]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/nfs/write.c
Merge branch 'modsplit-Oct31_2011' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / fs / nfs / write.c
1 /*
2 * linux/fs/nfs/write.c
3 *
4 * Write file data over NFS.
5 *
6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7 */
8
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23 #include <linux/export.h>
24
25 #include <asm/uaccess.h>
26
27 #include "delegation.h"
28 #include "internal.h"
29 #include "iostat.h"
30 #include "nfs4_fs.h"
31 #include "fscache.h"
32 #include "pnfs.h"
33
34 #define NFSDBG_FACILITY NFSDBG_PAGECACHE
35
36 #define MIN_POOL_WRITE (32)
37 #define MIN_POOL_COMMIT (4)
38
39 /*
40 * Local function declarations
41 */
42 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
43 struct inode *inode, int ioflags);
44 static void nfs_redirty_request(struct nfs_page *req);
45 static const struct rpc_call_ops nfs_write_partial_ops;
46 static const struct rpc_call_ops nfs_write_full_ops;
47 static const struct rpc_call_ops nfs_commit_ops;
48
49 static struct kmem_cache *nfs_wdata_cachep;
50 static mempool_t *nfs_wdata_mempool;
51 static mempool_t *nfs_commit_mempool;
52
53 struct nfs_write_data *nfs_commitdata_alloc(void)
54 {
55 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
56
57 if (p) {
58 memset(p, 0, sizeof(*p));
59 INIT_LIST_HEAD(&p->pages);
60 }
61 return p;
62 }
63 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
64
65 void nfs_commit_free(struct nfs_write_data *p)
66 {
67 if (p && (p->pagevec != &p->page_array[0]))
68 kfree(p->pagevec);
69 mempool_free(p, nfs_commit_mempool);
70 }
71 EXPORT_SYMBOL_GPL(nfs_commit_free);
72
73 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
74 {
75 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
76
77 if (p) {
78 memset(p, 0, sizeof(*p));
79 INIT_LIST_HEAD(&p->pages);
80 p->npages = pagecount;
81 if (pagecount <= ARRAY_SIZE(p->page_array))
82 p->pagevec = p->page_array;
83 else {
84 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
85 if (!p->pagevec) {
86 mempool_free(p, nfs_wdata_mempool);
87 p = NULL;
88 }
89 }
90 }
91 return p;
92 }
93
94 void nfs_writedata_free(struct nfs_write_data *p)
95 {
96 if (p && (p->pagevec != &p->page_array[0]))
97 kfree(p->pagevec);
98 mempool_free(p, nfs_wdata_mempool);
99 }
100
101 void nfs_writedata_release(struct nfs_write_data *wdata)
102 {
103 put_lseg(wdata->lseg);
104 put_nfs_open_context(wdata->args.context);
105 nfs_writedata_free(wdata);
106 }
107
108 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
109 {
110 ctx->error = error;
111 smp_wmb();
112 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
113 }
114
115 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
116 {
117 struct nfs_page *req = NULL;
118
119 if (PagePrivate(page)) {
120 req = (struct nfs_page *)page_private(page);
121 if (req != NULL)
122 kref_get(&req->wb_kref);
123 }
124 return req;
125 }
126
127 static struct nfs_page *nfs_page_find_request(struct page *page)
128 {
129 struct inode *inode = page->mapping->host;
130 struct nfs_page *req = NULL;
131
132 spin_lock(&inode->i_lock);
133 req = nfs_page_find_request_locked(page);
134 spin_unlock(&inode->i_lock);
135 return req;
136 }
137
138 /* Adjust the file length if we're writing beyond the end */
139 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
140 {
141 struct inode *inode = page->mapping->host;
142 loff_t end, i_size;
143 pgoff_t end_index;
144
145 spin_lock(&inode->i_lock);
146 i_size = i_size_read(inode);
147 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
148 if (i_size > 0 && page->index < end_index)
149 goto out;
150 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
151 if (i_size >= end)
152 goto out;
153 i_size_write(inode, end);
154 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
155 out:
156 spin_unlock(&inode->i_lock);
157 }
158
159 /* A writeback failed: mark the page as bad, and invalidate the page cache */
160 static void nfs_set_pageerror(struct page *page)
161 {
162 SetPageError(page);
163 nfs_zap_mapping(page->mapping->host, page->mapping);
164 }
165
166 /* We can set the PG_uptodate flag if we see that a write request
167 * covers the full page.
168 */
169 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
170 {
171 if (PageUptodate(page))
172 return;
173 if (base != 0)
174 return;
175 if (count != nfs_page_length(page))
176 return;
177 SetPageUptodate(page);
178 }
179
180 static int wb_priority(struct writeback_control *wbc)
181 {
182 if (wbc->for_reclaim)
183 return FLUSH_HIGHPRI | FLUSH_STABLE;
184 if (wbc->for_kupdate || wbc->for_background)
185 return FLUSH_LOWPRI | FLUSH_COND_STABLE;
186 return FLUSH_COND_STABLE;
187 }
188
189 /*
190 * NFS congestion control
191 */
192
193 int nfs_congestion_kb;
194
195 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
196 #define NFS_CONGESTION_OFF_THRESH \
197 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
198
199 static int nfs_set_page_writeback(struct page *page)
200 {
201 int ret = test_set_page_writeback(page);
202
203 if (!ret) {
204 struct inode *inode = page->mapping->host;
205 struct nfs_server *nfss = NFS_SERVER(inode);
206
207 page_cache_get(page);
208 if (atomic_long_inc_return(&nfss->writeback) >
209 NFS_CONGESTION_ON_THRESH) {
210 set_bdi_congested(&nfss->backing_dev_info,
211 BLK_RW_ASYNC);
212 }
213 }
214 return ret;
215 }
216
217 static void nfs_end_page_writeback(struct page *page)
218 {
219 struct inode *inode = page->mapping->host;
220 struct nfs_server *nfss = NFS_SERVER(inode);
221
222 end_page_writeback(page);
223 page_cache_release(page);
224 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
225 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
226 }
227
228 static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
229 {
230 struct inode *inode = page->mapping->host;
231 struct nfs_page *req;
232 int ret;
233
234 spin_lock(&inode->i_lock);
235 for (;;) {
236 req = nfs_page_find_request_locked(page);
237 if (req == NULL)
238 break;
239 if (nfs_set_page_tag_locked(req))
240 break;
241 /* Note: If we hold the page lock, as is the case in nfs_writepage,
242 * then the call to nfs_set_page_tag_locked() will always
243 * succeed provided that someone hasn't already marked the
244 * request as dirty (in which case we don't care).
245 */
246 spin_unlock(&inode->i_lock);
247 if (!nonblock)
248 ret = nfs_wait_on_request(req);
249 else
250 ret = -EAGAIN;
251 nfs_release_request(req);
252 if (ret != 0)
253 return ERR_PTR(ret);
254 spin_lock(&inode->i_lock);
255 }
256 spin_unlock(&inode->i_lock);
257 return req;
258 }
259
260 /*
261 * Find an associated nfs write request, and prepare to flush it out
262 * May return an error if the user signalled nfs_wait_on_request().
263 */
264 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
265 struct page *page, bool nonblock)
266 {
267 struct nfs_page *req;
268 int ret = 0;
269
270 req = nfs_find_and_lock_request(page, nonblock);
271 if (!req)
272 goto out;
273 ret = PTR_ERR(req);
274 if (IS_ERR(req))
275 goto out;
276
277 ret = nfs_set_page_writeback(page);
278 BUG_ON(ret != 0);
279 BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
280
281 if (!nfs_pageio_add_request(pgio, req)) {
282 nfs_redirty_request(req);
283 ret = pgio->pg_error;
284 }
285 out:
286 return ret;
287 }
288
289 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
290 {
291 struct inode *inode = page->mapping->host;
292 int ret;
293
294 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
295 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
296
297 nfs_pageio_cond_complete(pgio, page->index);
298 ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
299 if (ret == -EAGAIN) {
300 redirty_page_for_writepage(wbc, page);
301 ret = 0;
302 }
303 return ret;
304 }
305
306 /*
307 * Write an mmapped page to the server.
308 */
309 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
310 {
311 struct nfs_pageio_descriptor pgio;
312 int err;
313
314 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
315 err = nfs_do_writepage(page, wbc, &pgio);
316 nfs_pageio_complete(&pgio);
317 if (err < 0)
318 return err;
319 if (pgio.pg_error < 0)
320 return pgio.pg_error;
321 return 0;
322 }
323
324 int nfs_writepage(struct page *page, struct writeback_control *wbc)
325 {
326 int ret;
327
328 ret = nfs_writepage_locked(page, wbc);
329 unlock_page(page);
330 return ret;
331 }
332
333 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
334 {
335 int ret;
336
337 ret = nfs_do_writepage(page, wbc, data);
338 unlock_page(page);
339 return ret;
340 }
341
342 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
343 {
344 struct inode *inode = mapping->host;
345 unsigned long *bitlock = &NFS_I(inode)->flags;
346 struct nfs_pageio_descriptor pgio;
347 int err;
348
349 /* Stop dirtying of new pages while we sync */
350 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
351 nfs_wait_bit_killable, TASK_KILLABLE);
352 if (err)
353 goto out_err;
354
355 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
356
357 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
358 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
359 nfs_pageio_complete(&pgio);
360
361 clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
362 smp_mb__after_clear_bit();
363 wake_up_bit(bitlock, NFS_INO_FLUSHING);
364
365 if (err < 0)
366 goto out_err;
367 err = pgio.pg_error;
368 if (err < 0)
369 goto out_err;
370 return 0;
371 out_err:
372 return err;
373 }
374
375 /*
376 * Insert a write request into an inode
377 */
378 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
379 {
380 struct nfs_inode *nfsi = NFS_I(inode);
381 int error;
382
383 error = radix_tree_preload(GFP_NOFS);
384 if (error != 0)
385 goto out;
386
387 /* Lock the request! */
388 nfs_lock_request_dontget(req);
389
390 spin_lock(&inode->i_lock);
391 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
392 BUG_ON(error);
393 if (!nfsi->npages && nfs_have_delegation(inode, FMODE_WRITE))
394 inode->i_version++;
395 set_bit(PG_MAPPED, &req->wb_flags);
396 SetPagePrivate(req->wb_page);
397 set_page_private(req->wb_page, (unsigned long)req);
398 nfsi->npages++;
399 kref_get(&req->wb_kref);
400 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
401 NFS_PAGE_TAG_LOCKED);
402 spin_unlock(&inode->i_lock);
403 radix_tree_preload_end();
404 out:
405 return error;
406 }
407
408 /*
409 * Remove a write request from an inode
410 */
411 static void nfs_inode_remove_request(struct nfs_page *req)
412 {
413 struct inode *inode = req->wb_context->dentry->d_inode;
414 struct nfs_inode *nfsi = NFS_I(inode);
415
416 BUG_ON (!NFS_WBACK_BUSY(req));
417
418 spin_lock(&inode->i_lock);
419 set_page_private(req->wb_page, 0);
420 ClearPagePrivate(req->wb_page);
421 clear_bit(PG_MAPPED, &req->wb_flags);
422 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
423 nfsi->npages--;
424 spin_unlock(&inode->i_lock);
425 nfs_release_request(req);
426 }
427
428 static void
429 nfs_mark_request_dirty(struct nfs_page *req)
430 {
431 __set_page_dirty_nobuffers(req->wb_page);
432 }
433
434 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
435 /*
436 * Add a request to the inode's commit list.
437 */
438 static void
439 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
440 {
441 struct inode *inode = req->wb_context->dentry->d_inode;
442 struct nfs_inode *nfsi = NFS_I(inode);
443
444 spin_lock(&inode->i_lock);
445 set_bit(PG_CLEAN, &(req)->wb_flags);
446 radix_tree_tag_set(&nfsi->nfs_page_tree,
447 req->wb_index,
448 NFS_PAGE_TAG_COMMIT);
449 nfsi->ncommit++;
450 spin_unlock(&inode->i_lock);
451 pnfs_mark_request_commit(req, lseg);
452 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
453 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
454 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
455 }
456
457 static int
458 nfs_clear_request_commit(struct nfs_page *req)
459 {
460 struct page *page = req->wb_page;
461
462 if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
463 dec_zone_page_state(page, NR_UNSTABLE_NFS);
464 dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
465 return 1;
466 }
467 return 0;
468 }
469
470 static inline
471 int nfs_write_need_commit(struct nfs_write_data *data)
472 {
473 if (data->verf.committed == NFS_DATA_SYNC)
474 return data->lseg == NULL;
475 else
476 return data->verf.committed != NFS_FILE_SYNC;
477 }
478
479 static inline
480 int nfs_reschedule_unstable_write(struct nfs_page *req,
481 struct nfs_write_data *data)
482 {
483 if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
484 nfs_mark_request_commit(req, data->lseg);
485 return 1;
486 }
487 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
488 nfs_mark_request_dirty(req);
489 return 1;
490 }
491 return 0;
492 }
493 #else
494 static inline void
495 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
496 {
497 }
498
499 static inline int
500 nfs_clear_request_commit(struct nfs_page *req)
501 {
502 return 0;
503 }
504
505 static inline
506 int nfs_write_need_commit(struct nfs_write_data *data)
507 {
508 return 0;
509 }
510
511 static inline
512 int nfs_reschedule_unstable_write(struct nfs_page *req,
513 struct nfs_write_data *data)
514 {
515 return 0;
516 }
517 #endif
518
519 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
520 static int
521 nfs_need_commit(struct nfs_inode *nfsi)
522 {
523 return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
524 }
525
526 /*
527 * nfs_scan_commit - Scan an inode for commit requests
528 * @inode: NFS inode to scan
529 * @dst: destination list
530 * @idx_start: lower bound of page->index to scan.
531 * @npages: idx_start + npages sets the upper bound to scan.
532 *
533 * Moves requests from the inode's 'commit' request list.
534 * The requests are *not* checked to ensure that they form a contiguous set.
535 */
536 static int
537 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
538 {
539 struct nfs_inode *nfsi = NFS_I(inode);
540 int ret;
541
542 if (!nfs_need_commit(nfsi))
543 return 0;
544
545 spin_lock(&inode->i_lock);
546 ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
547 if (ret > 0)
548 nfsi->ncommit -= ret;
549 spin_unlock(&inode->i_lock);
550
551 if (nfs_need_commit(NFS_I(inode)))
552 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
553
554 return ret;
555 }
556 #else
557 static inline int nfs_need_commit(struct nfs_inode *nfsi)
558 {
559 return 0;
560 }
561
562 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
563 {
564 return 0;
565 }
566 #endif
567
568 /*
569 * Search for an existing write request, and attempt to update
570 * it to reflect a new dirty region on a given page.
571 *
572 * If the attempt fails, then the existing request is flushed out
573 * to disk.
574 */
575 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
576 struct page *page,
577 unsigned int offset,
578 unsigned int bytes)
579 {
580 struct nfs_page *req;
581 unsigned int rqend;
582 unsigned int end;
583 int error;
584
585 if (!PagePrivate(page))
586 return NULL;
587
588 end = offset + bytes;
589 spin_lock(&inode->i_lock);
590
591 for (;;) {
592 req = nfs_page_find_request_locked(page);
593 if (req == NULL)
594 goto out_unlock;
595
596 rqend = req->wb_offset + req->wb_bytes;
597 /*
598 * Tell the caller to flush out the request if
599 * the offsets are non-contiguous.
600 * Note: nfs_flush_incompatible() will already
601 * have flushed out requests having wrong owners.
602 */
603 if (offset > rqend
604 || end < req->wb_offset)
605 goto out_flushme;
606
607 if (nfs_set_page_tag_locked(req))
608 break;
609
610 /* The request is locked, so wait and then retry */
611 spin_unlock(&inode->i_lock);
612 error = nfs_wait_on_request(req);
613 nfs_release_request(req);
614 if (error != 0)
615 goto out_err;
616 spin_lock(&inode->i_lock);
617 }
618
619 if (nfs_clear_request_commit(req) &&
620 radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
621 req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL) {
622 NFS_I(inode)->ncommit--;
623 pnfs_clear_request_commit(req);
624 }
625
626 /* Okay, the request matches. Update the region */
627 if (offset < req->wb_offset) {
628 req->wb_offset = offset;
629 req->wb_pgbase = offset;
630 }
631 if (end > rqend)
632 req->wb_bytes = end - req->wb_offset;
633 else
634 req->wb_bytes = rqend - req->wb_offset;
635 out_unlock:
636 spin_unlock(&inode->i_lock);
637 return req;
638 out_flushme:
639 spin_unlock(&inode->i_lock);
640 nfs_release_request(req);
641 error = nfs_wb_page(inode, page);
642 out_err:
643 return ERR_PTR(error);
644 }
645
646 /*
647 * Try to update an existing write request, or create one if there is none.
648 *
649 * Note: Should always be called with the Page Lock held to prevent races
650 * if we have to add a new request. Also assumes that the caller has
651 * already called nfs_flush_incompatible() if necessary.
652 */
653 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
654 struct page *page, unsigned int offset, unsigned int bytes)
655 {
656 struct inode *inode = page->mapping->host;
657 struct nfs_page *req;
658 int error;
659
660 req = nfs_try_to_update_request(inode, page, offset, bytes);
661 if (req != NULL)
662 goto out;
663 req = nfs_create_request(ctx, inode, page, offset, bytes);
664 if (IS_ERR(req))
665 goto out;
666 error = nfs_inode_add_request(inode, req);
667 if (error != 0) {
668 nfs_release_request(req);
669 req = ERR_PTR(error);
670 }
671 out:
672 return req;
673 }
674
675 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
676 unsigned int offset, unsigned int count)
677 {
678 struct nfs_page *req;
679
680 req = nfs_setup_write_request(ctx, page, offset, count);
681 if (IS_ERR(req))
682 return PTR_ERR(req);
683 /* Update file length */
684 nfs_grow_file(page, offset, count);
685 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
686 nfs_mark_request_dirty(req);
687 nfs_clear_page_tag_locked(req);
688 return 0;
689 }
690
691 int nfs_flush_incompatible(struct file *file, struct page *page)
692 {
693 struct nfs_open_context *ctx = nfs_file_open_context(file);
694 struct nfs_page *req;
695 int do_flush, status;
696 /*
697 * Look for a request corresponding to this page. If there
698 * is one, and it belongs to another file, we flush it out
699 * before we try to copy anything into the page. Do this
700 * due to the lack of an ACCESS-type call in NFSv2.
701 * Also do the same if we find a request from an existing
702 * dropped page.
703 */
704 do {
705 req = nfs_page_find_request(page);
706 if (req == NULL)
707 return 0;
708 do_flush = req->wb_page != page || req->wb_context != ctx ||
709 req->wb_lock_context->lockowner != current->files ||
710 req->wb_lock_context->pid != current->tgid;
711 nfs_release_request(req);
712 if (!do_flush)
713 return 0;
714 status = nfs_wb_page(page->mapping->host, page);
715 } while (status == 0);
716 return status;
717 }
718
719 /*
720 * If the page cache is marked as unsafe or invalid, then we can't rely on
721 * the PageUptodate() flag. In this case, we will need to turn off
722 * write optimisations that depend on the page contents being correct.
723 */
724 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
725 {
726 return PageUptodate(page) &&
727 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
728 }
729
730 /*
731 * Update and possibly write a cached page of an NFS file.
732 *
733 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
734 * things with a page scheduled for an RPC call (e.g. invalidate it).
735 */
736 int nfs_updatepage(struct file *file, struct page *page,
737 unsigned int offset, unsigned int count)
738 {
739 struct nfs_open_context *ctx = nfs_file_open_context(file);
740 struct inode *inode = page->mapping->host;
741 int status = 0;
742
743 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
744
745 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n",
746 file->f_path.dentry->d_parent->d_name.name,
747 file->f_path.dentry->d_name.name, count,
748 (long long)(page_offset(page) + offset));
749
750 /* If we're not using byte range locks, and we know the page
751 * is up to date, it may be more efficient to extend the write
752 * to cover the entire page in order to avoid fragmentation
753 * inefficiencies.
754 */
755 if (nfs_write_pageuptodate(page, inode) &&
756 inode->i_flock == NULL &&
757 !(file->f_flags & O_DSYNC)) {
758 count = max(count + offset, nfs_page_length(page));
759 offset = 0;
760 }
761
762 status = nfs_writepage_setup(ctx, page, offset, count);
763 if (status < 0)
764 nfs_set_pageerror(page);
765 else
766 __set_page_dirty_nobuffers(page);
767
768 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
769 status, (long long)i_size_read(inode));
770 return status;
771 }
772
773 static void nfs_writepage_release(struct nfs_page *req,
774 struct nfs_write_data *data)
775 {
776 struct page *page = req->wb_page;
777
778 if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req, data))
779 nfs_inode_remove_request(req);
780 nfs_clear_page_tag_locked(req);
781 nfs_end_page_writeback(page);
782 }
783
784 static int flush_task_priority(int how)
785 {
786 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
787 case FLUSH_HIGHPRI:
788 return RPC_PRIORITY_HIGH;
789 case FLUSH_LOWPRI:
790 return RPC_PRIORITY_LOW;
791 }
792 return RPC_PRIORITY_NORMAL;
793 }
794
795 int nfs_initiate_write(struct nfs_write_data *data,
796 struct rpc_clnt *clnt,
797 const struct rpc_call_ops *call_ops,
798 int how)
799 {
800 struct inode *inode = data->inode;
801 int priority = flush_task_priority(how);
802 struct rpc_task *task;
803 struct rpc_message msg = {
804 .rpc_argp = &data->args,
805 .rpc_resp = &data->res,
806 .rpc_cred = data->cred,
807 };
808 struct rpc_task_setup task_setup_data = {
809 .rpc_client = clnt,
810 .task = &data->task,
811 .rpc_message = &msg,
812 .callback_ops = call_ops,
813 .callback_data = data,
814 .workqueue = nfsiod_workqueue,
815 .flags = RPC_TASK_ASYNC,
816 .priority = priority,
817 };
818 int ret = 0;
819
820 /* Set up the initial task struct. */
821 NFS_PROTO(inode)->write_setup(data, &msg);
822
823 dprintk("NFS: %5u initiated write call "
824 "(req %s/%lld, %u bytes @ offset %llu)\n",
825 data->task.tk_pid,
826 inode->i_sb->s_id,
827 (long long)NFS_FILEID(inode),
828 data->args.count,
829 (unsigned long long)data->args.offset);
830
831 task = rpc_run_task(&task_setup_data);
832 if (IS_ERR(task)) {
833 ret = PTR_ERR(task);
834 goto out;
835 }
836 if (how & FLUSH_SYNC) {
837 ret = rpc_wait_for_completion_task(task);
838 if (ret == 0)
839 ret = task->tk_status;
840 }
841 rpc_put_task(task);
842 out:
843 return ret;
844 }
845 EXPORT_SYMBOL_GPL(nfs_initiate_write);
846
847 /*
848 * Set up the argument/result storage required for the RPC call.
849 */
850 static void nfs_write_rpcsetup(struct nfs_page *req,
851 struct nfs_write_data *data,
852 unsigned int count, unsigned int offset,
853 int how)
854 {
855 struct inode *inode = req->wb_context->dentry->d_inode;
856
857 /* Set up the RPC argument and reply structs
858 * NB: take care not to mess about with data->commit et al. */
859
860 data->req = req;
861 data->inode = inode = req->wb_context->dentry->d_inode;
862 data->cred = req->wb_context->cred;
863
864 data->args.fh = NFS_FH(inode);
865 data->args.offset = req_offset(req) + offset;
866 /* pnfs_set_layoutcommit needs this */
867 data->mds_offset = data->args.offset;
868 data->args.pgbase = req->wb_pgbase + offset;
869 data->args.pages = data->pagevec;
870 data->args.count = count;
871 data->args.context = get_nfs_open_context(req->wb_context);
872 data->args.lock_context = req->wb_lock_context;
873 data->args.stable = NFS_UNSTABLE;
874 switch (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) {
875 case 0:
876 break;
877 case FLUSH_COND_STABLE:
878 if (nfs_need_commit(NFS_I(inode)))
879 break;
880 default:
881 data->args.stable = NFS_FILE_SYNC;
882 }
883
884 data->res.fattr = &data->fattr;
885 data->res.count = count;
886 data->res.verf = &data->verf;
887 nfs_fattr_init(&data->fattr);
888 }
889
890 static int nfs_do_write(struct nfs_write_data *data,
891 const struct rpc_call_ops *call_ops,
892 int how)
893 {
894 struct inode *inode = data->args.context->dentry->d_inode;
895
896 return nfs_initiate_write(data, NFS_CLIENT(inode), call_ops, how);
897 }
898
899 static int nfs_do_multiple_writes(struct list_head *head,
900 const struct rpc_call_ops *call_ops,
901 int how)
902 {
903 struct nfs_write_data *data;
904 int ret = 0;
905
906 while (!list_empty(head)) {
907 int ret2;
908
909 data = list_entry(head->next, struct nfs_write_data, list);
910 list_del_init(&data->list);
911
912 ret2 = nfs_do_write(data, call_ops, how);
913 if (ret == 0)
914 ret = ret2;
915 }
916 return ret;
917 }
918
919 /* If a nfs_flush_* function fails, it should remove reqs from @head and
920 * call this on each, which will prepare them to be retried on next
921 * writeback using standard nfs.
922 */
923 static void nfs_redirty_request(struct nfs_page *req)
924 {
925 struct page *page = req->wb_page;
926
927 nfs_mark_request_dirty(req);
928 nfs_clear_page_tag_locked(req);
929 nfs_end_page_writeback(page);
930 }
931
932 /*
933 * Generate multiple small requests to write out a single
934 * contiguous dirty area on one page.
935 */
936 static int nfs_flush_multi(struct nfs_pageio_descriptor *desc, struct list_head *res)
937 {
938 struct nfs_page *req = nfs_list_entry(desc->pg_list.next);
939 struct page *page = req->wb_page;
940 struct nfs_write_data *data;
941 size_t wsize = desc->pg_bsize, nbytes;
942 unsigned int offset;
943 int requests = 0;
944 int ret = 0;
945
946 nfs_list_remove_request(req);
947
948 if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
949 (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit ||
950 desc->pg_count > wsize))
951 desc->pg_ioflags &= ~FLUSH_COND_STABLE;
952
953
954 offset = 0;
955 nbytes = desc->pg_count;
956 do {
957 size_t len = min(nbytes, wsize);
958
959 data = nfs_writedata_alloc(1);
960 if (!data)
961 goto out_bad;
962 data->pagevec[0] = page;
963 nfs_write_rpcsetup(req, data, len, offset, desc->pg_ioflags);
964 list_add(&data->list, res);
965 requests++;
966 nbytes -= len;
967 offset += len;
968 } while (nbytes != 0);
969 atomic_set(&req->wb_complete, requests);
970 desc->pg_rpc_callops = &nfs_write_partial_ops;
971 return ret;
972
973 out_bad:
974 while (!list_empty(res)) {
975 data = list_entry(res->next, struct nfs_write_data, list);
976 list_del(&data->list);
977 nfs_writedata_free(data);
978 }
979 nfs_redirty_request(req);
980 return -ENOMEM;
981 }
982
983 /*
984 * Create an RPC task for the given write request and kick it.
985 * The page must have been locked by the caller.
986 *
987 * It may happen that the page we're passed is not marked dirty.
988 * This is the case if nfs_updatepage detects a conflicting request
989 * that has been written but not committed.
990 */
991 static int nfs_flush_one(struct nfs_pageio_descriptor *desc, struct list_head *res)
992 {
993 struct nfs_page *req;
994 struct page **pages;
995 struct nfs_write_data *data;
996 struct list_head *head = &desc->pg_list;
997 int ret = 0;
998
999 data = nfs_writedata_alloc(nfs_page_array_len(desc->pg_base,
1000 desc->pg_count));
1001 if (!data) {
1002 while (!list_empty(head)) {
1003 req = nfs_list_entry(head->next);
1004 nfs_list_remove_request(req);
1005 nfs_redirty_request(req);
1006 }
1007 ret = -ENOMEM;
1008 goto out;
1009 }
1010 pages = data->pagevec;
1011 while (!list_empty(head)) {
1012 req = nfs_list_entry(head->next);
1013 nfs_list_remove_request(req);
1014 nfs_list_add_request(req, &data->pages);
1015 *pages++ = req->wb_page;
1016 }
1017 req = nfs_list_entry(data->pages.next);
1018
1019 if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
1020 (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit))
1021 desc->pg_ioflags &= ~FLUSH_COND_STABLE;
1022
1023 /* Set up the argument struct */
1024 nfs_write_rpcsetup(req, data, desc->pg_count, 0, desc->pg_ioflags);
1025 list_add(&data->list, res);
1026 desc->pg_rpc_callops = &nfs_write_full_ops;
1027 out:
1028 return ret;
1029 }
1030
1031 int nfs_generic_flush(struct nfs_pageio_descriptor *desc, struct list_head *head)
1032 {
1033 if (desc->pg_bsize < PAGE_CACHE_SIZE)
1034 return nfs_flush_multi(desc, head);
1035 return nfs_flush_one(desc, head);
1036 }
1037
1038 static int nfs_generic_pg_writepages(struct nfs_pageio_descriptor *desc)
1039 {
1040 LIST_HEAD(head);
1041 int ret;
1042
1043 ret = nfs_generic_flush(desc, &head);
1044 if (ret == 0)
1045 ret = nfs_do_multiple_writes(&head, desc->pg_rpc_callops,
1046 desc->pg_ioflags);
1047 return ret;
1048 }
1049
1050 static const struct nfs_pageio_ops nfs_pageio_write_ops = {
1051 .pg_test = nfs_generic_pg_test,
1052 .pg_doio = nfs_generic_pg_writepages,
1053 };
1054
1055 static void nfs_pageio_init_write_mds(struct nfs_pageio_descriptor *pgio,
1056 struct inode *inode, int ioflags)
1057 {
1058 nfs_pageio_init(pgio, inode, &nfs_pageio_write_ops,
1059 NFS_SERVER(inode)->wsize, ioflags);
1060 }
1061
1062 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1063 {
1064 pgio->pg_ops = &nfs_pageio_write_ops;
1065 pgio->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1066 }
1067 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1068
1069 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1070 struct inode *inode, int ioflags)
1071 {
1072 if (!pnfs_pageio_init_write(pgio, inode, ioflags))
1073 nfs_pageio_init_write_mds(pgio, inode, ioflags);
1074 }
1075
1076 /*
1077 * Handle a write reply that flushed part of a page.
1078 */
1079 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
1080 {
1081 struct nfs_write_data *data = calldata;
1082
1083 dprintk("NFS: %5u write(%s/%lld %d@%lld)",
1084 task->tk_pid,
1085 data->req->wb_context->dentry->d_inode->i_sb->s_id,
1086 (long long)
1087 NFS_FILEID(data->req->wb_context->dentry->d_inode),
1088 data->req->wb_bytes, (long long)req_offset(data->req));
1089
1090 nfs_writeback_done(task, data);
1091 }
1092
1093 static void nfs_writeback_release_partial(void *calldata)
1094 {
1095 struct nfs_write_data *data = calldata;
1096 struct nfs_page *req = data->req;
1097 struct page *page = req->wb_page;
1098 int status = data->task.tk_status;
1099
1100 if (status < 0) {
1101 nfs_set_pageerror(page);
1102 nfs_context_set_write_error(req->wb_context, status);
1103 dprintk(", error = %d\n", status);
1104 goto out;
1105 }
1106
1107 if (nfs_write_need_commit(data)) {
1108 struct inode *inode = page->mapping->host;
1109
1110 spin_lock(&inode->i_lock);
1111 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1112 /* Do nothing we need to resend the writes */
1113 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1114 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1115 dprintk(" defer commit\n");
1116 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1117 set_bit(PG_NEED_RESCHED, &req->wb_flags);
1118 clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1119 dprintk(" server reboot detected\n");
1120 }
1121 spin_unlock(&inode->i_lock);
1122 } else
1123 dprintk(" OK\n");
1124
1125 out:
1126 if (atomic_dec_and_test(&req->wb_complete))
1127 nfs_writepage_release(req, data);
1128 nfs_writedata_release(calldata);
1129 }
1130
1131 #if defined(CONFIG_NFS_V4_1)
1132 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1133 {
1134 struct nfs_write_data *data = calldata;
1135
1136 if (nfs4_setup_sequence(NFS_SERVER(data->inode),
1137 &data->args.seq_args,
1138 &data->res.seq_res, 1, task))
1139 return;
1140 rpc_call_start(task);
1141 }
1142 #endif /* CONFIG_NFS_V4_1 */
1143
1144 static const struct rpc_call_ops nfs_write_partial_ops = {
1145 #if defined(CONFIG_NFS_V4_1)
1146 .rpc_call_prepare = nfs_write_prepare,
1147 #endif /* CONFIG_NFS_V4_1 */
1148 .rpc_call_done = nfs_writeback_done_partial,
1149 .rpc_release = nfs_writeback_release_partial,
1150 };
1151
1152 /*
1153 * Handle a write reply that flushes a whole page.
1154 *
1155 * FIXME: There is an inherent race with invalidate_inode_pages and
1156 * writebacks since the page->count is kept > 1 for as long
1157 * as the page has a write request pending.
1158 */
1159 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1160 {
1161 struct nfs_write_data *data = calldata;
1162
1163 nfs_writeback_done(task, data);
1164 }
1165
1166 static void nfs_writeback_release_full(void *calldata)
1167 {
1168 struct nfs_write_data *data = calldata;
1169 int ret, status = data->task.tk_status;
1170 struct nfs_pageio_descriptor pgio;
1171
1172 if (data->pnfs_error) {
1173 nfs_pageio_init_write_mds(&pgio, data->inode, FLUSH_STABLE);
1174 pgio.pg_recoalesce = 1;
1175 }
1176
1177 /* Update attributes as result of writeback. */
1178 while (!list_empty(&data->pages)) {
1179 struct nfs_page *req = nfs_list_entry(data->pages.next);
1180 struct page *page = req->wb_page;
1181
1182 nfs_list_remove_request(req);
1183
1184 dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1185 data->task.tk_pid,
1186 req->wb_context->dentry->d_inode->i_sb->s_id,
1187 (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1188 req->wb_bytes,
1189 (long long)req_offset(req));
1190
1191 if (data->pnfs_error) {
1192 dprintk(", pnfs error = %d\n", data->pnfs_error);
1193 goto next;
1194 }
1195
1196 if (status < 0) {
1197 nfs_set_pageerror(page);
1198 nfs_context_set_write_error(req->wb_context, status);
1199 dprintk(", error = %d\n", status);
1200 goto remove_request;
1201 }
1202
1203 if (nfs_write_need_commit(data)) {
1204 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1205 nfs_mark_request_commit(req, data->lseg);
1206 dprintk(" marked for commit\n");
1207 goto next;
1208 }
1209 dprintk(" OK\n");
1210 remove_request:
1211 nfs_inode_remove_request(req);
1212 next:
1213 nfs_clear_page_tag_locked(req);
1214 nfs_end_page_writeback(page);
1215 if (data->pnfs_error) {
1216 lock_page(page);
1217 nfs_pageio_cond_complete(&pgio, page->index);
1218 ret = nfs_page_async_flush(&pgio, page, 0);
1219 if (ret) {
1220 nfs_set_pageerror(page);
1221 dprintk("rewrite to MDS error = %d\n", ret);
1222 }
1223 unlock_page(page);
1224 }
1225 }
1226 if (data->pnfs_error)
1227 nfs_pageio_complete(&pgio);
1228 nfs_writedata_release(calldata);
1229 }
1230
1231 static const struct rpc_call_ops nfs_write_full_ops = {
1232 #if defined(CONFIG_NFS_V4_1)
1233 .rpc_call_prepare = nfs_write_prepare,
1234 #endif /* CONFIG_NFS_V4_1 */
1235 .rpc_call_done = nfs_writeback_done_full,
1236 .rpc_release = nfs_writeback_release_full,
1237 };
1238
1239
1240 /*
1241 * This function is called when the WRITE call is complete.
1242 */
1243 void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1244 {
1245 struct nfs_writeargs *argp = &data->args;
1246 struct nfs_writeres *resp = &data->res;
1247 int status;
1248
1249 dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1250 task->tk_pid, task->tk_status);
1251
1252 /*
1253 * ->write_done will attempt to use post-op attributes to detect
1254 * conflicting writes by other clients. A strict interpretation
1255 * of close-to-open would allow us to continue caching even if
1256 * another writer had changed the file, but some applications
1257 * depend on tighter cache coherency when writing.
1258 */
1259 status = NFS_PROTO(data->inode)->write_done(task, data);
1260 if (status != 0)
1261 return;
1262 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1263
1264 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1265 if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1266 /* We tried a write call, but the server did not
1267 * commit data to stable storage even though we
1268 * requested it.
1269 * Note: There is a known bug in Tru64 < 5.0 in which
1270 * the server reports NFS_DATA_SYNC, but performs
1271 * NFS_FILE_SYNC. We therefore implement this checking
1272 * as a dprintk() in order to avoid filling syslog.
1273 */
1274 static unsigned long complain;
1275
1276 /* Note this will print the MDS for a DS write */
1277 if (time_before(complain, jiffies)) {
1278 dprintk("NFS: faulty NFS server %s:"
1279 " (committed = %d) != (stable = %d)\n",
1280 NFS_SERVER(data->inode)->nfs_client->cl_hostname,
1281 resp->verf->committed, argp->stable);
1282 complain = jiffies + 300 * HZ;
1283 }
1284 }
1285 #endif
1286 /* Is this a short write? */
1287 if (task->tk_status >= 0 && resp->count < argp->count) {
1288 static unsigned long complain;
1289
1290 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1291
1292 /* Has the server at least made some progress? */
1293 if (resp->count != 0) {
1294 /* Was this an NFSv2 write or an NFSv3 stable write? */
1295 if (resp->verf->committed != NFS_UNSTABLE) {
1296 /* Resend from where the server left off */
1297 data->mds_offset += resp->count;
1298 argp->offset += resp->count;
1299 argp->pgbase += resp->count;
1300 argp->count -= resp->count;
1301 } else {
1302 /* Resend as a stable write in order to avoid
1303 * headaches in the case of a server crash.
1304 */
1305 argp->stable = NFS_FILE_SYNC;
1306 }
1307 rpc_restart_call_prepare(task);
1308 return;
1309 }
1310 if (time_before(complain, jiffies)) {
1311 printk(KERN_WARNING
1312 "NFS: Server wrote zero bytes, expected %u.\n",
1313 argp->count);
1314 complain = jiffies + 300 * HZ;
1315 }
1316 /* Can't do anything about it except throw an error. */
1317 task->tk_status = -EIO;
1318 }
1319 return;
1320 }
1321
1322
1323 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1324 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
1325 {
1326 int ret;
1327
1328 if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
1329 return 1;
1330 if (!may_wait)
1331 return 0;
1332 ret = out_of_line_wait_on_bit_lock(&nfsi->flags,
1333 NFS_INO_COMMIT,
1334 nfs_wait_bit_killable,
1335 TASK_KILLABLE);
1336 return (ret < 0) ? ret : 1;
1337 }
1338
1339 void nfs_commit_clear_lock(struct nfs_inode *nfsi)
1340 {
1341 clear_bit(NFS_INO_COMMIT, &nfsi->flags);
1342 smp_mb__after_clear_bit();
1343 wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
1344 }
1345 EXPORT_SYMBOL_GPL(nfs_commit_clear_lock);
1346
1347 void nfs_commitdata_release(void *data)
1348 {
1349 struct nfs_write_data *wdata = data;
1350
1351 put_lseg(wdata->lseg);
1352 put_nfs_open_context(wdata->args.context);
1353 nfs_commit_free(wdata);
1354 }
1355 EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1356
1357 int nfs_initiate_commit(struct nfs_write_data *data, struct rpc_clnt *clnt,
1358 const struct rpc_call_ops *call_ops,
1359 int how)
1360 {
1361 struct rpc_task *task;
1362 int priority = flush_task_priority(how);
1363 struct rpc_message msg = {
1364 .rpc_argp = &data->args,
1365 .rpc_resp = &data->res,
1366 .rpc_cred = data->cred,
1367 };
1368 struct rpc_task_setup task_setup_data = {
1369 .task = &data->task,
1370 .rpc_client = clnt,
1371 .rpc_message = &msg,
1372 .callback_ops = call_ops,
1373 .callback_data = data,
1374 .workqueue = nfsiod_workqueue,
1375 .flags = RPC_TASK_ASYNC,
1376 .priority = priority,
1377 };
1378 /* Set up the initial task struct. */
1379 NFS_PROTO(data->inode)->commit_setup(data, &msg);
1380
1381 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1382
1383 task = rpc_run_task(&task_setup_data);
1384 if (IS_ERR(task))
1385 return PTR_ERR(task);
1386 if (how & FLUSH_SYNC)
1387 rpc_wait_for_completion_task(task);
1388 rpc_put_task(task);
1389 return 0;
1390 }
1391 EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1392
1393 /*
1394 * Set up the argument/result storage required for the RPC call.
1395 */
1396 void nfs_init_commit(struct nfs_write_data *data,
1397 struct list_head *head,
1398 struct pnfs_layout_segment *lseg)
1399 {
1400 struct nfs_page *first = nfs_list_entry(head->next);
1401 struct inode *inode = first->wb_context->dentry->d_inode;
1402
1403 /* Set up the RPC argument and reply structs
1404 * NB: take care not to mess about with data->commit et al. */
1405
1406 list_splice_init(head, &data->pages);
1407
1408 data->inode = inode;
1409 data->cred = first->wb_context->cred;
1410 data->lseg = lseg; /* reference transferred */
1411 data->mds_ops = &nfs_commit_ops;
1412
1413 data->args.fh = NFS_FH(data->inode);
1414 /* Note: we always request a commit of the entire inode */
1415 data->args.offset = 0;
1416 data->args.count = 0;
1417 data->args.context = get_nfs_open_context(first->wb_context);
1418 data->res.count = 0;
1419 data->res.fattr = &data->fattr;
1420 data->res.verf = &data->verf;
1421 nfs_fattr_init(&data->fattr);
1422 }
1423 EXPORT_SYMBOL_GPL(nfs_init_commit);
1424
1425 void nfs_retry_commit(struct list_head *page_list,
1426 struct pnfs_layout_segment *lseg)
1427 {
1428 struct nfs_page *req;
1429
1430 while (!list_empty(page_list)) {
1431 req = nfs_list_entry(page_list->next);
1432 nfs_list_remove_request(req);
1433 nfs_mark_request_commit(req, lseg);
1434 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1435 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1436 BDI_RECLAIMABLE);
1437 nfs_clear_page_tag_locked(req);
1438 }
1439 }
1440 EXPORT_SYMBOL_GPL(nfs_retry_commit);
1441
1442 /*
1443 * Commit dirty pages
1444 */
1445 static int
1446 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1447 {
1448 struct nfs_write_data *data;
1449
1450 data = nfs_commitdata_alloc();
1451
1452 if (!data)
1453 goto out_bad;
1454
1455 /* Set up the argument struct */
1456 nfs_init_commit(data, head, NULL);
1457 return nfs_initiate_commit(data, NFS_CLIENT(inode), data->mds_ops, how);
1458 out_bad:
1459 nfs_retry_commit(head, NULL);
1460 nfs_commit_clear_lock(NFS_I(inode));
1461 return -ENOMEM;
1462 }
1463
1464 /*
1465 * COMMIT call returned
1466 */
1467 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1468 {
1469 struct nfs_write_data *data = calldata;
1470
1471 dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1472 task->tk_pid, task->tk_status);
1473
1474 /* Call the NFS version-specific code */
1475 NFS_PROTO(data->inode)->commit_done(task, data);
1476 }
1477
1478 void nfs_commit_release_pages(struct nfs_write_data *data)
1479 {
1480 struct nfs_page *req;
1481 int status = data->task.tk_status;
1482
1483 while (!list_empty(&data->pages)) {
1484 req = nfs_list_entry(data->pages.next);
1485 nfs_list_remove_request(req);
1486 nfs_clear_request_commit(req);
1487
1488 dprintk("NFS: commit (%s/%lld %d@%lld)",
1489 req->wb_context->dentry->d_sb->s_id,
1490 (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1491 req->wb_bytes,
1492 (long long)req_offset(req));
1493 if (status < 0) {
1494 nfs_context_set_write_error(req->wb_context, status);
1495 nfs_inode_remove_request(req);
1496 dprintk(", error = %d\n", status);
1497 goto next;
1498 }
1499
1500 /* Okay, COMMIT succeeded, apparently. Check the verifier
1501 * returned by the server against all stored verfs. */
1502 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1503 /* We have a match */
1504 nfs_inode_remove_request(req);
1505 dprintk(" OK\n");
1506 goto next;
1507 }
1508 /* We have a mismatch. Write the page again */
1509 dprintk(" mismatch\n");
1510 nfs_mark_request_dirty(req);
1511 next:
1512 nfs_clear_page_tag_locked(req);
1513 }
1514 }
1515 EXPORT_SYMBOL_GPL(nfs_commit_release_pages);
1516
1517 static void nfs_commit_release(void *calldata)
1518 {
1519 struct nfs_write_data *data = calldata;
1520
1521 nfs_commit_release_pages(data);
1522 nfs_commit_clear_lock(NFS_I(data->inode));
1523 nfs_commitdata_release(calldata);
1524 }
1525
1526 static const struct rpc_call_ops nfs_commit_ops = {
1527 #if defined(CONFIG_NFS_V4_1)
1528 .rpc_call_prepare = nfs_write_prepare,
1529 #endif /* CONFIG_NFS_V4_1 */
1530 .rpc_call_done = nfs_commit_done,
1531 .rpc_release = nfs_commit_release,
1532 };
1533
1534 int nfs_commit_inode(struct inode *inode, int how)
1535 {
1536 LIST_HEAD(head);
1537 int may_wait = how & FLUSH_SYNC;
1538 int res;
1539
1540 res = nfs_commit_set_lock(NFS_I(inode), may_wait);
1541 if (res <= 0)
1542 goto out_mark_dirty;
1543 res = nfs_scan_commit(inode, &head, 0, 0);
1544 if (res) {
1545 int error;
1546
1547 error = pnfs_commit_list(inode, &head, how);
1548 if (error == PNFS_NOT_ATTEMPTED)
1549 error = nfs_commit_list(inode, &head, how);
1550 if (error < 0)
1551 return error;
1552 if (!may_wait)
1553 goto out_mark_dirty;
1554 error = wait_on_bit(&NFS_I(inode)->flags,
1555 NFS_INO_COMMIT,
1556 nfs_wait_bit_killable,
1557 TASK_KILLABLE);
1558 if (error < 0)
1559 return error;
1560 } else
1561 nfs_commit_clear_lock(NFS_I(inode));
1562 return res;
1563 /* Note: If we exit without ensuring that the commit is complete,
1564 * we must mark the inode as dirty. Otherwise, future calls to
1565 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1566 * that the data is on the disk.
1567 */
1568 out_mark_dirty:
1569 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1570 return res;
1571 }
1572
1573 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1574 {
1575 struct nfs_inode *nfsi = NFS_I(inode);
1576 int flags = FLUSH_SYNC;
1577 int ret = 0;
1578
1579 /* no commits means nothing needs to be done */
1580 if (!nfsi->ncommit)
1581 return ret;
1582
1583 if (wbc->sync_mode == WB_SYNC_NONE) {
1584 /* Don't commit yet if this is a non-blocking flush and there
1585 * are a lot of outstanding writes for this mapping.
1586 */
1587 if (nfsi->ncommit <= (nfsi->npages >> 1))
1588 goto out_mark_dirty;
1589
1590 /* don't wait for the COMMIT response */
1591 flags = 0;
1592 }
1593
1594 ret = nfs_commit_inode(inode, flags);
1595 if (ret >= 0) {
1596 if (wbc->sync_mode == WB_SYNC_NONE) {
1597 if (ret < wbc->nr_to_write)
1598 wbc->nr_to_write -= ret;
1599 else
1600 wbc->nr_to_write = 0;
1601 }
1602 return 0;
1603 }
1604 out_mark_dirty:
1605 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1606 return ret;
1607 }
1608 #else
1609 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1610 {
1611 return 0;
1612 }
1613 #endif
1614
1615 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1616 {
1617 int ret;
1618
1619 ret = nfs_commit_unstable_pages(inode, wbc);
1620 if (ret >= 0 && test_bit(NFS_INO_LAYOUTCOMMIT, &NFS_I(inode)->flags)) {
1621 int status;
1622 bool sync = true;
1623
1624 if (wbc->sync_mode == WB_SYNC_NONE)
1625 sync = false;
1626
1627 status = pnfs_layoutcommit_inode(inode, sync);
1628 if (status < 0)
1629 return status;
1630 }
1631 return ret;
1632 }
1633
1634 /*
1635 * flush the inode to disk.
1636 */
1637 int nfs_wb_all(struct inode *inode)
1638 {
1639 struct writeback_control wbc = {
1640 .sync_mode = WB_SYNC_ALL,
1641 .nr_to_write = LONG_MAX,
1642 .range_start = 0,
1643 .range_end = LLONG_MAX,
1644 };
1645
1646 return sync_inode(inode, &wbc);
1647 }
1648
1649 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1650 {
1651 struct nfs_page *req;
1652 int ret = 0;
1653
1654 BUG_ON(!PageLocked(page));
1655 for (;;) {
1656 wait_on_page_writeback(page);
1657 req = nfs_page_find_request(page);
1658 if (req == NULL)
1659 break;
1660 if (nfs_lock_request_dontget(req)) {
1661 nfs_inode_remove_request(req);
1662 /*
1663 * In case nfs_inode_remove_request has marked the
1664 * page as being dirty
1665 */
1666 cancel_dirty_page(page, PAGE_CACHE_SIZE);
1667 nfs_unlock_request(req);
1668 break;
1669 }
1670 ret = nfs_wait_on_request(req);
1671 nfs_release_request(req);
1672 if (ret < 0)
1673 break;
1674 }
1675 return ret;
1676 }
1677
1678 /*
1679 * Write back all requests on one page - we do this before reading it.
1680 */
1681 int nfs_wb_page(struct inode *inode, struct page *page)
1682 {
1683 loff_t range_start = page_offset(page);
1684 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1685 struct writeback_control wbc = {
1686 .sync_mode = WB_SYNC_ALL,
1687 .nr_to_write = 0,
1688 .range_start = range_start,
1689 .range_end = range_end,
1690 };
1691 int ret;
1692
1693 for (;;) {
1694 wait_on_page_writeback(page);
1695 if (clear_page_dirty_for_io(page)) {
1696 ret = nfs_writepage_locked(page, &wbc);
1697 if (ret < 0)
1698 goto out_error;
1699 continue;
1700 }
1701 if (!PagePrivate(page))
1702 break;
1703 ret = nfs_commit_inode(inode, FLUSH_SYNC);
1704 if (ret < 0)
1705 goto out_error;
1706 }
1707 return 0;
1708 out_error:
1709 return ret;
1710 }
1711
1712 #ifdef CONFIG_MIGRATION
1713 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1714 struct page *page)
1715 {
1716 /*
1717 * If PagePrivate is set, then the page is currently associated with
1718 * an in-progress read or write request. Don't try to migrate it.
1719 *
1720 * FIXME: we could do this in principle, but we'll need a way to ensure
1721 * that we can safely release the inode reference while holding
1722 * the page lock.
1723 */
1724 if (PagePrivate(page))
1725 return -EBUSY;
1726
1727 nfs_fscache_release_page(page, GFP_KERNEL);
1728
1729 return migrate_page(mapping, newpage, page);
1730 }
1731 #endif
1732
1733 int __init nfs_init_writepagecache(void)
1734 {
1735 nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1736 sizeof(struct nfs_write_data),
1737 0, SLAB_HWCACHE_ALIGN,
1738 NULL);
1739 if (nfs_wdata_cachep == NULL)
1740 return -ENOMEM;
1741
1742 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1743 nfs_wdata_cachep);
1744 if (nfs_wdata_mempool == NULL)
1745 return -ENOMEM;
1746
1747 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1748 nfs_wdata_cachep);
1749 if (nfs_commit_mempool == NULL)
1750 return -ENOMEM;
1751
1752 /*
1753 * NFS congestion size, scale with available memory.
1754 *
1755 * 64MB: 8192k
1756 * 128MB: 11585k
1757 * 256MB: 16384k
1758 * 512MB: 23170k
1759 * 1GB: 32768k
1760 * 2GB: 46340k
1761 * 4GB: 65536k
1762 * 8GB: 92681k
1763 * 16GB: 131072k
1764 *
1765 * This allows larger machines to have larger/more transfers.
1766 * Limit the default to 256M
1767 */
1768 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1769 if (nfs_congestion_kb > 256*1024)
1770 nfs_congestion_kb = 256*1024;
1771
1772 return 0;
1773 }
1774
1775 void nfs_destroy_writepagecache(void)
1776 {
1777 mempool_destroy(nfs_commit_mempool);
1778 mempool_destroy(nfs_wdata_mempool);
1779 kmem_cache_destroy(nfs_wdata_cachep);
1780 }
1781