:
3238 if (nfs4_async_handle_error(task, calldata->server, NULL) == -EAGAIN)
3239 rpc_restart_call(task);
3240 }
3241 }
3242
3243 static void nfs4_locku_prepare(struct rpc_task *task, void *data)
3244 {
3245 struct nfs4_unlockdata *calldata = data;
3246
3247 if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
3248 return;
3249 if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) {
3250 /* Note: exit _without_ running nfs4_locku_done */
3251 task->tk_action = NULL;
3252 return;
3253 }
3254 calldata->timestamp = jiffies;
3255 rpc_call_start(task);
3256 }
3257
3258 static const struct rpc_call_ops nfs4_locku_ops = {
3259 .rpc_call_prepare = nfs4_locku_prepare,
3260 .rpc_call_done = nfs4_locku_done,
3261 .rpc_release = nfs4_locku_release_calldata,
3262 };
3263
3264 static struct rpc_task *nfs4_do_unlck(struct file_lock *fl,
3265 struct nfs_open_context *ctx,
3266 struct nfs4_lock_state *lsp,
3267 struct nfs_seqid *seqid)
3268 {
3269 struct nfs4_unlockdata *data;
3270 struct rpc_message msg = {
3271 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKU],
3272 .rpc_cred = ctx->cred,
3273 };
3274 struct rpc_task_setup task_setup_data = {
3275 .rpc_client = NFS_CLIENT(lsp->ls_state->inode),
3276 .rpc_message = &msg,
3277 .callback_ops = &nfs4_locku_ops,
3278 .workqueue = nfsiod_workqueue,
3279 .flags = RPC_TASK_ASYNC,
3280 };
3281
3282 /* Ensure this is an unlock - when canceling a lock, the
3283 * canceled lock is passed in, and it won't be an unlock.
3284 */
3285 fl->fl_type = F_UNLCK;
3286
3287 data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid);
3288 if (data == NULL) {
3289 nfs_free_seqid(seqid);
3290 return ERR_PTR(-ENOMEM);
3291 }
3292
3293 msg.rpc_argp = &data->arg,
3294 msg.rpc_resp = &data->res,
3295 task_setup_data.callback_data = data;
3296 return rpc_run_task(&task_setup_data);
3297 }
3298
3299 static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request)
3300 {
3301 struct nfs_inode *nfsi = NFS_I(state->inode);
3302 struct nfs_seqid *seqid;
3303 struct nfs4_lock_state *lsp;
3304 struct rpc_task *task;
3305 int status = 0;
3306 unsigned char fl_flags = request->fl_flags;
3307
3308 status = nfs4_set_lock_state(state, request);
3309 /* Unlock _before_ we do the RPC call */
3310 request->fl_flags |= FL_EXISTS;
3311 down_read(&nfsi->rwsem);
3312 if (do_vfs_lock(request->fl_file, request) == -ENOENT) {
3313 up_read(&nfsi->rwsem);
3314 goto out;
3315 }
3316 up_read(&nfsi->rwsem);
3317 if (status != 0)
3318 goto out;
3319 /* Is this a delegated lock? */
3320 if (test_bit(NFS_DELEGATED_STATE, &state->flags))
3321 goto out;
3322 lsp = request->fl_u.nfs4_fl.owner;
3323 seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3324 status = -ENOMEM;
3325 if (seqid == NULL)
3326 goto out;
3327 task = nfs4_do_unlck(request, nfs_file_open_context(request->fl_file), lsp, seqid);
3328 status = PTR_ERR(task);
3329 if (IS_ERR(task))
3330 goto out;
3331 status = nfs4_wait_for_completion_rpc_task(task);
3332 rpc_put_task(task);
3333 out:
3334 request->fl_flags = fl_flags;
3335 return status;
3336 }
3337
3338 struct nfs4_lockdata {
3339 struct nfs_lock_args arg;
3340 struct nfs_lock_res res;
3341 struct nfs4_lock_state *lsp;
3342 struct nfs_open_context *ctx;
3343 struct file_lock fl;
3344 unsigned long timestamp;
3345 int rpc_status;
3346 int cancelled;
3347 };
3348
3349 static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl,
3350 struct nfs_open_context *ctx, struct nfs4_lock_state *lsp)
3351 {
3352 struct nfs4_lockdata *p;
3353 struct inode *inode = lsp->ls_state->inode;
3354 struct nfs_server *server = NFS_SERVER(inode);
3355
3356 p = kzalloc(sizeof(*p), GFP_KERNEL);
3357 if (p == NULL)
3358 return NULL;
3359
3360 p->arg.fh = NFS_FH(inode);
3361 p->arg.fl = &p->fl;
3362 p->arg.open_seqid = nfs_alloc_seqid(&lsp->ls_state->owner->so_seqid);
3363 if (p->arg.open_seqid == NULL)
3364 goto out_free;
3365 p->arg.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3366 if (p->arg.lock_seqid == NULL)
3367 goto out_free_seqid;
3368 p->arg.lock_stateid = &lsp->ls_stateid;
3369 p->arg.lock_owner.clientid = server->nfs_client->cl_clientid;
3370 p->arg.lock_owner.id = lsp->ls_id.id;
3371 p->res.lock_seqid = p->arg.lock_seqid;
3372 p->lsp = lsp;
3373 atomic_inc(&lsp->ls_count);
3374 p->ctx = get_nfs_open_context(ctx);
3375 memcpy(&p->fl, fl, sizeof(p->fl));
3376 return p;
3377 out_free_seqid:
3378 nfs_free_seqid(p->arg.open_seqid);
3379 out_free:
3380 kfree(p);
3381 return NULL;
3382 }
3383
3384 static void nfs4_lock_prepare(struct rpc_task *task, void *calldata)
3385 {
3386 struct nfs4_lockdata *data = calldata;
3387 struct nfs4_state *state = data->lsp->ls_state;
3388
3389 dprintk("%s: begin!\n", __func__);
3390 if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0)
3391 return;
3392 /* Do we need to do an open_to_lock_owner? */
3393 if (!(data->arg.lock_seqid->sequence->flags & NFS_SEQID_CONFIRMED)) {
3394 if (nfs_wait_on_sequence(data->arg.open_seqid, task) != 0)
3395 return;
3396 data->arg.open_stateid = &state->stateid;
3397 data->arg.new_lock_owner = 1;
3398 data->res.open_seqid = data->arg.open_seqid;
3399 } else
3400 data->arg.new_lock_owner = 0;
3401 data->timestamp = jiffies;
3402 rpc_call_start(task);
3403 dprintk("%s: done!, ret = %d\n", __func__, data->rpc_status);
3404 }
3405
3406 static void nfs4_lock_done(struct rpc_task *task, void *calldata)
3407 {
3408 struct nfs4_lockdata *data = calldata;
3409
3410 dprintk("%s: begin!\n", __func__);
3411
3412 data->rpc_status = task->tk_status;
3413 if (RPC_ASSASSINATED(task))
3414 goto out;
3415 if (data->arg.new_lock_owner != 0) {
3416 if (data->rpc_status == 0)
3417 nfs_confirm_seqid(&data->lsp->ls_seqid, 0);
3418 else
3419 goto out;
3420 }
3421 if (data->rpc_status == 0) {
3422 memcpy(data->lsp->ls_stateid.data, data->res.stateid.data,
3423 sizeof(data->lsp->ls_stateid.data));
3424 data->lsp->ls_flags |= NFS_LOCK_INITIALIZED;
3425 renew_lease(NFS_SERVER(data->ctx->path.dentry->d_inode), data->timestamp);
3426 }
3427 out:
3428 dprintk("%s: done, ret = %d!\n", __func__, data->rpc_status);
3429 }
3430
3431 static void nfs4_lock_release(void *calldata)
3432 {
3433 struct nfs4_lockdata *data = calldata;
3434
3435 dprintk("%s: begin!\n", __func__);
3436 nfs_free_seqid(data->arg.open_seqid);
3437 if (data->cancelled != 0) {
3438 struct rpc_task *task;
3439 task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp,
3440 data->arg.lock_seqid);
3441 if (!IS_ERR(task))
3442 rpc_put_task(task);
3443 dprintk("%s: cancelling lock!\n", __func__);
3444 } else
3445 nfs_free_seqid(data->arg.lock_seqid);
3446 nfs4_put_lock_state(data->lsp);
3447 put_nfs_open_context(data->ctx);
3448 kfree(data);
3449 dprintk("%s: done!\n", __func__);
3450 }
3451
3452 static const struct rpc_call_ops nfs4_lock_ops = {
3453 .rpc_call_prepare = nfs4_lock_prepare,
3454 .rpc_call_done = nfs4_lock_done,
3455 .rpc_release = nfs4_lock_release,
3456 };
3457
3458 static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int reclaim)
3459 {
3460 struct nfs4_lockdata *data;
3461 struct rpc_task *task;
3462 struct rpc_message msg = {
3463 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK],
3464 .rpc_cred = state->owner->so_cred,
3465 };
3466 struct rpc_task_setup task_setup_data = {
3467 .rpc_client = NFS_CLIENT(state->inode),
3468 .rpc_message = &msg,
3469 .callback_ops = &nfs4_lock_ops,
3470 .workqueue = nfsiod_workqueue,
3471 .flags = RPC_TASK_ASYNC,
3472 };
3473 int ret;
3474
3475 dprintk("%s: begin!\n", __func__);
3476 data = nfs4_alloc_lockdata(fl, nfs_file_open_context(fl->fl_file),
3477 fl->fl_u.nfs4_fl.owner);
3478 if (data == NULL)
3479 return -ENOMEM;
3480 if (IS_SETLKW(cmd))
3481 data->arg.block = 1;
3482 if (reclaim != 0)
3483 data->arg.reclaim = 1;
3484 msg.rpc_argp = &data->arg,
3485 msg.rpc_resp = &data->res,
3486 task_setup_data.callback_data = data;
3487 task = rpc_run_task(&task_setup_data);
3488 if (IS_ERR(task))
3489 return PTR_ERR(task);
3490 ret = nfs4_wait_for_completion_rpc_task(task);
3491 if (ret == 0) {
3492 ret = data->rpc_status;
3493 if (ret == -NFS4ERR_DENIED)
3494 ret = -EAGAIN;
3495 } else
3496 data->cancelled = 1;
3497 rpc_put_task(task);
3498 dprintk("%s: done, ret = %d!\n", __func__, ret);
3499 return ret;
3500 }
3501
3502 static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request)
3503 {
3504 struct nfs_server *server = NFS_SERVER(state->inode);
3505 struct nfs4_exception exception = { };
3506 int err;
3507
3508 do {
3509 /* Cache the lock if possible... */
3510 if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
3511 return 0;
3512 err = _nfs4_do_setlk(state, F_SETLK, request, 1);
3513 if (err != -NFS4ERR_DELAY)
3514 break;
3515 nfs4_handle_exception(server, err, &exception);
3516 } while (exception.retry);
3517 return err;
3518 }
3519
3520 static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request)
3521 {
3522 struct nfs_server *server = NFS_SERVER(state->inode);
3523 struct nfs4_exception exception = { };
3524 int err;
3525
3526 err = nfs4_set_lock_state(state, request);
3527 if (err != 0)
3528 return err;
3529 do {
3530 if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
3531 return 0;
3532 err = _nfs4_do_setlk(state, F_SETLK, request, 0);
3533 if (err != -NFS4ERR_DELAY)
3534 break;
3535 nfs4_handle_exception(server, err, &exception);
3536 } while (exception.retry);
3537 return err;
3538 }
3539
3540 static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3541 {
3542 struct nfs_inode *nfsi = NFS_I(state->inode);
3543 unsigned char fl_flags = request->fl_flags;
3544 int status;
3545
3546 /* Is this a delegated open? */
3547 status = nfs4_set_lock_state(state, request);
3548 if (status != 0)
3549 goto out;
3550 request->fl_flags |= FL_ACCESS;
3551 status = do_vfs_lock(request->fl_file, request);
3552 if (status < 0)
3553 goto out;
3554 down_read(&nfsi->rwsem);
3555 if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
3556 /* Yes: cache locks! */
3557 /* ...but avoid races with delegation recall... */
3558 request->fl_flags = fl_flags & ~FL_SLEEP;
3559 status = do_vfs_lock(request->fl_file, request);
3560 goto out_unlock;
3561 }
3562 status = _nfs4_do_setlk(state, cmd, request, 0);
3563 if (status != 0)
3564 goto out_unlock;
3565 /* Note: we always want to sleep here! */
3566 request->fl_flags = fl_flags | FL_SLEEP;
3567 if (do_vfs_lock(request->fl_file, request) < 0)
3568 printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __func__);
3569 out_unlock:
3570 up_read(&nfsi->rwsem);
3571 out:
3572 request->fl_flags = fl_flags;
3573 return status;
3574 }
3575
3576 static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3577 {
3578 struct nfs4_exception exception = { };
3579 int err;
3580
3581 do {
3582 err = nfs4_handle_exception(NFS_SERVER(state->inode),
3583 _nfs4_proc_setlk(state, cmd, request),
3584 &exception);
3585 } while (exception.retry);
3586 return err;
3587 }
3588
3589 static int
3590 nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request)
3591 {
3592 struct nfs_open_context *ctx;
3593 struct nfs4_state *state;
3594 unsigned long timeout = NFS4_LOCK_MINTIMEOUT;
3595 int status;
3596
3597 /* verify open state */
3598 ctx = nfs_file_open_context(filp);
3599 state = ctx->state;
3600
3601 if (request->fl_start < 0 || request->fl_end < 0)
3602 return -EINVAL;
3603
3604 if (IS_GETLK(cmd))
3605 return nfs4_proc_getlk(state, F_GETLK, request);
3606
3607 if (!(IS_SETLK(cmd) || IS_SETLKW(cmd)))
3608 return -EINVAL;
3609
3610 if (request->fl_type == F_UNLCK)
3611 return nfs4_proc_unlck(state, cmd, request);
3612
3613 do {
3614 status = nfs4_proc_setlk(state, cmd, request);
3615 if ((status != -EAGAIN) || IS_SETLK(cmd))
3616 break;
3617 timeout = nfs4_set_lock_task_retry(timeout);
3618 status = -ERESTARTSYS;
3619 if (signalled())
3620 break;
3621 } while(status < 0);
3622 return status;
3623 }
3624
3625 int nfs4_lock_delegation_recall(struct nfs4_state *state, struct file_lock *fl)
3626 {
3627 struct nfs_server *server = NFS_SERVER(state->inode);
3628 struct nfs4_exception exception = { };
3629 int err;
3630
3631 err = nfs4_set_lock_state(state, fl);
3632 if (err != 0)
3633 goto out;
3634 do {
3635 err = _nfs4_do_setlk(state, F_SETLK, fl, 0);
3636 if (err != -NFS4ERR_DELAY)
3637 break;
3638 err = nfs4_handle_exception(server, err, &exception);
3639 } while (exception.retry);
3640 out:
3641 return err;
3642 }
3643
3644 #define XATTR_NAME_NFSV4_ACL "system.nfs4_acl"
3645
3646 int nfs4_setxattr(struct dentry *dentry, const char *key, const void *buf,
3647 size_t buflen, int flags)
3648 {
3649 struct inode *inode = dentry->d_inode;
3650
3651 if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3652 return -EOPNOTSUPP;
3653
3654 return nfs4_proc_set_acl(inode, buf, buflen);
3655 }
3656
3657 /* The getxattr man page suggests returning -ENODATA for unknown attributes,
3658 * and that's what we'll do for e.g. user attributes that haven't been set.
3659 * But we'll follow ext2/ext3's lead by returning -EOPNOTSUPP for unsupported
3660 * attributes in kernel-managed attribute namespaces. */
3661 ssize_t nfs4_getxattr(struct dentry *dentry, const char *key, void *buf,
3662 size_t buflen)
3663 {
3664 struct inode *inode = dentry->d_inode;
3665
3666 if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3667 return -EOPNOTSUPP;
3668
3669 return nfs4_proc_get_acl(inode, buf, buflen);
3670 }
3671
3672 ssize_t nfs4_listxattr(struct dentry *dentry, char *buf, size_t buflen)
3673 {
3674 size_t len = strlen(XATTR_NAME_NFSV4_ACL) + 1;
3675
3676 if (!nfs4_server_supports_acls(NFS_SERVER(dentry->d_inode)))
3677 return 0;
3678 if (buf && buflen < len)
3679 return -ERANGE;
3680 if (buf)
3681 memcpy(buf, XATTR_NAME_NFSV4_ACL, len);
3682 return len;
3683 }
3684
3685 static void nfs_fixup_referral_attributes(struct nfs_fattr *fattr)
3686 {
3687 if (!((fattr->valid & NFS_ATTR_FATTR_FILEID) &&
3688 (fattr->valid & NFS_ATTR_FATTR_FSID) &&
3689 (fattr->valid & NFS_ATTR_FATTR_V4_REFERRAL)))
3690 return;
3691
3692 fattr->valid |= NFS_ATTR_FATTR_TYPE | NFS_ATTR_FATTR_MODE |
3693 NFS_ATTR_FATTR_NLINK;
3694 fattr->mode = S_IFDIR | S_IRUGO | S_IXUGO;
3695 fattr->nlink = 2;
3696 }
3697
3698 int nfs4_proc_fs_locations(struct inode *dir, const struct qstr *name,
3699 struct nfs4_fs_locations *fs_locations, struct page *page)
3700 {
3701 struct nfs_server *server = NFS_SERVER(dir);
3702 u32 bitmask[2] = {
3703 [0] = FATTR4_WORD0_FSID | FATTR4_WORD0_FS_LOCATIONS,
3704 [1] = FATTR4_WORD1_MOUNTED_ON_FILEID,
3705 };
3706 struct nfs4_fs_locations_arg args = {
3707 .dir_fh = NFS_FH(dir),
3708 .name = name,
3709 .page = page,
3710 .bitmask = bitmask,
3711 };
3712 struct rpc_message msg = {
3713 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS],
3714 .rpc_argp = &args,
3715 .rpc_resp = fs_locations,
3716 };
3717 int status;
3718
3719 dprintk("%s: start\n", __func__);
3720 nfs_fattr_init(&fs_locations->fattr);
3721 fs_locations->server = server;
3722 fs_locations->nlocations = 0;
3723 status = rpc_call_sync(server->client, &msg, 0);
3724 nfs_fixup_referral_attributes(&fs_locations->fattr);
3725 dprintk("%s: returned status = %d\n", __func__, status);
3726 return status;
3727 }
3728
3729 struct nfs4_state_recovery_ops nfs4_reboot_recovery_ops = {
3730 .owner_flag_bit = NFS_OWNER_RECLAIM_REBOOT,
3731 .state_flag_bit = NFS_STATE_RECLAIM_REBOOT,
3732 .recover_open = nfs4_open_reclaim,
3733 .recover_lock = nfs4_lock_reclaim,
3734 };
3735
3736 struct nfs4_state_recovery_ops nfs4_nograce_recovery_ops = {
3737 .owner_flag_bit = NFS_OWNER_RECLAIM_NOGRACE,
3738 .state_flag_bit = NFS_STATE_RECLAIM_NOGRACE,
3739 .recover_open = nfs4_open_expired,
3740 .recover_lock = nfs4_lock_expired,
3741 };
3742
3743 static const struct inode_operations nfs4_file_inode_operations = {
3744 .permission = nfs_permission,
3745 .getattr = nfs_getattr,
3746 .setattr = nfs_setattr,
3747 .getxattr = nfs4_getxattr,
3748 .setxattr = nfs4_setxattr,
3749 .listxattr = nfs4_listxattr,
3750 };
3751
3752 const struct nfs_rpc_ops nfs_v4_clientops = {
3753 .version = 4, /* protocol version */
3754 .dentry_ops = &nfs4_dentry_operations,
3755 .dir_inode_ops = &nfs4_dir_inode_operations,
3756 .file_inode_ops = &nfs4_file_inode_operations,
3757 .getroot = nfs4_proc_get_root,
3758 .getattr = nfs4_proc_getattr,
3759 .setattr = nfs4_proc_setattr,
3760 .lookupfh = nfs4_proc_lookupfh,
3761 .lookup = nfs4_proc_lookup,
3762 .access = nfs4_proc_access,
3763 .readlink = nfs4_proc_readlink,
3764 .create = nfs4_proc_create,
3765 .remove = nfs4_proc_remove,
3766 .unlink_setup = nfs4_proc_unlink_setup,
3767 .unlink_done = nfs4_proc_unlink_done,
3768 .rename = nfs4_proc_rename,
3769 .link = nfs4_proc_link,
3770 .symlink = nfs4_proc_symlink,
3771 .mkdir = nfs4_proc_mkdir,
3772 .rmdir = nfs4_proc_remove,
3773 .readdir = nfs4_proc_readdir,
3774 .mknod = nfs4_proc_mknod,
3775 .statfs = nfs4_proc_statfs,
3776 .fsinfo = nfs4_proc_fsinfo,
3777 .pathconf = nfs4_proc_pathconf,
3778 .set_capabilities = nfs4_server_capabilities,
3779 .decode_dirent = nfs4_decode_dirent,
3780 .read_setup = nfs4_proc_read_setup,
3781 .read_done = nfs4_read_done,
3782 .write_setup = nfs4_proc_write_setup,
3783 .write_done = nfs4_write_done,
3784 .commit_setup = nfs4_proc_commit_setup,
3785 .commit_done = nfs4_commit_done,
3786 .lock = nfs4_proc_lock,
3787 .clear_acl_cache = nfs4_zap_acl_attr,
3788 .close_context = nfs4_close_context,
3789 };
3790
3791 /*
3792 * Local variables:
3793 * c-basic-offset: 8
3794 * End:
3795 */