]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/nfs/nfs4proc.c
NFSv4: Reduce the chances of an open_owner identifier collision
[mirror_ubuntu-artful-kernel.git] / fs / nfs / nfs4proc.c
1 /*
2 * fs/nfs/nfs4proc.c
3 *
4 * Client-side procedure declarations for NFSv4.
5 *
6 * Copyright (c) 2002 The Regents of the University of Michigan.
7 * All rights reserved.
8 *
9 * Kendrick Smith <kmsmith@umich.edu>
10 * Andy Adamson <andros@umich.edu>
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 *
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #include <linux/mm.h>
39 #include <linux/utsname.h>
40 #include <linux/delay.h>
41 #include <linux/errno.h>
42 #include <linux/string.h>
43 #include <linux/sunrpc/clnt.h>
44 #include <linux/nfs.h>
45 #include <linux/nfs4.h>
46 #include <linux/nfs_fs.h>
47 #include <linux/nfs_page.h>
48 #include <linux/smp_lock.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51
52 #include "nfs4_fs.h"
53 #include "delegation.h"
54 #include "iostat.h"
55
56 #define NFSDBG_FACILITY NFSDBG_PROC
57
58 #define NFS4_POLL_RETRY_MIN (HZ/10)
59 #define NFS4_POLL_RETRY_MAX (15*HZ)
60
61 struct nfs4_opendata;
62 static int _nfs4_proc_open(struct nfs4_opendata *data);
63 static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *);
64 static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *);
65 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry);
66 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception);
67 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs_client *clp);
68
69 /* Prevent leaks of NFSv4 errors into userland */
70 int nfs4_map_errors(int err)
71 {
72 if (err < -1000) {
73 dprintk("%s could not handle NFSv4 error %d\n",
74 __FUNCTION__, -err);
75 return -EIO;
76 }
77 return err;
78 }
79
80 /*
81 * This is our standard bitmap for GETATTR requests.
82 */
83 const u32 nfs4_fattr_bitmap[2] = {
84 FATTR4_WORD0_TYPE
85 | FATTR4_WORD0_CHANGE
86 | FATTR4_WORD0_SIZE
87 | FATTR4_WORD0_FSID
88 | FATTR4_WORD0_FILEID,
89 FATTR4_WORD1_MODE
90 | FATTR4_WORD1_NUMLINKS
91 | FATTR4_WORD1_OWNER
92 | FATTR4_WORD1_OWNER_GROUP
93 | FATTR4_WORD1_RAWDEV
94 | FATTR4_WORD1_SPACE_USED
95 | FATTR4_WORD1_TIME_ACCESS
96 | FATTR4_WORD1_TIME_METADATA
97 | FATTR4_WORD1_TIME_MODIFY
98 };
99
100 const u32 nfs4_statfs_bitmap[2] = {
101 FATTR4_WORD0_FILES_AVAIL
102 | FATTR4_WORD0_FILES_FREE
103 | FATTR4_WORD0_FILES_TOTAL,
104 FATTR4_WORD1_SPACE_AVAIL
105 | FATTR4_WORD1_SPACE_FREE
106 | FATTR4_WORD1_SPACE_TOTAL
107 };
108
109 const u32 nfs4_pathconf_bitmap[2] = {
110 FATTR4_WORD0_MAXLINK
111 | FATTR4_WORD0_MAXNAME,
112 0
113 };
114
115 const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE
116 | FATTR4_WORD0_MAXREAD
117 | FATTR4_WORD0_MAXWRITE
118 | FATTR4_WORD0_LEASE_TIME,
119 0
120 };
121
122 const u32 nfs4_fs_locations_bitmap[2] = {
123 FATTR4_WORD0_TYPE
124 | FATTR4_WORD0_CHANGE
125 | FATTR4_WORD0_SIZE
126 | FATTR4_WORD0_FSID
127 | FATTR4_WORD0_FILEID
128 | FATTR4_WORD0_FS_LOCATIONS,
129 FATTR4_WORD1_MODE
130 | FATTR4_WORD1_NUMLINKS
131 | FATTR4_WORD1_OWNER
132 | FATTR4_WORD1_OWNER_GROUP
133 | FATTR4_WORD1_RAWDEV
134 | FATTR4_WORD1_SPACE_USED
135 | FATTR4_WORD1_TIME_ACCESS
136 | FATTR4_WORD1_TIME_METADATA
137 | FATTR4_WORD1_TIME_MODIFY
138 | FATTR4_WORD1_MOUNTED_ON_FILEID
139 };
140
141 static void nfs4_setup_readdir(u64 cookie, __be32 *verifier, struct dentry *dentry,
142 struct nfs4_readdir_arg *readdir)
143 {
144 __be32 *start, *p;
145
146 BUG_ON(readdir->count < 80);
147 if (cookie > 2) {
148 readdir->cookie = cookie;
149 memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier));
150 return;
151 }
152
153 readdir->cookie = 0;
154 memset(&readdir->verifier, 0, sizeof(readdir->verifier));
155 if (cookie == 2)
156 return;
157
158 /*
159 * NFSv4 servers do not return entries for '.' and '..'
160 * Therefore, we fake these entries here. We let '.'
161 * have cookie 0 and '..' have cookie 1. Note that
162 * when talking to the server, we always send cookie 0
163 * instead of 1 or 2.
164 */
165 start = p = kmap_atomic(*readdir->pages, KM_USER0);
166
167 if (cookie == 0) {
168 *p++ = xdr_one; /* next */
169 *p++ = xdr_zero; /* cookie, first word */
170 *p++ = xdr_one; /* cookie, second word */
171 *p++ = xdr_one; /* entry len */
172 memcpy(p, ".\0\0\0", 4); /* entry */
173 p++;
174 *p++ = xdr_one; /* bitmap length */
175 *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */
176 *p++ = htonl(8); /* attribute buffer length */
177 p = xdr_encode_hyper(p, dentry->d_inode->i_ino);
178 }
179
180 *p++ = xdr_one; /* next */
181 *p++ = xdr_zero; /* cookie, first word */
182 *p++ = xdr_two; /* cookie, second word */
183 *p++ = xdr_two; /* entry len */
184 memcpy(p, "..\0\0", 4); /* entry */
185 p++;
186 *p++ = xdr_one; /* bitmap length */
187 *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */
188 *p++ = htonl(8); /* attribute buffer length */
189 p = xdr_encode_hyper(p, dentry->d_parent->d_inode->i_ino);
190
191 readdir->pgbase = (char *)p - (char *)start;
192 readdir->count -= readdir->pgbase;
193 kunmap_atomic(start, KM_USER0);
194 }
195
196 static void renew_lease(const struct nfs_server *server, unsigned long timestamp)
197 {
198 struct nfs_client *clp = server->nfs_client;
199 spin_lock(&clp->cl_lock);
200 if (time_before(clp->cl_last_renewal,timestamp))
201 clp->cl_last_renewal = timestamp;
202 spin_unlock(&clp->cl_lock);
203 }
204
205 static void update_changeattr(struct inode *dir, struct nfs4_change_info *cinfo)
206 {
207 struct nfs_inode *nfsi = NFS_I(dir);
208
209 spin_lock(&dir->i_lock);
210 nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA;
211 if (cinfo->before == nfsi->change_attr && cinfo->atomic)
212 nfsi->change_attr = cinfo->after;
213 spin_unlock(&dir->i_lock);
214 }
215
216 struct nfs4_opendata {
217 struct kref kref;
218 struct nfs_openargs o_arg;
219 struct nfs_openres o_res;
220 struct nfs_open_confirmargs c_arg;
221 struct nfs_open_confirmres c_res;
222 struct nfs_fattr f_attr;
223 struct nfs_fattr dir_attr;
224 struct path path;
225 struct dentry *dir;
226 struct nfs4_state_owner *owner;
227 struct iattr attrs;
228 unsigned long timestamp;
229 int rpc_status;
230 int cancelled;
231 };
232
233 static struct nfs4_opendata *nfs4_opendata_alloc(struct path *path,
234 struct nfs4_state_owner *sp, int flags,
235 const struct iattr *attrs)
236 {
237 struct dentry *parent = dget_parent(path->dentry);
238 struct inode *dir = parent->d_inode;
239 struct nfs_server *server = NFS_SERVER(dir);
240 struct nfs4_opendata *p;
241
242 p = kzalloc(sizeof(*p), GFP_KERNEL);
243 if (p == NULL)
244 goto err;
245 p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
246 if (p->o_arg.seqid == NULL)
247 goto err_free;
248 p->path.mnt = mntget(path->mnt);
249 p->path.dentry = dget(path->dentry);
250 p->dir = parent;
251 p->owner = sp;
252 atomic_inc(&sp->so_count);
253 p->o_arg.fh = NFS_FH(dir);
254 p->o_arg.open_flags = flags,
255 p->o_arg.clientid = server->nfs_client->cl_clientid;
256 p->o_arg.id = sp->so_owner_id.id;
257 p->o_arg.name = &p->path.dentry->d_name;
258 p->o_arg.server = server;
259 p->o_arg.bitmask = server->attr_bitmask;
260 p->o_arg.claim = NFS4_OPEN_CLAIM_NULL;
261 p->o_res.f_attr = &p->f_attr;
262 p->o_res.dir_attr = &p->dir_attr;
263 p->o_res.server = server;
264 nfs_fattr_init(&p->f_attr);
265 nfs_fattr_init(&p->dir_attr);
266 if (flags & O_EXCL) {
267 u32 *s = (u32 *) p->o_arg.u.verifier.data;
268 s[0] = jiffies;
269 s[1] = current->pid;
270 } else if (flags & O_CREAT) {
271 p->o_arg.u.attrs = &p->attrs;
272 memcpy(&p->attrs, attrs, sizeof(p->attrs));
273 }
274 p->c_arg.fh = &p->o_res.fh;
275 p->c_arg.stateid = &p->o_res.stateid;
276 p->c_arg.seqid = p->o_arg.seqid;
277 kref_init(&p->kref);
278 return p;
279 err_free:
280 kfree(p);
281 err:
282 dput(parent);
283 return NULL;
284 }
285
286 static void nfs4_opendata_free(struct kref *kref)
287 {
288 struct nfs4_opendata *p = container_of(kref,
289 struct nfs4_opendata, kref);
290
291 nfs_free_seqid(p->o_arg.seqid);
292 nfs4_put_state_owner(p->owner);
293 dput(p->dir);
294 dput(p->path.dentry);
295 mntput(p->path.mnt);
296 kfree(p);
297 }
298
299 static void nfs4_opendata_put(struct nfs4_opendata *p)
300 {
301 if (p != NULL)
302 kref_put(&p->kref, nfs4_opendata_free);
303 }
304
305 static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task)
306 {
307 sigset_t oldset;
308 int ret;
309
310 rpc_clnt_sigmask(task->tk_client, &oldset);
311 ret = rpc_wait_for_completion_task(task);
312 rpc_clnt_sigunmask(task->tk_client, &oldset);
313 return ret;
314 }
315
316 static inline void update_open_stateflags(struct nfs4_state *state, mode_t open_flags)
317 {
318 switch (open_flags) {
319 case FMODE_WRITE:
320 state->n_wronly++;
321 break;
322 case FMODE_READ:
323 state->n_rdonly++;
324 break;
325 case FMODE_READ|FMODE_WRITE:
326 state->n_rdwr++;
327 }
328 }
329
330 static void update_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags)
331 {
332 struct inode *inode = state->inode;
333
334 open_flags &= (FMODE_READ|FMODE_WRITE);
335 /* Protect against nfs4_find_state_byowner() */
336 spin_lock(&state->owner->so_lock);
337 spin_lock(&inode->i_lock);
338 memcpy(&state->stateid, stateid, sizeof(state->stateid));
339 update_open_stateflags(state, open_flags);
340 nfs4_state_set_mode_locked(state, state->state | open_flags);
341 spin_unlock(&inode->i_lock);
342 spin_unlock(&state->owner->so_lock);
343 }
344
345 static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data)
346 {
347 struct inode *inode;
348 struct nfs4_state *state = NULL;
349
350 if (!(data->f_attr.valid & NFS_ATTR_FATTR))
351 goto out;
352 inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr);
353 if (IS_ERR(inode))
354 goto out;
355 state = nfs4_get_open_state(inode, data->owner);
356 if (state == NULL)
357 goto put_inode;
358 update_open_stateid(state, &data->o_res.stateid, data->o_arg.open_flags);
359 put_inode:
360 iput(inode);
361 out:
362 return state;
363 }
364
365 static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state)
366 {
367 struct nfs_inode *nfsi = NFS_I(state->inode);
368 struct nfs_open_context *ctx;
369
370 spin_lock(&state->inode->i_lock);
371 list_for_each_entry(ctx, &nfsi->open_files, list) {
372 if (ctx->state != state)
373 continue;
374 get_nfs_open_context(ctx);
375 spin_unlock(&state->inode->i_lock);
376 return ctx;
377 }
378 spin_unlock(&state->inode->i_lock);
379 return ERR_PTR(-ENOENT);
380 }
381
382 static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, mode_t openflags, nfs4_stateid *stateid)
383 {
384 int ret;
385
386 opendata->o_arg.open_flags = openflags;
387 ret = _nfs4_proc_open(opendata);
388 if (ret != 0)
389 return ret;
390 memcpy(stateid->data, opendata->o_res.stateid.data,
391 sizeof(stateid->data));
392 return 0;
393 }
394
395 static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state)
396 {
397 nfs4_stateid stateid;
398 struct nfs4_state *newstate;
399 int mode = 0;
400 int delegation = 0;
401 int ret;
402
403 /* memory barrier prior to reading state->n_* */
404 smp_rmb();
405 if (state->n_rdwr != 0) {
406 ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &stateid);
407 if (ret != 0)
408 return ret;
409 mode |= FMODE_READ|FMODE_WRITE;
410 if (opendata->o_res.delegation_type != 0)
411 delegation = opendata->o_res.delegation_type;
412 smp_rmb();
413 }
414 if (state->n_wronly != 0) {
415 ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &stateid);
416 if (ret != 0)
417 return ret;
418 mode |= FMODE_WRITE;
419 if (opendata->o_res.delegation_type != 0)
420 delegation = opendata->o_res.delegation_type;
421 smp_rmb();
422 }
423 if (state->n_rdonly != 0) {
424 ret = nfs4_open_recover_helper(opendata, FMODE_READ, &stateid);
425 if (ret != 0)
426 return ret;
427 mode |= FMODE_READ;
428 }
429 clear_bit(NFS_DELEGATED_STATE, &state->flags);
430 if (mode == 0)
431 return 0;
432 if (opendata->o_res.delegation_type == 0)
433 opendata->o_res.delegation_type = delegation;
434 opendata->o_arg.open_flags |= mode;
435 newstate = nfs4_opendata_to_nfs4_state(opendata);
436 if (newstate != NULL) {
437 if (opendata->o_res.delegation_type != 0) {
438 struct nfs_inode *nfsi = NFS_I(newstate->inode);
439 int delegation_flags = 0;
440 if (nfsi->delegation)
441 delegation_flags = nfsi->delegation->flags;
442 if (!(delegation_flags & NFS_DELEGATION_NEED_RECLAIM))
443 nfs_inode_set_delegation(newstate->inode,
444 opendata->owner->so_cred,
445 &opendata->o_res);
446 else
447 nfs_inode_reclaim_delegation(newstate->inode,
448 opendata->owner->so_cred,
449 &opendata->o_res);
450 }
451 nfs4_close_state(&opendata->path, newstate, opendata->o_arg.open_flags);
452 }
453 if (newstate != state)
454 return -ESTALE;
455 return 0;
456 }
457
458 /*
459 * OPEN_RECLAIM:
460 * reclaim state on the server after a reboot.
461 */
462 static int _nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state)
463 {
464 struct nfs_delegation *delegation = NFS_I(state->inode)->delegation;
465 struct nfs4_opendata *opendata;
466 int delegation_type = 0;
467 int status;
468
469 if (delegation != NULL) {
470 if (!(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
471 memcpy(&state->stateid, &delegation->stateid,
472 sizeof(state->stateid));
473 set_bit(NFS_DELEGATED_STATE, &state->flags);
474 return 0;
475 }
476 delegation_type = delegation->type;
477 }
478 opendata = nfs4_opendata_alloc(&ctx->path, state->owner, 0, NULL);
479 if (opendata == NULL)
480 return -ENOMEM;
481 opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS;
482 opendata->o_arg.fh = NFS_FH(state->inode);
483 nfs_copy_fh(&opendata->o_res.fh, opendata->o_arg.fh);
484 opendata->o_arg.u.delegation_type = delegation_type;
485 status = nfs4_open_recover(opendata, state);
486 nfs4_opendata_put(opendata);
487 return status;
488 }
489
490 static int nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state)
491 {
492 struct nfs_server *server = NFS_SERVER(state->inode);
493 struct nfs4_exception exception = { };
494 int err;
495 do {
496 err = _nfs4_do_open_reclaim(ctx, state);
497 if (err != -NFS4ERR_DELAY)
498 break;
499 nfs4_handle_exception(server, err, &exception);
500 } while (exception.retry);
501 return err;
502 }
503
504 static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
505 {
506 struct nfs_open_context *ctx;
507 int ret;
508
509 ctx = nfs4_state_find_open_context(state);
510 if (IS_ERR(ctx))
511 return PTR_ERR(ctx);
512 ret = nfs4_do_open_reclaim(ctx, state);
513 put_nfs_open_context(ctx);
514 return ret;
515 }
516
517 static int _nfs4_open_delegation_recall(struct nfs_open_context *ctx, struct nfs4_state *state)
518 {
519 struct nfs4_state_owner *sp = state->owner;
520 struct nfs4_opendata *opendata;
521 int ret;
522
523 if (!test_bit(NFS_DELEGATED_STATE, &state->flags))
524 return 0;
525 opendata = nfs4_opendata_alloc(&ctx->path, sp, 0, NULL);
526 if (opendata == NULL)
527 return -ENOMEM;
528 opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR;
529 memcpy(opendata->o_arg.u.delegation.data, state->stateid.data,
530 sizeof(opendata->o_arg.u.delegation.data));
531 ret = nfs4_open_recover(opendata, state);
532 nfs4_opendata_put(opendata);
533 return ret;
534 }
535
536 int nfs4_open_delegation_recall(struct nfs_open_context *ctx, struct nfs4_state *state)
537 {
538 struct nfs4_exception exception = { };
539 struct nfs_server *server = NFS_SERVER(state->inode);
540 int err;
541 do {
542 err = _nfs4_open_delegation_recall(ctx, state);
543 switch (err) {
544 case 0:
545 return err;
546 case -NFS4ERR_STALE_CLIENTID:
547 case -NFS4ERR_STALE_STATEID:
548 case -NFS4ERR_EXPIRED:
549 /* Don't recall a delegation if it was lost */
550 nfs4_schedule_state_recovery(server->nfs_client);
551 return err;
552 }
553 err = nfs4_handle_exception(server, err, &exception);
554 } while (exception.retry);
555 return err;
556 }
557
558 static void nfs4_open_confirm_prepare(struct rpc_task *task, void *calldata)
559 {
560 struct nfs4_opendata *data = calldata;
561 struct rpc_message msg = {
562 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM],
563 .rpc_argp = &data->c_arg,
564 .rpc_resp = &data->c_res,
565 .rpc_cred = data->owner->so_cred,
566 };
567 data->timestamp = jiffies;
568 rpc_call_setup(task, &msg, 0);
569 }
570
571 static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata)
572 {
573 struct nfs4_opendata *data = calldata;
574
575 data->rpc_status = task->tk_status;
576 if (RPC_ASSASSINATED(task))
577 return;
578 if (data->rpc_status == 0) {
579 memcpy(data->o_res.stateid.data, data->c_res.stateid.data,
580 sizeof(data->o_res.stateid.data));
581 renew_lease(data->o_res.server, data->timestamp);
582 }
583 nfs_increment_open_seqid(data->rpc_status, data->c_arg.seqid);
584 nfs_confirm_seqid(&data->owner->so_seqid, data->rpc_status);
585 }
586
587 static void nfs4_open_confirm_release(void *calldata)
588 {
589 struct nfs4_opendata *data = calldata;
590 struct nfs4_state *state = NULL;
591
592 /* If this request hasn't been cancelled, do nothing */
593 if (data->cancelled == 0)
594 goto out_free;
595 /* In case of error, no cleanup! */
596 if (data->rpc_status != 0)
597 goto out_free;
598 nfs_confirm_seqid(&data->owner->so_seqid, 0);
599 state = nfs4_opendata_to_nfs4_state(data);
600 if (state != NULL)
601 nfs4_close_state(&data->path, state, data->o_arg.open_flags);
602 out_free:
603 nfs4_opendata_put(data);
604 }
605
606 static const struct rpc_call_ops nfs4_open_confirm_ops = {
607 .rpc_call_prepare = nfs4_open_confirm_prepare,
608 .rpc_call_done = nfs4_open_confirm_done,
609 .rpc_release = nfs4_open_confirm_release,
610 };
611
612 /*
613 * Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata
614 */
615 static int _nfs4_proc_open_confirm(struct nfs4_opendata *data)
616 {
617 struct nfs_server *server = NFS_SERVER(data->dir->d_inode);
618 struct rpc_task *task;
619 int status;
620
621 kref_get(&data->kref);
622 /*
623 * If rpc_run_task() ends up calling ->rpc_release(), we
624 * want to ensure that it takes the 'error' code path.
625 */
626 data->rpc_status = -ENOMEM;
627 task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_confirm_ops, data);
628 if (IS_ERR(task))
629 return PTR_ERR(task);
630 status = nfs4_wait_for_completion_rpc_task(task);
631 if (status != 0) {
632 data->cancelled = 1;
633 smp_wmb();
634 } else
635 status = data->rpc_status;
636 rpc_put_task(task);
637 return status;
638 }
639
640 static void nfs4_open_prepare(struct rpc_task *task, void *calldata)
641 {
642 struct nfs4_opendata *data = calldata;
643 struct nfs4_state_owner *sp = data->owner;
644 struct rpc_message msg = {
645 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN],
646 .rpc_argp = &data->o_arg,
647 .rpc_resp = &data->o_res,
648 .rpc_cred = sp->so_cred,
649 };
650
651 if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0)
652 return;
653 /* Update sequence id. */
654 data->o_arg.id = sp->so_owner_id.id;
655 data->o_arg.clientid = sp->so_client->cl_clientid;
656 if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS)
657 msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR];
658 data->timestamp = jiffies;
659 rpc_call_setup(task, &msg, 0);
660 }
661
662 static void nfs4_open_done(struct rpc_task *task, void *calldata)
663 {
664 struct nfs4_opendata *data = calldata;
665
666 data->rpc_status = task->tk_status;
667 if (RPC_ASSASSINATED(task))
668 return;
669 if (task->tk_status == 0) {
670 switch (data->o_res.f_attr->mode & S_IFMT) {
671 case S_IFREG:
672 break;
673 case S_IFLNK:
674 data->rpc_status = -ELOOP;
675 break;
676 case S_IFDIR:
677 data->rpc_status = -EISDIR;
678 break;
679 default:
680 data->rpc_status = -ENOTDIR;
681 }
682 renew_lease(data->o_res.server, data->timestamp);
683 }
684 nfs_increment_open_seqid(data->rpc_status, data->o_arg.seqid);
685 }
686
687 static void nfs4_open_release(void *calldata)
688 {
689 struct nfs4_opendata *data = calldata;
690 struct nfs4_state *state = NULL;
691
692 /* If this request hasn't been cancelled, do nothing */
693 if (data->cancelled == 0)
694 goto out_free;
695 /* In case of error, no cleanup! */
696 if (data->rpc_status != 0)
697 goto out_free;
698 /* In case we need an open_confirm, no cleanup! */
699 if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)
700 goto out_free;
701 nfs_confirm_seqid(&data->owner->so_seqid, 0);
702 state = nfs4_opendata_to_nfs4_state(data);
703 if (state != NULL)
704 nfs4_close_state(&data->path, state, data->o_arg.open_flags);
705 out_free:
706 nfs4_opendata_put(data);
707 }
708
709 static const struct rpc_call_ops nfs4_open_ops = {
710 .rpc_call_prepare = nfs4_open_prepare,
711 .rpc_call_done = nfs4_open_done,
712 .rpc_release = nfs4_open_release,
713 };
714
715 /*
716 * Note: On error, nfs4_proc_open will free the struct nfs4_opendata
717 */
718 static int _nfs4_proc_open(struct nfs4_opendata *data)
719 {
720 struct inode *dir = data->dir->d_inode;
721 struct nfs_server *server = NFS_SERVER(dir);
722 struct nfs_openargs *o_arg = &data->o_arg;
723 struct nfs_openres *o_res = &data->o_res;
724 struct rpc_task *task;
725 int status;
726
727 kref_get(&data->kref);
728 /*
729 * If rpc_run_task() ends up calling ->rpc_release(), we
730 * want to ensure that it takes the 'error' code path.
731 */
732 data->rpc_status = -ENOMEM;
733 task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_ops, data);
734 if (IS_ERR(task))
735 return PTR_ERR(task);
736 status = nfs4_wait_for_completion_rpc_task(task);
737 if (status != 0) {
738 data->cancelled = 1;
739 smp_wmb();
740 } else
741 status = data->rpc_status;
742 rpc_put_task(task);
743 if (status != 0)
744 return status;
745
746 if (o_arg->open_flags & O_CREAT) {
747 update_changeattr(dir, &o_res->cinfo);
748 nfs_post_op_update_inode(dir, o_res->dir_attr);
749 } else
750 nfs_refresh_inode(dir, o_res->dir_attr);
751 if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
752 status = _nfs4_proc_open_confirm(data);
753 if (status != 0)
754 return status;
755 }
756 nfs_confirm_seqid(&data->owner->so_seqid, 0);
757 if (!(o_res->f_attr->valid & NFS_ATTR_FATTR))
758 return server->nfs_client->rpc_ops->getattr(server, &o_res->fh, o_res->f_attr);
759 return 0;
760 }
761
762 static int _nfs4_do_access(struct inode *inode, struct rpc_cred *cred, int openflags)
763 {
764 struct nfs_access_entry cache;
765 int mask = 0;
766 int status;
767
768 if (openflags & FMODE_READ)
769 mask |= MAY_READ;
770 if (openflags & FMODE_WRITE)
771 mask |= MAY_WRITE;
772 status = nfs_access_get_cached(inode, cred, &cache);
773 if (status == 0)
774 goto out;
775
776 /* Be clever: ask server to check for all possible rights */
777 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
778 cache.cred = cred;
779 cache.jiffies = jiffies;
780 status = _nfs4_proc_access(inode, &cache);
781 if (status != 0)
782 return status;
783 nfs_access_add_cache(inode, &cache);
784 out:
785 if ((cache.mask & mask) == mask)
786 return 0;
787 return -EACCES;
788 }
789
790 static int nfs4_recover_expired_lease(struct nfs_server *server)
791 {
792 struct nfs_client *clp = server->nfs_client;
793 int ret;
794
795 for (;;) {
796 ret = nfs4_wait_clnt_recover(server->client, clp);
797 if (ret != 0)
798 return ret;
799 if (!test_and_clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state))
800 break;
801 nfs4_schedule_state_recovery(clp);
802 }
803 return 0;
804 }
805
806 /*
807 * OPEN_EXPIRED:
808 * reclaim state on the server after a network partition.
809 * Assumes caller holds the appropriate lock
810 */
811 static int _nfs4_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state)
812 {
813 struct inode *inode = state->inode;
814 struct nfs_delegation *delegation = NFS_I(inode)->delegation;
815 struct nfs4_opendata *opendata;
816 int openflags = state->state & (FMODE_READ|FMODE_WRITE);
817 int ret;
818
819 if (delegation != NULL && !(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
820 ret = _nfs4_do_access(inode, ctx->cred, openflags);
821 if (ret < 0)
822 return ret;
823 memcpy(&state->stateid, &delegation->stateid, sizeof(state->stateid));
824 set_bit(NFS_DELEGATED_STATE, &state->flags);
825 return 0;
826 }
827 opendata = nfs4_opendata_alloc(&ctx->path, state->owner, openflags, NULL);
828 if (opendata == NULL)
829 return -ENOMEM;
830 ret = nfs4_open_recover(opendata, state);
831 if (ret == -ESTALE) {
832 /* Invalidate the state owner so we don't ever use it again */
833 nfs4_drop_state_owner(state->owner);
834 d_drop(ctx->path.dentry);
835 }
836 nfs4_opendata_put(opendata);
837 return ret;
838 }
839
840 static inline int nfs4_do_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state)
841 {
842 struct nfs_server *server = NFS_SERVER(state->inode);
843 struct nfs4_exception exception = { };
844 int err;
845
846 do {
847 err = _nfs4_open_expired(ctx, state);
848 if (err == -NFS4ERR_DELAY)
849 nfs4_handle_exception(server, err, &exception);
850 } while (exception.retry);
851 return err;
852 }
853
854 static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
855 {
856 struct nfs_open_context *ctx;
857 int ret;
858
859 ctx = nfs4_state_find_open_context(state);
860 if (IS_ERR(ctx))
861 return PTR_ERR(ctx);
862 ret = nfs4_do_open_expired(ctx, state);
863 put_nfs_open_context(ctx);
864 return ret;
865 }
866
867 /*
868 * Returns a referenced nfs4_state if there is an open delegation on the file
869 */
870 static int _nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred, struct nfs4_state **res)
871 {
872 struct nfs_delegation *delegation;
873 struct nfs_server *server = NFS_SERVER(inode);
874 struct nfs_client *clp = server->nfs_client;
875 struct nfs_inode *nfsi = NFS_I(inode);
876 struct nfs4_state_owner *sp = NULL;
877 struct nfs4_state *state = NULL;
878 int open_flags = flags & (FMODE_READ|FMODE_WRITE);
879 int err;
880
881 err = -ENOMEM;
882 if (!(sp = nfs4_get_state_owner(server, cred))) {
883 dprintk("%s: nfs4_get_state_owner failed!\n", __FUNCTION__);
884 return err;
885 }
886 err = nfs4_recover_expired_lease(server);
887 if (err != 0)
888 goto out_put_state_owner;
889 /* Protect against reboot recovery - NOTE ORDER! */
890 down_read(&clp->cl_sem);
891 /* Protect against delegation recall */
892 down_read(&nfsi->rwsem);
893 delegation = NFS_I(inode)->delegation;
894 err = -ENOENT;
895 if (delegation == NULL || (delegation->type & open_flags) != open_flags)
896 goto out_err;
897 err = -ENOMEM;
898 state = nfs4_get_open_state(inode, sp);
899 if (state == NULL)
900 goto out_err;
901
902 err = -ENOENT;
903 if ((state->state & open_flags) == open_flags) {
904 spin_lock(&inode->i_lock);
905 update_open_stateflags(state, open_flags);
906 spin_unlock(&inode->i_lock);
907 goto out_ok;
908 } else if (state->state != 0)
909 goto out_put_open_state;
910
911 lock_kernel();
912 err = _nfs4_do_access(inode, cred, open_flags);
913 unlock_kernel();
914 if (err != 0)
915 goto out_put_open_state;
916 set_bit(NFS_DELEGATED_STATE, &state->flags);
917 update_open_stateid(state, &delegation->stateid, open_flags);
918 out_ok:
919 nfs4_put_state_owner(sp);
920 up_read(&nfsi->rwsem);
921 up_read(&clp->cl_sem);
922 *res = state;
923 return 0;
924 out_put_open_state:
925 nfs4_put_open_state(state);
926 out_err:
927 up_read(&nfsi->rwsem);
928 up_read(&clp->cl_sem);
929 if (err != -EACCES)
930 nfs_inode_return_delegation(inode);
931 out_put_state_owner:
932 nfs4_put_state_owner(sp);
933 return err;
934 }
935
936 static struct nfs4_state *nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred)
937 {
938 struct nfs4_exception exception = { };
939 struct nfs4_state *res = ERR_PTR(-EIO);
940 int err;
941
942 do {
943 err = _nfs4_open_delegated(inode, flags, cred, &res);
944 if (err == 0)
945 break;
946 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(inode),
947 err, &exception));
948 } while (exception.retry);
949 return res;
950 }
951
952 /*
953 * on an EXCLUSIVE create, the server should send back a bitmask with FATTR4-*
954 * fields corresponding to attributes that were used to store the verifier.
955 * Make sure we clobber those fields in the later setattr call
956 */
957 static inline void nfs4_exclusive_attrset(struct nfs4_opendata *opendata, struct iattr *sattr)
958 {
959 if ((opendata->o_res.attrset[1] & FATTR4_WORD1_TIME_ACCESS) &&
960 !(sattr->ia_valid & ATTR_ATIME_SET))
961 sattr->ia_valid |= ATTR_ATIME;
962
963 if ((opendata->o_res.attrset[1] & FATTR4_WORD1_TIME_MODIFY) &&
964 !(sattr->ia_valid & ATTR_MTIME_SET))
965 sattr->ia_valid |= ATTR_MTIME;
966 }
967
968 /*
969 * Returns a referenced nfs4_state
970 */
971 static int _nfs4_do_open(struct inode *dir, struct path *path, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res)
972 {
973 struct nfs4_state_owner *sp;
974 struct nfs4_state *state = NULL;
975 struct nfs_server *server = NFS_SERVER(dir);
976 struct nfs_client *clp = server->nfs_client;
977 struct nfs4_opendata *opendata;
978 int status;
979
980 /* Protect against reboot recovery conflicts */
981 status = -ENOMEM;
982 if (!(sp = nfs4_get_state_owner(server, cred))) {
983 dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n");
984 goto out_err;
985 }
986 status = nfs4_recover_expired_lease(server);
987 if (status != 0)
988 goto err_put_state_owner;
989 down_read(&clp->cl_sem);
990 status = -ENOMEM;
991 opendata = nfs4_opendata_alloc(path, sp, flags, sattr);
992 if (opendata == NULL)
993 goto err_release_rwsem;
994
995 status = _nfs4_proc_open(opendata);
996 if (status != 0)
997 goto err_opendata_put;
998
999 if (opendata->o_arg.open_flags & O_EXCL)
1000 nfs4_exclusive_attrset(opendata, sattr);
1001
1002 status = -ENOMEM;
1003 state = nfs4_opendata_to_nfs4_state(opendata);
1004 if (state == NULL)
1005 goto err_opendata_put;
1006 if (opendata->o_res.delegation_type != 0)
1007 nfs_inode_set_delegation(state->inode, cred, &opendata->o_res);
1008 nfs4_opendata_put(opendata);
1009 nfs4_put_state_owner(sp);
1010 up_read(&clp->cl_sem);
1011 *res = state;
1012 return 0;
1013 err_opendata_put:
1014 nfs4_opendata_put(opendata);
1015 err_release_rwsem:
1016 up_read(&clp->cl_sem);
1017 err_put_state_owner:
1018 nfs4_put_state_owner(sp);
1019 out_err:
1020 *res = NULL;
1021 return status;
1022 }
1023
1024
1025 static struct nfs4_state *nfs4_do_open(struct inode *dir, struct path *path, int flags, struct iattr *sattr, struct rpc_cred *cred)
1026 {
1027 struct nfs4_exception exception = { };
1028 struct nfs4_state *res;
1029 int status;
1030
1031 do {
1032 status = _nfs4_do_open(dir, path, flags, sattr, cred, &res);
1033 if (status == 0)
1034 break;
1035 /* NOTE: BAD_SEQID means the server and client disagree about the
1036 * book-keeping w.r.t. state-changing operations
1037 * (OPEN/CLOSE/LOCK/LOCKU...)
1038 * It is actually a sign of a bug on the client or on the server.
1039 *
1040 * If we receive a BAD_SEQID error in the particular case of
1041 * doing an OPEN, we assume that nfs_increment_open_seqid() will
1042 * have unhashed the old state_owner for us, and that we can
1043 * therefore safely retry using a new one. We should still warn
1044 * the user though...
1045 */
1046 if (status == -NFS4ERR_BAD_SEQID) {
1047 printk(KERN_WARNING "NFS: v4 server returned a bad sequence-id error!\n");
1048 exception.retry = 1;
1049 continue;
1050 }
1051 /*
1052 * BAD_STATEID on OPEN means that the server cancelled our
1053 * state before it received the OPEN_CONFIRM.
1054 * Recover by retrying the request as per the discussion
1055 * on Page 181 of RFC3530.
1056 */
1057 if (status == -NFS4ERR_BAD_STATEID) {
1058 exception.retry = 1;
1059 continue;
1060 }
1061 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir),
1062 status, &exception));
1063 } while (exception.retry);
1064 return res;
1065 }
1066
1067 static int _nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1068 struct iattr *sattr, struct nfs4_state *state)
1069 {
1070 struct nfs_server *server = NFS_SERVER(inode);
1071 struct nfs_setattrargs arg = {
1072 .fh = NFS_FH(inode),
1073 .iap = sattr,
1074 .server = server,
1075 .bitmask = server->attr_bitmask,
1076 };
1077 struct nfs_setattrres res = {
1078 .fattr = fattr,
1079 .server = server,
1080 };
1081 struct rpc_message msg = {
1082 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
1083 .rpc_argp = &arg,
1084 .rpc_resp = &res,
1085 };
1086 unsigned long timestamp = jiffies;
1087 int status;
1088
1089 nfs_fattr_init(fattr);
1090
1091 if (nfs4_copy_delegation_stateid(&arg.stateid, inode)) {
1092 /* Use that stateid */
1093 } else if (state != NULL) {
1094 msg.rpc_cred = state->owner->so_cred;
1095 nfs4_copy_stateid(&arg.stateid, state, current->files);
1096 } else
1097 memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid));
1098
1099 status = rpc_call_sync(server->client, &msg, 0);
1100 if (status == 0 && state != NULL)
1101 renew_lease(server, timestamp);
1102 return status;
1103 }
1104
1105 static int nfs4_do_setattr(struct inode *inode, struct nfs_fattr *fattr,
1106 struct iattr *sattr, struct nfs4_state *state)
1107 {
1108 struct nfs_server *server = NFS_SERVER(inode);
1109 struct nfs4_exception exception = { };
1110 int err;
1111 do {
1112 err = nfs4_handle_exception(server,
1113 _nfs4_do_setattr(inode, fattr, sattr, state),
1114 &exception);
1115 } while (exception.retry);
1116 return err;
1117 }
1118
1119 struct nfs4_closedata {
1120 struct path path;
1121 struct inode *inode;
1122 struct nfs4_state *state;
1123 struct nfs_closeargs arg;
1124 struct nfs_closeres res;
1125 struct nfs_fattr fattr;
1126 unsigned long timestamp;
1127 };
1128
1129 static void nfs4_free_closedata(void *data)
1130 {
1131 struct nfs4_closedata *calldata = data;
1132 struct nfs4_state_owner *sp = calldata->state->owner;
1133
1134 nfs4_put_open_state(calldata->state);
1135 nfs_free_seqid(calldata->arg.seqid);
1136 nfs4_put_state_owner(sp);
1137 dput(calldata->path.dentry);
1138 mntput(calldata->path.mnt);
1139 kfree(calldata);
1140 }
1141
1142 static void nfs4_close_done(struct rpc_task *task, void *data)
1143 {
1144 struct nfs4_closedata *calldata = data;
1145 struct nfs4_state *state = calldata->state;
1146 struct nfs_server *server = NFS_SERVER(calldata->inode);
1147
1148 if (RPC_ASSASSINATED(task))
1149 return;
1150 /* hmm. we are done with the inode, and in the process of freeing
1151 * the state_owner. we keep this around to process errors
1152 */
1153 nfs_increment_open_seqid(task->tk_status, calldata->arg.seqid);
1154 switch (task->tk_status) {
1155 case 0:
1156 memcpy(&state->stateid, &calldata->res.stateid,
1157 sizeof(state->stateid));
1158 renew_lease(server, calldata->timestamp);
1159 break;
1160 case -NFS4ERR_STALE_STATEID:
1161 case -NFS4ERR_EXPIRED:
1162 break;
1163 default:
1164 if (nfs4_async_handle_error(task, server) == -EAGAIN) {
1165 rpc_restart_call(task);
1166 return;
1167 }
1168 }
1169 nfs_refresh_inode(calldata->inode, calldata->res.fattr);
1170 }
1171
1172 static void nfs4_close_prepare(struct rpc_task *task, void *data)
1173 {
1174 struct nfs4_closedata *calldata = data;
1175 struct nfs4_state *state = calldata->state;
1176 struct rpc_message msg = {
1177 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE],
1178 .rpc_argp = &calldata->arg,
1179 .rpc_resp = &calldata->res,
1180 .rpc_cred = state->owner->so_cred,
1181 };
1182 int mode = 0, old_mode;
1183
1184 if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
1185 return;
1186 /* Recalculate the new open mode in case someone reopened the file
1187 * while we were waiting in line to be scheduled.
1188 */
1189 spin_lock(&state->owner->so_lock);
1190 spin_lock(&calldata->inode->i_lock);
1191 mode = old_mode = state->state;
1192 if (state->n_rdwr == 0) {
1193 if (state->n_rdonly == 0)
1194 mode &= ~FMODE_READ;
1195 if (state->n_wronly == 0)
1196 mode &= ~FMODE_WRITE;
1197 }
1198 nfs4_state_set_mode_locked(state, mode);
1199 spin_unlock(&calldata->inode->i_lock);
1200 spin_unlock(&state->owner->so_lock);
1201 if (mode == old_mode || test_bit(NFS_DELEGATED_STATE, &state->flags)) {
1202 /* Note: exit _without_ calling nfs4_close_done */
1203 task->tk_action = NULL;
1204 return;
1205 }
1206 nfs_fattr_init(calldata->res.fattr);
1207 if (mode != 0)
1208 msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
1209 calldata->arg.open_flags = mode;
1210 calldata->timestamp = jiffies;
1211 rpc_call_setup(task, &msg, 0);
1212 }
1213
1214 static const struct rpc_call_ops nfs4_close_ops = {
1215 .rpc_call_prepare = nfs4_close_prepare,
1216 .rpc_call_done = nfs4_close_done,
1217 .rpc_release = nfs4_free_closedata,
1218 };
1219
1220 /*
1221 * It is possible for data to be read/written from a mem-mapped file
1222 * after the sys_close call (which hits the vfs layer as a flush).
1223 * This means that we can't safely call nfsv4 close on a file until
1224 * the inode is cleared. This in turn means that we are not good
1225 * NFSv4 citizens - we do not indicate to the server to update the file's
1226 * share state even when we are done with one of the three share
1227 * stateid's in the inode.
1228 *
1229 * NOTE: Caller must be holding the sp->so_owner semaphore!
1230 */
1231 int nfs4_do_close(struct path *path, struct nfs4_state *state)
1232 {
1233 struct nfs_server *server = NFS_SERVER(state->inode);
1234 struct nfs4_closedata *calldata;
1235 struct nfs4_state_owner *sp = state->owner;
1236 struct rpc_task *task;
1237 int status = -ENOMEM;
1238
1239 calldata = kmalloc(sizeof(*calldata), GFP_KERNEL);
1240 if (calldata == NULL)
1241 goto out;
1242 calldata->inode = state->inode;
1243 calldata->state = state;
1244 calldata->arg.fh = NFS_FH(state->inode);
1245 calldata->arg.stateid = &state->stateid;
1246 /* Serialization for the sequence id */
1247 calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid);
1248 if (calldata->arg.seqid == NULL)
1249 goto out_free_calldata;
1250 calldata->arg.bitmask = server->attr_bitmask;
1251 calldata->res.fattr = &calldata->fattr;
1252 calldata->res.server = server;
1253 calldata->path.mnt = mntget(path->mnt);
1254 calldata->path.dentry = dget(path->dentry);
1255
1256 task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_close_ops, calldata);
1257 if (IS_ERR(task))
1258 return PTR_ERR(task);
1259 rpc_put_task(task);
1260 return 0;
1261 out_free_calldata:
1262 kfree(calldata);
1263 out:
1264 nfs4_put_open_state(state);
1265 nfs4_put_state_owner(sp);
1266 return status;
1267 }
1268
1269 static int nfs4_intent_set_file(struct nameidata *nd, struct path *path, struct nfs4_state *state)
1270 {
1271 struct file *filp;
1272
1273 filp = lookup_instantiate_filp(nd, path->dentry, NULL);
1274 if (!IS_ERR(filp)) {
1275 struct nfs_open_context *ctx;
1276 ctx = (struct nfs_open_context *)filp->private_data;
1277 ctx->state = state;
1278 return 0;
1279 }
1280 nfs4_close_state(path, state, nd->intent.open.flags);
1281 return PTR_ERR(filp);
1282 }
1283
1284 struct dentry *
1285 nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1286 {
1287 struct path path = {
1288 .mnt = nd->mnt,
1289 .dentry = dentry,
1290 };
1291 struct iattr attr;
1292 struct rpc_cred *cred;
1293 struct nfs4_state *state;
1294 struct dentry *res;
1295
1296 if (nd->flags & LOOKUP_CREATE) {
1297 attr.ia_mode = nd->intent.open.create_mode;
1298 attr.ia_valid = ATTR_MODE;
1299 if (!IS_POSIXACL(dir))
1300 attr.ia_mode &= ~current->fs->umask;
1301 } else {
1302 attr.ia_valid = 0;
1303 BUG_ON(nd->intent.open.flags & O_CREAT);
1304 }
1305
1306 cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
1307 if (IS_ERR(cred))
1308 return (struct dentry *)cred;
1309 state = nfs4_do_open(dir, &path, nd->intent.open.flags, &attr, cred);
1310 put_rpccred(cred);
1311 if (IS_ERR(state)) {
1312 if (PTR_ERR(state) == -ENOENT)
1313 d_add(dentry, NULL);
1314 return (struct dentry *)state;
1315 }
1316 res = d_add_unique(dentry, igrab(state->inode));
1317 if (res != NULL)
1318 dentry = res;
1319 nfs4_intent_set_file(nd, &path, state);
1320 return res;
1321 }
1322
1323 int
1324 nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd)
1325 {
1326 struct path path = {
1327 .mnt = nd->mnt,
1328 .dentry = dentry,
1329 };
1330 struct rpc_cred *cred;
1331 struct nfs4_state *state;
1332
1333 cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
1334 if (IS_ERR(cred))
1335 return PTR_ERR(cred);
1336 state = nfs4_open_delegated(dentry->d_inode, openflags, cred);
1337 if (IS_ERR(state))
1338 state = nfs4_do_open(dir, &path, openflags, NULL, cred);
1339 put_rpccred(cred);
1340 if (IS_ERR(state)) {
1341 switch (PTR_ERR(state)) {
1342 case -EPERM:
1343 case -EACCES:
1344 case -EDQUOT:
1345 case -ENOSPC:
1346 case -EROFS:
1347 lookup_instantiate_filp(nd, (struct dentry *)state, NULL);
1348 return 1;
1349 default:
1350 goto out_drop;
1351 }
1352 }
1353 if (state->inode == dentry->d_inode) {
1354 nfs4_intent_set_file(nd, &path, state);
1355 return 1;
1356 }
1357 nfs4_close_state(&path, state, openflags);
1358 out_drop:
1359 d_drop(dentry);
1360 return 0;
1361 }
1362
1363
1364 static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1365 {
1366 struct nfs4_server_caps_res res = {};
1367 struct rpc_message msg = {
1368 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS],
1369 .rpc_argp = fhandle,
1370 .rpc_resp = &res,
1371 };
1372 int status;
1373
1374 status = rpc_call_sync(server->client, &msg, 0);
1375 if (status == 0) {
1376 memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask));
1377 if (res.attr_bitmask[0] & FATTR4_WORD0_ACL)
1378 server->caps |= NFS_CAP_ACLS;
1379 if (res.has_links != 0)
1380 server->caps |= NFS_CAP_HARDLINKS;
1381 if (res.has_symlinks != 0)
1382 server->caps |= NFS_CAP_SYMLINKS;
1383 server->acl_bitmask = res.acl_bitmask;
1384 }
1385 return status;
1386 }
1387
1388 int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1389 {
1390 struct nfs4_exception exception = { };
1391 int err;
1392 do {
1393 err = nfs4_handle_exception(server,
1394 _nfs4_server_capabilities(server, fhandle),
1395 &exception);
1396 } while (exception.retry);
1397 return err;
1398 }
1399
1400 static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1401 struct nfs_fsinfo *info)
1402 {
1403 struct nfs4_lookup_root_arg args = {
1404 .bitmask = nfs4_fattr_bitmap,
1405 };
1406 struct nfs4_lookup_res res = {
1407 .server = server,
1408 .fattr = info->fattr,
1409 .fh = fhandle,
1410 };
1411 struct rpc_message msg = {
1412 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT],
1413 .rpc_argp = &args,
1414 .rpc_resp = &res,
1415 };
1416 nfs_fattr_init(info->fattr);
1417 return rpc_call_sync(server->client, &msg, 0);
1418 }
1419
1420 static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1421 struct nfs_fsinfo *info)
1422 {
1423 struct nfs4_exception exception = { };
1424 int err;
1425 do {
1426 err = nfs4_handle_exception(server,
1427 _nfs4_lookup_root(server, fhandle, info),
1428 &exception);
1429 } while (exception.retry);
1430 return err;
1431 }
1432
1433 /*
1434 * get the file handle for the "/" directory on the server
1435 */
1436 static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle,
1437 struct nfs_fsinfo *info)
1438 {
1439 int status;
1440
1441 status = nfs4_lookup_root(server, fhandle, info);
1442 if (status == 0)
1443 status = nfs4_server_capabilities(server, fhandle);
1444 if (status == 0)
1445 status = nfs4_do_fsinfo(server, fhandle, info);
1446 return nfs4_map_errors(status);
1447 }
1448
1449 /*
1450 * Get locations and (maybe) other attributes of a referral.
1451 * Note that we'll actually follow the referral later when
1452 * we detect fsid mismatch in inode revalidation
1453 */
1454 static int nfs4_get_referral(struct inode *dir, struct qstr *name, struct nfs_fattr *fattr, struct nfs_fh *fhandle)
1455 {
1456 int status = -ENOMEM;
1457 struct page *page = NULL;
1458 struct nfs4_fs_locations *locations = NULL;
1459
1460 page = alloc_page(GFP_KERNEL);
1461 if (page == NULL)
1462 goto out;
1463 locations = kmalloc(sizeof(struct nfs4_fs_locations), GFP_KERNEL);
1464 if (locations == NULL)
1465 goto out;
1466
1467 status = nfs4_proc_fs_locations(dir, name, locations, page);
1468 if (status != 0)
1469 goto out;
1470 /* Make sure server returned a different fsid for the referral */
1471 if (nfs_fsid_equal(&NFS_SERVER(dir)->fsid, &locations->fattr.fsid)) {
1472 dprintk("%s: server did not return a different fsid for a referral at %s\n", __FUNCTION__, name->name);
1473 status = -EIO;
1474 goto out;
1475 }
1476
1477 memcpy(fattr, &locations->fattr, sizeof(struct nfs_fattr));
1478 fattr->valid |= NFS_ATTR_FATTR_V4_REFERRAL;
1479 if (!fattr->mode)
1480 fattr->mode = S_IFDIR;
1481 memset(fhandle, 0, sizeof(struct nfs_fh));
1482 out:
1483 if (page)
1484 __free_page(page);
1485 if (locations)
1486 kfree(locations);
1487 return status;
1488 }
1489
1490 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1491 {
1492 struct nfs4_getattr_arg args = {
1493 .fh = fhandle,
1494 .bitmask = server->attr_bitmask,
1495 };
1496 struct nfs4_getattr_res res = {
1497 .fattr = fattr,
1498 .server = server,
1499 };
1500 struct rpc_message msg = {
1501 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
1502 .rpc_argp = &args,
1503 .rpc_resp = &res,
1504 };
1505
1506 nfs_fattr_init(fattr);
1507 return rpc_call_sync(server->client, &msg, 0);
1508 }
1509
1510 static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1511 {
1512 struct nfs4_exception exception = { };
1513 int err;
1514 do {
1515 err = nfs4_handle_exception(server,
1516 _nfs4_proc_getattr(server, fhandle, fattr),
1517 &exception);
1518 } while (exception.retry);
1519 return err;
1520 }
1521
1522 /*
1523 * The file is not closed if it is opened due to the a request to change
1524 * the size of the file. The open call will not be needed once the
1525 * VFS layer lookup-intents are implemented.
1526 *
1527 * Close is called when the inode is destroyed.
1528 * If we haven't opened the file for O_WRONLY, we
1529 * need to in the size_change case to obtain a stateid.
1530 *
1531 * Got race?
1532 * Because OPEN is always done by name in nfsv4, it is
1533 * possible that we opened a different file by the same
1534 * name. We can recognize this race condition, but we
1535 * can't do anything about it besides returning an error.
1536 *
1537 * This will be fixed with VFS changes (lookup-intent).
1538 */
1539 static int
1540 nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
1541 struct iattr *sattr)
1542 {
1543 struct rpc_cred *cred;
1544 struct inode *inode = dentry->d_inode;
1545 struct nfs_open_context *ctx;
1546 struct nfs4_state *state = NULL;
1547 int status;
1548
1549 nfs_fattr_init(fattr);
1550
1551 cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1552 if (IS_ERR(cred))
1553 return PTR_ERR(cred);
1554
1555 /* Search for an existing open(O_WRITE) file */
1556 ctx = nfs_find_open_context(inode, cred, FMODE_WRITE);
1557 if (ctx != NULL)
1558 state = ctx->state;
1559
1560 status = nfs4_do_setattr(inode, fattr, sattr, state);
1561 if (status == 0)
1562 nfs_setattr_update_inode(inode, sattr);
1563 if (ctx != NULL)
1564 put_nfs_open_context(ctx);
1565 put_rpccred(cred);
1566 return status;
1567 }
1568
1569 static int _nfs4_proc_lookupfh(struct nfs_server *server, struct nfs_fh *dirfh,
1570 struct qstr *name, struct nfs_fh *fhandle,
1571 struct nfs_fattr *fattr)
1572 {
1573 int status;
1574 struct nfs4_lookup_arg args = {
1575 .bitmask = server->attr_bitmask,
1576 .dir_fh = dirfh,
1577 .name = name,
1578 };
1579 struct nfs4_lookup_res res = {
1580 .server = server,
1581 .fattr = fattr,
1582 .fh = fhandle,
1583 };
1584 struct rpc_message msg = {
1585 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1586 .rpc_argp = &args,
1587 .rpc_resp = &res,
1588 };
1589
1590 nfs_fattr_init(fattr);
1591
1592 dprintk("NFS call lookupfh %s\n", name->name);
1593 status = rpc_call_sync(server->client, &msg, 0);
1594 dprintk("NFS reply lookupfh: %d\n", status);
1595 return status;
1596 }
1597
1598 static int nfs4_proc_lookupfh(struct nfs_server *server, struct nfs_fh *dirfh,
1599 struct qstr *name, struct nfs_fh *fhandle,
1600 struct nfs_fattr *fattr)
1601 {
1602 struct nfs4_exception exception = { };
1603 int err;
1604 do {
1605 err = _nfs4_proc_lookupfh(server, dirfh, name, fhandle, fattr);
1606 /* FIXME: !!!! */
1607 if (err == -NFS4ERR_MOVED) {
1608 err = -EREMOTE;
1609 break;
1610 }
1611 err = nfs4_handle_exception(server, err, &exception);
1612 } while (exception.retry);
1613 return err;
1614 }
1615
1616 static int _nfs4_proc_lookup(struct inode *dir, struct qstr *name,
1617 struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1618 {
1619 int status;
1620
1621 dprintk("NFS call lookup %s\n", name->name);
1622 status = _nfs4_proc_lookupfh(NFS_SERVER(dir), NFS_FH(dir), name, fhandle, fattr);
1623 if (status == -NFS4ERR_MOVED)
1624 status = nfs4_get_referral(dir, name, fattr, fhandle);
1625 dprintk("NFS reply lookup: %d\n", status);
1626 return status;
1627 }
1628
1629 static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1630 {
1631 struct nfs4_exception exception = { };
1632 int err;
1633 do {
1634 err = nfs4_handle_exception(NFS_SERVER(dir),
1635 _nfs4_proc_lookup(dir, name, fhandle, fattr),
1636 &exception);
1637 } while (exception.retry);
1638 return err;
1639 }
1640
1641 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1642 {
1643 struct nfs4_accessargs args = {
1644 .fh = NFS_FH(inode),
1645 };
1646 struct nfs4_accessres res = { 0 };
1647 struct rpc_message msg = {
1648 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS],
1649 .rpc_argp = &args,
1650 .rpc_resp = &res,
1651 .rpc_cred = entry->cred,
1652 };
1653 int mode = entry->mask;
1654 int status;
1655
1656 /*
1657 * Determine which access bits we want to ask for...
1658 */
1659 if (mode & MAY_READ)
1660 args.access |= NFS4_ACCESS_READ;
1661 if (S_ISDIR(inode->i_mode)) {
1662 if (mode & MAY_WRITE)
1663 args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE;
1664 if (mode & MAY_EXEC)
1665 args.access |= NFS4_ACCESS_LOOKUP;
1666 } else {
1667 if (mode & MAY_WRITE)
1668 args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND;
1669 if (mode & MAY_EXEC)
1670 args.access |= NFS4_ACCESS_EXECUTE;
1671 }
1672 status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1673 if (!status) {
1674 entry->mask = 0;
1675 if (res.access & NFS4_ACCESS_READ)
1676 entry->mask |= MAY_READ;
1677 if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
1678 entry->mask |= MAY_WRITE;
1679 if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
1680 entry->mask |= MAY_EXEC;
1681 }
1682 return status;
1683 }
1684
1685 static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1686 {
1687 struct nfs4_exception exception = { };
1688 int err;
1689 do {
1690 err = nfs4_handle_exception(NFS_SERVER(inode),
1691 _nfs4_proc_access(inode, entry),
1692 &exception);
1693 } while (exception.retry);
1694 return err;
1695 }
1696
1697 /*
1698 * TODO: For the time being, we don't try to get any attributes
1699 * along with any of the zero-copy operations READ, READDIR,
1700 * READLINK, WRITE.
1701 *
1702 * In the case of the first three, we want to put the GETATTR
1703 * after the read-type operation -- this is because it is hard
1704 * to predict the length of a GETATTR response in v4, and thus
1705 * align the READ data correctly. This means that the GETATTR
1706 * may end up partially falling into the page cache, and we should
1707 * shift it into the 'tail' of the xdr_buf before processing.
1708 * To do this efficiently, we need to know the total length
1709 * of data received, which doesn't seem to be available outside
1710 * of the RPC layer.
1711 *
1712 * In the case of WRITE, we also want to put the GETATTR after
1713 * the operation -- in this case because we want to make sure
1714 * we get the post-operation mtime and size. This means that
1715 * we can't use xdr_encode_pages() as written: we need a variant
1716 * of it which would leave room in the 'tail' iovec.
1717 *
1718 * Both of these changes to the XDR layer would in fact be quite
1719 * minor, but I decided to leave them for a subsequent patch.
1720 */
1721 static int _nfs4_proc_readlink(struct inode *inode, struct page *page,
1722 unsigned int pgbase, unsigned int pglen)
1723 {
1724 struct nfs4_readlink args = {
1725 .fh = NFS_FH(inode),
1726 .pgbase = pgbase,
1727 .pglen = pglen,
1728 .pages = &page,
1729 };
1730 struct rpc_message msg = {
1731 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK],
1732 .rpc_argp = &args,
1733 .rpc_resp = NULL,
1734 };
1735
1736 return rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1737 }
1738
1739 static int nfs4_proc_readlink(struct inode *inode, struct page *page,
1740 unsigned int pgbase, unsigned int pglen)
1741 {
1742 struct nfs4_exception exception = { };
1743 int err;
1744 do {
1745 err = nfs4_handle_exception(NFS_SERVER(inode),
1746 _nfs4_proc_readlink(inode, page, pgbase, pglen),
1747 &exception);
1748 } while (exception.retry);
1749 return err;
1750 }
1751
1752 /*
1753 * Got race?
1754 * We will need to arrange for the VFS layer to provide an atomic open.
1755 * Until then, this create/open method is prone to inefficiency and race
1756 * conditions due to the lookup, create, and open VFS calls from sys_open()
1757 * placed on the wire.
1758 *
1759 * Given the above sorry state of affairs, I'm simply sending an OPEN.
1760 * The file will be opened again in the subsequent VFS open call
1761 * (nfs4_proc_file_open).
1762 *
1763 * The open for read will just hang around to be used by any process that
1764 * opens the file O_RDONLY. This will all be resolved with the VFS changes.
1765 */
1766
1767 static int
1768 nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
1769 int flags, struct nameidata *nd)
1770 {
1771 struct path path = {
1772 .mnt = nd->mnt,
1773 .dentry = dentry,
1774 };
1775 struct nfs4_state *state;
1776 struct rpc_cred *cred;
1777 int status = 0;
1778
1779 cred = rpcauth_lookupcred(NFS_CLIENT(dir)->cl_auth, 0);
1780 if (IS_ERR(cred)) {
1781 status = PTR_ERR(cred);
1782 goto out;
1783 }
1784 state = nfs4_do_open(dir, &path, flags, sattr, cred);
1785 put_rpccred(cred);
1786 if (IS_ERR(state)) {
1787 status = PTR_ERR(state);
1788 goto out;
1789 }
1790 d_instantiate(dentry, igrab(state->inode));
1791 if (flags & O_EXCL) {
1792 struct nfs_fattr fattr;
1793 status = nfs4_do_setattr(state->inode, &fattr, sattr, state);
1794 if (status == 0)
1795 nfs_setattr_update_inode(state->inode, sattr);
1796 nfs_post_op_update_inode(state->inode, &fattr);
1797 }
1798 if (status == 0 && (nd->flags & LOOKUP_OPEN) != 0)
1799 status = nfs4_intent_set_file(nd, &path, state);
1800 else
1801 nfs4_close_state(&path, state, flags);
1802 out:
1803 return status;
1804 }
1805
1806 static int _nfs4_proc_remove(struct inode *dir, struct qstr *name)
1807 {
1808 struct nfs_server *server = NFS_SERVER(dir);
1809 struct nfs4_remove_arg args = {
1810 .fh = NFS_FH(dir),
1811 .name = name,
1812 .bitmask = server->attr_bitmask,
1813 };
1814 struct nfs_fattr dir_attr;
1815 struct nfs4_remove_res res = {
1816 .server = server,
1817 .dir_attr = &dir_attr,
1818 };
1819 struct rpc_message msg = {
1820 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE],
1821 .rpc_argp = &args,
1822 .rpc_resp = &res,
1823 };
1824 int status;
1825
1826 nfs_fattr_init(res.dir_attr);
1827 status = rpc_call_sync(server->client, &msg, 0);
1828 if (status == 0) {
1829 update_changeattr(dir, &res.cinfo);
1830 nfs_post_op_update_inode(dir, res.dir_attr);
1831 }
1832 return status;
1833 }
1834
1835 static int nfs4_proc_remove(struct inode *dir, struct qstr *name)
1836 {
1837 struct nfs4_exception exception = { };
1838 int err;
1839 do {
1840 err = nfs4_handle_exception(NFS_SERVER(dir),
1841 _nfs4_proc_remove(dir, name),
1842 &exception);
1843 } while (exception.retry);
1844 return err;
1845 }
1846
1847 struct unlink_desc {
1848 struct nfs4_remove_arg args;
1849 struct nfs4_remove_res res;
1850 struct nfs_fattr dir_attr;
1851 };
1852
1853 static int nfs4_proc_unlink_setup(struct rpc_message *msg, struct dentry *dir,
1854 struct qstr *name)
1855 {
1856 struct nfs_server *server = NFS_SERVER(dir->d_inode);
1857 struct unlink_desc *up;
1858
1859 up = kmalloc(sizeof(*up), GFP_KERNEL);
1860 if (!up)
1861 return -ENOMEM;
1862
1863 up->args.fh = NFS_FH(dir->d_inode);
1864 up->args.name = name;
1865 up->args.bitmask = server->attr_bitmask;
1866 up->res.server = server;
1867 up->res.dir_attr = &up->dir_attr;
1868
1869 msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE];
1870 msg->rpc_argp = &up->args;
1871 msg->rpc_resp = &up->res;
1872 return 0;
1873 }
1874
1875 static int nfs4_proc_unlink_done(struct dentry *dir, struct rpc_task *task)
1876 {
1877 struct rpc_message *msg = &task->tk_msg;
1878 struct unlink_desc *up;
1879
1880 if (msg->rpc_resp != NULL) {
1881 up = container_of(msg->rpc_resp, struct unlink_desc, res);
1882 update_changeattr(dir->d_inode, &up->res.cinfo);
1883 nfs_post_op_update_inode(dir->d_inode, up->res.dir_attr);
1884 kfree(up);
1885 msg->rpc_resp = NULL;
1886 msg->rpc_argp = NULL;
1887 }
1888 return 0;
1889 }
1890
1891 static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1892 struct inode *new_dir, struct qstr *new_name)
1893 {
1894 struct nfs_server *server = NFS_SERVER(old_dir);
1895 struct nfs4_rename_arg arg = {
1896 .old_dir = NFS_FH(old_dir),
1897 .new_dir = NFS_FH(new_dir),
1898 .old_name = old_name,
1899 .new_name = new_name,
1900 .bitmask = server->attr_bitmask,
1901 };
1902 struct nfs_fattr old_fattr, new_fattr;
1903 struct nfs4_rename_res res = {
1904 .server = server,
1905 .old_fattr = &old_fattr,
1906 .new_fattr = &new_fattr,
1907 };
1908 struct rpc_message msg = {
1909 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME],
1910 .rpc_argp = &arg,
1911 .rpc_resp = &res,
1912 };
1913 int status;
1914
1915 nfs_fattr_init(res.old_fattr);
1916 nfs_fattr_init(res.new_fattr);
1917 status = rpc_call_sync(server->client, &msg, 0);
1918
1919 if (!status) {
1920 update_changeattr(old_dir, &res.old_cinfo);
1921 nfs_post_op_update_inode(old_dir, res.old_fattr);
1922 update_changeattr(new_dir, &res.new_cinfo);
1923 nfs_post_op_update_inode(new_dir, res.new_fattr);
1924 }
1925 return status;
1926 }
1927
1928 static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1929 struct inode *new_dir, struct qstr *new_name)
1930 {
1931 struct nfs4_exception exception = { };
1932 int err;
1933 do {
1934 err = nfs4_handle_exception(NFS_SERVER(old_dir),
1935 _nfs4_proc_rename(old_dir, old_name,
1936 new_dir, new_name),
1937 &exception);
1938 } while (exception.retry);
1939 return err;
1940 }
1941
1942 static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
1943 {
1944 struct nfs_server *server = NFS_SERVER(inode);
1945 struct nfs4_link_arg arg = {
1946 .fh = NFS_FH(inode),
1947 .dir_fh = NFS_FH(dir),
1948 .name = name,
1949 .bitmask = server->attr_bitmask,
1950 };
1951 struct nfs_fattr fattr, dir_attr;
1952 struct nfs4_link_res res = {
1953 .server = server,
1954 .fattr = &fattr,
1955 .dir_attr = &dir_attr,
1956 };
1957 struct rpc_message msg = {
1958 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK],
1959 .rpc_argp = &arg,
1960 .rpc_resp = &res,
1961 };
1962 int status;
1963
1964 nfs_fattr_init(res.fattr);
1965 nfs_fattr_init(res.dir_attr);
1966 status = rpc_call_sync(server->client, &msg, 0);
1967 if (!status) {
1968 update_changeattr(dir, &res.cinfo);
1969 nfs_post_op_update_inode(dir, res.dir_attr);
1970 nfs_post_op_update_inode(inode, res.fattr);
1971 }
1972
1973 return status;
1974 }
1975
1976 static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
1977 {
1978 struct nfs4_exception exception = { };
1979 int err;
1980 do {
1981 err = nfs4_handle_exception(NFS_SERVER(inode),
1982 _nfs4_proc_link(inode, dir, name),
1983 &exception);
1984 } while (exception.retry);
1985 return err;
1986 }
1987
1988 static int _nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
1989 struct page *page, unsigned int len, struct iattr *sattr)
1990 {
1991 struct nfs_server *server = NFS_SERVER(dir);
1992 struct nfs_fh fhandle;
1993 struct nfs_fattr fattr, dir_fattr;
1994 struct nfs4_create_arg arg = {
1995 .dir_fh = NFS_FH(dir),
1996 .server = server,
1997 .name = &dentry->d_name,
1998 .attrs = sattr,
1999 .ftype = NF4LNK,
2000 .bitmask = server->attr_bitmask,
2001 };
2002 struct nfs4_create_res res = {
2003 .server = server,
2004 .fh = &fhandle,
2005 .fattr = &fattr,
2006 .dir_fattr = &dir_fattr,
2007 };
2008 struct rpc_message msg = {
2009 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK],
2010 .rpc_argp = &arg,
2011 .rpc_resp = &res,
2012 };
2013 int status;
2014
2015 if (len > NFS4_MAXPATHLEN)
2016 return -ENAMETOOLONG;
2017
2018 arg.u.symlink.pages = &page;
2019 arg.u.symlink.len = len;
2020 nfs_fattr_init(&fattr);
2021 nfs_fattr_init(&dir_fattr);
2022
2023 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2024 if (!status) {
2025 update_changeattr(dir, &res.dir_cinfo);
2026 nfs_post_op_update_inode(dir, res.dir_fattr);
2027 status = nfs_instantiate(dentry, &fhandle, &fattr);
2028 }
2029 return status;
2030 }
2031
2032 static int nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
2033 struct page *page, unsigned int len, struct iattr *sattr)
2034 {
2035 struct nfs4_exception exception = { };
2036 int err;
2037 do {
2038 err = nfs4_handle_exception(NFS_SERVER(dir),
2039 _nfs4_proc_symlink(dir, dentry, page,
2040 len, sattr),
2041 &exception);
2042 } while (exception.retry);
2043 return err;
2044 }
2045
2046 static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2047 struct iattr *sattr)
2048 {
2049 struct nfs_server *server = NFS_SERVER(dir);
2050 struct nfs_fh fhandle;
2051 struct nfs_fattr fattr, dir_fattr;
2052 struct nfs4_create_arg arg = {
2053 .dir_fh = NFS_FH(dir),
2054 .server = server,
2055 .name = &dentry->d_name,
2056 .attrs = sattr,
2057 .ftype = NF4DIR,
2058 .bitmask = server->attr_bitmask,
2059 };
2060 struct nfs4_create_res res = {
2061 .server = server,
2062 .fh = &fhandle,
2063 .fattr = &fattr,
2064 .dir_fattr = &dir_fattr,
2065 };
2066 struct rpc_message msg = {
2067 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2068 .rpc_argp = &arg,
2069 .rpc_resp = &res,
2070 };
2071 int status;
2072
2073 nfs_fattr_init(&fattr);
2074 nfs_fattr_init(&dir_fattr);
2075
2076 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2077 if (!status) {
2078 update_changeattr(dir, &res.dir_cinfo);
2079 nfs_post_op_update_inode(dir, res.dir_fattr);
2080 status = nfs_instantiate(dentry, &fhandle, &fattr);
2081 }
2082 return status;
2083 }
2084
2085 static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2086 struct iattr *sattr)
2087 {
2088 struct nfs4_exception exception = { };
2089 int err;
2090 do {
2091 err = nfs4_handle_exception(NFS_SERVER(dir),
2092 _nfs4_proc_mkdir(dir, dentry, sattr),
2093 &exception);
2094 } while (exception.retry);
2095 return err;
2096 }
2097
2098 static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2099 u64 cookie, struct page *page, unsigned int count, int plus)
2100 {
2101 struct inode *dir = dentry->d_inode;
2102 struct nfs4_readdir_arg args = {
2103 .fh = NFS_FH(dir),
2104 .pages = &page,
2105 .pgbase = 0,
2106 .count = count,
2107 .bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask,
2108 };
2109 struct nfs4_readdir_res res;
2110 struct rpc_message msg = {
2111 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR],
2112 .rpc_argp = &args,
2113 .rpc_resp = &res,
2114 .rpc_cred = cred,
2115 };
2116 int status;
2117
2118 dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __FUNCTION__,
2119 dentry->d_parent->d_name.name,
2120 dentry->d_name.name,
2121 (unsigned long long)cookie);
2122 nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args);
2123 res.pgbase = args.pgbase;
2124 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2125 if (status == 0)
2126 memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE);
2127 dprintk("%s: returns %d\n", __FUNCTION__, status);
2128 return status;
2129 }
2130
2131 static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2132 u64 cookie, struct page *page, unsigned int count, int plus)
2133 {
2134 struct nfs4_exception exception = { };
2135 int err;
2136 do {
2137 err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode),
2138 _nfs4_proc_readdir(dentry, cred, cookie,
2139 page, count, plus),
2140 &exception);
2141 } while (exception.retry);
2142 return err;
2143 }
2144
2145 static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2146 struct iattr *sattr, dev_t rdev)
2147 {
2148 struct nfs_server *server = NFS_SERVER(dir);
2149 struct nfs_fh fh;
2150 struct nfs_fattr fattr, dir_fattr;
2151 struct nfs4_create_arg arg = {
2152 .dir_fh = NFS_FH(dir),
2153 .server = server,
2154 .name = &dentry->d_name,
2155 .attrs = sattr,
2156 .bitmask = server->attr_bitmask,
2157 };
2158 struct nfs4_create_res res = {
2159 .server = server,
2160 .fh = &fh,
2161 .fattr = &fattr,
2162 .dir_fattr = &dir_fattr,
2163 };
2164 struct rpc_message msg = {
2165 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2166 .rpc_argp = &arg,
2167 .rpc_resp = &res,
2168 };
2169 int status;
2170 int mode = sattr->ia_mode;
2171
2172 nfs_fattr_init(&fattr);
2173 nfs_fattr_init(&dir_fattr);
2174
2175 BUG_ON(!(sattr->ia_valid & ATTR_MODE));
2176 BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode));
2177 if (S_ISFIFO(mode))
2178 arg.ftype = NF4FIFO;
2179 else if (S_ISBLK(mode)) {
2180 arg.ftype = NF4BLK;
2181 arg.u.device.specdata1 = MAJOR(rdev);
2182 arg.u.device.specdata2 = MINOR(rdev);
2183 }
2184 else if (S_ISCHR(mode)) {
2185 arg.ftype = NF4CHR;
2186 arg.u.device.specdata1 = MAJOR(rdev);
2187 arg.u.device.specdata2 = MINOR(rdev);
2188 }
2189 else
2190 arg.ftype = NF4SOCK;
2191
2192 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2193 if (status == 0) {
2194 update_changeattr(dir, &res.dir_cinfo);
2195 nfs_post_op_update_inode(dir, res.dir_fattr);
2196 status = nfs_instantiate(dentry, &fh, &fattr);
2197 }
2198 return status;
2199 }
2200
2201 static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2202 struct iattr *sattr, dev_t rdev)
2203 {
2204 struct nfs4_exception exception = { };
2205 int err;
2206 do {
2207 err = nfs4_handle_exception(NFS_SERVER(dir),
2208 _nfs4_proc_mknod(dir, dentry, sattr, rdev),
2209 &exception);
2210 } while (exception.retry);
2211 return err;
2212 }
2213
2214 static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
2215 struct nfs_fsstat *fsstat)
2216 {
2217 struct nfs4_statfs_arg args = {
2218 .fh = fhandle,
2219 .bitmask = server->attr_bitmask,
2220 };
2221 struct rpc_message msg = {
2222 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS],
2223 .rpc_argp = &args,
2224 .rpc_resp = fsstat,
2225 };
2226
2227 nfs_fattr_init(fsstat->fattr);
2228 return rpc_call_sync(server->client, &msg, 0);
2229 }
2230
2231 static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat)
2232 {
2233 struct nfs4_exception exception = { };
2234 int err;
2235 do {
2236 err = nfs4_handle_exception(server,
2237 _nfs4_proc_statfs(server, fhandle, fsstat),
2238 &exception);
2239 } while (exception.retry);
2240 return err;
2241 }
2242
2243 static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
2244 struct nfs_fsinfo *fsinfo)
2245 {
2246 struct nfs4_fsinfo_arg args = {
2247 .fh = fhandle,
2248 .bitmask = server->attr_bitmask,
2249 };
2250 struct rpc_message msg = {
2251 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO],
2252 .rpc_argp = &args,
2253 .rpc_resp = fsinfo,
2254 };
2255
2256 return rpc_call_sync(server->client, &msg, 0);
2257 }
2258
2259 static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2260 {
2261 struct nfs4_exception exception = { };
2262 int err;
2263
2264 do {
2265 err = nfs4_handle_exception(server,
2266 _nfs4_do_fsinfo(server, fhandle, fsinfo),
2267 &exception);
2268 } while (exception.retry);
2269 return err;
2270 }
2271
2272 static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2273 {
2274 nfs_fattr_init(fsinfo->fattr);
2275 return nfs4_do_fsinfo(server, fhandle, fsinfo);
2276 }
2277
2278 static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2279 struct nfs_pathconf *pathconf)
2280 {
2281 struct nfs4_pathconf_arg args = {
2282 .fh = fhandle,
2283 .bitmask = server->attr_bitmask,
2284 };
2285 struct rpc_message msg = {
2286 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF],
2287 .rpc_argp = &args,
2288 .rpc_resp = pathconf,
2289 };
2290
2291 /* None of the pathconf attributes are mandatory to implement */
2292 if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) {
2293 memset(pathconf, 0, sizeof(*pathconf));
2294 return 0;
2295 }
2296
2297 nfs_fattr_init(pathconf->fattr);
2298 return rpc_call_sync(server->client, &msg, 0);
2299 }
2300
2301 static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2302 struct nfs_pathconf *pathconf)
2303 {
2304 struct nfs4_exception exception = { };
2305 int err;
2306
2307 do {
2308 err = nfs4_handle_exception(server,
2309 _nfs4_proc_pathconf(server, fhandle, pathconf),
2310 &exception);
2311 } while (exception.retry);
2312 return err;
2313 }
2314
2315 static int nfs4_read_done(struct rpc_task *task, struct nfs_read_data *data)
2316 {
2317 struct nfs_server *server = NFS_SERVER(data->inode);
2318
2319 if (nfs4_async_handle_error(task, server) == -EAGAIN) {
2320 rpc_restart_call(task);
2321 return -EAGAIN;
2322 }
2323 if (task->tk_status > 0)
2324 renew_lease(server, data->timestamp);
2325 return 0;
2326 }
2327
2328 static void nfs4_proc_read_setup(struct nfs_read_data *data)
2329 {
2330 struct rpc_message msg = {
2331 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ],
2332 .rpc_argp = &data->args,
2333 .rpc_resp = &data->res,
2334 .rpc_cred = data->cred,
2335 };
2336
2337 data->timestamp = jiffies;
2338
2339 rpc_call_setup(&data->task, &msg, 0);
2340 }
2341
2342 static int nfs4_write_done(struct rpc_task *task, struct nfs_write_data *data)
2343 {
2344 struct inode *inode = data->inode;
2345
2346 if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2347 rpc_restart_call(task);
2348 return -EAGAIN;
2349 }
2350 if (task->tk_status >= 0) {
2351 renew_lease(NFS_SERVER(inode), data->timestamp);
2352 nfs_post_op_update_inode(inode, data->res.fattr);
2353 }
2354 return 0;
2355 }
2356
2357 static void nfs4_proc_write_setup(struct nfs_write_data *data, int how)
2358 {
2359 struct rpc_message msg = {
2360 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
2361 .rpc_argp = &data->args,
2362 .rpc_resp = &data->res,
2363 .rpc_cred = data->cred,
2364 };
2365 struct inode *inode = data->inode;
2366 struct nfs_server *server = NFS_SERVER(inode);
2367 int stable;
2368
2369 if (how & FLUSH_STABLE) {
2370 if (!NFS_I(inode)->ncommit)
2371 stable = NFS_FILE_SYNC;
2372 else
2373 stable = NFS_DATA_SYNC;
2374 } else
2375 stable = NFS_UNSTABLE;
2376 data->args.stable = stable;
2377 data->args.bitmask = server->attr_bitmask;
2378 data->res.server = server;
2379
2380 data->timestamp = jiffies;
2381
2382 /* Finalize the task. */
2383 rpc_call_setup(&data->task, &msg, 0);
2384 }
2385
2386 static int nfs4_commit_done(struct rpc_task *task, struct nfs_write_data *data)
2387 {
2388 struct inode *inode = data->inode;
2389
2390 if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2391 rpc_restart_call(task);
2392 return -EAGAIN;
2393 }
2394 if (task->tk_status >= 0)
2395 nfs_post_op_update_inode(inode, data->res.fattr);
2396 return 0;
2397 }
2398
2399 static void nfs4_proc_commit_setup(struct nfs_write_data *data, int how)
2400 {
2401 struct rpc_message msg = {
2402 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
2403 .rpc_argp = &data->args,
2404 .rpc_resp = &data->res,
2405 .rpc_cred = data->cred,
2406 };
2407 struct nfs_server *server = NFS_SERVER(data->inode);
2408
2409 data->args.bitmask = server->attr_bitmask;
2410 data->res.server = server;
2411
2412 rpc_call_setup(&data->task, &msg, 0);
2413 }
2414
2415 /*
2416 * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special
2417 * standalone procedure for queueing an asynchronous RENEW.
2418 */
2419 static void nfs4_renew_done(struct rpc_task *task, void *data)
2420 {
2421 struct nfs_client *clp = (struct nfs_client *)task->tk_msg.rpc_argp;
2422 unsigned long timestamp = (unsigned long)data;
2423
2424 if (task->tk_status < 0) {
2425 switch (task->tk_status) {
2426 case -NFS4ERR_STALE_CLIENTID:
2427 case -NFS4ERR_EXPIRED:
2428 case -NFS4ERR_CB_PATH_DOWN:
2429 nfs4_schedule_state_recovery(clp);
2430 }
2431 return;
2432 }
2433 spin_lock(&clp->cl_lock);
2434 if (time_before(clp->cl_last_renewal,timestamp))
2435 clp->cl_last_renewal = timestamp;
2436 spin_unlock(&clp->cl_lock);
2437 }
2438
2439 static const struct rpc_call_ops nfs4_renew_ops = {
2440 .rpc_call_done = nfs4_renew_done,
2441 };
2442
2443 int nfs4_proc_async_renew(struct nfs_client *clp, struct rpc_cred *cred)
2444 {
2445 struct rpc_message msg = {
2446 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2447 .rpc_argp = clp,
2448 .rpc_cred = cred,
2449 };
2450
2451 return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT,
2452 &nfs4_renew_ops, (void *)jiffies);
2453 }
2454
2455 int nfs4_proc_renew(struct nfs_client *clp, struct rpc_cred *cred)
2456 {
2457 struct rpc_message msg = {
2458 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2459 .rpc_argp = clp,
2460 .rpc_cred = cred,
2461 };
2462 unsigned long now = jiffies;
2463 int status;
2464
2465 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2466 if (status < 0)
2467 return status;
2468 spin_lock(&clp->cl_lock);
2469 if (time_before(clp->cl_last_renewal,now))
2470 clp->cl_last_renewal = now;
2471 spin_unlock(&clp->cl_lock);
2472 return 0;
2473 }
2474
2475 static inline int nfs4_server_supports_acls(struct nfs_server *server)
2476 {
2477 return (server->caps & NFS_CAP_ACLS)
2478 && (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL)
2479 && (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL);
2480 }
2481
2482 /* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that
2483 * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on
2484 * the stack.
2485 */
2486 #define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT)
2487
2488 static void buf_to_pages(const void *buf, size_t buflen,
2489 struct page **pages, unsigned int *pgbase)
2490 {
2491 const void *p = buf;
2492
2493 *pgbase = offset_in_page(buf);
2494 p -= *pgbase;
2495 while (p < buf + buflen) {
2496 *(pages++) = virt_to_page(p);
2497 p += PAGE_CACHE_SIZE;
2498 }
2499 }
2500
2501 struct nfs4_cached_acl {
2502 int cached;
2503 size_t len;
2504 char data[0];
2505 };
2506
2507 static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl)
2508 {
2509 struct nfs_inode *nfsi = NFS_I(inode);
2510
2511 spin_lock(&inode->i_lock);
2512 kfree(nfsi->nfs4_acl);
2513 nfsi->nfs4_acl = acl;
2514 spin_unlock(&inode->i_lock);
2515 }
2516
2517 static void nfs4_zap_acl_attr(struct inode *inode)
2518 {
2519 nfs4_set_cached_acl(inode, NULL);
2520 }
2521
2522 static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen)
2523 {
2524 struct nfs_inode *nfsi = NFS_I(inode);
2525 struct nfs4_cached_acl *acl;
2526 int ret = -ENOENT;
2527
2528 spin_lock(&inode->i_lock);
2529 acl = nfsi->nfs4_acl;
2530 if (acl == NULL)
2531 goto out;
2532 if (buf == NULL) /* user is just asking for length */
2533 goto out_len;
2534 if (acl->cached == 0)
2535 goto out;
2536 ret = -ERANGE; /* see getxattr(2) man page */
2537 if (acl->len > buflen)
2538 goto out;
2539 memcpy(buf, acl->data, acl->len);
2540 out_len:
2541 ret = acl->len;
2542 out:
2543 spin_unlock(&inode->i_lock);
2544 return ret;
2545 }
2546
2547 static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len)
2548 {
2549 struct nfs4_cached_acl *acl;
2550
2551 if (buf && acl_len <= PAGE_SIZE) {
2552 acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL);
2553 if (acl == NULL)
2554 goto out;
2555 acl->cached = 1;
2556 memcpy(acl->data, buf, acl_len);
2557 } else {
2558 acl = kmalloc(sizeof(*acl), GFP_KERNEL);
2559 if (acl == NULL)
2560 goto out;
2561 acl->cached = 0;
2562 }
2563 acl->len = acl_len;
2564 out:
2565 nfs4_set_cached_acl(inode, acl);
2566 }
2567
2568 static ssize_t __nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2569 {
2570 struct page *pages[NFS4ACL_MAXPAGES];
2571 struct nfs_getaclargs args = {
2572 .fh = NFS_FH(inode),
2573 .acl_pages = pages,
2574 .acl_len = buflen,
2575 };
2576 size_t resp_len = buflen;
2577 void *resp_buf;
2578 struct rpc_message msg = {
2579 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL],
2580 .rpc_argp = &args,
2581 .rpc_resp = &resp_len,
2582 };
2583 struct page *localpage = NULL;
2584 int ret;
2585
2586 if (buflen < PAGE_SIZE) {
2587 /* As long as we're doing a round trip to the server anyway,
2588 * let's be prepared for a page of acl data. */
2589 localpage = alloc_page(GFP_KERNEL);
2590 resp_buf = page_address(localpage);
2591 if (localpage == NULL)
2592 return -ENOMEM;
2593 args.acl_pages[0] = localpage;
2594 args.acl_pgbase = 0;
2595 resp_len = args.acl_len = PAGE_SIZE;
2596 } else {
2597 resp_buf = buf;
2598 buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase);
2599 }
2600 ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2601 if (ret)
2602 goto out_free;
2603 if (resp_len > args.acl_len)
2604 nfs4_write_cached_acl(inode, NULL, resp_len);
2605 else
2606 nfs4_write_cached_acl(inode, resp_buf, resp_len);
2607 if (buf) {
2608 ret = -ERANGE;
2609 if (resp_len > buflen)
2610 goto out_free;
2611 if (localpage)
2612 memcpy(buf, resp_buf, resp_len);
2613 }
2614 ret = resp_len;
2615 out_free:
2616 if (localpage)
2617 __free_page(localpage);
2618 return ret;
2619 }
2620
2621 static ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2622 {
2623 struct nfs4_exception exception = { };
2624 ssize_t ret;
2625 do {
2626 ret = __nfs4_get_acl_uncached(inode, buf, buflen);
2627 if (ret >= 0)
2628 break;
2629 ret = nfs4_handle_exception(NFS_SERVER(inode), ret, &exception);
2630 } while (exception.retry);
2631 return ret;
2632 }
2633
2634 static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen)
2635 {
2636 struct nfs_server *server = NFS_SERVER(inode);
2637 int ret;
2638
2639 if (!nfs4_server_supports_acls(server))
2640 return -EOPNOTSUPP;
2641 ret = nfs_revalidate_inode(server, inode);
2642 if (ret < 0)
2643 return ret;
2644 ret = nfs4_read_cached_acl(inode, buf, buflen);
2645 if (ret != -ENOENT)
2646 return ret;
2647 return nfs4_get_acl_uncached(inode, buf, buflen);
2648 }
2649
2650 static int __nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2651 {
2652 struct nfs_server *server = NFS_SERVER(inode);
2653 struct page *pages[NFS4ACL_MAXPAGES];
2654 struct nfs_setaclargs arg = {
2655 .fh = NFS_FH(inode),
2656 .acl_pages = pages,
2657 .acl_len = buflen,
2658 };
2659 struct rpc_message msg = {
2660 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETACL],
2661 .rpc_argp = &arg,
2662 .rpc_resp = NULL,
2663 };
2664 int ret;
2665
2666 if (!nfs4_server_supports_acls(server))
2667 return -EOPNOTSUPP;
2668 nfs_inode_return_delegation(inode);
2669 buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase);
2670 ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2671 nfs_zap_caches(inode);
2672 return ret;
2673 }
2674
2675 static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2676 {
2677 struct nfs4_exception exception = { };
2678 int err;
2679 do {
2680 err = nfs4_handle_exception(NFS_SERVER(inode),
2681 __nfs4_proc_set_acl(inode, buf, buflen),
2682 &exception);
2683 } while (exception.retry);
2684 return err;
2685 }
2686
2687 static int
2688 nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server)
2689 {
2690 struct nfs_client *clp = server->nfs_client;
2691
2692 if (!clp || task->tk_status >= 0)
2693 return 0;
2694 switch(task->tk_status) {
2695 case -NFS4ERR_STALE_CLIENTID:
2696 case -NFS4ERR_STALE_STATEID:
2697 case -NFS4ERR_EXPIRED:
2698 rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL, NULL);
2699 nfs4_schedule_state_recovery(clp);
2700 if (test_bit(NFS4CLNT_STATE_RECOVER, &clp->cl_state) == 0)
2701 rpc_wake_up_task(task);
2702 task->tk_status = 0;
2703 return -EAGAIN;
2704 case -NFS4ERR_DELAY:
2705 nfs_inc_server_stats((struct nfs_server *) server,
2706 NFSIOS_DELAY);
2707 case -NFS4ERR_GRACE:
2708 rpc_delay(task, NFS4_POLL_RETRY_MAX);
2709 task->tk_status = 0;
2710 return -EAGAIN;
2711 case -NFS4ERR_OLD_STATEID:
2712 task->tk_status = 0;
2713 return -EAGAIN;
2714 }
2715 task->tk_status = nfs4_map_errors(task->tk_status);
2716 return 0;
2717 }
2718
2719 static int nfs4_wait_bit_interruptible(void *word)
2720 {
2721 if (signal_pending(current))
2722 return -ERESTARTSYS;
2723 schedule();
2724 return 0;
2725 }
2726
2727 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs_client *clp)
2728 {
2729 sigset_t oldset;
2730 int res;
2731
2732 might_sleep();
2733
2734 rwsem_acquire(&clp->cl_sem.dep_map, 0, 0, _RET_IP_);
2735
2736 rpc_clnt_sigmask(clnt, &oldset);
2737 res = wait_on_bit(&clp->cl_state, NFS4CLNT_STATE_RECOVER,
2738 nfs4_wait_bit_interruptible,
2739 TASK_INTERRUPTIBLE);
2740 rpc_clnt_sigunmask(clnt, &oldset);
2741
2742 rwsem_release(&clp->cl_sem.dep_map, 1, _RET_IP_);
2743 return res;
2744 }
2745
2746 static int nfs4_delay(struct rpc_clnt *clnt, long *timeout)
2747 {
2748 sigset_t oldset;
2749 int res = 0;
2750
2751 might_sleep();
2752
2753 if (*timeout <= 0)
2754 *timeout = NFS4_POLL_RETRY_MIN;
2755 if (*timeout > NFS4_POLL_RETRY_MAX)
2756 *timeout = NFS4_POLL_RETRY_MAX;
2757 rpc_clnt_sigmask(clnt, &oldset);
2758 if (clnt->cl_intr) {
2759 schedule_timeout_interruptible(*timeout);
2760 if (signalled())
2761 res = -ERESTARTSYS;
2762 } else
2763 schedule_timeout_uninterruptible(*timeout);
2764 rpc_clnt_sigunmask(clnt, &oldset);
2765 *timeout <<= 1;
2766 return res;
2767 }
2768
2769 /* This is the error handling routine for processes that are allowed
2770 * to sleep.
2771 */
2772 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception)
2773 {
2774 struct nfs_client *clp = server->nfs_client;
2775 int ret = errorcode;
2776
2777 exception->retry = 0;
2778 switch(errorcode) {
2779 case 0:
2780 return 0;
2781 case -NFS4ERR_STALE_CLIENTID:
2782 case -NFS4ERR_STALE_STATEID:
2783 case -NFS4ERR_EXPIRED:
2784 nfs4_schedule_state_recovery(clp);
2785 ret = nfs4_wait_clnt_recover(server->client, clp);
2786 if (ret == 0)
2787 exception->retry = 1;
2788 break;
2789 case -NFS4ERR_FILE_OPEN:
2790 case -NFS4ERR_GRACE:
2791 case -NFS4ERR_DELAY:
2792 ret = nfs4_delay(server->client, &exception->timeout);
2793 if (ret != 0)
2794 break;
2795 case -NFS4ERR_OLD_STATEID:
2796 exception->retry = 1;
2797 }
2798 /* We failed to handle the error */
2799 return nfs4_map_errors(ret);
2800 }
2801
2802 int nfs4_proc_setclientid(struct nfs_client *clp, u32 program, unsigned short port, struct rpc_cred *cred)
2803 {
2804 nfs4_verifier sc_verifier;
2805 struct nfs4_setclientid setclientid = {
2806 .sc_verifier = &sc_verifier,
2807 .sc_prog = program,
2808 };
2809 struct rpc_message msg = {
2810 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID],
2811 .rpc_argp = &setclientid,
2812 .rpc_resp = clp,
2813 .rpc_cred = cred,
2814 };
2815 __be32 *p;
2816 int loop = 0;
2817 int status;
2818
2819 p = (__be32*)sc_verifier.data;
2820 *p++ = htonl((u32)clp->cl_boot_time.tv_sec);
2821 *p = htonl((u32)clp->cl_boot_time.tv_nsec);
2822
2823 for(;;) {
2824 setclientid.sc_name_len = scnprintf(setclientid.sc_name,
2825 sizeof(setclientid.sc_name), "%s/%u.%u.%u.%u %s %u",
2826 clp->cl_ipaddr, NIPQUAD(clp->cl_addr.sin_addr),
2827 cred->cr_ops->cr_name,
2828 clp->cl_id_uniquifier);
2829 setclientid.sc_netid_len = scnprintf(setclientid.sc_netid,
2830 sizeof(setclientid.sc_netid), "tcp");
2831 setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr,
2832 sizeof(setclientid.sc_uaddr), "%s.%d.%d",
2833 clp->cl_ipaddr, port >> 8, port & 255);
2834
2835 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2836 if (status != -NFS4ERR_CLID_INUSE)
2837 break;
2838 if (signalled())
2839 break;
2840 if (loop++ & 1)
2841 ssleep(clp->cl_lease_time + 1);
2842 else
2843 if (++clp->cl_id_uniquifier == 0)
2844 break;
2845 }
2846 return status;
2847 }
2848
2849 static int _nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred)
2850 {
2851 struct nfs_fsinfo fsinfo;
2852 struct rpc_message msg = {
2853 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM],
2854 .rpc_argp = clp,
2855 .rpc_resp = &fsinfo,
2856 .rpc_cred = cred,
2857 };
2858 unsigned long now;
2859 int status;
2860
2861 now = jiffies;
2862 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2863 if (status == 0) {
2864 spin_lock(&clp->cl_lock);
2865 clp->cl_lease_time = fsinfo.lease_time * HZ;
2866 clp->cl_last_renewal = now;
2867 clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state);
2868 spin_unlock(&clp->cl_lock);
2869 }
2870 return status;
2871 }
2872
2873 int nfs4_proc_setclientid_confirm(struct nfs_client *clp, struct rpc_cred *cred)
2874 {
2875 long timeout;
2876 int err;
2877 do {
2878 err = _nfs4_proc_setclientid_confirm(clp, cred);
2879 switch (err) {
2880 case 0:
2881 return err;
2882 case -NFS4ERR_RESOURCE:
2883 /* The IBM lawyers misread another document! */
2884 case -NFS4ERR_DELAY:
2885 err = nfs4_delay(clp->cl_rpcclient, &timeout);
2886 }
2887 } while (err == 0);
2888 return err;
2889 }
2890
2891 struct nfs4_delegreturndata {
2892 struct nfs4_delegreturnargs args;
2893 struct nfs4_delegreturnres res;
2894 struct nfs_fh fh;
2895 nfs4_stateid stateid;
2896 struct rpc_cred *cred;
2897 unsigned long timestamp;
2898 struct nfs_fattr fattr;
2899 int rpc_status;
2900 };
2901
2902 static void nfs4_delegreturn_prepare(struct rpc_task *task, void *calldata)
2903 {
2904 struct nfs4_delegreturndata *data = calldata;
2905 struct rpc_message msg = {
2906 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN],
2907 .rpc_argp = &data->args,
2908 .rpc_resp = &data->res,
2909 .rpc_cred = data->cred,
2910 };
2911 nfs_fattr_init(data->res.fattr);
2912 rpc_call_setup(task, &msg, 0);
2913 }
2914
2915 static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata)
2916 {
2917 struct nfs4_delegreturndata *data = calldata;
2918 data->rpc_status = task->tk_status;
2919 if (data->rpc_status == 0)
2920 renew_lease(data->res.server, data->timestamp);
2921 }
2922
2923 static void nfs4_delegreturn_release(void *calldata)
2924 {
2925 struct nfs4_delegreturndata *data = calldata;
2926
2927 put_rpccred(data->cred);
2928 kfree(calldata);
2929 }
2930
2931 static const struct rpc_call_ops nfs4_delegreturn_ops = {
2932 .rpc_call_prepare = nfs4_delegreturn_prepare,
2933 .rpc_call_done = nfs4_delegreturn_done,
2934 .rpc_release = nfs4_delegreturn_release,
2935 };
2936
2937 static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
2938 {
2939 struct nfs4_delegreturndata *data;
2940 struct nfs_server *server = NFS_SERVER(inode);
2941 struct rpc_task *task;
2942 int status;
2943
2944 data = kmalloc(sizeof(*data), GFP_KERNEL);
2945 if (data == NULL)
2946 return -ENOMEM;
2947 data->args.fhandle = &data->fh;
2948 data->args.stateid = &data->stateid;
2949 data->args.bitmask = server->attr_bitmask;
2950 nfs_copy_fh(&data->fh, NFS_FH(inode));
2951 memcpy(&data->stateid, stateid, sizeof(data->stateid));
2952 data->res.fattr = &data->fattr;
2953 data->res.server = server;
2954 data->cred = get_rpccred(cred);
2955 data->timestamp = jiffies;
2956 data->rpc_status = 0;
2957
2958 task = rpc_run_task(NFS_CLIENT(inode), RPC_TASK_ASYNC, &nfs4_delegreturn_ops, data);
2959 if (IS_ERR(task))
2960 return PTR_ERR(task);
2961 status = nfs4_wait_for_completion_rpc_task(task);
2962 if (status == 0) {
2963 status = data->rpc_status;
2964 if (status == 0)
2965 nfs_post_op_update_inode(inode, &data->fattr);
2966 }
2967 rpc_put_task(task);
2968 return status;
2969 }
2970
2971 int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
2972 {
2973 struct nfs_server *server = NFS_SERVER(inode);
2974 struct nfs4_exception exception = { };
2975 int err;
2976 do {
2977 err = _nfs4_proc_delegreturn(inode, cred, stateid);
2978 switch (err) {
2979 case -NFS4ERR_STALE_STATEID:
2980 case -NFS4ERR_EXPIRED:
2981 case 0:
2982 return 0;
2983 }
2984 err = nfs4_handle_exception(server, err, &exception);
2985 } while (exception.retry);
2986 return err;
2987 }
2988
2989 #define NFS4_LOCK_MINTIMEOUT (1 * HZ)
2990 #define NFS4_LOCK_MAXTIMEOUT (30 * HZ)
2991
2992 /*
2993 * sleep, with exponential backoff, and retry the LOCK operation.
2994 */
2995 static unsigned long
2996 nfs4_set_lock_task_retry(unsigned long timeout)
2997 {
2998 schedule_timeout_interruptible(timeout);
2999 timeout <<= 1;
3000 if (timeout > NFS4_LOCK_MAXTIMEOUT)
3001 return NFS4_LOCK_MAXTIMEOUT;
3002 return timeout;
3003 }
3004
3005 static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3006 {
3007 struct inode *inode = state->inode;
3008 struct nfs_server *server = NFS_SERVER(inode);
3009 struct nfs_client *clp = server->nfs_client;
3010 struct nfs_lockt_args arg = {
3011 .fh = NFS_FH(inode),
3012 .fl = request,
3013 };
3014 struct nfs_lockt_res res = {
3015 .denied = request,
3016 };
3017 struct rpc_message msg = {
3018 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKT],
3019 .rpc_argp = &arg,
3020 .rpc_resp = &res,
3021 .rpc_cred = state->owner->so_cred,
3022 };
3023 struct nfs4_lock_state *lsp;
3024 int status;
3025
3026 down_read(&clp->cl_sem);
3027 arg.lock_owner.clientid = clp->cl_clientid;
3028 status = nfs4_set_lock_state(state, request);
3029 if (status != 0)
3030 goto out;
3031 lsp = request->fl_u.nfs4_fl.owner;
3032 arg.lock_owner.id = lsp->ls_id.id;
3033 status = rpc_call_sync(server->client, &msg, 0);
3034 switch (status) {
3035 case 0:
3036 request->fl_type = F_UNLCK;
3037 break;
3038 case -NFS4ERR_DENIED:
3039 status = 0;
3040 }
3041 request->fl_ops->fl_release_private(request);
3042 out:
3043 up_read(&clp->cl_sem);
3044 return status;
3045 }
3046
3047 static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3048 {
3049 struct nfs4_exception exception = { };
3050 int err;
3051
3052 do {
3053 err = nfs4_handle_exception(NFS_SERVER(state->inode),
3054 _nfs4_proc_getlk(state, cmd, request),
3055 &exception);
3056 } while (exception.retry);
3057 return err;
3058 }
3059
3060 static int do_vfs_lock(struct file *file, struct file_lock *fl)
3061 {
3062 int res = 0;
3063 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
3064 case FL_POSIX:
3065 res = posix_lock_file_wait(file, fl);
3066 break;
3067 case FL_FLOCK:
3068 res = flock_lock_file_wait(file, fl);
3069 break;
3070 default:
3071 BUG();
3072 }
3073 return res;
3074 }
3075
3076 struct nfs4_unlockdata {
3077 struct nfs_locku_args arg;
3078 struct nfs_locku_res res;
3079 struct nfs4_lock_state *lsp;
3080 struct nfs_open_context *ctx;
3081 struct file_lock fl;
3082 const struct nfs_server *server;
3083 unsigned long timestamp;
3084 };
3085
3086 static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl,
3087 struct nfs_open_context *ctx,
3088 struct nfs4_lock_state *lsp,
3089 struct nfs_seqid *seqid)
3090 {
3091 struct nfs4_unlockdata *p;
3092 struct inode *inode = lsp->ls_state->inode;
3093
3094 p = kmalloc(sizeof(*p), GFP_KERNEL);
3095 if (p == NULL)
3096 return NULL;
3097 p->arg.fh = NFS_FH(inode);
3098 p->arg.fl = &p->fl;
3099 p->arg.seqid = seqid;
3100 p->arg.stateid = &lsp->ls_stateid;
3101 p->lsp = lsp;
3102 atomic_inc(&lsp->ls_count);
3103 /* Ensure we don't close file until we're done freeing locks! */
3104 p->ctx = get_nfs_open_context(ctx);
3105 memcpy(&p->fl, fl, sizeof(p->fl));
3106 p->server = NFS_SERVER(inode);
3107 return p;
3108 }
3109
3110 static void nfs4_locku_release_calldata(void *data)
3111 {
3112 struct nfs4_unlockdata *calldata = data;
3113 nfs_free_seqid(calldata->arg.seqid);
3114 nfs4_put_lock_state(calldata->lsp);
3115 put_nfs_open_context(calldata->ctx);
3116 kfree(calldata);
3117 }
3118
3119 static void nfs4_locku_done(struct rpc_task *task, void *data)
3120 {
3121 struct nfs4_unlockdata *calldata = data;
3122
3123 if (RPC_ASSASSINATED(task))
3124 return;
3125 nfs_increment_lock_seqid(task->tk_status, calldata->arg.seqid);
3126 switch (task->tk_status) {
3127 case 0:
3128 memcpy(calldata->lsp->ls_stateid.data,
3129 calldata->res.stateid.data,
3130 sizeof(calldata->lsp->ls_stateid.data));
3131 renew_lease(calldata->server, calldata->timestamp);
3132 break;
3133 case -NFS4ERR_STALE_STATEID:
3134 case -NFS4ERR_EXPIRED:
3135 break;
3136 default:
3137 if (nfs4_async_handle_error(task, calldata->server) == -EAGAIN)
3138 rpc_restart_call(task);
3139 }
3140 }
3141
3142 static void nfs4_locku_prepare(struct rpc_task *task, void *data)
3143 {
3144 struct nfs4_unlockdata *calldata = data;
3145 struct rpc_message msg = {
3146 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKU],
3147 .rpc_argp = &calldata->arg,
3148 .rpc_resp = &calldata->res,
3149 .rpc_cred = calldata->lsp->ls_state->owner->so_cred,
3150 };
3151
3152 if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
3153 return;
3154 if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) {
3155 /* Note: exit _without_ running nfs4_locku_done */
3156 task->tk_action = NULL;
3157 return;
3158 }
3159 calldata->timestamp = jiffies;
3160 rpc_call_setup(task, &msg, 0);
3161 }
3162
3163 static const struct rpc_call_ops nfs4_locku_ops = {
3164 .rpc_call_prepare = nfs4_locku_prepare,
3165 .rpc_call_done = nfs4_locku_done,
3166 .rpc_release = nfs4_locku_release_calldata,
3167 };
3168
3169 static struct rpc_task *nfs4_do_unlck(struct file_lock *fl,
3170 struct nfs_open_context *ctx,
3171 struct nfs4_lock_state *lsp,
3172 struct nfs_seqid *seqid)
3173 {
3174 struct nfs4_unlockdata *data;
3175
3176 data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid);
3177 if (data == NULL) {
3178 nfs_free_seqid(seqid);
3179 return ERR_PTR(-ENOMEM);
3180 }
3181
3182 return rpc_run_task(NFS_CLIENT(lsp->ls_state->inode), RPC_TASK_ASYNC, &nfs4_locku_ops, data);
3183 }
3184
3185 static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request)
3186 {
3187 struct nfs_seqid *seqid;
3188 struct nfs4_lock_state *lsp;
3189 struct rpc_task *task;
3190 int status = 0;
3191
3192 status = nfs4_set_lock_state(state, request);
3193 /* Unlock _before_ we do the RPC call */
3194 request->fl_flags |= FL_EXISTS;
3195 if (do_vfs_lock(request->fl_file, request) == -ENOENT)
3196 goto out;
3197 if (status != 0)
3198 goto out;
3199 /* Is this a delegated lock? */
3200 if (test_bit(NFS_DELEGATED_STATE, &state->flags))
3201 goto out;
3202 lsp = request->fl_u.nfs4_fl.owner;
3203 seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3204 status = -ENOMEM;
3205 if (seqid == NULL)
3206 goto out;
3207 task = nfs4_do_unlck(request, request->fl_file->private_data, lsp, seqid);
3208 status = PTR_ERR(task);
3209 if (IS_ERR(task))
3210 goto out;
3211 status = nfs4_wait_for_completion_rpc_task(task);
3212 rpc_put_task(task);
3213 out:
3214 return status;
3215 }
3216
3217 struct nfs4_lockdata {
3218 struct nfs_lock_args arg;
3219 struct nfs_lock_res res;
3220 struct nfs4_lock_state *lsp;
3221 struct nfs_open_context *ctx;
3222 struct file_lock fl;
3223 unsigned long timestamp;
3224 int rpc_status;
3225 int cancelled;
3226 };
3227
3228 static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl,
3229 struct nfs_open_context *ctx, struct nfs4_lock_state *lsp)
3230 {
3231 struct nfs4_lockdata *p;
3232 struct inode *inode = lsp->ls_state->inode;
3233 struct nfs_server *server = NFS_SERVER(inode);
3234
3235 p = kzalloc(sizeof(*p), GFP_KERNEL);
3236 if (p == NULL)
3237 return NULL;
3238
3239 p->arg.fh = NFS_FH(inode);
3240 p->arg.fl = &p->fl;
3241 p->arg.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3242 if (p->arg.lock_seqid == NULL)
3243 goto out_free;
3244 p->arg.lock_stateid = &lsp->ls_stateid;
3245 p->arg.lock_owner.clientid = server->nfs_client->cl_clientid;
3246 p->arg.lock_owner.id = lsp->ls_id.id;
3247 p->lsp = lsp;
3248 atomic_inc(&lsp->ls_count);
3249 p->ctx = get_nfs_open_context(ctx);
3250 memcpy(&p->fl, fl, sizeof(p->fl));
3251 return p;
3252 out_free:
3253 kfree(p);
3254 return NULL;
3255 }
3256
3257 static void nfs4_lock_prepare(struct rpc_task *task, void *calldata)
3258 {
3259 struct nfs4_lockdata *data = calldata;
3260 struct nfs4_state *state = data->lsp->ls_state;
3261 struct nfs4_state_owner *sp = state->owner;
3262 struct rpc_message msg = {
3263 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK],
3264 .rpc_argp = &data->arg,
3265 .rpc_resp = &data->res,
3266 .rpc_cred = sp->so_cred,
3267 };
3268
3269 if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0)
3270 return;
3271 dprintk("%s: begin!\n", __FUNCTION__);
3272 /* Do we need to do an open_to_lock_owner? */
3273 if (!(data->arg.lock_seqid->sequence->flags & NFS_SEQID_CONFIRMED)) {
3274 data->arg.open_seqid = nfs_alloc_seqid(&sp->so_seqid);
3275 if (data->arg.open_seqid == NULL) {
3276 data->rpc_status = -ENOMEM;
3277 task->tk_action = NULL;
3278 goto out;
3279 }
3280 data->arg.open_stateid = &state->stateid;
3281 data->arg.new_lock_owner = 1;
3282 }
3283 data->timestamp = jiffies;
3284 rpc_call_setup(task, &msg, 0);
3285 out:
3286 dprintk("%s: done!, ret = %d\n", __FUNCTION__, data->rpc_status);
3287 }
3288
3289 static void nfs4_lock_done(struct rpc_task *task, void *calldata)
3290 {
3291 struct nfs4_lockdata *data = calldata;
3292
3293 dprintk("%s: begin!\n", __FUNCTION__);
3294
3295 data->rpc_status = task->tk_status;
3296 if (RPC_ASSASSINATED(task))
3297 goto out;
3298 if (data->arg.new_lock_owner != 0) {
3299 nfs_increment_open_seqid(data->rpc_status, data->arg.open_seqid);
3300 if (data->rpc_status == 0)
3301 nfs_confirm_seqid(&data->lsp->ls_seqid, 0);
3302 else
3303 goto out;
3304 }
3305 if (data->rpc_status == 0) {
3306 memcpy(data->lsp->ls_stateid.data, data->res.stateid.data,
3307 sizeof(data->lsp->ls_stateid.data));
3308 data->lsp->ls_flags |= NFS_LOCK_INITIALIZED;
3309 renew_lease(NFS_SERVER(data->ctx->path.dentry->d_inode), data->timestamp);
3310 }
3311 nfs_increment_lock_seqid(data->rpc_status, data->arg.lock_seqid);
3312 out:
3313 dprintk("%s: done, ret = %d!\n", __FUNCTION__, data->rpc_status);
3314 }
3315
3316 static void nfs4_lock_release(void *calldata)
3317 {
3318 struct nfs4_lockdata *data = calldata;
3319
3320 dprintk("%s: begin!\n", __FUNCTION__);
3321 if (data->arg.open_seqid != NULL)
3322 nfs_free_seqid(data->arg.open_seqid);
3323 if (data->cancelled != 0) {
3324 struct rpc_task *task;
3325 task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp,
3326 data->arg.lock_seqid);
3327 if (!IS_ERR(task))
3328 rpc_put_task(task);
3329 dprintk("%s: cancelling lock!\n", __FUNCTION__);
3330 } else
3331 nfs_free_seqid(data->arg.lock_seqid);
3332 nfs4_put_lock_state(data->lsp);
3333 put_nfs_open_context(data->ctx);
3334 kfree(data);
3335 dprintk("%s: done!\n", __FUNCTION__);
3336 }
3337
3338 static const struct rpc_call_ops nfs4_lock_ops = {
3339 .rpc_call_prepare = nfs4_lock_prepare,
3340 .rpc_call_done = nfs4_lock_done,
3341 .rpc_release = nfs4_lock_release,
3342 };
3343
3344 static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int reclaim)
3345 {
3346 struct nfs4_lockdata *data;
3347 struct rpc_task *task;
3348 int ret;
3349
3350 dprintk("%s: begin!\n", __FUNCTION__);
3351 data = nfs4_alloc_lockdata(fl, fl->fl_file->private_data,
3352 fl->fl_u.nfs4_fl.owner);
3353 if (data == NULL)
3354 return -ENOMEM;
3355 if (IS_SETLKW(cmd))
3356 data->arg.block = 1;
3357 if (reclaim != 0)
3358 data->arg.reclaim = 1;
3359 task = rpc_run_task(NFS_CLIENT(state->inode), RPC_TASK_ASYNC,
3360 &nfs4_lock_ops, data);
3361 if (IS_ERR(task))
3362 return PTR_ERR(task);
3363 ret = nfs4_wait_for_completion_rpc_task(task);
3364 if (ret == 0) {
3365 ret = data->rpc_status;
3366 if (ret == -NFS4ERR_DENIED)
3367 ret = -EAGAIN;
3368 } else
3369 data->cancelled = 1;
3370 rpc_put_task(task);
3371 dprintk("%s: done, ret = %d!\n", __FUNCTION__, ret);
3372 return ret;
3373 }
3374
3375 static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request)
3376 {
3377 struct nfs_server *server = NFS_SERVER(state->inode);
3378 struct nfs4_exception exception = { };
3379 int err;
3380
3381 do {
3382 /* Cache the lock if possible... */
3383 if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
3384 return 0;
3385 err = _nfs4_do_setlk(state, F_SETLK, request, 1);
3386 if (err != -NFS4ERR_DELAY)
3387 break;
3388 nfs4_handle_exception(server, err, &exception);
3389 } while (exception.retry);
3390 return err;
3391 }
3392
3393 static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request)
3394 {
3395 struct nfs_server *server = NFS_SERVER(state->inode);
3396 struct nfs4_exception exception = { };
3397 int err;
3398
3399 err = nfs4_set_lock_state(state, request);
3400 if (err != 0)
3401 return err;
3402 do {
3403 if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
3404 return 0;
3405 err = _nfs4_do_setlk(state, F_SETLK, request, 0);
3406 if (err != -NFS4ERR_DELAY)
3407 break;
3408 nfs4_handle_exception(server, err, &exception);
3409 } while (exception.retry);
3410 return err;
3411 }
3412
3413 static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3414 {
3415 struct nfs_client *clp = state->owner->so_client;
3416 unsigned char fl_flags = request->fl_flags;
3417 int status;
3418
3419 /* Is this a delegated open? */
3420 status = nfs4_set_lock_state(state, request);
3421 if (status != 0)
3422 goto out;
3423 request->fl_flags |= FL_ACCESS;
3424 status = do_vfs_lock(request->fl_file, request);
3425 if (status < 0)
3426 goto out;
3427 down_read(&clp->cl_sem);
3428 if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
3429 struct nfs_inode *nfsi = NFS_I(state->inode);
3430 /* Yes: cache locks! */
3431 down_read(&nfsi->rwsem);
3432 /* ...but avoid races with delegation recall... */
3433 if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
3434 request->fl_flags = fl_flags & ~FL_SLEEP;
3435 status = do_vfs_lock(request->fl_file, request);
3436 up_read(&nfsi->rwsem);
3437 goto out_unlock;
3438 }
3439 up_read(&nfsi->rwsem);
3440 }
3441 status = _nfs4_do_setlk(state, cmd, request, 0);
3442 if (status != 0)
3443 goto out_unlock;
3444 /* Note: we always want to sleep here! */
3445 request->fl_flags = fl_flags | FL_SLEEP;
3446 if (do_vfs_lock(request->fl_file, request) < 0)
3447 printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __FUNCTION__);
3448 out_unlock:
3449 up_read(&clp->cl_sem);
3450 out:
3451 request->fl_flags = fl_flags;
3452 return status;
3453 }
3454
3455 static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3456 {
3457 struct nfs4_exception exception = { };
3458 int err;
3459
3460 do {
3461 err = nfs4_handle_exception(NFS_SERVER(state->inode),
3462 _nfs4_proc_setlk(state, cmd, request),
3463 &exception);
3464 } while (exception.retry);
3465 return err;
3466 }
3467
3468 static int
3469 nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request)
3470 {
3471 struct nfs_open_context *ctx;
3472 struct nfs4_state *state;
3473 unsigned long timeout = NFS4_LOCK_MINTIMEOUT;
3474 int status;
3475
3476 /* verify open state */
3477 ctx = (struct nfs_open_context *)filp->private_data;
3478 state = ctx->state;
3479
3480 if (request->fl_start < 0 || request->fl_end < 0)
3481 return -EINVAL;
3482
3483 if (IS_GETLK(cmd))
3484 return nfs4_proc_getlk(state, F_GETLK, request);
3485
3486 if (!(IS_SETLK(cmd) || IS_SETLKW(cmd)))
3487 return -EINVAL;
3488
3489 if (request->fl_type == F_UNLCK)
3490 return nfs4_proc_unlck(state, cmd, request);
3491
3492 do {
3493 status = nfs4_proc_setlk(state, cmd, request);
3494 if ((status != -EAGAIN) || IS_SETLK(cmd))
3495 break;
3496 timeout = nfs4_set_lock_task_retry(timeout);
3497 status = -ERESTARTSYS;
3498 if (signalled())
3499 break;
3500 } while(status < 0);
3501 return status;
3502 }
3503
3504 int nfs4_lock_delegation_recall(struct nfs4_state *state, struct file_lock *fl)
3505 {
3506 struct nfs_server *server = NFS_SERVER(state->inode);
3507 struct nfs4_exception exception = { };
3508 int err;
3509
3510 err = nfs4_set_lock_state(state, fl);
3511 if (err != 0)
3512 goto out;
3513 do {
3514 err = _nfs4_do_setlk(state, F_SETLK, fl, 0);
3515 if (err != -NFS4ERR_DELAY)
3516 break;
3517 err = nfs4_handle_exception(server, err, &exception);
3518 } while (exception.retry);
3519 out:
3520 return err;
3521 }
3522
3523 #define XATTR_NAME_NFSV4_ACL "system.nfs4_acl"
3524
3525 int nfs4_setxattr(struct dentry *dentry, const char *key, const void *buf,
3526 size_t buflen, int flags)
3527 {
3528 struct inode *inode = dentry->d_inode;
3529
3530 if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3531 return -EOPNOTSUPP;
3532
3533 if (!S_ISREG(inode->i_mode) &&
3534 (!S_ISDIR(inode->i_mode) || inode->i_mode & S_ISVTX))
3535 return -EPERM;
3536
3537 return nfs4_proc_set_acl(inode, buf, buflen);
3538 }
3539
3540 /* The getxattr man page suggests returning -ENODATA for unknown attributes,
3541 * and that's what we'll do for e.g. user attributes that haven't been set.
3542 * But we'll follow ext2/ext3's lead by returning -EOPNOTSUPP for unsupported
3543 * attributes in kernel-managed attribute namespaces. */
3544 ssize_t nfs4_getxattr(struct dentry *dentry, const char *key, void *buf,
3545 size_t buflen)
3546 {
3547 struct inode *inode = dentry->d_inode;
3548
3549 if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3550 return -EOPNOTSUPP;
3551
3552 return nfs4_proc_get_acl(inode, buf, buflen);
3553 }
3554
3555 ssize_t nfs4_listxattr(struct dentry *dentry, char *buf, size_t buflen)
3556 {
3557 size_t len = strlen(XATTR_NAME_NFSV4_ACL) + 1;
3558
3559 if (!nfs4_server_supports_acls(NFS_SERVER(dentry->d_inode)))
3560 return 0;
3561 if (buf && buflen < len)
3562 return -ERANGE;
3563 if (buf)
3564 memcpy(buf, XATTR_NAME_NFSV4_ACL, len);
3565 return len;
3566 }
3567
3568 int nfs4_proc_fs_locations(struct inode *dir, struct qstr *name,
3569 struct nfs4_fs_locations *fs_locations, struct page *page)
3570 {
3571 struct nfs_server *server = NFS_SERVER(dir);
3572 u32 bitmask[2] = {
3573 [0] = FATTR4_WORD0_FSID | FATTR4_WORD0_FS_LOCATIONS,
3574 [1] = FATTR4_WORD1_MOUNTED_ON_FILEID,
3575 };
3576 struct nfs4_fs_locations_arg args = {
3577 .dir_fh = NFS_FH(dir),
3578 .name = name,
3579 .page = page,
3580 .bitmask = bitmask,
3581 };
3582 struct rpc_message msg = {
3583 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS],
3584 .rpc_argp = &args,
3585 .rpc_resp = fs_locations,
3586 };
3587 int status;
3588
3589 dprintk("%s: start\n", __FUNCTION__);
3590 nfs_fattr_init(&fs_locations->fattr);
3591 fs_locations->server = server;
3592 fs_locations->nlocations = 0;
3593 status = rpc_call_sync(server->client, &msg, 0);
3594 dprintk("%s: returned status = %d\n", __FUNCTION__, status);
3595 return status;
3596 }
3597
3598 struct nfs4_state_recovery_ops nfs4_reboot_recovery_ops = {
3599 .recover_open = nfs4_open_reclaim,
3600 .recover_lock = nfs4_lock_reclaim,
3601 };
3602
3603 struct nfs4_state_recovery_ops nfs4_network_partition_recovery_ops = {
3604 .recover_open = nfs4_open_expired,
3605 .recover_lock = nfs4_lock_expired,
3606 };
3607
3608 static const struct inode_operations nfs4_file_inode_operations = {
3609 .permission = nfs_permission,
3610 .getattr = nfs_getattr,
3611 .setattr = nfs_setattr,
3612 .getxattr = nfs4_getxattr,
3613 .setxattr = nfs4_setxattr,
3614 .listxattr = nfs4_listxattr,
3615 };
3616
3617 const struct nfs_rpc_ops nfs_v4_clientops = {
3618 .version = 4, /* protocol version */
3619 .dentry_ops = &nfs4_dentry_operations,
3620 .dir_inode_ops = &nfs4_dir_inode_operations,
3621 .file_inode_ops = &nfs4_file_inode_operations,
3622 .getroot = nfs4_proc_get_root,
3623 .getattr = nfs4_proc_getattr,
3624 .setattr = nfs4_proc_setattr,
3625 .lookupfh = nfs4_proc_lookupfh,
3626 .lookup = nfs4_proc_lookup,
3627 .access = nfs4_proc_access,
3628 .readlink = nfs4_proc_readlink,
3629 .create = nfs4_proc_create,
3630 .remove = nfs4_proc_remove,
3631 .unlink_setup = nfs4_proc_unlink_setup,
3632 .unlink_done = nfs4_proc_unlink_done,
3633 .rename = nfs4_proc_rename,
3634 .link = nfs4_proc_link,
3635 .symlink = nfs4_proc_symlink,
3636 .mkdir = nfs4_proc_mkdir,
3637 .rmdir = nfs4_proc_remove,
3638 .readdir = nfs4_proc_readdir,
3639 .mknod = nfs4_proc_mknod,
3640 .statfs = nfs4_proc_statfs,
3641 .fsinfo = nfs4_proc_fsinfo,
3642 .pathconf = nfs4_proc_pathconf,
3643 .set_capabilities = nfs4_server_capabilities,
3644 .decode_dirent = nfs4_decode_dirent,
3645 .read_setup = nfs4_proc_read_setup,
3646 .read_done = nfs4_read_done,
3647 .write_setup = nfs4_proc_write_setup,
3648 .write_done = nfs4_write_done,
3649 .commit_setup = nfs4_proc_commit_setup,
3650 .commit_done = nfs4_commit_done,
3651 .file_open = nfs_open,
3652 .file_release = nfs_release,
3653 .lock = nfs4_proc_lock,
3654 .clear_acl_cache = nfs4_zap_acl_attr,
3655 };
3656
3657 /*
3658 * Local variables:
3659 * c-basic-offset: 8
3660 * End:
3661 */