]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/nfs/nfs4proc.c
NFSv4: Ensure nfs_callback_down() calls svc_destroy()
[mirror_ubuntu-bionic-kernel.git] / fs / nfs / nfs4proc.c
1 /*
2 * fs/nfs/nfs4proc.c
3 *
4 * Client-side procedure declarations for NFSv4.
5 *
6 * Copyright (c) 2002 The Regents of the University of Michigan.
7 * All rights reserved.
8 *
9 * Kendrick Smith <kmsmith@umich.edu>
10 * Andy Adamson <andros@umich.edu>
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 *
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 #include <linux/mm.h>
39 #include <linux/utsname.h>
40 #include <linux/delay.h>
41 #include <linux/errno.h>
42 #include <linux/string.h>
43 #include <linux/sunrpc/clnt.h>
44 #include <linux/nfs.h>
45 #include <linux/nfs4.h>
46 #include <linux/nfs_fs.h>
47 #include <linux/nfs_page.h>
48 #include <linux/smp_lock.h>
49 #include <linux/namei.h>
50 #include <linux/mount.h>
51
52 #include "nfs4_fs.h"
53 #include "delegation.h"
54 #include "iostat.h"
55
56 #define NFSDBG_FACILITY NFSDBG_PROC
57
58 #define NFS4_POLL_RETRY_MIN (1*HZ)
59 #define NFS4_POLL_RETRY_MAX (15*HZ)
60
61 struct nfs4_opendata;
62 static int _nfs4_proc_open(struct nfs4_opendata *data);
63 static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *);
64 static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *);
65 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry);
66 static int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception);
67 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs4_client *clp);
68 extern u32 *nfs4_decode_dirent(u32 *p, struct nfs_entry *entry, int plus);
69 extern struct rpc_procinfo nfs4_procedures[];
70
71 /* Prevent leaks of NFSv4 errors into userland */
72 int nfs4_map_errors(int err)
73 {
74 if (err < -1000) {
75 dprintk("%s could not handle NFSv4 error %d\n",
76 __FUNCTION__, -err);
77 return -EIO;
78 }
79 return err;
80 }
81
82 /*
83 * This is our standard bitmap for GETATTR requests.
84 */
85 const u32 nfs4_fattr_bitmap[2] = {
86 FATTR4_WORD0_TYPE
87 | FATTR4_WORD0_CHANGE
88 | FATTR4_WORD0_SIZE
89 | FATTR4_WORD0_FSID
90 | FATTR4_WORD0_FILEID,
91 FATTR4_WORD1_MODE
92 | FATTR4_WORD1_NUMLINKS
93 | FATTR4_WORD1_OWNER
94 | FATTR4_WORD1_OWNER_GROUP
95 | FATTR4_WORD1_RAWDEV
96 | FATTR4_WORD1_SPACE_USED
97 | FATTR4_WORD1_TIME_ACCESS
98 | FATTR4_WORD1_TIME_METADATA
99 | FATTR4_WORD1_TIME_MODIFY
100 };
101
102 const u32 nfs4_statfs_bitmap[2] = {
103 FATTR4_WORD0_FILES_AVAIL
104 | FATTR4_WORD0_FILES_FREE
105 | FATTR4_WORD0_FILES_TOTAL,
106 FATTR4_WORD1_SPACE_AVAIL
107 | FATTR4_WORD1_SPACE_FREE
108 | FATTR4_WORD1_SPACE_TOTAL
109 };
110
111 const u32 nfs4_pathconf_bitmap[2] = {
112 FATTR4_WORD0_MAXLINK
113 | FATTR4_WORD0_MAXNAME,
114 0
115 };
116
117 const u32 nfs4_fsinfo_bitmap[2] = { FATTR4_WORD0_MAXFILESIZE
118 | FATTR4_WORD0_MAXREAD
119 | FATTR4_WORD0_MAXWRITE
120 | FATTR4_WORD0_LEASE_TIME,
121 0
122 };
123
124 static void nfs4_setup_readdir(u64 cookie, u32 *verifier, struct dentry *dentry,
125 struct nfs4_readdir_arg *readdir)
126 {
127 u32 *start, *p;
128
129 BUG_ON(readdir->count < 80);
130 if (cookie > 2) {
131 readdir->cookie = cookie;
132 memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier));
133 return;
134 }
135
136 readdir->cookie = 0;
137 memset(&readdir->verifier, 0, sizeof(readdir->verifier));
138 if (cookie == 2)
139 return;
140
141 /*
142 * NFSv4 servers do not return entries for '.' and '..'
143 * Therefore, we fake these entries here. We let '.'
144 * have cookie 0 and '..' have cookie 1. Note that
145 * when talking to the server, we always send cookie 0
146 * instead of 1 or 2.
147 */
148 start = p = (u32 *)kmap_atomic(*readdir->pages, KM_USER0);
149
150 if (cookie == 0) {
151 *p++ = xdr_one; /* next */
152 *p++ = xdr_zero; /* cookie, first word */
153 *p++ = xdr_one; /* cookie, second word */
154 *p++ = xdr_one; /* entry len */
155 memcpy(p, ".\0\0\0", 4); /* entry */
156 p++;
157 *p++ = xdr_one; /* bitmap length */
158 *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */
159 *p++ = htonl(8); /* attribute buffer length */
160 p = xdr_encode_hyper(p, dentry->d_inode->i_ino);
161 }
162
163 *p++ = xdr_one; /* next */
164 *p++ = xdr_zero; /* cookie, first word */
165 *p++ = xdr_two; /* cookie, second word */
166 *p++ = xdr_two; /* entry len */
167 memcpy(p, "..\0\0", 4); /* entry */
168 p++;
169 *p++ = xdr_one; /* bitmap length */
170 *p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */
171 *p++ = htonl(8); /* attribute buffer length */
172 p = xdr_encode_hyper(p, dentry->d_parent->d_inode->i_ino);
173
174 readdir->pgbase = (char *)p - (char *)start;
175 readdir->count -= readdir->pgbase;
176 kunmap_atomic(start, KM_USER0);
177 }
178
179 static void renew_lease(const struct nfs_server *server, unsigned long timestamp)
180 {
181 struct nfs4_client *clp = server->nfs4_state;
182 spin_lock(&clp->cl_lock);
183 if (time_before(clp->cl_last_renewal,timestamp))
184 clp->cl_last_renewal = timestamp;
185 spin_unlock(&clp->cl_lock);
186 }
187
188 static void update_changeattr(struct inode *inode, struct nfs4_change_info *cinfo)
189 {
190 struct nfs_inode *nfsi = NFS_I(inode);
191
192 spin_lock(&inode->i_lock);
193 nfsi->cache_validity |= NFS_INO_INVALID_ATTR;
194 if (cinfo->before == nfsi->change_attr && cinfo->atomic)
195 nfsi->change_attr = cinfo->after;
196 spin_unlock(&inode->i_lock);
197 }
198
199 struct nfs4_opendata {
200 atomic_t count;
201 struct nfs_openargs o_arg;
202 struct nfs_openres o_res;
203 struct nfs_open_confirmargs c_arg;
204 struct nfs_open_confirmres c_res;
205 struct nfs_fattr f_attr;
206 struct nfs_fattr dir_attr;
207 struct dentry *dentry;
208 struct dentry *dir;
209 struct nfs4_state_owner *owner;
210 struct iattr attrs;
211 unsigned long timestamp;
212 int rpc_status;
213 int cancelled;
214 };
215
216 static struct nfs4_opendata *nfs4_opendata_alloc(struct dentry *dentry,
217 struct nfs4_state_owner *sp, int flags,
218 const struct iattr *attrs)
219 {
220 struct dentry *parent = dget_parent(dentry);
221 struct inode *dir = parent->d_inode;
222 struct nfs_server *server = NFS_SERVER(dir);
223 struct nfs4_opendata *p;
224
225 p = kzalloc(sizeof(*p), GFP_KERNEL);
226 if (p == NULL)
227 goto err;
228 p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid);
229 if (p->o_arg.seqid == NULL)
230 goto err_free;
231 atomic_set(&p->count, 1);
232 p->dentry = dget(dentry);
233 p->dir = parent;
234 p->owner = sp;
235 atomic_inc(&sp->so_count);
236 p->o_arg.fh = NFS_FH(dir);
237 p->o_arg.open_flags = flags,
238 p->o_arg.clientid = server->nfs4_state->cl_clientid;
239 p->o_arg.id = sp->so_id;
240 p->o_arg.name = &dentry->d_name;
241 p->o_arg.server = server;
242 p->o_arg.bitmask = server->attr_bitmask;
243 p->o_arg.claim = NFS4_OPEN_CLAIM_NULL;
244 p->o_res.f_attr = &p->f_attr;
245 p->o_res.dir_attr = &p->dir_attr;
246 p->o_res.server = server;
247 nfs_fattr_init(&p->f_attr);
248 nfs_fattr_init(&p->dir_attr);
249 if (flags & O_EXCL) {
250 u32 *s = (u32 *) p->o_arg.u.verifier.data;
251 s[0] = jiffies;
252 s[1] = current->pid;
253 } else if (flags & O_CREAT) {
254 p->o_arg.u.attrs = &p->attrs;
255 memcpy(&p->attrs, attrs, sizeof(p->attrs));
256 }
257 p->c_arg.fh = &p->o_res.fh;
258 p->c_arg.stateid = &p->o_res.stateid;
259 p->c_arg.seqid = p->o_arg.seqid;
260 return p;
261 err_free:
262 kfree(p);
263 err:
264 dput(parent);
265 return NULL;
266 }
267
268 static void nfs4_opendata_free(struct nfs4_opendata *p)
269 {
270 if (p != NULL && atomic_dec_and_test(&p->count)) {
271 nfs_free_seqid(p->o_arg.seqid);
272 nfs4_put_state_owner(p->owner);
273 dput(p->dir);
274 dput(p->dentry);
275 kfree(p);
276 }
277 }
278
279 /* Helper for asynchronous RPC calls */
280 static int nfs4_call_async(struct rpc_clnt *clnt,
281 const struct rpc_call_ops *tk_ops, void *calldata)
282 {
283 struct rpc_task *task;
284
285 if (!(task = rpc_new_task(clnt, RPC_TASK_ASYNC, tk_ops, calldata)))
286 return -ENOMEM;
287 rpc_execute(task);
288 return 0;
289 }
290
291 static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task)
292 {
293 sigset_t oldset;
294 int ret;
295
296 rpc_clnt_sigmask(task->tk_client, &oldset);
297 ret = rpc_wait_for_completion_task(task);
298 rpc_clnt_sigunmask(task->tk_client, &oldset);
299 return ret;
300 }
301
302 static inline void update_open_stateflags(struct nfs4_state *state, mode_t open_flags)
303 {
304 switch (open_flags) {
305 case FMODE_WRITE:
306 state->n_wronly++;
307 break;
308 case FMODE_READ:
309 state->n_rdonly++;
310 break;
311 case FMODE_READ|FMODE_WRITE:
312 state->n_rdwr++;
313 }
314 }
315
316 static void update_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, int open_flags)
317 {
318 struct inode *inode = state->inode;
319
320 open_flags &= (FMODE_READ|FMODE_WRITE);
321 /* Protect against nfs4_find_state_byowner() */
322 spin_lock(&state->owner->so_lock);
323 spin_lock(&inode->i_lock);
324 memcpy(&state->stateid, stateid, sizeof(state->stateid));
325 update_open_stateflags(state, open_flags);
326 nfs4_state_set_mode_locked(state, state->state | open_flags);
327 spin_unlock(&inode->i_lock);
328 spin_unlock(&state->owner->so_lock);
329 }
330
331 static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data)
332 {
333 struct inode *inode;
334 struct nfs4_state *state = NULL;
335
336 if (!(data->f_attr.valid & NFS_ATTR_FATTR))
337 goto out;
338 inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr);
339 if (inode == NULL)
340 goto out;
341 state = nfs4_get_open_state(inode, data->owner);
342 if (state == NULL)
343 goto put_inode;
344 update_open_stateid(state, &data->o_res.stateid, data->o_arg.open_flags);
345 put_inode:
346 iput(inode);
347 out:
348 return state;
349 }
350
351 static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state)
352 {
353 struct nfs_inode *nfsi = NFS_I(state->inode);
354 struct nfs_open_context *ctx;
355
356 spin_lock(&state->inode->i_lock);
357 list_for_each_entry(ctx, &nfsi->open_files, list) {
358 if (ctx->state != state)
359 continue;
360 get_nfs_open_context(ctx);
361 spin_unlock(&state->inode->i_lock);
362 return ctx;
363 }
364 spin_unlock(&state->inode->i_lock);
365 return ERR_PTR(-ENOENT);
366 }
367
368 static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, mode_t openflags, nfs4_stateid *stateid)
369 {
370 int ret;
371
372 opendata->o_arg.open_flags = openflags;
373 ret = _nfs4_proc_open(opendata);
374 if (ret != 0)
375 return ret;
376 memcpy(stateid->data, opendata->o_res.stateid.data,
377 sizeof(stateid->data));
378 return 0;
379 }
380
381 static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state)
382 {
383 nfs4_stateid stateid;
384 struct nfs4_state *newstate;
385 int mode = 0;
386 int delegation = 0;
387 int ret;
388
389 /* memory barrier prior to reading state->n_* */
390 smp_rmb();
391 if (state->n_rdwr != 0) {
392 ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &stateid);
393 if (ret != 0)
394 return ret;
395 mode |= FMODE_READ|FMODE_WRITE;
396 if (opendata->o_res.delegation_type != 0)
397 delegation = opendata->o_res.delegation_type;
398 smp_rmb();
399 }
400 if (state->n_wronly != 0) {
401 ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &stateid);
402 if (ret != 0)
403 return ret;
404 mode |= FMODE_WRITE;
405 if (opendata->o_res.delegation_type != 0)
406 delegation = opendata->o_res.delegation_type;
407 smp_rmb();
408 }
409 if (state->n_rdonly != 0) {
410 ret = nfs4_open_recover_helper(opendata, FMODE_READ, &stateid);
411 if (ret != 0)
412 return ret;
413 mode |= FMODE_READ;
414 }
415 clear_bit(NFS_DELEGATED_STATE, &state->flags);
416 if (mode == 0)
417 return 0;
418 if (opendata->o_res.delegation_type == 0)
419 opendata->o_res.delegation_type = delegation;
420 opendata->o_arg.open_flags |= mode;
421 newstate = nfs4_opendata_to_nfs4_state(opendata);
422 if (newstate != NULL) {
423 if (opendata->o_res.delegation_type != 0) {
424 struct nfs_inode *nfsi = NFS_I(newstate->inode);
425 int delegation_flags = 0;
426 if (nfsi->delegation)
427 delegation_flags = nfsi->delegation->flags;
428 if (!(delegation_flags & NFS_DELEGATION_NEED_RECLAIM))
429 nfs_inode_set_delegation(newstate->inode,
430 opendata->owner->so_cred,
431 &opendata->o_res);
432 else
433 nfs_inode_reclaim_delegation(newstate->inode,
434 opendata->owner->so_cred,
435 &opendata->o_res);
436 }
437 nfs4_close_state(newstate, opendata->o_arg.open_flags);
438 }
439 if (newstate != state)
440 return -ESTALE;
441 return 0;
442 }
443
444 /*
445 * OPEN_RECLAIM:
446 * reclaim state on the server after a reboot.
447 */
448 static int _nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
449 {
450 struct nfs_delegation *delegation = NFS_I(state->inode)->delegation;
451 struct nfs4_opendata *opendata;
452 int delegation_type = 0;
453 int status;
454
455 if (delegation != NULL) {
456 if (!(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
457 memcpy(&state->stateid, &delegation->stateid,
458 sizeof(state->stateid));
459 set_bit(NFS_DELEGATED_STATE, &state->flags);
460 return 0;
461 }
462 delegation_type = delegation->type;
463 }
464 opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
465 if (opendata == NULL)
466 return -ENOMEM;
467 opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS;
468 opendata->o_arg.fh = NFS_FH(state->inode);
469 nfs_copy_fh(&opendata->o_res.fh, opendata->o_arg.fh);
470 opendata->o_arg.u.delegation_type = delegation_type;
471 status = nfs4_open_recover(opendata, state);
472 nfs4_opendata_free(opendata);
473 return status;
474 }
475
476 static int nfs4_do_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
477 {
478 struct nfs_server *server = NFS_SERVER(state->inode);
479 struct nfs4_exception exception = { };
480 int err;
481 do {
482 err = _nfs4_do_open_reclaim(sp, state, dentry);
483 if (err != -NFS4ERR_DELAY)
484 break;
485 nfs4_handle_exception(server, err, &exception);
486 } while (exception.retry);
487 return err;
488 }
489
490 static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
491 {
492 struct nfs_open_context *ctx;
493 int ret;
494
495 ctx = nfs4_state_find_open_context(state);
496 if (IS_ERR(ctx))
497 return PTR_ERR(ctx);
498 ret = nfs4_do_open_reclaim(sp, state, ctx->dentry);
499 put_nfs_open_context(ctx);
500 return ret;
501 }
502
503 static int _nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
504 {
505 struct nfs4_state_owner *sp = state->owner;
506 struct nfs4_opendata *opendata;
507 int ret;
508
509 if (!test_bit(NFS_DELEGATED_STATE, &state->flags))
510 return 0;
511 opendata = nfs4_opendata_alloc(dentry, sp, 0, NULL);
512 if (opendata == NULL)
513 return -ENOMEM;
514 opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR;
515 memcpy(opendata->o_arg.u.delegation.data, state->stateid.data,
516 sizeof(opendata->o_arg.u.delegation.data));
517 ret = nfs4_open_recover(opendata, state);
518 nfs4_opendata_free(opendata);
519 return ret;
520 }
521
522 int nfs4_open_delegation_recall(struct dentry *dentry, struct nfs4_state *state)
523 {
524 struct nfs4_exception exception = { };
525 struct nfs_server *server = NFS_SERVER(dentry->d_inode);
526 int err;
527 do {
528 err = _nfs4_open_delegation_recall(dentry, state);
529 switch (err) {
530 case 0:
531 return err;
532 case -NFS4ERR_STALE_CLIENTID:
533 case -NFS4ERR_STALE_STATEID:
534 case -NFS4ERR_EXPIRED:
535 /* Don't recall a delegation if it was lost */
536 nfs4_schedule_state_recovery(server->nfs4_state);
537 return err;
538 }
539 err = nfs4_handle_exception(server, err, &exception);
540 } while (exception.retry);
541 return err;
542 }
543
544 static void nfs4_open_confirm_prepare(struct rpc_task *task, void *calldata)
545 {
546 struct nfs4_opendata *data = calldata;
547 struct rpc_message msg = {
548 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM],
549 .rpc_argp = &data->c_arg,
550 .rpc_resp = &data->c_res,
551 .rpc_cred = data->owner->so_cred,
552 };
553 data->timestamp = jiffies;
554 rpc_call_setup(task, &msg, 0);
555 }
556
557 static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata)
558 {
559 struct nfs4_opendata *data = calldata;
560
561 data->rpc_status = task->tk_status;
562 if (RPC_ASSASSINATED(task))
563 return;
564 if (data->rpc_status == 0) {
565 memcpy(data->o_res.stateid.data, data->c_res.stateid.data,
566 sizeof(data->o_res.stateid.data));
567 renew_lease(data->o_res.server, data->timestamp);
568 }
569 nfs_increment_open_seqid(data->rpc_status, data->c_arg.seqid);
570 nfs_confirm_seqid(&data->owner->so_seqid, data->rpc_status);
571 }
572
573 static void nfs4_open_confirm_release(void *calldata)
574 {
575 struct nfs4_opendata *data = calldata;
576 struct nfs4_state *state = NULL;
577
578 /* If this request hasn't been cancelled, do nothing */
579 if (data->cancelled == 0)
580 goto out_free;
581 /* In case of error, no cleanup! */
582 if (data->rpc_status != 0)
583 goto out_free;
584 nfs_confirm_seqid(&data->owner->so_seqid, 0);
585 state = nfs4_opendata_to_nfs4_state(data);
586 if (state != NULL)
587 nfs4_close_state(state, data->o_arg.open_flags);
588 out_free:
589 nfs4_opendata_free(data);
590 }
591
592 static const struct rpc_call_ops nfs4_open_confirm_ops = {
593 .rpc_call_prepare = nfs4_open_confirm_prepare,
594 .rpc_call_done = nfs4_open_confirm_done,
595 .rpc_release = nfs4_open_confirm_release,
596 };
597
598 /*
599 * Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata
600 */
601 static int _nfs4_proc_open_confirm(struct nfs4_opendata *data)
602 {
603 struct nfs_server *server = NFS_SERVER(data->dir->d_inode);
604 struct rpc_task *task;
605 int status;
606
607 atomic_inc(&data->count);
608 task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_confirm_ops, data);
609 if (IS_ERR(task)) {
610 nfs4_opendata_free(data);
611 return PTR_ERR(task);
612 }
613 status = nfs4_wait_for_completion_rpc_task(task);
614 if (status != 0) {
615 data->cancelled = 1;
616 smp_wmb();
617 } else
618 status = data->rpc_status;
619 rpc_release_task(task);
620 return status;
621 }
622
623 static void nfs4_open_prepare(struct rpc_task *task, void *calldata)
624 {
625 struct nfs4_opendata *data = calldata;
626 struct nfs4_state_owner *sp = data->owner;
627 struct rpc_message msg = {
628 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN],
629 .rpc_argp = &data->o_arg,
630 .rpc_resp = &data->o_res,
631 .rpc_cred = sp->so_cred,
632 };
633
634 if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0)
635 return;
636 /* Update sequence id. */
637 data->o_arg.id = sp->so_id;
638 data->o_arg.clientid = sp->so_client->cl_clientid;
639 if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS)
640 msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR];
641 data->timestamp = jiffies;
642 rpc_call_setup(task, &msg, 0);
643 }
644
645 static void nfs4_open_done(struct rpc_task *task, void *calldata)
646 {
647 struct nfs4_opendata *data = calldata;
648
649 data->rpc_status = task->tk_status;
650 if (RPC_ASSASSINATED(task))
651 return;
652 if (task->tk_status == 0) {
653 switch (data->o_res.f_attr->mode & S_IFMT) {
654 case S_IFREG:
655 break;
656 case S_IFLNK:
657 data->rpc_status = -ELOOP;
658 break;
659 case S_IFDIR:
660 data->rpc_status = -EISDIR;
661 break;
662 default:
663 data->rpc_status = -ENOTDIR;
664 }
665 renew_lease(data->o_res.server, data->timestamp);
666 }
667 nfs_increment_open_seqid(data->rpc_status, data->o_arg.seqid);
668 }
669
670 static void nfs4_open_release(void *calldata)
671 {
672 struct nfs4_opendata *data = calldata;
673 struct nfs4_state *state = NULL;
674
675 /* If this request hasn't been cancelled, do nothing */
676 if (data->cancelled == 0)
677 goto out_free;
678 /* In case of error, no cleanup! */
679 if (data->rpc_status != 0)
680 goto out_free;
681 /* In case we need an open_confirm, no cleanup! */
682 if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)
683 goto out_free;
684 nfs_confirm_seqid(&data->owner->so_seqid, 0);
685 state = nfs4_opendata_to_nfs4_state(data);
686 if (state != NULL)
687 nfs4_close_state(state, data->o_arg.open_flags);
688 out_free:
689 nfs4_opendata_free(data);
690 }
691
692 static const struct rpc_call_ops nfs4_open_ops = {
693 .rpc_call_prepare = nfs4_open_prepare,
694 .rpc_call_done = nfs4_open_done,
695 .rpc_release = nfs4_open_release,
696 };
697
698 /*
699 * Note: On error, nfs4_proc_open will free the struct nfs4_opendata
700 */
701 static int _nfs4_proc_open(struct nfs4_opendata *data)
702 {
703 struct inode *dir = data->dir->d_inode;
704 struct nfs_server *server = NFS_SERVER(dir);
705 struct nfs_openargs *o_arg = &data->o_arg;
706 struct nfs_openres *o_res = &data->o_res;
707 struct rpc_task *task;
708 int status;
709
710 atomic_inc(&data->count);
711 task = rpc_run_task(server->client, RPC_TASK_ASYNC, &nfs4_open_ops, data);
712 if (IS_ERR(task)) {
713 nfs4_opendata_free(data);
714 return PTR_ERR(task);
715 }
716 status = nfs4_wait_for_completion_rpc_task(task);
717 if (status != 0) {
718 data->cancelled = 1;
719 smp_wmb();
720 } else
721 status = data->rpc_status;
722 rpc_release_task(task);
723 if (status != 0)
724 return status;
725
726 if (o_arg->open_flags & O_CREAT) {
727 update_changeattr(dir, &o_res->cinfo);
728 nfs_post_op_update_inode(dir, o_res->dir_attr);
729 } else
730 nfs_refresh_inode(dir, o_res->dir_attr);
731 if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
732 status = _nfs4_proc_open_confirm(data);
733 if (status != 0)
734 return status;
735 }
736 nfs_confirm_seqid(&data->owner->so_seqid, 0);
737 if (!(o_res->f_attr->valid & NFS_ATTR_FATTR))
738 return server->rpc_ops->getattr(server, &o_res->fh, o_res->f_attr);
739 return 0;
740 }
741
742 static int _nfs4_do_access(struct inode *inode, struct rpc_cred *cred, int openflags)
743 {
744 struct nfs_access_entry cache;
745 int mask = 0;
746 int status;
747
748 if (openflags & FMODE_READ)
749 mask |= MAY_READ;
750 if (openflags & FMODE_WRITE)
751 mask |= MAY_WRITE;
752 status = nfs_access_get_cached(inode, cred, &cache);
753 if (status == 0)
754 goto out;
755
756 /* Be clever: ask server to check for all possible rights */
757 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
758 cache.cred = cred;
759 cache.jiffies = jiffies;
760 status = _nfs4_proc_access(inode, &cache);
761 if (status != 0)
762 return status;
763 nfs_access_add_cache(inode, &cache);
764 out:
765 if ((cache.mask & mask) == mask)
766 return 0;
767 return -EACCES;
768 }
769
770 int nfs4_recover_expired_lease(struct nfs_server *server)
771 {
772 struct nfs4_client *clp = server->nfs4_state;
773
774 if (test_and_clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state))
775 nfs4_schedule_state_recovery(clp);
776 return nfs4_wait_clnt_recover(server->client, clp);
777 }
778
779 /*
780 * OPEN_EXPIRED:
781 * reclaim state on the server after a network partition.
782 * Assumes caller holds the appropriate lock
783 */
784 static int _nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
785 {
786 struct inode *inode = state->inode;
787 struct nfs_delegation *delegation = NFS_I(inode)->delegation;
788 struct nfs4_opendata *opendata;
789 int openflags = state->state & (FMODE_READ|FMODE_WRITE);
790 int ret;
791
792 if (delegation != NULL && !(delegation->flags & NFS_DELEGATION_NEED_RECLAIM)) {
793 ret = _nfs4_do_access(inode, sp->so_cred, openflags);
794 if (ret < 0)
795 return ret;
796 memcpy(&state->stateid, &delegation->stateid, sizeof(state->stateid));
797 set_bit(NFS_DELEGATED_STATE, &state->flags);
798 return 0;
799 }
800 opendata = nfs4_opendata_alloc(dentry, sp, openflags, NULL);
801 if (opendata == NULL)
802 return -ENOMEM;
803 ret = nfs4_open_recover(opendata, state);
804 if (ret == -ESTALE) {
805 /* Invalidate the state owner so we don't ever use it again */
806 nfs4_drop_state_owner(sp);
807 d_drop(dentry);
808 }
809 nfs4_opendata_free(opendata);
810 return ret;
811 }
812
813 static inline int nfs4_do_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state, struct dentry *dentry)
814 {
815 struct nfs_server *server = NFS_SERVER(dentry->d_inode);
816 struct nfs4_exception exception = { };
817 int err;
818
819 do {
820 err = _nfs4_open_expired(sp, state, dentry);
821 if (err == -NFS4ERR_DELAY)
822 nfs4_handle_exception(server, err, &exception);
823 } while (exception.retry);
824 return err;
825 }
826
827 static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
828 {
829 struct nfs_open_context *ctx;
830 int ret;
831
832 ctx = nfs4_state_find_open_context(state);
833 if (IS_ERR(ctx))
834 return PTR_ERR(ctx);
835 ret = nfs4_do_open_expired(sp, state, ctx->dentry);
836 put_nfs_open_context(ctx);
837 return ret;
838 }
839
840 /*
841 * Returns a referenced nfs4_state if there is an open delegation on the file
842 */
843 static int _nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred, struct nfs4_state **res)
844 {
845 struct nfs_delegation *delegation;
846 struct nfs_server *server = NFS_SERVER(inode);
847 struct nfs4_client *clp = server->nfs4_state;
848 struct nfs_inode *nfsi = NFS_I(inode);
849 struct nfs4_state_owner *sp = NULL;
850 struct nfs4_state *state = NULL;
851 int open_flags = flags & (FMODE_READ|FMODE_WRITE);
852 int err;
853
854 err = -ENOMEM;
855 if (!(sp = nfs4_get_state_owner(server, cred))) {
856 dprintk("%s: nfs4_get_state_owner failed!\n", __FUNCTION__);
857 return err;
858 }
859 err = nfs4_recover_expired_lease(server);
860 if (err != 0)
861 goto out_put_state_owner;
862 /* Protect against reboot recovery - NOTE ORDER! */
863 down_read(&clp->cl_sem);
864 /* Protect against delegation recall */
865 down_read(&nfsi->rwsem);
866 delegation = NFS_I(inode)->delegation;
867 err = -ENOENT;
868 if (delegation == NULL || (delegation->type & open_flags) != open_flags)
869 goto out_err;
870 err = -ENOMEM;
871 state = nfs4_get_open_state(inode, sp);
872 if (state == NULL)
873 goto out_err;
874
875 err = -ENOENT;
876 if ((state->state & open_flags) == open_flags) {
877 spin_lock(&inode->i_lock);
878 update_open_stateflags(state, open_flags);
879 spin_unlock(&inode->i_lock);
880 goto out_ok;
881 } else if (state->state != 0)
882 goto out_put_open_state;
883
884 lock_kernel();
885 err = _nfs4_do_access(inode, cred, open_flags);
886 unlock_kernel();
887 if (err != 0)
888 goto out_put_open_state;
889 set_bit(NFS_DELEGATED_STATE, &state->flags);
890 update_open_stateid(state, &delegation->stateid, open_flags);
891 out_ok:
892 nfs4_put_state_owner(sp);
893 up_read(&nfsi->rwsem);
894 up_read(&clp->cl_sem);
895 *res = state;
896 return 0;
897 out_put_open_state:
898 nfs4_put_open_state(state);
899 out_err:
900 up_read(&nfsi->rwsem);
901 up_read(&clp->cl_sem);
902 if (err != -EACCES)
903 nfs_inode_return_delegation(inode);
904 out_put_state_owner:
905 nfs4_put_state_owner(sp);
906 return err;
907 }
908
909 static struct nfs4_state *nfs4_open_delegated(struct inode *inode, int flags, struct rpc_cred *cred)
910 {
911 struct nfs4_exception exception = { };
912 struct nfs4_state *res = ERR_PTR(-EIO);
913 int err;
914
915 do {
916 err = _nfs4_open_delegated(inode, flags, cred, &res);
917 if (err == 0)
918 break;
919 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(inode),
920 err, &exception));
921 } while (exception.retry);
922 return res;
923 }
924
925 /*
926 * Returns a referenced nfs4_state
927 */
928 static int _nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res)
929 {
930 struct nfs4_state_owner *sp;
931 struct nfs4_state *state = NULL;
932 struct nfs_server *server = NFS_SERVER(dir);
933 struct nfs4_client *clp = server->nfs4_state;
934 struct nfs4_opendata *opendata;
935 int status;
936
937 /* Protect against reboot recovery conflicts */
938 status = -ENOMEM;
939 if (!(sp = nfs4_get_state_owner(server, cred))) {
940 dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n");
941 goto out_err;
942 }
943 status = nfs4_recover_expired_lease(server);
944 if (status != 0)
945 goto err_put_state_owner;
946 down_read(&clp->cl_sem);
947 status = -ENOMEM;
948 opendata = nfs4_opendata_alloc(dentry, sp, flags, sattr);
949 if (opendata == NULL)
950 goto err_put_state_owner;
951
952 status = _nfs4_proc_open(opendata);
953 if (status != 0)
954 goto err_opendata_free;
955
956 status = -ENOMEM;
957 state = nfs4_opendata_to_nfs4_state(opendata);
958 if (state == NULL)
959 goto err_opendata_free;
960 if (opendata->o_res.delegation_type != 0)
961 nfs_inode_set_delegation(state->inode, cred, &opendata->o_res);
962 nfs4_opendata_free(opendata);
963 nfs4_put_state_owner(sp);
964 up_read(&clp->cl_sem);
965 *res = state;
966 return 0;
967 err_opendata_free:
968 nfs4_opendata_free(opendata);
969 err_put_state_owner:
970 nfs4_put_state_owner(sp);
971 out_err:
972 /* Note: clp->cl_sem must be released before nfs4_put_open_state()! */
973 up_read(&clp->cl_sem);
974 *res = NULL;
975 return status;
976 }
977
978
979 static struct nfs4_state *nfs4_do_open(struct inode *dir, struct dentry *dentry, int flags, struct iattr *sattr, struct rpc_cred *cred)
980 {
981 struct nfs4_exception exception = { };
982 struct nfs4_state *res;
983 int status;
984
985 do {
986 status = _nfs4_do_open(dir, dentry, flags, sattr, cred, &res);
987 if (status == 0)
988 break;
989 /* NOTE: BAD_SEQID means the server and client disagree about the
990 * book-keeping w.r.t. state-changing operations
991 * (OPEN/CLOSE/LOCK/LOCKU...)
992 * It is actually a sign of a bug on the client or on the server.
993 *
994 * If we receive a BAD_SEQID error in the particular case of
995 * doing an OPEN, we assume that nfs_increment_open_seqid() will
996 * have unhashed the old state_owner for us, and that we can
997 * therefore safely retry using a new one. We should still warn
998 * the user though...
999 */
1000 if (status == -NFS4ERR_BAD_SEQID) {
1001 printk(KERN_WARNING "NFS: v4 server returned a bad sequence-id error!\n");
1002 exception.retry = 1;
1003 continue;
1004 }
1005 /*
1006 * BAD_STATEID on OPEN means that the server cancelled our
1007 * state before it received the OPEN_CONFIRM.
1008 * Recover by retrying the request as per the discussion
1009 * on Page 181 of RFC3530.
1010 */
1011 if (status == -NFS4ERR_BAD_STATEID) {
1012 exception.retry = 1;
1013 continue;
1014 }
1015 res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir),
1016 status, &exception));
1017 } while (exception.retry);
1018 return res;
1019 }
1020
1021 static int _nfs4_do_setattr(struct nfs_server *server, struct nfs_fattr *fattr,
1022 struct nfs_fh *fhandle, struct iattr *sattr,
1023 struct nfs4_state *state)
1024 {
1025 struct nfs_setattrargs arg = {
1026 .fh = fhandle,
1027 .iap = sattr,
1028 .server = server,
1029 .bitmask = server->attr_bitmask,
1030 };
1031 struct nfs_setattrres res = {
1032 .fattr = fattr,
1033 .server = server,
1034 };
1035 struct rpc_message msg = {
1036 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
1037 .rpc_argp = &arg,
1038 .rpc_resp = &res,
1039 };
1040 unsigned long timestamp = jiffies;
1041 int status;
1042
1043 nfs_fattr_init(fattr);
1044
1045 if (state != NULL) {
1046 msg.rpc_cred = state->owner->so_cred;
1047 nfs4_copy_stateid(&arg.stateid, state, current->files);
1048 } else
1049 memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid));
1050
1051 status = rpc_call_sync(server->client, &msg, 0);
1052 if (status == 0 && state != NULL)
1053 renew_lease(server, timestamp);
1054 return status;
1055 }
1056
1057 static int nfs4_do_setattr(struct nfs_server *server, struct nfs_fattr *fattr,
1058 struct nfs_fh *fhandle, struct iattr *sattr,
1059 struct nfs4_state *state)
1060 {
1061 struct nfs4_exception exception = { };
1062 int err;
1063 do {
1064 err = nfs4_handle_exception(server,
1065 _nfs4_do_setattr(server, fattr, fhandle, sattr,
1066 state),
1067 &exception);
1068 } while (exception.retry);
1069 return err;
1070 }
1071
1072 struct nfs4_closedata {
1073 struct inode *inode;
1074 struct nfs4_state *state;
1075 struct nfs_closeargs arg;
1076 struct nfs_closeres res;
1077 struct nfs_fattr fattr;
1078 unsigned long timestamp;
1079 };
1080
1081 static void nfs4_free_closedata(void *data)
1082 {
1083 struct nfs4_closedata *calldata = data;
1084 struct nfs4_state_owner *sp = calldata->state->owner;
1085
1086 nfs4_put_open_state(calldata->state);
1087 nfs_free_seqid(calldata->arg.seqid);
1088 nfs4_put_state_owner(sp);
1089 kfree(calldata);
1090 }
1091
1092 static void nfs4_close_done(struct rpc_task *task, void *data)
1093 {
1094 struct nfs4_closedata *calldata = data;
1095 struct nfs4_state *state = calldata->state;
1096 struct nfs_server *server = NFS_SERVER(calldata->inode);
1097
1098 if (RPC_ASSASSINATED(task))
1099 return;
1100 /* hmm. we are done with the inode, and in the process of freeing
1101 * the state_owner. we keep this around to process errors
1102 */
1103 nfs_increment_open_seqid(task->tk_status, calldata->arg.seqid);
1104 switch (task->tk_status) {
1105 case 0:
1106 memcpy(&state->stateid, &calldata->res.stateid,
1107 sizeof(state->stateid));
1108 renew_lease(server, calldata->timestamp);
1109 break;
1110 case -NFS4ERR_STALE_STATEID:
1111 case -NFS4ERR_EXPIRED:
1112 nfs4_schedule_state_recovery(server->nfs4_state);
1113 break;
1114 default:
1115 if (nfs4_async_handle_error(task, server) == -EAGAIN) {
1116 rpc_restart_call(task);
1117 return;
1118 }
1119 }
1120 nfs_refresh_inode(calldata->inode, calldata->res.fattr);
1121 }
1122
1123 static void nfs4_close_prepare(struct rpc_task *task, void *data)
1124 {
1125 struct nfs4_closedata *calldata = data;
1126 struct nfs4_state *state = calldata->state;
1127 struct rpc_message msg = {
1128 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE],
1129 .rpc_argp = &calldata->arg,
1130 .rpc_resp = &calldata->res,
1131 .rpc_cred = state->owner->so_cred,
1132 };
1133 int mode = 0, old_mode;
1134
1135 if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
1136 return;
1137 /* Recalculate the new open mode in case someone reopened the file
1138 * while we were waiting in line to be scheduled.
1139 */
1140 spin_lock(&state->owner->so_lock);
1141 spin_lock(&calldata->inode->i_lock);
1142 mode = old_mode = state->state;
1143 if (state->n_rdwr == 0) {
1144 if (state->n_rdonly == 0)
1145 mode &= ~FMODE_READ;
1146 if (state->n_wronly == 0)
1147 mode &= ~FMODE_WRITE;
1148 }
1149 nfs4_state_set_mode_locked(state, mode);
1150 spin_unlock(&calldata->inode->i_lock);
1151 spin_unlock(&state->owner->so_lock);
1152 if (mode == old_mode || test_bit(NFS_DELEGATED_STATE, &state->flags)) {
1153 /* Note: exit _without_ calling nfs4_close_done */
1154 task->tk_action = NULL;
1155 return;
1156 }
1157 nfs_fattr_init(calldata->res.fattr);
1158 if (mode != 0)
1159 msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
1160 calldata->arg.open_flags = mode;
1161 calldata->timestamp = jiffies;
1162 rpc_call_setup(task, &msg, 0);
1163 }
1164
1165 static const struct rpc_call_ops nfs4_close_ops = {
1166 .rpc_call_prepare = nfs4_close_prepare,
1167 .rpc_call_done = nfs4_close_done,
1168 .rpc_release = nfs4_free_closedata,
1169 };
1170
1171 /*
1172 * It is possible for data to be read/written from a mem-mapped file
1173 * after the sys_close call (which hits the vfs layer as a flush).
1174 * This means that we can't safely call nfsv4 close on a file until
1175 * the inode is cleared. This in turn means that we are not good
1176 * NFSv4 citizens - we do not indicate to the server to update the file's
1177 * share state even when we are done with one of the three share
1178 * stateid's in the inode.
1179 *
1180 * NOTE: Caller must be holding the sp->so_owner semaphore!
1181 */
1182 int nfs4_do_close(struct inode *inode, struct nfs4_state *state)
1183 {
1184 struct nfs_server *server = NFS_SERVER(inode);
1185 struct nfs4_closedata *calldata;
1186 int status = -ENOMEM;
1187
1188 calldata = kmalloc(sizeof(*calldata), GFP_KERNEL);
1189 if (calldata == NULL)
1190 goto out;
1191 calldata->inode = inode;
1192 calldata->state = state;
1193 calldata->arg.fh = NFS_FH(inode);
1194 calldata->arg.stateid = &state->stateid;
1195 /* Serialization for the sequence id */
1196 calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid);
1197 if (calldata->arg.seqid == NULL)
1198 goto out_free_calldata;
1199 calldata->arg.bitmask = server->attr_bitmask;
1200 calldata->res.fattr = &calldata->fattr;
1201 calldata->res.server = server;
1202
1203 status = nfs4_call_async(server->client, &nfs4_close_ops, calldata);
1204 if (status == 0)
1205 goto out;
1206
1207 nfs_free_seqid(calldata->arg.seqid);
1208 out_free_calldata:
1209 kfree(calldata);
1210 out:
1211 return status;
1212 }
1213
1214 static void nfs4_intent_set_file(struct nameidata *nd, struct dentry *dentry, struct nfs4_state *state)
1215 {
1216 struct file *filp;
1217
1218 filp = lookup_instantiate_filp(nd, dentry, NULL);
1219 if (!IS_ERR(filp)) {
1220 struct nfs_open_context *ctx;
1221 ctx = (struct nfs_open_context *)filp->private_data;
1222 ctx->state = state;
1223 } else
1224 nfs4_close_state(state, nd->intent.open.flags);
1225 }
1226
1227 struct dentry *
1228 nfs4_atomic_open(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1229 {
1230 struct iattr attr;
1231 struct rpc_cred *cred;
1232 struct nfs4_state *state;
1233 struct dentry *res;
1234
1235 if (nd->flags & LOOKUP_CREATE) {
1236 attr.ia_mode = nd->intent.open.create_mode;
1237 attr.ia_valid = ATTR_MODE;
1238 if (!IS_POSIXACL(dir))
1239 attr.ia_mode &= ~current->fs->umask;
1240 } else {
1241 attr.ia_valid = 0;
1242 BUG_ON(nd->intent.open.flags & O_CREAT);
1243 }
1244
1245 cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1246 if (IS_ERR(cred))
1247 return (struct dentry *)cred;
1248 state = nfs4_do_open(dir, dentry, nd->intent.open.flags, &attr, cred);
1249 put_rpccred(cred);
1250 if (IS_ERR(state)) {
1251 if (PTR_ERR(state) == -ENOENT)
1252 d_add(dentry, NULL);
1253 return (struct dentry *)state;
1254 }
1255 res = d_add_unique(dentry, igrab(state->inode));
1256 if (res != NULL)
1257 dentry = res;
1258 nfs4_intent_set_file(nd, dentry, state);
1259 return res;
1260 }
1261
1262 int
1263 nfs4_open_revalidate(struct inode *dir, struct dentry *dentry, int openflags, struct nameidata *nd)
1264 {
1265 struct rpc_cred *cred;
1266 struct nfs4_state *state;
1267
1268 cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1269 if (IS_ERR(cred))
1270 return PTR_ERR(cred);
1271 state = nfs4_open_delegated(dentry->d_inode, openflags, cred);
1272 if (IS_ERR(state))
1273 state = nfs4_do_open(dir, dentry, openflags, NULL, cred);
1274 put_rpccred(cred);
1275 if (IS_ERR(state)) {
1276 switch (PTR_ERR(state)) {
1277 case -EPERM:
1278 case -EACCES:
1279 case -EDQUOT:
1280 case -ENOSPC:
1281 case -EROFS:
1282 lookup_instantiate_filp(nd, (struct dentry *)state, NULL);
1283 return 1;
1284 case -ENOENT:
1285 if (dentry->d_inode == NULL)
1286 return 1;
1287 }
1288 goto out_drop;
1289 }
1290 if (state->inode == dentry->d_inode) {
1291 nfs4_intent_set_file(nd, dentry, state);
1292 return 1;
1293 }
1294 nfs4_close_state(state, openflags);
1295 out_drop:
1296 d_drop(dentry);
1297 return 0;
1298 }
1299
1300
1301 static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1302 {
1303 struct nfs4_server_caps_res res = {};
1304 struct rpc_message msg = {
1305 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS],
1306 .rpc_argp = fhandle,
1307 .rpc_resp = &res,
1308 };
1309 int status;
1310
1311 status = rpc_call_sync(server->client, &msg, 0);
1312 if (status == 0) {
1313 memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask));
1314 if (res.attr_bitmask[0] & FATTR4_WORD0_ACL)
1315 server->caps |= NFS_CAP_ACLS;
1316 if (res.has_links != 0)
1317 server->caps |= NFS_CAP_HARDLINKS;
1318 if (res.has_symlinks != 0)
1319 server->caps |= NFS_CAP_SYMLINKS;
1320 server->acl_bitmask = res.acl_bitmask;
1321 }
1322 return status;
1323 }
1324
1325 static int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
1326 {
1327 struct nfs4_exception exception = { };
1328 int err;
1329 do {
1330 err = nfs4_handle_exception(server,
1331 _nfs4_server_capabilities(server, fhandle),
1332 &exception);
1333 } while (exception.retry);
1334 return err;
1335 }
1336
1337 static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1338 struct nfs_fsinfo *info)
1339 {
1340 struct nfs4_lookup_root_arg args = {
1341 .bitmask = nfs4_fattr_bitmap,
1342 };
1343 struct nfs4_lookup_res res = {
1344 .server = server,
1345 .fattr = info->fattr,
1346 .fh = fhandle,
1347 };
1348 struct rpc_message msg = {
1349 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT],
1350 .rpc_argp = &args,
1351 .rpc_resp = &res,
1352 };
1353 nfs_fattr_init(info->fattr);
1354 return rpc_call_sync(server->client, &msg, 0);
1355 }
1356
1357 static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
1358 struct nfs_fsinfo *info)
1359 {
1360 struct nfs4_exception exception = { };
1361 int err;
1362 do {
1363 err = nfs4_handle_exception(server,
1364 _nfs4_lookup_root(server, fhandle, info),
1365 &exception);
1366 } while (exception.retry);
1367 return err;
1368 }
1369
1370 static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle,
1371 struct nfs_fsinfo *info)
1372 {
1373 struct nfs_fattr * fattr = info->fattr;
1374 unsigned char * p;
1375 struct qstr q;
1376 struct nfs4_lookup_arg args = {
1377 .dir_fh = fhandle,
1378 .name = &q,
1379 .bitmask = nfs4_fattr_bitmap,
1380 };
1381 struct nfs4_lookup_res res = {
1382 .server = server,
1383 .fattr = fattr,
1384 .fh = fhandle,
1385 };
1386 struct rpc_message msg = {
1387 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1388 .rpc_argp = &args,
1389 .rpc_resp = &res,
1390 };
1391 int status;
1392
1393 /*
1394 * Now we do a separate LOOKUP for each component of the mount path.
1395 * The LOOKUPs are done separately so that we can conveniently
1396 * catch an ERR_WRONGSEC if it occurs along the way...
1397 */
1398 status = nfs4_lookup_root(server, fhandle, info);
1399 if (status)
1400 goto out;
1401
1402 p = server->mnt_path;
1403 for (;;) {
1404 struct nfs4_exception exception = { };
1405
1406 while (*p == '/')
1407 p++;
1408 if (!*p)
1409 break;
1410 q.name = p;
1411 while (*p && (*p != '/'))
1412 p++;
1413 q.len = p - q.name;
1414
1415 do {
1416 nfs_fattr_init(fattr);
1417 status = nfs4_handle_exception(server,
1418 rpc_call_sync(server->client, &msg, 0),
1419 &exception);
1420 } while (exception.retry);
1421 if (status == 0)
1422 continue;
1423 if (status == -ENOENT) {
1424 printk(KERN_NOTICE "NFS: mount path %s does not exist!\n", server->mnt_path);
1425 printk(KERN_NOTICE "NFS: suggestion: try mounting '/' instead.\n");
1426 }
1427 break;
1428 }
1429 if (status == 0)
1430 status = nfs4_server_capabilities(server, fhandle);
1431 if (status == 0)
1432 status = nfs4_do_fsinfo(server, fhandle, info);
1433 out:
1434 return nfs4_map_errors(status);
1435 }
1436
1437 static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1438 {
1439 struct nfs4_getattr_arg args = {
1440 .fh = fhandle,
1441 .bitmask = server->attr_bitmask,
1442 };
1443 struct nfs4_getattr_res res = {
1444 .fattr = fattr,
1445 .server = server,
1446 };
1447 struct rpc_message msg = {
1448 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
1449 .rpc_argp = &args,
1450 .rpc_resp = &res,
1451 };
1452
1453 nfs_fattr_init(fattr);
1454 return rpc_call_sync(server->client, &msg, 0);
1455 }
1456
1457 static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1458 {
1459 struct nfs4_exception exception = { };
1460 int err;
1461 do {
1462 err = nfs4_handle_exception(server,
1463 _nfs4_proc_getattr(server, fhandle, fattr),
1464 &exception);
1465 } while (exception.retry);
1466 return err;
1467 }
1468
1469 /*
1470 * The file is not closed if it is opened due to the a request to change
1471 * the size of the file. The open call will not be needed once the
1472 * VFS layer lookup-intents are implemented.
1473 *
1474 * Close is called when the inode is destroyed.
1475 * If we haven't opened the file for O_WRONLY, we
1476 * need to in the size_change case to obtain a stateid.
1477 *
1478 * Got race?
1479 * Because OPEN is always done by name in nfsv4, it is
1480 * possible that we opened a different file by the same
1481 * name. We can recognize this race condition, but we
1482 * can't do anything about it besides returning an error.
1483 *
1484 * This will be fixed with VFS changes (lookup-intent).
1485 */
1486 static int
1487 nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
1488 struct iattr *sattr)
1489 {
1490 struct rpc_cred *cred;
1491 struct inode *inode = dentry->d_inode;
1492 struct nfs_open_context *ctx;
1493 struct nfs4_state *state = NULL;
1494 int status;
1495
1496 nfs_fattr_init(fattr);
1497
1498 cred = rpcauth_lookupcred(NFS_SERVER(inode)->client->cl_auth, 0);
1499 if (IS_ERR(cred))
1500 return PTR_ERR(cred);
1501
1502 /* Search for an existing open(O_WRITE) file */
1503 ctx = nfs_find_open_context(inode, cred, FMODE_WRITE);
1504 if (ctx != NULL)
1505 state = ctx->state;
1506
1507 status = nfs4_do_setattr(NFS_SERVER(inode), fattr,
1508 NFS_FH(inode), sattr, state);
1509 if (status == 0)
1510 nfs_setattr_update_inode(inode, sattr);
1511 if (ctx != NULL)
1512 put_nfs_open_context(ctx);
1513 put_rpccred(cred);
1514 return status;
1515 }
1516
1517 static int _nfs4_proc_lookup(struct inode *dir, struct qstr *name,
1518 struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1519 {
1520 int status;
1521 struct nfs_server *server = NFS_SERVER(dir);
1522 struct nfs4_lookup_arg args = {
1523 .bitmask = server->attr_bitmask,
1524 .dir_fh = NFS_FH(dir),
1525 .name = name,
1526 };
1527 struct nfs4_lookup_res res = {
1528 .server = server,
1529 .fattr = fattr,
1530 .fh = fhandle,
1531 };
1532 struct rpc_message msg = {
1533 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
1534 .rpc_argp = &args,
1535 .rpc_resp = &res,
1536 };
1537
1538 nfs_fattr_init(fattr);
1539
1540 dprintk("NFS call lookup %s\n", name->name);
1541 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
1542 dprintk("NFS reply lookup: %d\n", status);
1543 return status;
1544 }
1545
1546 static int nfs4_proc_lookup(struct inode *dir, struct qstr *name, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
1547 {
1548 struct nfs4_exception exception = { };
1549 int err;
1550 do {
1551 err = nfs4_handle_exception(NFS_SERVER(dir),
1552 _nfs4_proc_lookup(dir, name, fhandle, fattr),
1553 &exception);
1554 } while (exception.retry);
1555 return err;
1556 }
1557
1558 static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1559 {
1560 struct nfs4_accessargs args = {
1561 .fh = NFS_FH(inode),
1562 };
1563 struct nfs4_accessres res = { 0 };
1564 struct rpc_message msg = {
1565 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS],
1566 .rpc_argp = &args,
1567 .rpc_resp = &res,
1568 .rpc_cred = entry->cred,
1569 };
1570 int mode = entry->mask;
1571 int status;
1572
1573 /*
1574 * Determine which access bits we want to ask for...
1575 */
1576 if (mode & MAY_READ)
1577 args.access |= NFS4_ACCESS_READ;
1578 if (S_ISDIR(inode->i_mode)) {
1579 if (mode & MAY_WRITE)
1580 args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE;
1581 if (mode & MAY_EXEC)
1582 args.access |= NFS4_ACCESS_LOOKUP;
1583 } else {
1584 if (mode & MAY_WRITE)
1585 args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND;
1586 if (mode & MAY_EXEC)
1587 args.access |= NFS4_ACCESS_EXECUTE;
1588 }
1589 status = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1590 if (!status) {
1591 entry->mask = 0;
1592 if (res.access & NFS4_ACCESS_READ)
1593 entry->mask |= MAY_READ;
1594 if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
1595 entry->mask |= MAY_WRITE;
1596 if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
1597 entry->mask |= MAY_EXEC;
1598 }
1599 return status;
1600 }
1601
1602 static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
1603 {
1604 struct nfs4_exception exception = { };
1605 int err;
1606 do {
1607 err = nfs4_handle_exception(NFS_SERVER(inode),
1608 _nfs4_proc_access(inode, entry),
1609 &exception);
1610 } while (exception.retry);
1611 return err;
1612 }
1613
1614 /*
1615 * TODO: For the time being, we don't try to get any attributes
1616 * along with any of the zero-copy operations READ, READDIR,
1617 * READLINK, WRITE.
1618 *
1619 * In the case of the first three, we want to put the GETATTR
1620 * after the read-type operation -- this is because it is hard
1621 * to predict the length of a GETATTR response in v4, and thus
1622 * align the READ data correctly. This means that the GETATTR
1623 * may end up partially falling into the page cache, and we should
1624 * shift it into the 'tail' of the xdr_buf before processing.
1625 * To do this efficiently, we need to know the total length
1626 * of data received, which doesn't seem to be available outside
1627 * of the RPC layer.
1628 *
1629 * In the case of WRITE, we also want to put the GETATTR after
1630 * the operation -- in this case because we want to make sure
1631 * we get the post-operation mtime and size. This means that
1632 * we can't use xdr_encode_pages() as written: we need a variant
1633 * of it which would leave room in the 'tail' iovec.
1634 *
1635 * Both of these changes to the XDR layer would in fact be quite
1636 * minor, but I decided to leave them for a subsequent patch.
1637 */
1638 static int _nfs4_proc_readlink(struct inode *inode, struct page *page,
1639 unsigned int pgbase, unsigned int pglen)
1640 {
1641 struct nfs4_readlink args = {
1642 .fh = NFS_FH(inode),
1643 .pgbase = pgbase,
1644 .pglen = pglen,
1645 .pages = &page,
1646 };
1647 struct rpc_message msg = {
1648 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK],
1649 .rpc_argp = &args,
1650 .rpc_resp = NULL,
1651 };
1652
1653 return rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
1654 }
1655
1656 static int nfs4_proc_readlink(struct inode *inode, struct page *page,
1657 unsigned int pgbase, unsigned int pglen)
1658 {
1659 struct nfs4_exception exception = { };
1660 int err;
1661 do {
1662 err = nfs4_handle_exception(NFS_SERVER(inode),
1663 _nfs4_proc_readlink(inode, page, pgbase, pglen),
1664 &exception);
1665 } while (exception.retry);
1666 return err;
1667 }
1668
1669 static int _nfs4_proc_read(struct nfs_read_data *rdata)
1670 {
1671 int flags = rdata->flags;
1672 struct inode *inode = rdata->inode;
1673 struct nfs_fattr *fattr = rdata->res.fattr;
1674 struct nfs_server *server = NFS_SERVER(inode);
1675 struct rpc_message msg = {
1676 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ],
1677 .rpc_argp = &rdata->args,
1678 .rpc_resp = &rdata->res,
1679 .rpc_cred = rdata->cred,
1680 };
1681 unsigned long timestamp = jiffies;
1682 int status;
1683
1684 dprintk("NFS call read %d @ %Ld\n", rdata->args.count,
1685 (long long) rdata->args.offset);
1686
1687 nfs_fattr_init(fattr);
1688 status = rpc_call_sync(server->client, &msg, flags);
1689 if (!status)
1690 renew_lease(server, timestamp);
1691 dprintk("NFS reply read: %d\n", status);
1692 return status;
1693 }
1694
1695 static int nfs4_proc_read(struct nfs_read_data *rdata)
1696 {
1697 struct nfs4_exception exception = { };
1698 int err;
1699 do {
1700 err = nfs4_handle_exception(NFS_SERVER(rdata->inode),
1701 _nfs4_proc_read(rdata),
1702 &exception);
1703 } while (exception.retry);
1704 return err;
1705 }
1706
1707 static int _nfs4_proc_write(struct nfs_write_data *wdata)
1708 {
1709 int rpcflags = wdata->flags;
1710 struct inode *inode = wdata->inode;
1711 struct nfs_fattr *fattr = wdata->res.fattr;
1712 struct nfs_server *server = NFS_SERVER(inode);
1713 struct rpc_message msg = {
1714 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
1715 .rpc_argp = &wdata->args,
1716 .rpc_resp = &wdata->res,
1717 .rpc_cred = wdata->cred,
1718 };
1719 int status;
1720
1721 dprintk("NFS call write %d @ %Ld\n", wdata->args.count,
1722 (long long) wdata->args.offset);
1723
1724 wdata->args.bitmask = server->attr_bitmask;
1725 wdata->res.server = server;
1726 wdata->timestamp = jiffies;
1727 nfs_fattr_init(fattr);
1728 status = rpc_call_sync(server->client, &msg, rpcflags);
1729 dprintk("NFS reply write: %d\n", status);
1730 if (status < 0)
1731 return status;
1732 renew_lease(server, wdata->timestamp);
1733 nfs_post_op_update_inode(inode, fattr);
1734 return wdata->res.count;
1735 }
1736
1737 static int nfs4_proc_write(struct nfs_write_data *wdata)
1738 {
1739 struct nfs4_exception exception = { };
1740 int err;
1741 do {
1742 err = nfs4_handle_exception(NFS_SERVER(wdata->inode),
1743 _nfs4_proc_write(wdata),
1744 &exception);
1745 } while (exception.retry);
1746 return err;
1747 }
1748
1749 static int _nfs4_proc_commit(struct nfs_write_data *cdata)
1750 {
1751 struct inode *inode = cdata->inode;
1752 struct nfs_fattr *fattr = cdata->res.fattr;
1753 struct nfs_server *server = NFS_SERVER(inode);
1754 struct rpc_message msg = {
1755 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
1756 .rpc_argp = &cdata->args,
1757 .rpc_resp = &cdata->res,
1758 .rpc_cred = cdata->cred,
1759 };
1760 int status;
1761
1762 dprintk("NFS call commit %d @ %Ld\n", cdata->args.count,
1763 (long long) cdata->args.offset);
1764
1765 cdata->args.bitmask = server->attr_bitmask;
1766 cdata->res.server = server;
1767 cdata->timestamp = jiffies;
1768 nfs_fattr_init(fattr);
1769 status = rpc_call_sync(server->client, &msg, 0);
1770 if (status >= 0)
1771 renew_lease(server, cdata->timestamp);
1772 dprintk("NFS reply commit: %d\n", status);
1773 if (status >= 0)
1774 nfs_post_op_update_inode(inode, fattr);
1775 return status;
1776 }
1777
1778 static int nfs4_proc_commit(struct nfs_write_data *cdata)
1779 {
1780 struct nfs4_exception exception = { };
1781 int err;
1782 do {
1783 err = nfs4_handle_exception(NFS_SERVER(cdata->inode),
1784 _nfs4_proc_commit(cdata),
1785 &exception);
1786 } while (exception.retry);
1787 return err;
1788 }
1789
1790 /*
1791 * Got race?
1792 * We will need to arrange for the VFS layer to provide an atomic open.
1793 * Until then, this create/open method is prone to inefficiency and race
1794 * conditions due to the lookup, create, and open VFS calls from sys_open()
1795 * placed on the wire.
1796 *
1797 * Given the above sorry state of affairs, I'm simply sending an OPEN.
1798 * The file will be opened again in the subsequent VFS open call
1799 * (nfs4_proc_file_open).
1800 *
1801 * The open for read will just hang around to be used by any process that
1802 * opens the file O_RDONLY. This will all be resolved with the VFS changes.
1803 */
1804
1805 static int
1806 nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
1807 int flags, struct nameidata *nd)
1808 {
1809 struct nfs4_state *state;
1810 struct rpc_cred *cred;
1811 int status = 0;
1812
1813 cred = rpcauth_lookupcred(NFS_SERVER(dir)->client->cl_auth, 0);
1814 if (IS_ERR(cred)) {
1815 status = PTR_ERR(cred);
1816 goto out;
1817 }
1818 state = nfs4_do_open(dir, dentry, flags, sattr, cred);
1819 put_rpccred(cred);
1820 if (IS_ERR(state)) {
1821 status = PTR_ERR(state);
1822 goto out;
1823 }
1824 d_instantiate(dentry, igrab(state->inode));
1825 if (flags & O_EXCL) {
1826 struct nfs_fattr fattr;
1827 status = nfs4_do_setattr(NFS_SERVER(dir), &fattr,
1828 NFS_FH(state->inode), sattr, state);
1829 if (status == 0)
1830 nfs_setattr_update_inode(state->inode, sattr);
1831 }
1832 if (status == 0 && nd != NULL && (nd->flags & LOOKUP_OPEN))
1833 nfs4_intent_set_file(nd, dentry, state);
1834 else
1835 nfs4_close_state(state, flags);
1836 out:
1837 return status;
1838 }
1839
1840 static int _nfs4_proc_remove(struct inode *dir, struct qstr *name)
1841 {
1842 struct nfs_server *server = NFS_SERVER(dir);
1843 struct nfs4_remove_arg args = {
1844 .fh = NFS_FH(dir),
1845 .name = name,
1846 .bitmask = server->attr_bitmask,
1847 };
1848 struct nfs_fattr dir_attr;
1849 struct nfs4_remove_res res = {
1850 .server = server,
1851 .dir_attr = &dir_attr,
1852 };
1853 struct rpc_message msg = {
1854 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE],
1855 .rpc_argp = &args,
1856 .rpc_resp = &res,
1857 };
1858 int status;
1859
1860 nfs_fattr_init(res.dir_attr);
1861 status = rpc_call_sync(server->client, &msg, 0);
1862 if (status == 0) {
1863 update_changeattr(dir, &res.cinfo);
1864 nfs_post_op_update_inode(dir, res.dir_attr);
1865 }
1866 return status;
1867 }
1868
1869 static int nfs4_proc_remove(struct inode *dir, struct qstr *name)
1870 {
1871 struct nfs4_exception exception = { };
1872 int err;
1873 do {
1874 err = nfs4_handle_exception(NFS_SERVER(dir),
1875 _nfs4_proc_remove(dir, name),
1876 &exception);
1877 } while (exception.retry);
1878 return err;
1879 }
1880
1881 struct unlink_desc {
1882 struct nfs4_remove_arg args;
1883 struct nfs4_remove_res res;
1884 struct nfs_fattr dir_attr;
1885 };
1886
1887 static int nfs4_proc_unlink_setup(struct rpc_message *msg, struct dentry *dir,
1888 struct qstr *name)
1889 {
1890 struct nfs_server *server = NFS_SERVER(dir->d_inode);
1891 struct unlink_desc *up;
1892
1893 up = (struct unlink_desc *) kmalloc(sizeof(*up), GFP_KERNEL);
1894 if (!up)
1895 return -ENOMEM;
1896
1897 up->args.fh = NFS_FH(dir->d_inode);
1898 up->args.name = name;
1899 up->args.bitmask = server->attr_bitmask;
1900 up->res.server = server;
1901 up->res.dir_attr = &up->dir_attr;
1902
1903 msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE];
1904 msg->rpc_argp = &up->args;
1905 msg->rpc_resp = &up->res;
1906 return 0;
1907 }
1908
1909 static int nfs4_proc_unlink_done(struct dentry *dir, struct rpc_task *task)
1910 {
1911 struct rpc_message *msg = &task->tk_msg;
1912 struct unlink_desc *up;
1913
1914 if (msg->rpc_resp != NULL) {
1915 up = container_of(msg->rpc_resp, struct unlink_desc, res);
1916 update_changeattr(dir->d_inode, &up->res.cinfo);
1917 nfs_post_op_update_inode(dir->d_inode, up->res.dir_attr);
1918 kfree(up);
1919 msg->rpc_resp = NULL;
1920 msg->rpc_argp = NULL;
1921 }
1922 return 0;
1923 }
1924
1925 static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1926 struct inode *new_dir, struct qstr *new_name)
1927 {
1928 struct nfs_server *server = NFS_SERVER(old_dir);
1929 struct nfs4_rename_arg arg = {
1930 .old_dir = NFS_FH(old_dir),
1931 .new_dir = NFS_FH(new_dir),
1932 .old_name = old_name,
1933 .new_name = new_name,
1934 .bitmask = server->attr_bitmask,
1935 };
1936 struct nfs_fattr old_fattr, new_fattr;
1937 struct nfs4_rename_res res = {
1938 .server = server,
1939 .old_fattr = &old_fattr,
1940 .new_fattr = &new_fattr,
1941 };
1942 struct rpc_message msg = {
1943 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME],
1944 .rpc_argp = &arg,
1945 .rpc_resp = &res,
1946 };
1947 int status;
1948
1949 nfs_fattr_init(res.old_fattr);
1950 nfs_fattr_init(res.new_fattr);
1951 status = rpc_call_sync(server->client, &msg, 0);
1952
1953 if (!status) {
1954 update_changeattr(old_dir, &res.old_cinfo);
1955 nfs_post_op_update_inode(old_dir, res.old_fattr);
1956 update_changeattr(new_dir, &res.new_cinfo);
1957 nfs_post_op_update_inode(new_dir, res.new_fattr);
1958 }
1959 return status;
1960 }
1961
1962 static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
1963 struct inode *new_dir, struct qstr *new_name)
1964 {
1965 struct nfs4_exception exception = { };
1966 int err;
1967 do {
1968 err = nfs4_handle_exception(NFS_SERVER(old_dir),
1969 _nfs4_proc_rename(old_dir, old_name,
1970 new_dir, new_name),
1971 &exception);
1972 } while (exception.retry);
1973 return err;
1974 }
1975
1976 static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
1977 {
1978 struct nfs_server *server = NFS_SERVER(inode);
1979 struct nfs4_link_arg arg = {
1980 .fh = NFS_FH(inode),
1981 .dir_fh = NFS_FH(dir),
1982 .name = name,
1983 .bitmask = server->attr_bitmask,
1984 };
1985 struct nfs_fattr fattr, dir_attr;
1986 struct nfs4_link_res res = {
1987 .server = server,
1988 .fattr = &fattr,
1989 .dir_attr = &dir_attr,
1990 };
1991 struct rpc_message msg = {
1992 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK],
1993 .rpc_argp = &arg,
1994 .rpc_resp = &res,
1995 };
1996 int status;
1997
1998 nfs_fattr_init(res.fattr);
1999 nfs_fattr_init(res.dir_attr);
2000 status = rpc_call_sync(server->client, &msg, 0);
2001 if (!status) {
2002 update_changeattr(dir, &res.cinfo);
2003 nfs_post_op_update_inode(dir, res.dir_attr);
2004 nfs_refresh_inode(inode, res.fattr);
2005 }
2006
2007 return status;
2008 }
2009
2010 static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
2011 {
2012 struct nfs4_exception exception = { };
2013 int err;
2014 do {
2015 err = nfs4_handle_exception(NFS_SERVER(inode),
2016 _nfs4_proc_link(inode, dir, name),
2017 &exception);
2018 } while (exception.retry);
2019 return err;
2020 }
2021
2022 static int _nfs4_proc_symlink(struct inode *dir, struct qstr *name,
2023 struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle,
2024 struct nfs_fattr *fattr)
2025 {
2026 struct nfs_server *server = NFS_SERVER(dir);
2027 struct nfs_fattr dir_fattr;
2028 struct nfs4_create_arg arg = {
2029 .dir_fh = NFS_FH(dir),
2030 .server = server,
2031 .name = name,
2032 .attrs = sattr,
2033 .ftype = NF4LNK,
2034 .bitmask = server->attr_bitmask,
2035 };
2036 struct nfs4_create_res res = {
2037 .server = server,
2038 .fh = fhandle,
2039 .fattr = fattr,
2040 .dir_fattr = &dir_fattr,
2041 };
2042 struct rpc_message msg = {
2043 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK],
2044 .rpc_argp = &arg,
2045 .rpc_resp = &res,
2046 };
2047 int status;
2048
2049 if (path->len > NFS4_MAXPATHLEN)
2050 return -ENAMETOOLONG;
2051 arg.u.symlink = path;
2052 nfs_fattr_init(fattr);
2053 nfs_fattr_init(&dir_fattr);
2054
2055 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2056 if (!status)
2057 update_changeattr(dir, &res.dir_cinfo);
2058 nfs_post_op_update_inode(dir, res.dir_fattr);
2059 return status;
2060 }
2061
2062 static int nfs4_proc_symlink(struct inode *dir, struct qstr *name,
2063 struct qstr *path, struct iattr *sattr, struct nfs_fh *fhandle,
2064 struct nfs_fattr *fattr)
2065 {
2066 struct nfs4_exception exception = { };
2067 int err;
2068 do {
2069 err = nfs4_handle_exception(NFS_SERVER(dir),
2070 _nfs4_proc_symlink(dir, name, path, sattr,
2071 fhandle, fattr),
2072 &exception);
2073 } while (exception.retry);
2074 return err;
2075 }
2076
2077 static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2078 struct iattr *sattr)
2079 {
2080 struct nfs_server *server = NFS_SERVER(dir);
2081 struct nfs_fh fhandle;
2082 struct nfs_fattr fattr, dir_fattr;
2083 struct nfs4_create_arg arg = {
2084 .dir_fh = NFS_FH(dir),
2085 .server = server,
2086 .name = &dentry->d_name,
2087 .attrs = sattr,
2088 .ftype = NF4DIR,
2089 .bitmask = server->attr_bitmask,
2090 };
2091 struct nfs4_create_res res = {
2092 .server = server,
2093 .fh = &fhandle,
2094 .fattr = &fattr,
2095 .dir_fattr = &dir_fattr,
2096 };
2097 struct rpc_message msg = {
2098 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2099 .rpc_argp = &arg,
2100 .rpc_resp = &res,
2101 };
2102 int status;
2103
2104 nfs_fattr_init(&fattr);
2105 nfs_fattr_init(&dir_fattr);
2106
2107 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2108 if (!status) {
2109 update_changeattr(dir, &res.dir_cinfo);
2110 nfs_post_op_update_inode(dir, res.dir_fattr);
2111 status = nfs_instantiate(dentry, &fhandle, &fattr);
2112 }
2113 return status;
2114 }
2115
2116 static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
2117 struct iattr *sattr)
2118 {
2119 struct nfs4_exception exception = { };
2120 int err;
2121 do {
2122 err = nfs4_handle_exception(NFS_SERVER(dir),
2123 _nfs4_proc_mkdir(dir, dentry, sattr),
2124 &exception);
2125 } while (exception.retry);
2126 return err;
2127 }
2128
2129 static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2130 u64 cookie, struct page *page, unsigned int count, int plus)
2131 {
2132 struct inode *dir = dentry->d_inode;
2133 struct nfs4_readdir_arg args = {
2134 .fh = NFS_FH(dir),
2135 .pages = &page,
2136 .pgbase = 0,
2137 .count = count,
2138 .bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask,
2139 };
2140 struct nfs4_readdir_res res;
2141 struct rpc_message msg = {
2142 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR],
2143 .rpc_argp = &args,
2144 .rpc_resp = &res,
2145 .rpc_cred = cred,
2146 };
2147 int status;
2148
2149 dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __FUNCTION__,
2150 dentry->d_parent->d_name.name,
2151 dentry->d_name.name,
2152 (unsigned long long)cookie);
2153 lock_kernel();
2154 nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args);
2155 res.pgbase = args.pgbase;
2156 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2157 if (status == 0)
2158 memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE);
2159 unlock_kernel();
2160 dprintk("%s: returns %d\n", __FUNCTION__, status);
2161 return status;
2162 }
2163
2164 static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
2165 u64 cookie, struct page *page, unsigned int count, int plus)
2166 {
2167 struct nfs4_exception exception = { };
2168 int err;
2169 do {
2170 err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode),
2171 _nfs4_proc_readdir(dentry, cred, cookie,
2172 page, count, plus),
2173 &exception);
2174 } while (exception.retry);
2175 return err;
2176 }
2177
2178 static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2179 struct iattr *sattr, dev_t rdev)
2180 {
2181 struct nfs_server *server = NFS_SERVER(dir);
2182 struct nfs_fh fh;
2183 struct nfs_fattr fattr, dir_fattr;
2184 struct nfs4_create_arg arg = {
2185 .dir_fh = NFS_FH(dir),
2186 .server = server,
2187 .name = &dentry->d_name,
2188 .attrs = sattr,
2189 .bitmask = server->attr_bitmask,
2190 };
2191 struct nfs4_create_res res = {
2192 .server = server,
2193 .fh = &fh,
2194 .fattr = &fattr,
2195 .dir_fattr = &dir_fattr,
2196 };
2197 struct rpc_message msg = {
2198 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE],
2199 .rpc_argp = &arg,
2200 .rpc_resp = &res,
2201 };
2202 int status;
2203 int mode = sattr->ia_mode;
2204
2205 nfs_fattr_init(&fattr);
2206 nfs_fattr_init(&dir_fattr);
2207
2208 BUG_ON(!(sattr->ia_valid & ATTR_MODE));
2209 BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode));
2210 if (S_ISFIFO(mode))
2211 arg.ftype = NF4FIFO;
2212 else if (S_ISBLK(mode)) {
2213 arg.ftype = NF4BLK;
2214 arg.u.device.specdata1 = MAJOR(rdev);
2215 arg.u.device.specdata2 = MINOR(rdev);
2216 }
2217 else if (S_ISCHR(mode)) {
2218 arg.ftype = NF4CHR;
2219 arg.u.device.specdata1 = MAJOR(rdev);
2220 arg.u.device.specdata2 = MINOR(rdev);
2221 }
2222 else
2223 arg.ftype = NF4SOCK;
2224
2225 status = rpc_call_sync(NFS_CLIENT(dir), &msg, 0);
2226 if (status == 0) {
2227 update_changeattr(dir, &res.dir_cinfo);
2228 nfs_post_op_update_inode(dir, res.dir_fattr);
2229 status = nfs_instantiate(dentry, &fh, &fattr);
2230 }
2231 return status;
2232 }
2233
2234 static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
2235 struct iattr *sattr, dev_t rdev)
2236 {
2237 struct nfs4_exception exception = { };
2238 int err;
2239 do {
2240 err = nfs4_handle_exception(NFS_SERVER(dir),
2241 _nfs4_proc_mknod(dir, dentry, sattr, rdev),
2242 &exception);
2243 } while (exception.retry);
2244 return err;
2245 }
2246
2247 static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
2248 struct nfs_fsstat *fsstat)
2249 {
2250 struct nfs4_statfs_arg args = {
2251 .fh = fhandle,
2252 .bitmask = server->attr_bitmask,
2253 };
2254 struct rpc_message msg = {
2255 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS],
2256 .rpc_argp = &args,
2257 .rpc_resp = fsstat,
2258 };
2259
2260 nfs_fattr_init(fsstat->fattr);
2261 return rpc_call_sync(server->client, &msg, 0);
2262 }
2263
2264 static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat)
2265 {
2266 struct nfs4_exception exception = { };
2267 int err;
2268 do {
2269 err = nfs4_handle_exception(server,
2270 _nfs4_proc_statfs(server, fhandle, fsstat),
2271 &exception);
2272 } while (exception.retry);
2273 return err;
2274 }
2275
2276 static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
2277 struct nfs_fsinfo *fsinfo)
2278 {
2279 struct nfs4_fsinfo_arg args = {
2280 .fh = fhandle,
2281 .bitmask = server->attr_bitmask,
2282 };
2283 struct rpc_message msg = {
2284 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO],
2285 .rpc_argp = &args,
2286 .rpc_resp = fsinfo,
2287 };
2288
2289 return rpc_call_sync(server->client, &msg, 0);
2290 }
2291
2292 static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2293 {
2294 struct nfs4_exception exception = { };
2295 int err;
2296
2297 do {
2298 err = nfs4_handle_exception(server,
2299 _nfs4_do_fsinfo(server, fhandle, fsinfo),
2300 &exception);
2301 } while (exception.retry);
2302 return err;
2303 }
2304
2305 static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
2306 {
2307 nfs_fattr_init(fsinfo->fattr);
2308 return nfs4_do_fsinfo(server, fhandle, fsinfo);
2309 }
2310
2311 static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2312 struct nfs_pathconf *pathconf)
2313 {
2314 struct nfs4_pathconf_arg args = {
2315 .fh = fhandle,
2316 .bitmask = server->attr_bitmask,
2317 };
2318 struct rpc_message msg = {
2319 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF],
2320 .rpc_argp = &args,
2321 .rpc_resp = pathconf,
2322 };
2323
2324 /* None of the pathconf attributes are mandatory to implement */
2325 if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) {
2326 memset(pathconf, 0, sizeof(*pathconf));
2327 return 0;
2328 }
2329
2330 nfs_fattr_init(pathconf->fattr);
2331 return rpc_call_sync(server->client, &msg, 0);
2332 }
2333
2334 static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
2335 struct nfs_pathconf *pathconf)
2336 {
2337 struct nfs4_exception exception = { };
2338 int err;
2339
2340 do {
2341 err = nfs4_handle_exception(server,
2342 _nfs4_proc_pathconf(server, fhandle, pathconf),
2343 &exception);
2344 } while (exception.retry);
2345 return err;
2346 }
2347
2348 static int nfs4_read_done(struct rpc_task *task, struct nfs_read_data *data)
2349 {
2350 struct nfs_server *server = NFS_SERVER(data->inode);
2351
2352 if (nfs4_async_handle_error(task, server) == -EAGAIN) {
2353 rpc_restart_call(task);
2354 return -EAGAIN;
2355 }
2356 if (task->tk_status > 0)
2357 renew_lease(server, data->timestamp);
2358 return 0;
2359 }
2360
2361 static void nfs4_proc_read_setup(struct nfs_read_data *data)
2362 {
2363 struct rpc_message msg = {
2364 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ],
2365 .rpc_argp = &data->args,
2366 .rpc_resp = &data->res,
2367 .rpc_cred = data->cred,
2368 };
2369
2370 data->timestamp = jiffies;
2371
2372 rpc_call_setup(&data->task, &msg, 0);
2373 }
2374
2375 static int nfs4_write_done(struct rpc_task *task, struct nfs_write_data *data)
2376 {
2377 struct inode *inode = data->inode;
2378
2379 if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2380 rpc_restart_call(task);
2381 return -EAGAIN;
2382 }
2383 if (task->tk_status >= 0) {
2384 renew_lease(NFS_SERVER(inode), data->timestamp);
2385 nfs_post_op_update_inode(inode, data->res.fattr);
2386 }
2387 return 0;
2388 }
2389
2390 static void nfs4_proc_write_setup(struct nfs_write_data *data, int how)
2391 {
2392 struct rpc_message msg = {
2393 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE],
2394 .rpc_argp = &data->args,
2395 .rpc_resp = &data->res,
2396 .rpc_cred = data->cred,
2397 };
2398 struct inode *inode = data->inode;
2399 struct nfs_server *server = NFS_SERVER(inode);
2400 int stable;
2401
2402 if (how & FLUSH_STABLE) {
2403 if (!NFS_I(inode)->ncommit)
2404 stable = NFS_FILE_SYNC;
2405 else
2406 stable = NFS_DATA_SYNC;
2407 } else
2408 stable = NFS_UNSTABLE;
2409 data->args.stable = stable;
2410 data->args.bitmask = server->attr_bitmask;
2411 data->res.server = server;
2412
2413 data->timestamp = jiffies;
2414
2415 /* Finalize the task. */
2416 rpc_call_setup(&data->task, &msg, 0);
2417 }
2418
2419 static int nfs4_commit_done(struct rpc_task *task, struct nfs_write_data *data)
2420 {
2421 struct inode *inode = data->inode;
2422
2423 if (nfs4_async_handle_error(task, NFS_SERVER(inode)) == -EAGAIN) {
2424 rpc_restart_call(task);
2425 return -EAGAIN;
2426 }
2427 if (task->tk_status >= 0)
2428 nfs_post_op_update_inode(inode, data->res.fattr);
2429 return 0;
2430 }
2431
2432 static void nfs4_proc_commit_setup(struct nfs_write_data *data, int how)
2433 {
2434 struct rpc_message msg = {
2435 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT],
2436 .rpc_argp = &data->args,
2437 .rpc_resp = &data->res,
2438 .rpc_cred = data->cred,
2439 };
2440 struct nfs_server *server = NFS_SERVER(data->inode);
2441
2442 data->args.bitmask = server->attr_bitmask;
2443 data->res.server = server;
2444
2445 rpc_call_setup(&data->task, &msg, 0);
2446 }
2447
2448 /*
2449 * nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special
2450 * standalone procedure for queueing an asynchronous RENEW.
2451 */
2452 static void nfs4_renew_done(struct rpc_task *task, void *data)
2453 {
2454 struct nfs4_client *clp = (struct nfs4_client *)task->tk_msg.rpc_argp;
2455 unsigned long timestamp = (unsigned long)data;
2456
2457 if (task->tk_status < 0) {
2458 switch (task->tk_status) {
2459 case -NFS4ERR_STALE_CLIENTID:
2460 case -NFS4ERR_EXPIRED:
2461 case -NFS4ERR_CB_PATH_DOWN:
2462 nfs4_schedule_state_recovery(clp);
2463 }
2464 return;
2465 }
2466 spin_lock(&clp->cl_lock);
2467 if (time_before(clp->cl_last_renewal,timestamp))
2468 clp->cl_last_renewal = timestamp;
2469 spin_unlock(&clp->cl_lock);
2470 }
2471
2472 static const struct rpc_call_ops nfs4_renew_ops = {
2473 .rpc_call_done = nfs4_renew_done,
2474 };
2475
2476 int nfs4_proc_async_renew(struct nfs4_client *clp, struct rpc_cred *cred)
2477 {
2478 struct rpc_message msg = {
2479 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2480 .rpc_argp = clp,
2481 .rpc_cred = cred,
2482 };
2483
2484 return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT,
2485 &nfs4_renew_ops, (void *)jiffies);
2486 }
2487
2488 int nfs4_proc_renew(struct nfs4_client *clp, struct rpc_cred *cred)
2489 {
2490 struct rpc_message msg = {
2491 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
2492 .rpc_argp = clp,
2493 .rpc_cred = cred,
2494 };
2495 unsigned long now = jiffies;
2496 int status;
2497
2498 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2499 if (status < 0)
2500 return status;
2501 spin_lock(&clp->cl_lock);
2502 if (time_before(clp->cl_last_renewal,now))
2503 clp->cl_last_renewal = now;
2504 spin_unlock(&clp->cl_lock);
2505 return 0;
2506 }
2507
2508 static inline int nfs4_server_supports_acls(struct nfs_server *server)
2509 {
2510 return (server->caps & NFS_CAP_ACLS)
2511 && (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL)
2512 && (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL);
2513 }
2514
2515 /* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that
2516 * it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on
2517 * the stack.
2518 */
2519 #define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT)
2520
2521 static void buf_to_pages(const void *buf, size_t buflen,
2522 struct page **pages, unsigned int *pgbase)
2523 {
2524 const void *p = buf;
2525
2526 *pgbase = offset_in_page(buf);
2527 p -= *pgbase;
2528 while (p < buf + buflen) {
2529 *(pages++) = virt_to_page(p);
2530 p += PAGE_CACHE_SIZE;
2531 }
2532 }
2533
2534 struct nfs4_cached_acl {
2535 int cached;
2536 size_t len;
2537 char data[0];
2538 };
2539
2540 static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl)
2541 {
2542 struct nfs_inode *nfsi = NFS_I(inode);
2543
2544 spin_lock(&inode->i_lock);
2545 kfree(nfsi->nfs4_acl);
2546 nfsi->nfs4_acl = acl;
2547 spin_unlock(&inode->i_lock);
2548 }
2549
2550 static void nfs4_zap_acl_attr(struct inode *inode)
2551 {
2552 nfs4_set_cached_acl(inode, NULL);
2553 }
2554
2555 static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen)
2556 {
2557 struct nfs_inode *nfsi = NFS_I(inode);
2558 struct nfs4_cached_acl *acl;
2559 int ret = -ENOENT;
2560
2561 spin_lock(&inode->i_lock);
2562 acl = nfsi->nfs4_acl;
2563 if (acl == NULL)
2564 goto out;
2565 if (buf == NULL) /* user is just asking for length */
2566 goto out_len;
2567 if (acl->cached == 0)
2568 goto out;
2569 ret = -ERANGE; /* see getxattr(2) man page */
2570 if (acl->len > buflen)
2571 goto out;
2572 memcpy(buf, acl->data, acl->len);
2573 out_len:
2574 ret = acl->len;
2575 out:
2576 spin_unlock(&inode->i_lock);
2577 return ret;
2578 }
2579
2580 static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len)
2581 {
2582 struct nfs4_cached_acl *acl;
2583
2584 if (buf && acl_len <= PAGE_SIZE) {
2585 acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL);
2586 if (acl == NULL)
2587 goto out;
2588 acl->cached = 1;
2589 memcpy(acl->data, buf, acl_len);
2590 } else {
2591 acl = kmalloc(sizeof(*acl), GFP_KERNEL);
2592 if (acl == NULL)
2593 goto out;
2594 acl->cached = 0;
2595 }
2596 acl->len = acl_len;
2597 out:
2598 nfs4_set_cached_acl(inode, acl);
2599 }
2600
2601 static inline ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
2602 {
2603 struct page *pages[NFS4ACL_MAXPAGES];
2604 struct nfs_getaclargs args = {
2605 .fh = NFS_FH(inode),
2606 .acl_pages = pages,
2607 .acl_len = buflen,
2608 };
2609 size_t resp_len = buflen;
2610 void *resp_buf;
2611 struct rpc_message msg = {
2612 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL],
2613 .rpc_argp = &args,
2614 .rpc_resp = &resp_len,
2615 };
2616 struct page *localpage = NULL;
2617 int ret;
2618
2619 if (buflen < PAGE_SIZE) {
2620 /* As long as we're doing a round trip to the server anyway,
2621 * let's be prepared for a page of acl data. */
2622 localpage = alloc_page(GFP_KERNEL);
2623 resp_buf = page_address(localpage);
2624 if (localpage == NULL)
2625 return -ENOMEM;
2626 args.acl_pages[0] = localpage;
2627 args.acl_pgbase = 0;
2628 resp_len = args.acl_len = PAGE_SIZE;
2629 } else {
2630 resp_buf = buf;
2631 buf_to_pages(buf, buflen, args.acl_pages, &args.acl_pgbase);
2632 }
2633 ret = rpc_call_sync(NFS_CLIENT(inode), &msg, 0);
2634 if (ret)
2635 goto out_free;
2636 if (resp_len > args.acl_len)
2637 nfs4_write_cached_acl(inode, NULL, resp_len);
2638 else
2639 nfs4_write_cached_acl(inode, resp_buf, resp_len);
2640 if (buf) {
2641 ret = -ERANGE;
2642 if (resp_len > buflen)
2643 goto out_free;
2644 if (localpage)
2645 memcpy(buf, resp_buf, resp_len);
2646 }
2647 ret = resp_len;
2648 out_free:
2649 if (localpage)
2650 __free_page(localpage);
2651 return ret;
2652 }
2653
2654 static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen)
2655 {
2656 struct nfs_server *server = NFS_SERVER(inode);
2657 int ret;
2658
2659 if (!nfs4_server_supports_acls(server))
2660 return -EOPNOTSUPP;
2661 ret = nfs_revalidate_inode(server, inode);
2662 if (ret < 0)
2663 return ret;
2664 ret = nfs4_read_cached_acl(inode, buf, buflen);
2665 if (ret != -ENOENT)
2666 return ret;
2667 return nfs4_get_acl_uncached(inode, buf, buflen);
2668 }
2669
2670 static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
2671 {
2672 struct nfs_server *server = NFS_SERVER(inode);
2673 struct page *pages[NFS4ACL_MAXPAGES];
2674 struct nfs_setaclargs arg = {
2675 .fh = NFS_FH(inode),
2676 .acl_pages = pages,
2677 .acl_len = buflen,
2678 };
2679 struct rpc_message msg = {
2680 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETACL],
2681 .rpc_argp = &arg,
2682 .rpc_resp = NULL,
2683 };
2684 int ret;
2685
2686 if (!nfs4_server_supports_acls(server))
2687 return -EOPNOTSUPP;
2688 nfs_inode_return_delegation(inode);
2689 buf_to_pages(buf, buflen, arg.acl_pages, &arg.acl_pgbase);
2690 ret = rpc_call_sync(NFS_SERVER(inode)->client, &msg, 0);
2691 if (ret == 0)
2692 nfs4_write_cached_acl(inode, buf, buflen);
2693 return ret;
2694 }
2695
2696 static int
2697 nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server)
2698 {
2699 struct nfs4_client *clp = server->nfs4_state;
2700
2701 if (!clp || task->tk_status >= 0)
2702 return 0;
2703 switch(task->tk_status) {
2704 case -NFS4ERR_STALE_CLIENTID:
2705 case -NFS4ERR_STALE_STATEID:
2706 case -NFS4ERR_EXPIRED:
2707 rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL, NULL);
2708 nfs4_schedule_state_recovery(clp);
2709 if (test_bit(NFS4CLNT_STATE_RECOVER, &clp->cl_state) == 0)
2710 rpc_wake_up_task(task);
2711 task->tk_status = 0;
2712 return -EAGAIN;
2713 case -NFS4ERR_DELAY:
2714 nfs_inc_server_stats((struct nfs_server *) server,
2715 NFSIOS_DELAY);
2716 case -NFS4ERR_GRACE:
2717 rpc_delay(task, NFS4_POLL_RETRY_MAX);
2718 task->tk_status = 0;
2719 return -EAGAIN;
2720 case -NFS4ERR_OLD_STATEID:
2721 task->tk_status = 0;
2722 return -EAGAIN;
2723 }
2724 task->tk_status = nfs4_map_errors(task->tk_status);
2725 return 0;
2726 }
2727
2728 static int nfs4_wait_bit_interruptible(void *word)
2729 {
2730 if (signal_pending(current))
2731 return -ERESTARTSYS;
2732 schedule();
2733 return 0;
2734 }
2735
2736 static int nfs4_wait_clnt_recover(struct rpc_clnt *clnt, struct nfs4_client *clp)
2737 {
2738 sigset_t oldset;
2739 int res;
2740
2741 might_sleep();
2742
2743 rpc_clnt_sigmask(clnt, &oldset);
2744 res = wait_on_bit(&clp->cl_state, NFS4CLNT_STATE_RECOVER,
2745 nfs4_wait_bit_interruptible,
2746 TASK_INTERRUPTIBLE);
2747 rpc_clnt_sigunmask(clnt, &oldset);
2748 return res;
2749 }
2750
2751 static int nfs4_delay(struct rpc_clnt *clnt, long *timeout)
2752 {
2753 sigset_t oldset;
2754 int res = 0;
2755
2756 might_sleep();
2757
2758 if (*timeout <= 0)
2759 *timeout = NFS4_POLL_RETRY_MIN;
2760 if (*timeout > NFS4_POLL_RETRY_MAX)
2761 *timeout = NFS4_POLL_RETRY_MAX;
2762 rpc_clnt_sigmask(clnt, &oldset);
2763 if (clnt->cl_intr) {
2764 schedule_timeout_interruptible(*timeout);
2765 if (signalled())
2766 res = -ERESTARTSYS;
2767 } else
2768 schedule_timeout_uninterruptible(*timeout);
2769 rpc_clnt_sigunmask(clnt, &oldset);
2770 *timeout <<= 1;
2771 return res;
2772 }
2773
2774 /* This is the error handling routine for processes that are allowed
2775 * to sleep.
2776 */
2777 int nfs4_handle_exception(const struct nfs_server *server, int errorcode, struct nfs4_exception *exception)
2778 {
2779 struct nfs4_client *clp = server->nfs4_state;
2780 int ret = errorcode;
2781
2782 exception->retry = 0;
2783 switch(errorcode) {
2784 case 0:
2785 return 0;
2786 case -NFS4ERR_STALE_CLIENTID:
2787 case -NFS4ERR_STALE_STATEID:
2788 case -NFS4ERR_EXPIRED:
2789 nfs4_schedule_state_recovery(clp);
2790 ret = nfs4_wait_clnt_recover(server->client, clp);
2791 if (ret == 0)
2792 exception->retry = 1;
2793 break;
2794 case -NFS4ERR_GRACE:
2795 case -NFS4ERR_DELAY:
2796 ret = nfs4_delay(server->client, &exception->timeout);
2797 if (ret != 0)
2798 break;
2799 case -NFS4ERR_OLD_STATEID:
2800 exception->retry = 1;
2801 }
2802 /* We failed to handle the error */
2803 return nfs4_map_errors(ret);
2804 }
2805
2806 int nfs4_proc_setclientid(struct nfs4_client *clp, u32 program, unsigned short port, struct rpc_cred *cred)
2807 {
2808 nfs4_verifier sc_verifier;
2809 struct nfs4_setclientid setclientid = {
2810 .sc_verifier = &sc_verifier,
2811 .sc_prog = program,
2812 };
2813 struct rpc_message msg = {
2814 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID],
2815 .rpc_argp = &setclientid,
2816 .rpc_resp = clp,
2817 .rpc_cred = cred,
2818 };
2819 u32 *p;
2820 int loop = 0;
2821 int status;
2822
2823 p = (u32*)sc_verifier.data;
2824 *p++ = htonl((u32)clp->cl_boot_time.tv_sec);
2825 *p = htonl((u32)clp->cl_boot_time.tv_nsec);
2826
2827 for(;;) {
2828 setclientid.sc_name_len = scnprintf(setclientid.sc_name,
2829 sizeof(setclientid.sc_name), "%s/%u.%u.%u.%u %s %u",
2830 clp->cl_ipaddr, NIPQUAD(clp->cl_addr.s_addr),
2831 cred->cr_ops->cr_name,
2832 clp->cl_id_uniquifier);
2833 setclientid.sc_netid_len = scnprintf(setclientid.sc_netid,
2834 sizeof(setclientid.sc_netid), "tcp");
2835 setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr,
2836 sizeof(setclientid.sc_uaddr), "%s.%d.%d",
2837 clp->cl_ipaddr, port >> 8, port & 255);
2838
2839 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2840 if (status != -NFS4ERR_CLID_INUSE)
2841 break;
2842 if (signalled())
2843 break;
2844 if (loop++ & 1)
2845 ssleep(clp->cl_lease_time + 1);
2846 else
2847 if (++clp->cl_id_uniquifier == 0)
2848 break;
2849 }
2850 return status;
2851 }
2852
2853 int
2854 nfs4_proc_setclientid_confirm(struct nfs4_client *clp, struct rpc_cred *cred)
2855 {
2856 struct nfs_fsinfo fsinfo;
2857 struct rpc_message msg = {
2858 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM],
2859 .rpc_argp = clp,
2860 .rpc_resp = &fsinfo,
2861 .rpc_cred = cred,
2862 };
2863 unsigned long now;
2864 int status;
2865
2866 now = jiffies;
2867 status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
2868 if (status == 0) {
2869 spin_lock(&clp->cl_lock);
2870 clp->cl_lease_time = fsinfo.lease_time * HZ;
2871 clp->cl_last_renewal = now;
2872 clear_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state);
2873 spin_unlock(&clp->cl_lock);
2874 }
2875 return status;
2876 }
2877
2878 struct nfs4_delegreturndata {
2879 struct nfs4_delegreturnargs args;
2880 struct nfs4_delegreturnres res;
2881 struct nfs_fh fh;
2882 nfs4_stateid stateid;
2883 struct rpc_cred *cred;
2884 unsigned long timestamp;
2885 struct nfs_fattr fattr;
2886 int rpc_status;
2887 };
2888
2889 static void nfs4_delegreturn_prepare(struct rpc_task *task, void *calldata)
2890 {
2891 struct nfs4_delegreturndata *data = calldata;
2892 struct rpc_message msg = {
2893 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN],
2894 .rpc_argp = &data->args,
2895 .rpc_resp = &data->res,
2896 .rpc_cred = data->cred,
2897 };
2898 nfs_fattr_init(data->res.fattr);
2899 rpc_call_setup(task, &msg, 0);
2900 }
2901
2902 static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata)
2903 {
2904 struct nfs4_delegreturndata *data = calldata;
2905 data->rpc_status = task->tk_status;
2906 if (data->rpc_status == 0)
2907 renew_lease(data->res.server, data->timestamp);
2908 }
2909
2910 static void nfs4_delegreturn_release(void *calldata)
2911 {
2912 struct nfs4_delegreturndata *data = calldata;
2913
2914 put_rpccred(data->cred);
2915 kfree(calldata);
2916 }
2917
2918 static const struct rpc_call_ops nfs4_delegreturn_ops = {
2919 .rpc_call_prepare = nfs4_delegreturn_prepare,
2920 .rpc_call_done = nfs4_delegreturn_done,
2921 .rpc_release = nfs4_delegreturn_release,
2922 };
2923
2924 static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
2925 {
2926 struct nfs4_delegreturndata *data;
2927 struct nfs_server *server = NFS_SERVER(inode);
2928 struct rpc_task *task;
2929 int status;
2930
2931 data = kmalloc(sizeof(*data), GFP_KERNEL);
2932 if (data == NULL)
2933 return -ENOMEM;
2934 data->args.fhandle = &data->fh;
2935 data->args.stateid = &data->stateid;
2936 data->args.bitmask = server->attr_bitmask;
2937 nfs_copy_fh(&data->fh, NFS_FH(inode));
2938 memcpy(&data->stateid, stateid, sizeof(data->stateid));
2939 data->res.fattr = &data->fattr;
2940 data->res.server = server;
2941 data->cred = get_rpccred(cred);
2942 data->timestamp = jiffies;
2943 data->rpc_status = 0;
2944
2945 task = rpc_run_task(NFS_CLIENT(inode), RPC_TASK_ASYNC, &nfs4_delegreturn_ops, data);
2946 if (IS_ERR(task)) {
2947 nfs4_delegreturn_release(data);
2948 return PTR_ERR(task);
2949 }
2950 status = nfs4_wait_for_completion_rpc_task(task);
2951 if (status == 0) {
2952 status = data->rpc_status;
2953 if (status == 0)
2954 nfs_post_op_update_inode(inode, &data->fattr);
2955 }
2956 rpc_release_task(task);
2957 return status;
2958 }
2959
2960 int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid)
2961 {
2962 struct nfs_server *server = NFS_SERVER(inode);
2963 struct nfs4_exception exception = { };
2964 int err;
2965 do {
2966 err = _nfs4_proc_delegreturn(inode, cred, stateid);
2967 switch (err) {
2968 case -NFS4ERR_STALE_STATEID:
2969 case -NFS4ERR_EXPIRED:
2970 nfs4_schedule_state_recovery(server->nfs4_state);
2971 case 0:
2972 return 0;
2973 }
2974 err = nfs4_handle_exception(server, err, &exception);
2975 } while (exception.retry);
2976 return err;
2977 }
2978
2979 #define NFS4_LOCK_MINTIMEOUT (1 * HZ)
2980 #define NFS4_LOCK_MAXTIMEOUT (30 * HZ)
2981
2982 /*
2983 * sleep, with exponential backoff, and retry the LOCK operation.
2984 */
2985 static unsigned long
2986 nfs4_set_lock_task_retry(unsigned long timeout)
2987 {
2988 schedule_timeout_interruptible(timeout);
2989 timeout <<= 1;
2990 if (timeout > NFS4_LOCK_MAXTIMEOUT)
2991 return NFS4_LOCK_MAXTIMEOUT;
2992 return timeout;
2993 }
2994
2995 static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
2996 {
2997 struct inode *inode = state->inode;
2998 struct nfs_server *server = NFS_SERVER(inode);
2999 struct nfs4_client *clp = server->nfs4_state;
3000 struct nfs_lockt_args arg = {
3001 .fh = NFS_FH(inode),
3002 .fl = request,
3003 };
3004 struct nfs_lockt_res res = {
3005 .denied = request,
3006 };
3007 struct rpc_message msg = {
3008 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKT],
3009 .rpc_argp = &arg,
3010 .rpc_resp = &res,
3011 .rpc_cred = state->owner->so_cred,
3012 };
3013 struct nfs4_lock_state *lsp;
3014 int status;
3015
3016 down_read(&clp->cl_sem);
3017 arg.lock_owner.clientid = clp->cl_clientid;
3018 status = nfs4_set_lock_state(state, request);
3019 if (status != 0)
3020 goto out;
3021 lsp = request->fl_u.nfs4_fl.owner;
3022 arg.lock_owner.id = lsp->ls_id;
3023 status = rpc_call_sync(server->client, &msg, 0);
3024 switch (status) {
3025 case 0:
3026 request->fl_type = F_UNLCK;
3027 break;
3028 case -NFS4ERR_DENIED:
3029 status = 0;
3030 }
3031 out:
3032 up_read(&clp->cl_sem);
3033 return status;
3034 }
3035
3036 static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3037 {
3038 struct nfs4_exception exception = { };
3039 int err;
3040
3041 do {
3042 err = nfs4_handle_exception(NFS_SERVER(state->inode),
3043 _nfs4_proc_getlk(state, cmd, request),
3044 &exception);
3045 } while (exception.retry);
3046 return err;
3047 }
3048
3049 static int do_vfs_lock(struct file *file, struct file_lock *fl)
3050 {
3051 int res = 0;
3052 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
3053 case FL_POSIX:
3054 res = posix_lock_file_wait(file, fl);
3055 break;
3056 case FL_FLOCK:
3057 res = flock_lock_file_wait(file, fl);
3058 break;
3059 default:
3060 BUG();
3061 }
3062 if (res < 0)
3063 printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n",
3064 __FUNCTION__);
3065 return res;
3066 }
3067
3068 struct nfs4_unlockdata {
3069 struct nfs_locku_args arg;
3070 struct nfs_locku_res res;
3071 struct nfs4_lock_state *lsp;
3072 struct nfs_open_context *ctx;
3073 struct file_lock fl;
3074 const struct nfs_server *server;
3075 unsigned long timestamp;
3076 };
3077
3078 static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl,
3079 struct nfs_open_context *ctx,
3080 struct nfs4_lock_state *lsp,
3081 struct nfs_seqid *seqid)
3082 {
3083 struct nfs4_unlockdata *p;
3084 struct inode *inode = lsp->ls_state->inode;
3085
3086 p = kmalloc(sizeof(*p), GFP_KERNEL);
3087 if (p == NULL)
3088 return NULL;
3089 p->arg.fh = NFS_FH(inode);
3090 p->arg.fl = &p->fl;
3091 p->arg.seqid = seqid;
3092 p->arg.stateid = &lsp->ls_stateid;
3093 p->lsp = lsp;
3094 atomic_inc(&lsp->ls_count);
3095 /* Ensure we don't close file until we're done freeing locks! */
3096 p->ctx = get_nfs_open_context(ctx);
3097 memcpy(&p->fl, fl, sizeof(p->fl));
3098 p->server = NFS_SERVER(inode);
3099 return p;
3100 }
3101
3102 static void nfs4_locku_release_calldata(void *data)
3103 {
3104 struct nfs4_unlockdata *calldata = data;
3105 nfs_free_seqid(calldata->arg.seqid);
3106 nfs4_put_lock_state(calldata->lsp);
3107 put_nfs_open_context(calldata->ctx);
3108 kfree(calldata);
3109 }
3110
3111 static void nfs4_locku_done(struct rpc_task *task, void *data)
3112 {
3113 struct nfs4_unlockdata *calldata = data;
3114
3115 if (RPC_ASSASSINATED(task))
3116 return;
3117 nfs_increment_lock_seqid(task->tk_status, calldata->arg.seqid);
3118 switch (task->tk_status) {
3119 case 0:
3120 memcpy(calldata->lsp->ls_stateid.data,
3121 calldata->res.stateid.data,
3122 sizeof(calldata->lsp->ls_stateid.data));
3123 renew_lease(calldata->server, calldata->timestamp);
3124 break;
3125 case -NFS4ERR_STALE_STATEID:
3126 case -NFS4ERR_EXPIRED:
3127 nfs4_schedule_state_recovery(calldata->server->nfs4_state);
3128 break;
3129 default:
3130 if (nfs4_async_handle_error(task, calldata->server) == -EAGAIN) {
3131 rpc_restart_call(task);
3132 }
3133 }
3134 }
3135
3136 static void nfs4_locku_prepare(struct rpc_task *task, void *data)
3137 {
3138 struct nfs4_unlockdata *calldata = data;
3139 struct rpc_message msg = {
3140 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKU],
3141 .rpc_argp = &calldata->arg,
3142 .rpc_resp = &calldata->res,
3143 .rpc_cred = calldata->lsp->ls_state->owner->so_cred,
3144 };
3145
3146 if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
3147 return;
3148 if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) {
3149 /* Note: exit _without_ running nfs4_locku_done */
3150 task->tk_action = NULL;
3151 return;
3152 }
3153 calldata->timestamp = jiffies;
3154 rpc_call_setup(task, &msg, 0);
3155 }
3156
3157 static const struct rpc_call_ops nfs4_locku_ops = {
3158 .rpc_call_prepare = nfs4_locku_prepare,
3159 .rpc_call_done = nfs4_locku_done,
3160 .rpc_release = nfs4_locku_release_calldata,
3161 };
3162
3163 static struct rpc_task *nfs4_do_unlck(struct file_lock *fl,
3164 struct nfs_open_context *ctx,
3165 struct nfs4_lock_state *lsp,
3166 struct nfs_seqid *seqid)
3167 {
3168 struct nfs4_unlockdata *data;
3169 struct rpc_task *task;
3170
3171 data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid);
3172 if (data == NULL) {
3173 nfs_free_seqid(seqid);
3174 return ERR_PTR(-ENOMEM);
3175 }
3176
3177 /* Unlock _before_ we do the RPC call */
3178 do_vfs_lock(fl->fl_file, fl);
3179 task = rpc_run_task(NFS_CLIENT(lsp->ls_state->inode), RPC_TASK_ASYNC, &nfs4_locku_ops, data);
3180 if (IS_ERR(task))
3181 nfs4_locku_release_calldata(data);
3182 return task;
3183 }
3184
3185 static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request)
3186 {
3187 struct nfs_seqid *seqid;
3188 struct nfs4_lock_state *lsp;
3189 struct rpc_task *task;
3190 int status = 0;
3191
3192 /* Is this a delegated lock? */
3193 if (test_bit(NFS_DELEGATED_STATE, &state->flags))
3194 goto out_unlock;
3195 /* Is this open_owner holding any locks on the server? */
3196 if (test_bit(LK_STATE_IN_USE, &state->flags) == 0)
3197 goto out_unlock;
3198
3199 status = nfs4_set_lock_state(state, request);
3200 if (status != 0)
3201 goto out_unlock;
3202 lsp = request->fl_u.nfs4_fl.owner;
3203 status = -ENOMEM;
3204 seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3205 if (seqid == NULL)
3206 goto out_unlock;
3207 task = nfs4_do_unlck(request, request->fl_file->private_data, lsp, seqid);
3208 status = PTR_ERR(task);
3209 if (IS_ERR(task))
3210 goto out_unlock;
3211 status = nfs4_wait_for_completion_rpc_task(task);
3212 rpc_release_task(task);
3213 return status;
3214 out_unlock:
3215 do_vfs_lock(request->fl_file, request);
3216 return status;
3217 }
3218
3219 struct nfs4_lockdata {
3220 struct nfs_lock_args arg;
3221 struct nfs_lock_res res;
3222 struct nfs4_lock_state *lsp;
3223 struct nfs_open_context *ctx;
3224 struct file_lock fl;
3225 unsigned long timestamp;
3226 int rpc_status;
3227 int cancelled;
3228 };
3229
3230 static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl,
3231 struct nfs_open_context *ctx, struct nfs4_lock_state *lsp)
3232 {
3233 struct nfs4_lockdata *p;
3234 struct inode *inode = lsp->ls_state->inode;
3235 struct nfs_server *server = NFS_SERVER(inode);
3236
3237 p = kzalloc(sizeof(*p), GFP_KERNEL);
3238 if (p == NULL)
3239 return NULL;
3240
3241 p->arg.fh = NFS_FH(inode);
3242 p->arg.fl = &p->fl;
3243 p->arg.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid);
3244 if (p->arg.lock_seqid == NULL)
3245 goto out_free;
3246 p->arg.lock_stateid = &lsp->ls_stateid;
3247 p->arg.lock_owner.clientid = server->nfs4_state->cl_clientid;
3248 p->arg.lock_owner.id = lsp->ls_id;
3249 p->lsp = lsp;
3250 atomic_inc(&lsp->ls_count);
3251 p->ctx = get_nfs_open_context(ctx);
3252 memcpy(&p->fl, fl, sizeof(p->fl));
3253 return p;
3254 out_free:
3255 kfree(p);
3256 return NULL;
3257 }
3258
3259 static void nfs4_lock_prepare(struct rpc_task *task, void *calldata)
3260 {
3261 struct nfs4_lockdata *data = calldata;
3262 struct nfs4_state *state = data->lsp->ls_state;
3263 struct nfs4_state_owner *sp = state->owner;
3264 struct rpc_message msg = {
3265 .rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK],
3266 .rpc_argp = &data->arg,
3267 .rpc_resp = &data->res,
3268 .rpc_cred = sp->so_cred,
3269 };
3270
3271 if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0)
3272 return;
3273 dprintk("%s: begin!\n", __FUNCTION__);
3274 /* Do we need to do an open_to_lock_owner? */
3275 if (!(data->arg.lock_seqid->sequence->flags & NFS_SEQID_CONFIRMED)) {
3276 data->arg.open_seqid = nfs_alloc_seqid(&sp->so_seqid);
3277 if (data->arg.open_seqid == NULL) {
3278 data->rpc_status = -ENOMEM;
3279 task->tk_action = NULL;
3280 goto out;
3281 }
3282 data->arg.open_stateid = &state->stateid;
3283 data->arg.new_lock_owner = 1;
3284 }
3285 data->timestamp = jiffies;
3286 rpc_call_setup(task, &msg, 0);
3287 out:
3288 dprintk("%s: done!, ret = %d\n", __FUNCTION__, data->rpc_status);
3289 }
3290
3291 static void nfs4_lock_done(struct rpc_task *task, void *calldata)
3292 {
3293 struct nfs4_lockdata *data = calldata;
3294
3295 dprintk("%s: begin!\n", __FUNCTION__);
3296
3297 data->rpc_status = task->tk_status;
3298 if (RPC_ASSASSINATED(task))
3299 goto out;
3300 if (data->arg.new_lock_owner != 0) {
3301 nfs_increment_open_seqid(data->rpc_status, data->arg.open_seqid);
3302 if (data->rpc_status == 0)
3303 nfs_confirm_seqid(&data->lsp->ls_seqid, 0);
3304 else
3305 goto out;
3306 }
3307 if (data->rpc_status == 0) {
3308 memcpy(data->lsp->ls_stateid.data, data->res.stateid.data,
3309 sizeof(data->lsp->ls_stateid.data));
3310 data->lsp->ls_flags |= NFS_LOCK_INITIALIZED;
3311 renew_lease(NFS_SERVER(data->ctx->dentry->d_inode), data->timestamp);
3312 }
3313 nfs_increment_lock_seqid(data->rpc_status, data->arg.lock_seqid);
3314 out:
3315 dprintk("%s: done, ret = %d!\n", __FUNCTION__, data->rpc_status);
3316 }
3317
3318 static void nfs4_lock_release(void *calldata)
3319 {
3320 struct nfs4_lockdata *data = calldata;
3321
3322 dprintk("%s: begin!\n", __FUNCTION__);
3323 if (data->arg.open_seqid != NULL)
3324 nfs_free_seqid(data->arg.open_seqid);
3325 if (data->cancelled != 0) {
3326 struct rpc_task *task;
3327 task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp,
3328 data->arg.lock_seqid);
3329 if (!IS_ERR(task))
3330 rpc_release_task(task);
3331 dprintk("%s: cancelling lock!\n", __FUNCTION__);
3332 } else
3333 nfs_free_seqid(data->arg.lock_seqid);
3334 nfs4_put_lock_state(data->lsp);
3335 put_nfs_open_context(data->ctx);
3336 kfree(data);
3337 dprintk("%s: done!\n", __FUNCTION__);
3338 }
3339
3340 static const struct rpc_call_ops nfs4_lock_ops = {
3341 .rpc_call_prepare = nfs4_lock_prepare,
3342 .rpc_call_done = nfs4_lock_done,
3343 .rpc_release = nfs4_lock_release,
3344 };
3345
3346 static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int reclaim)
3347 {
3348 struct nfs4_lockdata *data;
3349 struct rpc_task *task;
3350 int ret;
3351
3352 dprintk("%s: begin!\n", __FUNCTION__);
3353 data = nfs4_alloc_lockdata(fl, fl->fl_file->private_data,
3354 fl->fl_u.nfs4_fl.owner);
3355 if (data == NULL)
3356 return -ENOMEM;
3357 if (IS_SETLKW(cmd))
3358 data->arg.block = 1;
3359 if (reclaim != 0)
3360 data->arg.reclaim = 1;
3361 task = rpc_run_task(NFS_CLIENT(state->inode), RPC_TASK_ASYNC,
3362 &nfs4_lock_ops, data);
3363 if (IS_ERR(task)) {
3364 nfs4_lock_release(data);
3365 return PTR_ERR(task);
3366 }
3367 ret = nfs4_wait_for_completion_rpc_task(task);
3368 if (ret == 0) {
3369 ret = data->rpc_status;
3370 if (ret == -NFS4ERR_DENIED)
3371 ret = -EAGAIN;
3372 } else
3373 data->cancelled = 1;
3374 rpc_release_task(task);
3375 dprintk("%s: done, ret = %d!\n", __FUNCTION__, ret);
3376 return ret;
3377 }
3378
3379 static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request)
3380 {
3381 struct nfs_server *server = NFS_SERVER(state->inode);
3382 struct nfs4_exception exception = { };
3383 int err;
3384
3385 /* Cache the lock if possible... */
3386 if (test_bit(NFS_DELEGATED_STATE, &state->flags))
3387 return 0;
3388 do {
3389 err = _nfs4_do_setlk(state, F_SETLK, request, 1);
3390 if (err != -NFS4ERR_DELAY)
3391 break;
3392 nfs4_handle_exception(server, err, &exception);
3393 } while (exception.retry);
3394 return err;
3395 }
3396
3397 static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request)
3398 {
3399 struct nfs_server *server = NFS_SERVER(state->inode);
3400 struct nfs4_exception exception = { };
3401 int err;
3402
3403 err = nfs4_set_lock_state(state, request);
3404 if (err != 0)
3405 return err;
3406 do {
3407 err = _nfs4_do_setlk(state, F_SETLK, request, 0);
3408 if (err != -NFS4ERR_DELAY)
3409 break;
3410 nfs4_handle_exception(server, err, &exception);
3411 } while (exception.retry);
3412 return err;
3413 }
3414
3415 static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3416 {
3417 struct nfs4_client *clp = state->owner->so_client;
3418 int status;
3419
3420 /* Is this a delegated open? */
3421 if (NFS_I(state->inode)->delegation_state != 0) {
3422 /* Yes: cache locks! */
3423 status = do_vfs_lock(request->fl_file, request);
3424 /* ...but avoid races with delegation recall... */
3425 if (status < 0 || test_bit(NFS_DELEGATED_STATE, &state->flags))
3426 return status;
3427 }
3428 down_read(&clp->cl_sem);
3429 status = nfs4_set_lock_state(state, request);
3430 if (status != 0)
3431 goto out;
3432 status = _nfs4_do_setlk(state, cmd, request, 0);
3433 if (status != 0)
3434 goto out;
3435 /* Note: we always want to sleep here! */
3436 request->fl_flags |= FL_SLEEP;
3437 if (do_vfs_lock(request->fl_file, request) < 0)
3438 printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __FUNCTION__);
3439 out:
3440 up_read(&clp->cl_sem);
3441 return status;
3442 }
3443
3444 static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
3445 {
3446 struct nfs4_exception exception = { };
3447 int err;
3448
3449 do {
3450 err = nfs4_handle_exception(NFS_SERVER(state->inode),
3451 _nfs4_proc_setlk(state, cmd, request),
3452 &exception);
3453 } while (exception.retry);
3454 return err;
3455 }
3456
3457 static int
3458 nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request)
3459 {
3460 struct nfs_open_context *ctx;
3461 struct nfs4_state *state;
3462 unsigned long timeout = NFS4_LOCK_MINTIMEOUT;
3463 int status;
3464
3465 /* verify open state */
3466 ctx = (struct nfs_open_context *)filp->private_data;
3467 state = ctx->state;
3468
3469 if (request->fl_start < 0 || request->fl_end < 0)
3470 return -EINVAL;
3471
3472 if (IS_GETLK(cmd))
3473 return nfs4_proc_getlk(state, F_GETLK, request);
3474
3475 if (!(IS_SETLK(cmd) || IS_SETLKW(cmd)))
3476 return -EINVAL;
3477
3478 if (request->fl_type == F_UNLCK)
3479 return nfs4_proc_unlck(state, cmd, request);
3480
3481 do {
3482 status = nfs4_proc_setlk(state, cmd, request);
3483 if ((status != -EAGAIN) || IS_SETLK(cmd))
3484 break;
3485 timeout = nfs4_set_lock_task_retry(timeout);
3486 status = -ERESTARTSYS;
3487 if (signalled())
3488 break;
3489 } while(status < 0);
3490 return status;
3491 }
3492
3493 int nfs4_lock_delegation_recall(struct nfs4_state *state, struct file_lock *fl)
3494 {
3495 struct nfs_server *server = NFS_SERVER(state->inode);
3496 struct nfs4_exception exception = { };
3497 int err;
3498
3499 err = nfs4_set_lock_state(state, fl);
3500 if (err != 0)
3501 goto out;
3502 do {
3503 err = _nfs4_do_setlk(state, F_SETLK, fl, 0);
3504 if (err != -NFS4ERR_DELAY)
3505 break;
3506 err = nfs4_handle_exception(server, err, &exception);
3507 } while (exception.retry);
3508 out:
3509 return err;
3510 }
3511
3512 #define XATTR_NAME_NFSV4_ACL "system.nfs4_acl"
3513
3514 int nfs4_setxattr(struct dentry *dentry, const char *key, const void *buf,
3515 size_t buflen, int flags)
3516 {
3517 struct inode *inode = dentry->d_inode;
3518
3519 if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3520 return -EOPNOTSUPP;
3521
3522 if (!S_ISREG(inode->i_mode) &&
3523 (!S_ISDIR(inode->i_mode) || inode->i_mode & S_ISVTX))
3524 return -EPERM;
3525
3526 return nfs4_proc_set_acl(inode, buf, buflen);
3527 }
3528
3529 /* The getxattr man page suggests returning -ENODATA for unknown attributes,
3530 * and that's what we'll do for e.g. user attributes that haven't been set.
3531 * But we'll follow ext2/ext3's lead by returning -EOPNOTSUPP for unsupported
3532 * attributes in kernel-managed attribute namespaces. */
3533 ssize_t nfs4_getxattr(struct dentry *dentry, const char *key, void *buf,
3534 size_t buflen)
3535 {
3536 struct inode *inode = dentry->d_inode;
3537
3538 if (strcmp(key, XATTR_NAME_NFSV4_ACL) != 0)
3539 return -EOPNOTSUPP;
3540
3541 return nfs4_proc_get_acl(inode, buf, buflen);
3542 }
3543
3544 ssize_t nfs4_listxattr(struct dentry *dentry, char *buf, size_t buflen)
3545 {
3546 size_t len = strlen(XATTR_NAME_NFSV4_ACL) + 1;
3547
3548 if (buf && buflen < len)
3549 return -ERANGE;
3550 if (buf)
3551 memcpy(buf, XATTR_NAME_NFSV4_ACL, len);
3552 return len;
3553 }
3554
3555 struct nfs4_state_recovery_ops nfs4_reboot_recovery_ops = {
3556 .recover_open = nfs4_open_reclaim,
3557 .recover_lock = nfs4_lock_reclaim,
3558 };
3559
3560 struct nfs4_state_recovery_ops nfs4_network_partition_recovery_ops = {
3561 .recover_open = nfs4_open_expired,
3562 .recover_lock = nfs4_lock_expired,
3563 };
3564
3565 static struct inode_operations nfs4_file_inode_operations = {
3566 .permission = nfs_permission,
3567 .getattr = nfs_getattr,
3568 .setattr = nfs_setattr,
3569 .getxattr = nfs4_getxattr,
3570 .setxattr = nfs4_setxattr,
3571 .listxattr = nfs4_listxattr,
3572 };
3573
3574 struct nfs_rpc_ops nfs_v4_clientops = {
3575 .version = 4, /* protocol version */
3576 .dentry_ops = &nfs4_dentry_operations,
3577 .dir_inode_ops = &nfs4_dir_inode_operations,
3578 .file_inode_ops = &nfs4_file_inode_operations,
3579 .getroot = nfs4_proc_get_root,
3580 .getattr = nfs4_proc_getattr,
3581 .setattr = nfs4_proc_setattr,
3582 .lookup = nfs4_proc_lookup,
3583 .access = nfs4_proc_access,
3584 .readlink = nfs4_proc_readlink,
3585 .read = nfs4_proc_read,
3586 .write = nfs4_proc_write,
3587 .commit = nfs4_proc_commit,
3588 .create = nfs4_proc_create,
3589 .remove = nfs4_proc_remove,
3590 .unlink_setup = nfs4_proc_unlink_setup,
3591 .unlink_done = nfs4_proc_unlink_done,
3592 .rename = nfs4_proc_rename,
3593 .link = nfs4_proc_link,
3594 .symlink = nfs4_proc_symlink,
3595 .mkdir = nfs4_proc_mkdir,
3596 .rmdir = nfs4_proc_remove,
3597 .readdir = nfs4_proc_readdir,
3598 .mknod = nfs4_proc_mknod,
3599 .statfs = nfs4_proc_statfs,
3600 .fsinfo = nfs4_proc_fsinfo,
3601 .pathconf = nfs4_proc_pathconf,
3602 .decode_dirent = nfs4_decode_dirent,
3603 .read_setup = nfs4_proc_read_setup,
3604 .read_done = nfs4_read_done,
3605 .write_setup = nfs4_proc_write_setup,
3606 .write_done = nfs4_write_done,
3607 .commit_setup = nfs4_proc_commit_setup,
3608 .commit_done = nfs4_commit_done,
3609 .file_open = nfs_open,
3610 .file_release = nfs_release,
3611 .lock = nfs4_proc_lock,
3612 .clear_acl_cache = nfs4_zap_acl_attr,
3613 };
3614
3615 /*
3616 * Local variables:
3617 * c-basic-offset: 8
3618 * End:
3619 */