]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/nfs/write.c
iommu/rockchip: Support sharing IOMMU between masters
[mirror_ubuntu-hirsute-kernel.git] / fs / nfs / write.c
1 /*
2 * linux/fs/nfs/write.c
3 *
4 * Write file data over NFS.
5 *
6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7 */
8
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23 #include <linux/export.h>
24 #include <linux/freezer.h>
25 #include <linux/wait.h>
26 #include <linux/iversion.h>
27
28 #include <linux/uaccess.h>
29
30 #include "delegation.h"
31 #include "internal.h"
32 #include "iostat.h"
33 #include "nfs4_fs.h"
34 #include "fscache.h"
35 #include "pnfs.h"
36
37 #include "nfstrace.h"
38
39 #define NFSDBG_FACILITY NFSDBG_PAGECACHE
40
41 #define MIN_POOL_WRITE (32)
42 #define MIN_POOL_COMMIT (4)
43
44 struct nfs_io_completion {
45 void (*complete)(void *data);
46 void *data;
47 struct kref refcount;
48 };
49
50 /*
51 * Local function declarations
52 */
53 static void nfs_redirty_request(struct nfs_page *req);
54 static const struct rpc_call_ops nfs_commit_ops;
55 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops;
56 static const struct nfs_commit_completion_ops nfs_commit_completion_ops;
57 static const struct nfs_rw_ops nfs_rw_write_ops;
58 static void nfs_clear_request_commit(struct nfs_page *req);
59 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
60 struct inode *inode);
61 static struct nfs_page *
62 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
63 struct page *page);
64
65 static struct kmem_cache *nfs_wdata_cachep;
66 static mempool_t *nfs_wdata_mempool;
67 static struct kmem_cache *nfs_cdata_cachep;
68 static mempool_t *nfs_commit_mempool;
69
70 struct nfs_commit_data *nfs_commitdata_alloc(bool never_fail)
71 {
72 struct nfs_commit_data *p;
73
74 if (never_fail)
75 p = mempool_alloc(nfs_commit_mempool, GFP_NOIO);
76 else {
77 /* It is OK to do some reclaim, not no safe to wait
78 * for anything to be returned to the pool.
79 * mempool_alloc() cannot handle that particular combination,
80 * so we need two separate attempts.
81 */
82 p = mempool_alloc(nfs_commit_mempool, GFP_NOWAIT);
83 if (!p)
84 p = kmem_cache_alloc(nfs_cdata_cachep, GFP_NOIO |
85 __GFP_NOWARN | __GFP_NORETRY);
86 if (!p)
87 return NULL;
88 }
89
90 memset(p, 0, sizeof(*p));
91 INIT_LIST_HEAD(&p->pages);
92 return p;
93 }
94 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
95
96 void nfs_commit_free(struct nfs_commit_data *p)
97 {
98 mempool_free(p, nfs_commit_mempool);
99 }
100 EXPORT_SYMBOL_GPL(nfs_commit_free);
101
102 static struct nfs_pgio_header *nfs_writehdr_alloc(void)
103 {
104 struct nfs_pgio_header *p = mempool_alloc(nfs_wdata_mempool, GFP_NOIO);
105
106 memset(p, 0, sizeof(*p));
107 p->rw_mode = FMODE_WRITE;
108 return p;
109 }
110
111 static void nfs_writehdr_free(struct nfs_pgio_header *hdr)
112 {
113 mempool_free(hdr, nfs_wdata_mempool);
114 }
115
116 static struct nfs_io_completion *nfs_io_completion_alloc(gfp_t gfp_flags)
117 {
118 return kmalloc(sizeof(struct nfs_io_completion), gfp_flags);
119 }
120
121 static void nfs_io_completion_init(struct nfs_io_completion *ioc,
122 void (*complete)(void *), void *data)
123 {
124 ioc->complete = complete;
125 ioc->data = data;
126 kref_init(&ioc->refcount);
127 }
128
129 static void nfs_io_completion_release(struct kref *kref)
130 {
131 struct nfs_io_completion *ioc = container_of(kref,
132 struct nfs_io_completion, refcount);
133 ioc->complete(ioc->data);
134 kfree(ioc);
135 }
136
137 static void nfs_io_completion_get(struct nfs_io_completion *ioc)
138 {
139 if (ioc != NULL)
140 kref_get(&ioc->refcount);
141 }
142
143 static void nfs_io_completion_put(struct nfs_io_completion *ioc)
144 {
145 if (ioc != NULL)
146 kref_put(&ioc->refcount, nfs_io_completion_release);
147 }
148
149 static struct nfs_page *
150 nfs_page_private_request(struct page *page)
151 {
152 if (!PagePrivate(page))
153 return NULL;
154 return (struct nfs_page *)page_private(page);
155 }
156
157 /*
158 * nfs_page_find_head_request_locked - find head request associated with @page
159 *
160 * must be called while holding the inode lock.
161 *
162 * returns matching head request with reference held, or NULL if not found.
163 */
164 static struct nfs_page *
165 nfs_page_find_private_request(struct page *page)
166 {
167 struct address_space *mapping = page_file_mapping(page);
168 struct nfs_page *req;
169
170 if (!PagePrivate(page))
171 return NULL;
172 spin_lock(&mapping->private_lock);
173 req = nfs_page_private_request(page);
174 if (req) {
175 WARN_ON_ONCE(req->wb_head != req);
176 kref_get(&req->wb_kref);
177 }
178 spin_unlock(&mapping->private_lock);
179 return req;
180 }
181
182 static struct nfs_page *
183 nfs_page_find_swap_request(struct page *page)
184 {
185 struct inode *inode = page_file_mapping(page)->host;
186 struct nfs_inode *nfsi = NFS_I(inode);
187 struct nfs_page *req = NULL;
188 if (!PageSwapCache(page))
189 return NULL;
190 mutex_lock(&nfsi->commit_mutex);
191 if (PageSwapCache(page)) {
192 req = nfs_page_search_commits_for_head_request_locked(nfsi,
193 page);
194 if (req) {
195 WARN_ON_ONCE(req->wb_head != req);
196 kref_get(&req->wb_kref);
197 }
198 }
199 mutex_unlock(&nfsi->commit_mutex);
200 return req;
201 }
202
203 /*
204 * nfs_page_find_head_request - find head request associated with @page
205 *
206 * returns matching head request with reference held, or NULL if not found.
207 */
208 static struct nfs_page *nfs_page_find_head_request(struct page *page)
209 {
210 struct nfs_page *req;
211
212 req = nfs_page_find_private_request(page);
213 if (!req)
214 req = nfs_page_find_swap_request(page);
215 return req;
216 }
217
218 /* Adjust the file length if we're writing beyond the end */
219 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
220 {
221 struct inode *inode = page_file_mapping(page)->host;
222 loff_t end, i_size;
223 pgoff_t end_index;
224
225 spin_lock(&inode->i_lock);
226 i_size = i_size_read(inode);
227 end_index = (i_size - 1) >> PAGE_SHIFT;
228 if (i_size > 0 && page_index(page) < end_index)
229 goto out;
230 end = page_file_offset(page) + ((loff_t)offset+count);
231 if (i_size >= end)
232 goto out;
233 i_size_write(inode, end);
234 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
235 out:
236 spin_unlock(&inode->i_lock);
237 }
238
239 /* A writeback failed: mark the page as bad, and invalidate the page cache */
240 static void nfs_set_pageerror(struct page *page)
241 {
242 nfs_zap_mapping(page_file_mapping(page)->host, page_file_mapping(page));
243 }
244
245 /*
246 * nfs_page_group_search_locked
247 * @head - head request of page group
248 * @page_offset - offset into page
249 *
250 * Search page group with head @head to find a request that contains the
251 * page offset @page_offset.
252 *
253 * Returns a pointer to the first matching nfs request, or NULL if no
254 * match is found.
255 *
256 * Must be called with the page group lock held
257 */
258 static struct nfs_page *
259 nfs_page_group_search_locked(struct nfs_page *head, unsigned int page_offset)
260 {
261 struct nfs_page *req;
262
263 req = head;
264 do {
265 if (page_offset >= req->wb_pgbase &&
266 page_offset < (req->wb_pgbase + req->wb_bytes))
267 return req;
268
269 req = req->wb_this_page;
270 } while (req != head);
271
272 return NULL;
273 }
274
275 /*
276 * nfs_page_group_covers_page
277 * @head - head request of page group
278 *
279 * Return true if the page group with head @head covers the whole page,
280 * returns false otherwise
281 */
282 static bool nfs_page_group_covers_page(struct nfs_page *req)
283 {
284 struct nfs_page *tmp;
285 unsigned int pos = 0;
286 unsigned int len = nfs_page_length(req->wb_page);
287
288 nfs_page_group_lock(req);
289
290 for (;;) {
291 tmp = nfs_page_group_search_locked(req->wb_head, pos);
292 if (!tmp)
293 break;
294 pos = tmp->wb_pgbase + tmp->wb_bytes;
295 }
296
297 nfs_page_group_unlock(req);
298 return pos >= len;
299 }
300
301 /* We can set the PG_uptodate flag if we see that a write request
302 * covers the full page.
303 */
304 static void nfs_mark_uptodate(struct nfs_page *req)
305 {
306 if (PageUptodate(req->wb_page))
307 return;
308 if (!nfs_page_group_covers_page(req))
309 return;
310 SetPageUptodate(req->wb_page);
311 }
312
313 static int wb_priority(struct writeback_control *wbc)
314 {
315 int ret = 0;
316
317 if (wbc->sync_mode == WB_SYNC_ALL)
318 ret = FLUSH_COND_STABLE;
319 return ret;
320 }
321
322 /*
323 * NFS congestion control
324 */
325
326 int nfs_congestion_kb;
327
328 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
329 #define NFS_CONGESTION_OFF_THRESH \
330 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
331
332 static void nfs_set_page_writeback(struct page *page)
333 {
334 struct inode *inode = page_file_mapping(page)->host;
335 struct nfs_server *nfss = NFS_SERVER(inode);
336 int ret = test_set_page_writeback(page);
337
338 WARN_ON_ONCE(ret != 0);
339
340 if (atomic_long_inc_return(&nfss->writeback) >
341 NFS_CONGESTION_ON_THRESH)
342 set_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
343 }
344
345 static void nfs_end_page_writeback(struct nfs_page *req)
346 {
347 struct inode *inode = page_file_mapping(req->wb_page)->host;
348 struct nfs_server *nfss = NFS_SERVER(inode);
349 bool is_done;
350
351 is_done = nfs_page_group_sync_on_bit(req, PG_WB_END);
352 nfs_unlock_request(req);
353 if (!is_done)
354 return;
355
356 end_page_writeback(req->wb_page);
357 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
358 clear_bdi_congested(inode_to_bdi(inode), BLK_RW_ASYNC);
359 }
360
361 /*
362 * nfs_unroll_locks_and_wait - unlock all newly locked reqs and wait on @req
363 *
364 * this is a helper function for nfs_lock_and_join_requests
365 *
366 * @inode - inode associated with request page group, must be holding inode lock
367 * @head - head request of page group, must be holding head lock
368 * @req - request that couldn't lock and needs to wait on the req bit lock
369 *
370 * NOTE: this must be called holding page_group bit lock
371 * which will be released before returning.
372 *
373 * returns 0 on success, < 0 on error.
374 */
375 static void
376 nfs_unroll_locks(struct inode *inode, struct nfs_page *head,
377 struct nfs_page *req)
378 {
379 struct nfs_page *tmp;
380
381 /* relinquish all the locks successfully grabbed this run */
382 for (tmp = head->wb_this_page ; tmp != req; tmp = tmp->wb_this_page) {
383 if (!kref_read(&tmp->wb_kref))
384 continue;
385 nfs_unlock_and_release_request(tmp);
386 }
387 }
388
389 /*
390 * nfs_destroy_unlinked_subrequests - destroy recently unlinked subrequests
391 *
392 * @destroy_list - request list (using wb_this_page) terminated by @old_head
393 * @old_head - the old head of the list
394 *
395 * All subrequests must be locked and removed from all lists, so at this point
396 * they are only "active" in this function, and possibly in nfs_wait_on_request
397 * with a reference held by some other context.
398 */
399 static void
400 nfs_destroy_unlinked_subrequests(struct nfs_page *destroy_list,
401 struct nfs_page *old_head,
402 struct inode *inode)
403 {
404 while (destroy_list) {
405 struct nfs_page *subreq = destroy_list;
406
407 destroy_list = (subreq->wb_this_page == old_head) ?
408 NULL : subreq->wb_this_page;
409
410 WARN_ON_ONCE(old_head != subreq->wb_head);
411
412 /* make sure old group is not used */
413 subreq->wb_this_page = subreq;
414
415 clear_bit(PG_REMOVE, &subreq->wb_flags);
416
417 /* Note: races with nfs_page_group_destroy() */
418 if (!kref_read(&subreq->wb_kref)) {
419 /* Check if we raced with nfs_page_group_destroy() */
420 if (test_and_clear_bit(PG_TEARDOWN, &subreq->wb_flags))
421 nfs_free_request(subreq);
422 continue;
423 }
424
425 subreq->wb_head = subreq;
426
427 if (test_and_clear_bit(PG_INODE_REF, &subreq->wb_flags)) {
428 nfs_release_request(subreq);
429 atomic_long_dec(&NFS_I(inode)->nrequests);
430 }
431
432 /* subreq is now totally disconnected from page group or any
433 * write / commit lists. last chance to wake any waiters */
434 nfs_unlock_and_release_request(subreq);
435 }
436 }
437
438 /*
439 * nfs_lock_and_join_requests - join all subreqs to the head req and return
440 * a locked reference, cancelling any pending
441 * operations for this page.
442 *
443 * @page - the page used to lookup the "page group" of nfs_page structures
444 *
445 * This function joins all sub requests to the head request by first
446 * locking all requests in the group, cancelling any pending operations
447 * and finally updating the head request to cover the whole range covered by
448 * the (former) group. All subrequests are removed from any write or commit
449 * lists, unlinked from the group and destroyed.
450 *
451 * Returns a locked, referenced pointer to the head request - which after
452 * this call is guaranteed to be the only request associated with the page.
453 * Returns NULL if no requests are found for @page, or a ERR_PTR if an
454 * error was encountered.
455 */
456 static struct nfs_page *
457 nfs_lock_and_join_requests(struct page *page)
458 {
459 struct inode *inode = page_file_mapping(page)->host;
460 struct nfs_page *head, *subreq;
461 struct nfs_page *destroy_list = NULL;
462 unsigned int total_bytes;
463 int ret;
464
465 try_again:
466 /*
467 * A reference is taken only on the head request which acts as a
468 * reference to the whole page group - the group will not be destroyed
469 * until the head reference is released.
470 */
471 head = nfs_page_find_head_request(page);
472 if (!head)
473 return NULL;
474
475 /* lock the page head first in order to avoid an ABBA inefficiency */
476 if (!nfs_lock_request(head)) {
477 ret = nfs_wait_on_request(head);
478 nfs_release_request(head);
479 if (ret < 0)
480 return ERR_PTR(ret);
481 goto try_again;
482 }
483
484 /* Ensure that nobody removed the request before we locked it */
485 if (head != nfs_page_private_request(page) && !PageSwapCache(page)) {
486 nfs_unlock_and_release_request(head);
487 goto try_again;
488 }
489
490 ret = nfs_page_group_lock(head);
491 if (ret < 0)
492 goto release_request;
493
494 /* lock each request in the page group */
495 total_bytes = head->wb_bytes;
496 for (subreq = head->wb_this_page; subreq != head;
497 subreq = subreq->wb_this_page) {
498
499 if (!kref_get_unless_zero(&subreq->wb_kref)) {
500 if (subreq->wb_offset == head->wb_offset + total_bytes)
501 total_bytes += subreq->wb_bytes;
502 continue;
503 }
504
505 while (!nfs_lock_request(subreq)) {
506 /*
507 * Unlock page to allow nfs_page_group_sync_on_bit()
508 * to succeed
509 */
510 nfs_page_group_unlock(head);
511 ret = nfs_wait_on_request(subreq);
512 if (!ret)
513 ret = nfs_page_group_lock(head);
514 if (ret < 0) {
515 nfs_unroll_locks(inode, head, subreq);
516 nfs_release_request(subreq);
517 goto release_request;
518 }
519 }
520 /*
521 * Subrequests are always contiguous, non overlapping
522 * and in order - but may be repeated (mirrored writes).
523 */
524 if (subreq->wb_offset == (head->wb_offset + total_bytes)) {
525 /* keep track of how many bytes this group covers */
526 total_bytes += subreq->wb_bytes;
527 } else if (WARN_ON_ONCE(subreq->wb_offset < head->wb_offset ||
528 ((subreq->wb_offset + subreq->wb_bytes) >
529 (head->wb_offset + total_bytes)))) {
530 nfs_page_group_unlock(head);
531 nfs_unroll_locks(inode, head, subreq);
532 nfs_unlock_and_release_request(subreq);
533 ret = -EIO;
534 goto release_request;
535 }
536 }
537
538 /* Now that all requests are locked, make sure they aren't on any list.
539 * Commit list removal accounting is done after locks are dropped */
540 subreq = head;
541 do {
542 nfs_clear_request_commit(subreq);
543 subreq = subreq->wb_this_page;
544 } while (subreq != head);
545
546 /* unlink subrequests from head, destroy them later */
547 if (head->wb_this_page != head) {
548 /* destroy list will be terminated by head */
549 destroy_list = head->wb_this_page;
550 head->wb_this_page = head;
551
552 /* change head request to cover whole range that
553 * the former page group covered */
554 head->wb_bytes = total_bytes;
555 }
556
557 /* Postpone destruction of this request */
558 if (test_and_clear_bit(PG_REMOVE, &head->wb_flags)) {
559 set_bit(PG_INODE_REF, &head->wb_flags);
560 kref_get(&head->wb_kref);
561 atomic_long_inc(&NFS_I(inode)->nrequests);
562 }
563
564 nfs_page_group_unlock(head);
565
566 nfs_destroy_unlinked_subrequests(destroy_list, head, inode);
567
568 /* Did we lose a race with nfs_inode_remove_request()? */
569 if (!(PagePrivate(page) || PageSwapCache(page))) {
570 nfs_unlock_and_release_request(head);
571 return NULL;
572 }
573
574 /* still holds ref on head from nfs_page_find_head_request
575 * and still has lock on head from lock loop */
576 return head;
577
578 release_request:
579 nfs_unlock_and_release_request(head);
580 return ERR_PTR(ret);
581 }
582
583 static void nfs_write_error_remove_page(struct nfs_page *req)
584 {
585 nfs_end_page_writeback(req);
586 generic_error_remove_page(page_file_mapping(req->wb_page),
587 req->wb_page);
588 nfs_release_request(req);
589 }
590
591 static bool
592 nfs_error_is_fatal_on_server(int err)
593 {
594 switch (err) {
595 case 0:
596 case -ERESTARTSYS:
597 case -EINTR:
598 return false;
599 }
600 return nfs_error_is_fatal(err);
601 }
602
603 /*
604 * Find an associated nfs write request, and prepare to flush it out
605 * May return an error if the user signalled nfs_wait_on_request().
606 */
607 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
608 struct page *page)
609 {
610 struct nfs_page *req;
611 int ret = 0;
612
613 req = nfs_lock_and_join_requests(page);
614 if (!req)
615 goto out;
616 ret = PTR_ERR(req);
617 if (IS_ERR(req))
618 goto out;
619
620 nfs_set_page_writeback(page);
621 WARN_ON_ONCE(test_bit(PG_CLEAN, &req->wb_flags));
622
623 ret = 0;
624 /* If there is a fatal error that covers this write, just exit */
625 if (nfs_error_is_fatal_on_server(req->wb_context->error))
626 goto out_launder;
627
628 if (!nfs_pageio_add_request(pgio, req)) {
629 ret = pgio->pg_error;
630 /*
631 * Remove the problematic req upon fatal errors on the server
632 */
633 if (nfs_error_is_fatal(ret)) {
634 nfs_context_set_write_error(req->wb_context, ret);
635 if (nfs_error_is_fatal_on_server(ret))
636 goto out_launder;
637 }
638 nfs_redirty_request(req);
639 ret = -EAGAIN;
640 } else
641 nfs_add_stats(page_file_mapping(page)->host,
642 NFSIOS_WRITEPAGES, 1);
643 out:
644 return ret;
645 out_launder:
646 nfs_write_error_remove_page(req);
647 return ret;
648 }
649
650 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc,
651 struct nfs_pageio_descriptor *pgio)
652 {
653 int ret;
654
655 nfs_pageio_cond_complete(pgio, page_index(page));
656 ret = nfs_page_async_flush(pgio, page);
657 if (ret == -EAGAIN) {
658 redirty_page_for_writepage(wbc, page);
659 ret = 0;
660 }
661 return ret;
662 }
663
664 /*
665 * Write an mmapped page to the server.
666 */
667 static int nfs_writepage_locked(struct page *page,
668 struct writeback_control *wbc)
669 {
670 struct nfs_pageio_descriptor pgio;
671 struct inode *inode = page_file_mapping(page)->host;
672 int err;
673
674 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
675 nfs_pageio_init_write(&pgio, inode, 0,
676 false, &nfs_async_write_completion_ops);
677 err = nfs_do_writepage(page, wbc, &pgio);
678 nfs_pageio_complete(&pgio);
679 if (err < 0)
680 return err;
681 if (pgio.pg_error < 0)
682 return pgio.pg_error;
683 return 0;
684 }
685
686 int nfs_writepage(struct page *page, struct writeback_control *wbc)
687 {
688 int ret;
689
690 ret = nfs_writepage_locked(page, wbc);
691 unlock_page(page);
692 return ret;
693 }
694
695 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
696 {
697 int ret;
698
699 ret = nfs_do_writepage(page, wbc, data);
700 unlock_page(page);
701 return ret;
702 }
703
704 static void nfs_io_completion_commit(void *inode)
705 {
706 nfs_commit_inode(inode, 0);
707 }
708
709 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
710 {
711 struct inode *inode = mapping->host;
712 struct nfs_pageio_descriptor pgio;
713 struct nfs_io_completion *ioc = nfs_io_completion_alloc(GFP_NOFS);
714 int err;
715
716 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
717
718 if (ioc)
719 nfs_io_completion_init(ioc, nfs_io_completion_commit, inode);
720
721 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc), false,
722 &nfs_async_write_completion_ops);
723 pgio.pg_io_completion = ioc;
724 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
725 nfs_pageio_complete(&pgio);
726 nfs_io_completion_put(ioc);
727
728 if (err < 0)
729 goto out_err;
730 err = pgio.pg_error;
731 if (err < 0)
732 goto out_err;
733 return 0;
734 out_err:
735 return err;
736 }
737
738 /*
739 * Insert a write request into an inode
740 */
741 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
742 {
743 struct address_space *mapping = page_file_mapping(req->wb_page);
744 struct nfs_inode *nfsi = NFS_I(inode);
745
746 WARN_ON_ONCE(req->wb_this_page != req);
747
748 /* Lock the request! */
749 nfs_lock_request(req);
750
751 /*
752 * Swap-space should not get truncated. Hence no need to plug the race
753 * with invalidate/truncate.
754 */
755 spin_lock(&mapping->private_lock);
756 if (!nfs_have_writebacks(inode) &&
757 NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
758 inode_inc_iversion_raw(inode);
759 if (likely(!PageSwapCache(req->wb_page))) {
760 set_bit(PG_MAPPED, &req->wb_flags);
761 SetPagePrivate(req->wb_page);
762 set_page_private(req->wb_page, (unsigned long)req);
763 }
764 spin_unlock(&mapping->private_lock);
765 atomic_long_inc(&nfsi->nrequests);
766 /* this a head request for a page group - mark it as having an
767 * extra reference so sub groups can follow suit.
768 * This flag also informs pgio layer when to bump nrequests when
769 * adding subrequests. */
770 WARN_ON(test_and_set_bit(PG_INODE_REF, &req->wb_flags));
771 kref_get(&req->wb_kref);
772 }
773
774 /*
775 * Remove a write request from an inode
776 */
777 static void nfs_inode_remove_request(struct nfs_page *req)
778 {
779 struct address_space *mapping = page_file_mapping(req->wb_page);
780 struct inode *inode = mapping->host;
781 struct nfs_inode *nfsi = NFS_I(inode);
782 struct nfs_page *head;
783
784 atomic_long_dec(&nfsi->nrequests);
785 if (nfs_page_group_sync_on_bit(req, PG_REMOVE)) {
786 head = req->wb_head;
787
788 spin_lock(&mapping->private_lock);
789 if (likely(head->wb_page && !PageSwapCache(head->wb_page))) {
790 set_page_private(head->wb_page, 0);
791 ClearPagePrivate(head->wb_page);
792 clear_bit(PG_MAPPED, &head->wb_flags);
793 }
794 spin_unlock(&mapping->private_lock);
795 }
796
797 if (test_and_clear_bit(PG_INODE_REF, &req->wb_flags))
798 nfs_release_request(req);
799 }
800
801 static void
802 nfs_mark_request_dirty(struct nfs_page *req)
803 {
804 if (req->wb_page)
805 __set_page_dirty_nobuffers(req->wb_page);
806 }
807
808 /*
809 * nfs_page_search_commits_for_head_request_locked
810 *
811 * Search through commit lists on @inode for the head request for @page.
812 * Must be called while holding the inode (which is cinfo) lock.
813 *
814 * Returns the head request if found, or NULL if not found.
815 */
816 static struct nfs_page *
817 nfs_page_search_commits_for_head_request_locked(struct nfs_inode *nfsi,
818 struct page *page)
819 {
820 struct nfs_page *freq, *t;
821 struct nfs_commit_info cinfo;
822 struct inode *inode = &nfsi->vfs_inode;
823
824 nfs_init_cinfo_from_inode(&cinfo, inode);
825
826 /* search through pnfs commit lists */
827 freq = pnfs_search_commit_reqs(inode, &cinfo, page);
828 if (freq)
829 return freq->wb_head;
830
831 /* Linearly search the commit list for the correct request */
832 list_for_each_entry_safe(freq, t, &cinfo.mds->list, wb_list) {
833 if (freq->wb_page == page)
834 return freq->wb_head;
835 }
836
837 return NULL;
838 }
839
840 /**
841 * nfs_request_add_commit_list_locked - add request to a commit list
842 * @req: pointer to a struct nfs_page
843 * @dst: commit list head
844 * @cinfo: holds list lock and accounting info
845 *
846 * This sets the PG_CLEAN bit, updates the cinfo count of
847 * number of outstanding requests requiring a commit as well as
848 * the MM page stats.
849 *
850 * The caller must hold NFS_I(cinfo->inode)->commit_mutex, and the
851 * nfs_page lock.
852 */
853 void
854 nfs_request_add_commit_list_locked(struct nfs_page *req, struct list_head *dst,
855 struct nfs_commit_info *cinfo)
856 {
857 set_bit(PG_CLEAN, &req->wb_flags);
858 nfs_list_add_request(req, dst);
859 atomic_long_inc(&cinfo->mds->ncommit);
860 }
861 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list_locked);
862
863 /**
864 * nfs_request_add_commit_list - add request to a commit list
865 * @req: pointer to a struct nfs_page
866 * @dst: commit list head
867 * @cinfo: holds list lock and accounting info
868 *
869 * This sets the PG_CLEAN bit, updates the cinfo count of
870 * number of outstanding requests requiring a commit as well as
871 * the MM page stats.
872 *
873 * The caller must _not_ hold the cinfo->lock, but must be
874 * holding the nfs_page lock.
875 */
876 void
877 nfs_request_add_commit_list(struct nfs_page *req, struct nfs_commit_info *cinfo)
878 {
879 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
880 nfs_request_add_commit_list_locked(req, &cinfo->mds->list, cinfo);
881 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
882 if (req->wb_page)
883 nfs_mark_page_unstable(req->wb_page, cinfo);
884 }
885 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list);
886
887 /**
888 * nfs_request_remove_commit_list - Remove request from a commit list
889 * @req: pointer to a nfs_page
890 * @cinfo: holds list lock and accounting info
891 *
892 * This clears the PG_CLEAN bit, and updates the cinfo's count of
893 * number of outstanding requests requiring a commit
894 * It does not update the MM page stats.
895 *
896 * The caller _must_ hold the cinfo->lock and the nfs_page lock.
897 */
898 void
899 nfs_request_remove_commit_list(struct nfs_page *req,
900 struct nfs_commit_info *cinfo)
901 {
902 if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags))
903 return;
904 nfs_list_remove_request(req);
905 atomic_long_dec(&cinfo->mds->ncommit);
906 }
907 EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list);
908
909 static void nfs_init_cinfo_from_inode(struct nfs_commit_info *cinfo,
910 struct inode *inode)
911 {
912 cinfo->inode = inode;
913 cinfo->mds = &NFS_I(inode)->commit_info;
914 cinfo->ds = pnfs_get_ds_info(inode);
915 cinfo->dreq = NULL;
916 cinfo->completion_ops = &nfs_commit_completion_ops;
917 }
918
919 void nfs_init_cinfo(struct nfs_commit_info *cinfo,
920 struct inode *inode,
921 struct nfs_direct_req *dreq)
922 {
923 if (dreq)
924 nfs_init_cinfo_from_dreq(cinfo, dreq);
925 else
926 nfs_init_cinfo_from_inode(cinfo, inode);
927 }
928 EXPORT_SYMBOL_GPL(nfs_init_cinfo);
929
930 /*
931 * Add a request to the inode's commit list.
932 */
933 void
934 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg,
935 struct nfs_commit_info *cinfo, u32 ds_commit_idx)
936 {
937 if (pnfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx))
938 return;
939 nfs_request_add_commit_list(req, cinfo);
940 }
941
942 static void
943 nfs_clear_page_commit(struct page *page)
944 {
945 dec_node_page_state(page, NR_UNSTABLE_NFS);
946 dec_wb_stat(&inode_to_bdi(page_file_mapping(page)->host)->wb,
947 WB_RECLAIMABLE);
948 }
949
950 /* Called holding the request lock on @req */
951 static void
952 nfs_clear_request_commit(struct nfs_page *req)
953 {
954 if (test_bit(PG_CLEAN, &req->wb_flags)) {
955 struct inode *inode = d_inode(req->wb_context->dentry);
956 struct nfs_commit_info cinfo;
957
958 nfs_init_cinfo_from_inode(&cinfo, inode);
959 mutex_lock(&NFS_I(inode)->commit_mutex);
960 if (!pnfs_clear_request_commit(req, &cinfo)) {
961 nfs_request_remove_commit_list(req, &cinfo);
962 }
963 mutex_unlock(&NFS_I(inode)->commit_mutex);
964 nfs_clear_page_commit(req->wb_page);
965 }
966 }
967
968 int nfs_write_need_commit(struct nfs_pgio_header *hdr)
969 {
970 if (hdr->verf.committed == NFS_DATA_SYNC)
971 return hdr->lseg == NULL;
972 return hdr->verf.committed != NFS_FILE_SYNC;
973 }
974
975 static void nfs_async_write_init(struct nfs_pgio_header *hdr)
976 {
977 nfs_io_completion_get(hdr->io_completion);
978 }
979
980 static void nfs_write_completion(struct nfs_pgio_header *hdr)
981 {
982 struct nfs_commit_info cinfo;
983 unsigned long bytes = 0;
984
985 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
986 goto out;
987 nfs_init_cinfo_from_inode(&cinfo, hdr->inode);
988 while (!list_empty(&hdr->pages)) {
989 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
990
991 bytes += req->wb_bytes;
992 nfs_list_remove_request(req);
993 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) &&
994 (hdr->good_bytes < bytes)) {
995 nfs_set_pageerror(req->wb_page);
996 nfs_context_set_write_error(req->wb_context, hdr->error);
997 goto remove_req;
998 }
999 if (nfs_write_need_commit(hdr)) {
1000 memcpy(&req->wb_verf, &hdr->verf.verifier, sizeof(req->wb_verf));
1001 nfs_mark_request_commit(req, hdr->lseg, &cinfo,
1002 hdr->pgio_mirror_idx);
1003 goto next;
1004 }
1005 remove_req:
1006 nfs_inode_remove_request(req);
1007 next:
1008 nfs_end_page_writeback(req);
1009 nfs_release_request(req);
1010 }
1011 out:
1012 nfs_io_completion_put(hdr->io_completion);
1013 hdr->release(hdr);
1014 }
1015
1016 unsigned long
1017 nfs_reqs_to_commit(struct nfs_commit_info *cinfo)
1018 {
1019 return atomic_long_read(&cinfo->mds->ncommit);
1020 }
1021
1022 /* NFS_I(cinfo->inode)->commit_mutex held by caller */
1023 int
1024 nfs_scan_commit_list(struct list_head *src, struct list_head *dst,
1025 struct nfs_commit_info *cinfo, int max)
1026 {
1027 struct nfs_page *req, *tmp;
1028 int ret = 0;
1029
1030 restart:
1031 list_for_each_entry_safe(req, tmp, src, wb_list) {
1032 kref_get(&req->wb_kref);
1033 if (!nfs_lock_request(req)) {
1034 int status;
1035
1036 /* Prevent deadlock with nfs_lock_and_join_requests */
1037 if (!list_empty(dst)) {
1038 nfs_release_request(req);
1039 continue;
1040 }
1041 /* Ensure we make progress to prevent livelock */
1042 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1043 status = nfs_wait_on_request(req);
1044 nfs_release_request(req);
1045 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1046 if (status < 0)
1047 break;
1048 goto restart;
1049 }
1050 nfs_request_remove_commit_list(req, cinfo);
1051 clear_bit(PG_COMMIT_TO_DS, &req->wb_flags);
1052 nfs_list_add_request(req, dst);
1053 ret++;
1054 if ((ret == max) && !cinfo->dreq)
1055 break;
1056 cond_resched();
1057 }
1058 return ret;
1059 }
1060 EXPORT_SYMBOL_GPL(nfs_scan_commit_list);
1061
1062 /*
1063 * nfs_scan_commit - Scan an inode for commit requests
1064 * @inode: NFS inode to scan
1065 * @dst: mds destination list
1066 * @cinfo: mds and ds lists of reqs ready to commit
1067 *
1068 * Moves requests from the inode's 'commit' request list.
1069 * The requests are *not* checked to ensure that they form a contiguous set.
1070 */
1071 int
1072 nfs_scan_commit(struct inode *inode, struct list_head *dst,
1073 struct nfs_commit_info *cinfo)
1074 {
1075 int ret = 0;
1076
1077 if (!atomic_long_read(&cinfo->mds->ncommit))
1078 return 0;
1079 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
1080 if (atomic_long_read(&cinfo->mds->ncommit) > 0) {
1081 const int max = INT_MAX;
1082
1083 ret = nfs_scan_commit_list(&cinfo->mds->list, dst,
1084 cinfo, max);
1085 ret += pnfs_scan_commit_lists(inode, cinfo, max - ret);
1086 }
1087 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
1088 return ret;
1089 }
1090
1091 /*
1092 * Search for an existing write request, and attempt to update
1093 * it to reflect a new dirty region on a given page.
1094 *
1095 * If the attempt fails, then the existing request is flushed out
1096 * to disk.
1097 */
1098 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
1099 struct page *page,
1100 unsigned int offset,
1101 unsigned int bytes)
1102 {
1103 struct nfs_page *req;
1104 unsigned int rqend;
1105 unsigned int end;
1106 int error;
1107
1108 end = offset + bytes;
1109
1110 req = nfs_lock_and_join_requests(page);
1111 if (IS_ERR_OR_NULL(req))
1112 return req;
1113
1114 rqend = req->wb_offset + req->wb_bytes;
1115 /*
1116 * Tell the caller to flush out the request if
1117 * the offsets are non-contiguous.
1118 * Note: nfs_flush_incompatible() will already
1119 * have flushed out requests having wrong owners.
1120 */
1121 if (offset > rqend || end < req->wb_offset)
1122 goto out_flushme;
1123
1124 /* Okay, the request matches. Update the region */
1125 if (offset < req->wb_offset) {
1126 req->wb_offset = offset;
1127 req->wb_pgbase = offset;
1128 }
1129 if (end > rqend)
1130 req->wb_bytes = end - req->wb_offset;
1131 else
1132 req->wb_bytes = rqend - req->wb_offset;
1133 return req;
1134 out_flushme:
1135 /*
1136 * Note: we mark the request dirty here because
1137 * nfs_lock_and_join_requests() cannot preserve
1138 * commit flags, so we have to replay the write.
1139 */
1140 nfs_mark_request_dirty(req);
1141 nfs_unlock_and_release_request(req);
1142 error = nfs_wb_page(inode, page);
1143 return (error < 0) ? ERR_PTR(error) : NULL;
1144 }
1145
1146 /*
1147 * Try to update an existing write request, or create one if there is none.
1148 *
1149 * Note: Should always be called with the Page Lock held to prevent races
1150 * if we have to add a new request. Also assumes that the caller has
1151 * already called nfs_flush_incompatible() if necessary.
1152 */
1153 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
1154 struct page *page, unsigned int offset, unsigned int bytes)
1155 {
1156 struct inode *inode = page_file_mapping(page)->host;
1157 struct nfs_page *req;
1158
1159 req = nfs_try_to_update_request(inode, page, offset, bytes);
1160 if (req != NULL)
1161 goto out;
1162 req = nfs_create_request(ctx, page, NULL, offset, bytes);
1163 if (IS_ERR(req))
1164 goto out;
1165 nfs_inode_add_request(inode, req);
1166 out:
1167 return req;
1168 }
1169
1170 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
1171 unsigned int offset, unsigned int count)
1172 {
1173 struct nfs_page *req;
1174
1175 req = nfs_setup_write_request(ctx, page, offset, count);
1176 if (IS_ERR(req))
1177 return PTR_ERR(req);
1178 /* Update file length */
1179 nfs_grow_file(page, offset, count);
1180 nfs_mark_uptodate(req);
1181 nfs_mark_request_dirty(req);
1182 nfs_unlock_and_release_request(req);
1183 return 0;
1184 }
1185
1186 int nfs_flush_incompatible(struct file *file, struct page *page)
1187 {
1188 struct nfs_open_context *ctx = nfs_file_open_context(file);
1189 struct nfs_lock_context *l_ctx;
1190 struct file_lock_context *flctx = file_inode(file)->i_flctx;
1191 struct nfs_page *req;
1192 int do_flush, status;
1193 /*
1194 * Look for a request corresponding to this page. If there
1195 * is one, and it belongs to another file, we flush it out
1196 * before we try to copy anything into the page. Do this
1197 * due to the lack of an ACCESS-type call in NFSv2.
1198 * Also do the same if we find a request from an existing
1199 * dropped page.
1200 */
1201 do {
1202 req = nfs_page_find_head_request(page);
1203 if (req == NULL)
1204 return 0;
1205 l_ctx = req->wb_lock_context;
1206 do_flush = req->wb_page != page ||
1207 !nfs_match_open_context(req->wb_context, ctx);
1208 if (l_ctx && flctx &&
1209 !(list_empty_careful(&flctx->flc_posix) &&
1210 list_empty_careful(&flctx->flc_flock))) {
1211 do_flush |= l_ctx->lockowner != current->files;
1212 }
1213 nfs_release_request(req);
1214 if (!do_flush)
1215 return 0;
1216 status = nfs_wb_page(page_file_mapping(page)->host, page);
1217 } while (status == 0);
1218 return status;
1219 }
1220
1221 /*
1222 * Avoid buffered writes when a open context credential's key would
1223 * expire soon.
1224 *
1225 * Returns -EACCES if the key will expire within RPC_KEY_EXPIRE_FAIL.
1226 *
1227 * Return 0 and set a credential flag which triggers the inode to flush
1228 * and performs NFS_FILE_SYNC writes if the key will expired within
1229 * RPC_KEY_EXPIRE_TIMEO.
1230 */
1231 int
1232 nfs_key_timeout_notify(struct file *filp, struct inode *inode)
1233 {
1234 struct nfs_open_context *ctx = nfs_file_open_context(filp);
1235 struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
1236
1237 return rpcauth_key_timeout_notify(auth, ctx->cred);
1238 }
1239
1240 /*
1241 * Test if the open context credential key is marked to expire soon.
1242 */
1243 bool nfs_ctx_key_to_expire(struct nfs_open_context *ctx, struct inode *inode)
1244 {
1245 struct rpc_auth *auth = NFS_SERVER(inode)->client->cl_auth;
1246
1247 return rpcauth_cred_key_to_expire(auth, ctx->cred);
1248 }
1249
1250 /*
1251 * If the page cache is marked as unsafe or invalid, then we can't rely on
1252 * the PageUptodate() flag. In this case, we will need to turn off
1253 * write optimisations that depend on the page contents being correct.
1254 */
1255 static bool nfs_write_pageuptodate(struct page *page, struct inode *inode)
1256 {
1257 struct nfs_inode *nfsi = NFS_I(inode);
1258
1259 if (nfs_have_delegated_attributes(inode))
1260 goto out;
1261 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
1262 return false;
1263 smp_rmb();
1264 if (test_bit(NFS_INO_INVALIDATING, &nfsi->flags))
1265 return false;
1266 out:
1267 if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
1268 return false;
1269 return PageUptodate(page) != 0;
1270 }
1271
1272 static bool
1273 is_whole_file_wrlock(struct file_lock *fl)
1274 {
1275 return fl->fl_start == 0 && fl->fl_end == OFFSET_MAX &&
1276 fl->fl_type == F_WRLCK;
1277 }
1278
1279 /* If we know the page is up to date, and we're not using byte range locks (or
1280 * if we have the whole file locked for writing), it may be more efficient to
1281 * extend the write to cover the entire page in order to avoid fragmentation
1282 * inefficiencies.
1283 *
1284 * If the file is opened for synchronous writes then we can just skip the rest
1285 * of the checks.
1286 */
1287 static int nfs_can_extend_write(struct file *file, struct page *page, struct inode *inode)
1288 {
1289 int ret;
1290 struct file_lock_context *flctx = inode->i_flctx;
1291 struct file_lock *fl;
1292
1293 if (file->f_flags & O_DSYNC)
1294 return 0;
1295 if (!nfs_write_pageuptodate(page, inode))
1296 return 0;
1297 if (NFS_PROTO(inode)->have_delegation(inode, FMODE_WRITE))
1298 return 1;
1299 if (!flctx || (list_empty_careful(&flctx->flc_flock) &&
1300 list_empty_careful(&flctx->flc_posix)))
1301 return 1;
1302
1303 /* Check to see if there are whole file write locks */
1304 ret = 0;
1305 spin_lock(&flctx->flc_lock);
1306 if (!list_empty(&flctx->flc_posix)) {
1307 fl = list_first_entry(&flctx->flc_posix, struct file_lock,
1308 fl_list);
1309 if (is_whole_file_wrlock(fl))
1310 ret = 1;
1311 } else if (!list_empty(&flctx->flc_flock)) {
1312 fl = list_first_entry(&flctx->flc_flock, struct file_lock,
1313 fl_list);
1314 if (fl->fl_type == F_WRLCK)
1315 ret = 1;
1316 }
1317 spin_unlock(&flctx->flc_lock);
1318 return ret;
1319 }
1320
1321 /*
1322 * Update and possibly write a cached page of an NFS file.
1323 *
1324 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
1325 * things with a page scheduled for an RPC call (e.g. invalidate it).
1326 */
1327 int nfs_updatepage(struct file *file, struct page *page,
1328 unsigned int offset, unsigned int count)
1329 {
1330 struct nfs_open_context *ctx = nfs_file_open_context(file);
1331 struct inode *inode = page_file_mapping(page)->host;
1332 int status = 0;
1333
1334 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
1335
1336 dprintk("NFS: nfs_updatepage(%pD2 %d@%lld)\n",
1337 file, count, (long long)(page_file_offset(page) + offset));
1338
1339 if (!count)
1340 goto out;
1341
1342 if (nfs_can_extend_write(file, page, inode)) {
1343 count = max(count + offset, nfs_page_length(page));
1344 offset = 0;
1345 }
1346
1347 status = nfs_writepage_setup(ctx, page, offset, count);
1348 if (status < 0)
1349 nfs_set_pageerror(page);
1350 else
1351 __set_page_dirty_nobuffers(page);
1352 out:
1353 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
1354 status, (long long)i_size_read(inode));
1355 return status;
1356 }
1357
1358 static int flush_task_priority(int how)
1359 {
1360 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
1361 case FLUSH_HIGHPRI:
1362 return RPC_PRIORITY_HIGH;
1363 case FLUSH_LOWPRI:
1364 return RPC_PRIORITY_LOW;
1365 }
1366 return RPC_PRIORITY_NORMAL;
1367 }
1368
1369 static void nfs_initiate_write(struct nfs_pgio_header *hdr,
1370 struct rpc_message *msg,
1371 const struct nfs_rpc_ops *rpc_ops,
1372 struct rpc_task_setup *task_setup_data, int how)
1373 {
1374 int priority = flush_task_priority(how);
1375
1376 task_setup_data->priority = priority;
1377 rpc_ops->write_setup(hdr, msg);
1378 trace_nfs_initiate_write(hdr->inode, hdr->io_start, hdr->good_bytes,
1379 hdr->args.stable);
1380
1381 nfs4_state_protect_write(NFS_SERVER(hdr->inode)->nfs_client,
1382 &task_setup_data->rpc_client, msg, hdr);
1383 }
1384
1385 /* If a nfs_flush_* function fails, it should remove reqs from @head and
1386 * call this on each, which will prepare them to be retried on next
1387 * writeback using standard nfs.
1388 */
1389 static void nfs_redirty_request(struct nfs_page *req)
1390 {
1391 nfs_mark_request_dirty(req);
1392 set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags);
1393 nfs_end_page_writeback(req);
1394 nfs_release_request(req);
1395 }
1396
1397 static void nfs_async_write_error(struct list_head *head)
1398 {
1399 struct nfs_page *req;
1400
1401 while (!list_empty(head)) {
1402 req = nfs_list_entry(head->next);
1403 nfs_list_remove_request(req);
1404 nfs_redirty_request(req);
1405 }
1406 }
1407
1408 static void nfs_async_write_reschedule_io(struct nfs_pgio_header *hdr)
1409 {
1410 nfs_async_write_error(&hdr->pages);
1411 }
1412
1413 static const struct nfs_pgio_completion_ops nfs_async_write_completion_ops = {
1414 .init_hdr = nfs_async_write_init,
1415 .error_cleanup = nfs_async_write_error,
1416 .completion = nfs_write_completion,
1417 .reschedule_io = nfs_async_write_reschedule_io,
1418 };
1419
1420 void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1421 struct inode *inode, int ioflags, bool force_mds,
1422 const struct nfs_pgio_completion_ops *compl_ops)
1423 {
1424 struct nfs_server *server = NFS_SERVER(inode);
1425 const struct nfs_pageio_ops *pg_ops = &nfs_pgio_rw_ops;
1426
1427 #ifdef CONFIG_NFS_V4_1
1428 if (server->pnfs_curr_ld && !force_mds)
1429 pg_ops = server->pnfs_curr_ld->pg_write_ops;
1430 #endif
1431 nfs_pageio_init(pgio, inode, pg_ops, compl_ops, &nfs_rw_write_ops,
1432 server->wsize, ioflags);
1433 }
1434 EXPORT_SYMBOL_GPL(nfs_pageio_init_write);
1435
1436 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1437 {
1438 struct nfs_pgio_mirror *mirror;
1439
1440 if (pgio->pg_ops && pgio->pg_ops->pg_cleanup)
1441 pgio->pg_ops->pg_cleanup(pgio);
1442
1443 pgio->pg_ops = &nfs_pgio_rw_ops;
1444
1445 nfs_pageio_stop_mirroring(pgio);
1446
1447 mirror = &pgio->pg_mirrors[0];
1448 mirror->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1449 }
1450 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1451
1452
1453 void nfs_commit_prepare(struct rpc_task *task, void *calldata)
1454 {
1455 struct nfs_commit_data *data = calldata;
1456
1457 NFS_PROTO(data->inode)->commit_rpc_prepare(task, data);
1458 }
1459
1460 /*
1461 * Special version of should_remove_suid() that ignores capabilities.
1462 */
1463 static int nfs_should_remove_suid(const struct inode *inode)
1464 {
1465 umode_t mode = inode->i_mode;
1466 int kill = 0;
1467
1468 /* suid always must be killed */
1469 if (unlikely(mode & S_ISUID))
1470 kill = ATTR_KILL_SUID;
1471
1472 /*
1473 * sgid without any exec bits is just a mandatory locking mark; leave
1474 * it alone. If some exec bits are set, it's a real sgid; kill it.
1475 */
1476 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1477 kill |= ATTR_KILL_SGID;
1478
1479 if (unlikely(kill && S_ISREG(mode)))
1480 return kill;
1481
1482 return 0;
1483 }
1484
1485 static void nfs_writeback_check_extend(struct nfs_pgio_header *hdr,
1486 struct nfs_fattr *fattr)
1487 {
1488 struct nfs_pgio_args *argp = &hdr->args;
1489 struct nfs_pgio_res *resp = &hdr->res;
1490 u64 size = argp->offset + resp->count;
1491
1492 if (!(fattr->valid & NFS_ATTR_FATTR_SIZE))
1493 fattr->size = size;
1494 if (nfs_size_to_loff_t(fattr->size) < i_size_read(hdr->inode)) {
1495 fattr->valid &= ~NFS_ATTR_FATTR_SIZE;
1496 return;
1497 }
1498 if (size != fattr->size)
1499 return;
1500 /* Set attribute barrier */
1501 nfs_fattr_set_barrier(fattr);
1502 /* ...and update size */
1503 fattr->valid |= NFS_ATTR_FATTR_SIZE;
1504 }
1505
1506 void nfs_writeback_update_inode(struct nfs_pgio_header *hdr)
1507 {
1508 struct nfs_fattr *fattr = &hdr->fattr;
1509 struct inode *inode = hdr->inode;
1510
1511 spin_lock(&inode->i_lock);
1512 nfs_writeback_check_extend(hdr, fattr);
1513 nfs_post_op_update_inode_force_wcc_locked(inode, fattr);
1514 spin_unlock(&inode->i_lock);
1515 }
1516 EXPORT_SYMBOL_GPL(nfs_writeback_update_inode);
1517
1518 /*
1519 * This function is called when the WRITE call is complete.
1520 */
1521 static int nfs_writeback_done(struct rpc_task *task,
1522 struct nfs_pgio_header *hdr,
1523 struct inode *inode)
1524 {
1525 int status;
1526
1527 /*
1528 * ->write_done will attempt to use post-op attributes to detect
1529 * conflicting writes by other clients. A strict interpretation
1530 * of close-to-open would allow us to continue caching even if
1531 * another writer had changed the file, but some applications
1532 * depend on tighter cache coherency when writing.
1533 */
1534 status = NFS_PROTO(inode)->write_done(task, hdr);
1535 if (status != 0)
1536 return status;
1537
1538 nfs_add_stats(inode, NFSIOS_SERVERWRITTENBYTES, hdr->res.count);
1539 trace_nfs_writeback_done(inode, task->tk_status,
1540 hdr->args.offset, hdr->res.verf);
1541
1542 if (hdr->res.verf->committed < hdr->args.stable &&
1543 task->tk_status >= 0) {
1544 /* We tried a write call, but the server did not
1545 * commit data to stable storage even though we
1546 * requested it.
1547 * Note: There is a known bug in Tru64 < 5.0 in which
1548 * the server reports NFS_DATA_SYNC, but performs
1549 * NFS_FILE_SYNC. We therefore implement this checking
1550 * as a dprintk() in order to avoid filling syslog.
1551 */
1552 static unsigned long complain;
1553
1554 /* Note this will print the MDS for a DS write */
1555 if (time_before(complain, jiffies)) {
1556 dprintk("NFS: faulty NFS server %s:"
1557 " (committed = %d) != (stable = %d)\n",
1558 NFS_SERVER(inode)->nfs_client->cl_hostname,
1559 hdr->res.verf->committed, hdr->args.stable);
1560 complain = jiffies + 300 * HZ;
1561 }
1562 }
1563
1564 /* Deal with the suid/sgid bit corner case */
1565 if (nfs_should_remove_suid(inode))
1566 nfs_mark_for_revalidate(inode);
1567 return 0;
1568 }
1569
1570 /*
1571 * This function is called when the WRITE call is complete.
1572 */
1573 static void nfs_writeback_result(struct rpc_task *task,
1574 struct nfs_pgio_header *hdr)
1575 {
1576 struct nfs_pgio_args *argp = &hdr->args;
1577 struct nfs_pgio_res *resp = &hdr->res;
1578
1579 if (resp->count < argp->count) {
1580 static unsigned long complain;
1581
1582 /* This a short write! */
1583 nfs_inc_stats(hdr->inode, NFSIOS_SHORTWRITE);
1584
1585 /* Has the server at least made some progress? */
1586 if (resp->count == 0) {
1587 if (time_before(complain, jiffies)) {
1588 printk(KERN_WARNING
1589 "NFS: Server wrote zero bytes, expected %u.\n",
1590 argp->count);
1591 complain = jiffies + 300 * HZ;
1592 }
1593 nfs_set_pgio_error(hdr, -EIO, argp->offset);
1594 task->tk_status = -EIO;
1595 return;
1596 }
1597
1598 /* For non rpc-based layout drivers, retry-through-MDS */
1599 if (!task->tk_ops) {
1600 hdr->pnfs_error = -EAGAIN;
1601 return;
1602 }
1603
1604 /* Was this an NFSv2 write or an NFSv3 stable write? */
1605 if (resp->verf->committed != NFS_UNSTABLE) {
1606 /* Resend from where the server left off */
1607 hdr->mds_offset += resp->count;
1608 argp->offset += resp->count;
1609 argp->pgbase += resp->count;
1610 argp->count -= resp->count;
1611 } else {
1612 /* Resend as a stable write in order to avoid
1613 * headaches in the case of a server crash.
1614 */
1615 argp->stable = NFS_FILE_SYNC;
1616 }
1617 rpc_restart_call_prepare(task);
1618 }
1619 }
1620
1621 static int wait_on_commit(struct nfs_mds_commit_info *cinfo)
1622 {
1623 return wait_on_atomic_t(&cinfo->rpcs_out,
1624 nfs_wait_atomic_killable, TASK_KILLABLE);
1625 }
1626
1627 static void nfs_commit_begin(struct nfs_mds_commit_info *cinfo)
1628 {
1629 atomic_inc(&cinfo->rpcs_out);
1630 }
1631
1632 static void nfs_commit_end(struct nfs_mds_commit_info *cinfo)
1633 {
1634 if (atomic_dec_and_test(&cinfo->rpcs_out))
1635 wake_up_atomic_t(&cinfo->rpcs_out);
1636 }
1637
1638 void nfs_commitdata_release(struct nfs_commit_data *data)
1639 {
1640 put_nfs_open_context(data->context);
1641 nfs_commit_free(data);
1642 }
1643 EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1644
1645 int nfs_initiate_commit(struct rpc_clnt *clnt, struct nfs_commit_data *data,
1646 const struct nfs_rpc_ops *nfs_ops,
1647 const struct rpc_call_ops *call_ops,
1648 int how, int flags)
1649 {
1650 struct rpc_task *task;
1651 int priority = flush_task_priority(how);
1652 struct rpc_message msg = {
1653 .rpc_argp = &data->args,
1654 .rpc_resp = &data->res,
1655 .rpc_cred = data->cred,
1656 };
1657 struct rpc_task_setup task_setup_data = {
1658 .task = &data->task,
1659 .rpc_client = clnt,
1660 .rpc_message = &msg,
1661 .callback_ops = call_ops,
1662 .callback_data = data,
1663 .workqueue = nfsiod_workqueue,
1664 .flags = RPC_TASK_ASYNC | flags,
1665 .priority = priority,
1666 };
1667 /* Set up the initial task struct. */
1668 nfs_ops->commit_setup(data, &msg);
1669 trace_nfs_initiate_commit(data);
1670
1671 dprintk("NFS: initiated commit call\n");
1672
1673 nfs4_state_protect(NFS_SERVER(data->inode)->nfs_client,
1674 NFS_SP4_MACH_CRED_COMMIT, &task_setup_data.rpc_client, &msg);
1675
1676 task = rpc_run_task(&task_setup_data);
1677 if (IS_ERR(task))
1678 return PTR_ERR(task);
1679 if (how & FLUSH_SYNC)
1680 rpc_wait_for_completion_task(task);
1681 rpc_put_task(task);
1682 return 0;
1683 }
1684 EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1685
1686 static loff_t nfs_get_lwb(struct list_head *head)
1687 {
1688 loff_t lwb = 0;
1689 struct nfs_page *req;
1690
1691 list_for_each_entry(req, head, wb_list)
1692 if (lwb < (req_offset(req) + req->wb_bytes))
1693 lwb = req_offset(req) + req->wb_bytes;
1694
1695 return lwb;
1696 }
1697
1698 /*
1699 * Set up the argument/result storage required for the RPC call.
1700 */
1701 void nfs_init_commit(struct nfs_commit_data *data,
1702 struct list_head *head,
1703 struct pnfs_layout_segment *lseg,
1704 struct nfs_commit_info *cinfo)
1705 {
1706 struct nfs_page *first = nfs_list_entry(head->next);
1707 struct inode *inode = d_inode(first->wb_context->dentry);
1708
1709 /* Set up the RPC argument and reply structs
1710 * NB: take care not to mess about with data->commit et al. */
1711
1712 list_splice_init(head, &data->pages);
1713
1714 data->inode = inode;
1715 data->cred = first->wb_context->cred;
1716 data->lseg = lseg; /* reference transferred */
1717 /* only set lwb for pnfs commit */
1718 if (lseg)
1719 data->lwb = nfs_get_lwb(&data->pages);
1720 data->mds_ops = &nfs_commit_ops;
1721 data->completion_ops = cinfo->completion_ops;
1722 data->dreq = cinfo->dreq;
1723
1724 data->args.fh = NFS_FH(data->inode);
1725 /* Note: we always request a commit of the entire inode */
1726 data->args.offset = 0;
1727 data->args.count = 0;
1728 data->context = get_nfs_open_context(first->wb_context);
1729 data->res.fattr = &data->fattr;
1730 data->res.verf = &data->verf;
1731 nfs_fattr_init(&data->fattr);
1732 }
1733 EXPORT_SYMBOL_GPL(nfs_init_commit);
1734
1735 void nfs_retry_commit(struct list_head *page_list,
1736 struct pnfs_layout_segment *lseg,
1737 struct nfs_commit_info *cinfo,
1738 u32 ds_commit_idx)
1739 {
1740 struct nfs_page *req;
1741
1742 while (!list_empty(page_list)) {
1743 req = nfs_list_entry(page_list->next);
1744 nfs_list_remove_request(req);
1745 nfs_mark_request_commit(req, lseg, cinfo, ds_commit_idx);
1746 if (!cinfo->dreq)
1747 nfs_clear_page_commit(req->wb_page);
1748 nfs_unlock_and_release_request(req);
1749 }
1750 }
1751 EXPORT_SYMBOL_GPL(nfs_retry_commit);
1752
1753 static void
1754 nfs_commit_resched_write(struct nfs_commit_info *cinfo,
1755 struct nfs_page *req)
1756 {
1757 __set_page_dirty_nobuffers(req->wb_page);
1758 }
1759
1760 /*
1761 * Commit dirty pages
1762 */
1763 static int
1764 nfs_commit_list(struct inode *inode, struct list_head *head, int how,
1765 struct nfs_commit_info *cinfo)
1766 {
1767 struct nfs_commit_data *data;
1768
1769 /* another commit raced with us */
1770 if (list_empty(head))
1771 return 0;
1772
1773 data = nfs_commitdata_alloc(true);
1774
1775 /* Set up the argument struct */
1776 nfs_init_commit(data, head, NULL, cinfo);
1777 atomic_inc(&cinfo->mds->rpcs_out);
1778 return nfs_initiate_commit(NFS_CLIENT(inode), data, NFS_PROTO(inode),
1779 data->mds_ops, how, 0);
1780 }
1781
1782 /*
1783 * COMMIT call returned
1784 */
1785 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1786 {
1787 struct nfs_commit_data *data = calldata;
1788
1789 dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1790 task->tk_pid, task->tk_status);
1791
1792 /* Call the NFS version-specific code */
1793 NFS_PROTO(data->inode)->commit_done(task, data);
1794 trace_nfs_commit_done(data);
1795 }
1796
1797 static void nfs_commit_release_pages(struct nfs_commit_data *data)
1798 {
1799 struct nfs_page *req;
1800 int status = data->task.tk_status;
1801 struct nfs_commit_info cinfo;
1802 struct nfs_server *nfss;
1803
1804 while (!list_empty(&data->pages)) {
1805 req = nfs_list_entry(data->pages.next);
1806 nfs_list_remove_request(req);
1807 if (req->wb_page)
1808 nfs_clear_page_commit(req->wb_page);
1809
1810 dprintk("NFS: commit (%s/%llu %d@%lld)",
1811 req->wb_context->dentry->d_sb->s_id,
1812 (unsigned long long)NFS_FILEID(d_inode(req->wb_context->dentry)),
1813 req->wb_bytes,
1814 (long long)req_offset(req));
1815 if (status < 0) {
1816 nfs_context_set_write_error(req->wb_context, status);
1817 if (req->wb_page)
1818 nfs_inode_remove_request(req);
1819 dprintk_cont(", error = %d\n", status);
1820 goto next;
1821 }
1822
1823 /* Okay, COMMIT succeeded, apparently. Check the verifier
1824 * returned by the server against all stored verfs. */
1825 if (!nfs_write_verifier_cmp(&req->wb_verf, &data->verf.verifier)) {
1826 /* We have a match */
1827 if (req->wb_page)
1828 nfs_inode_remove_request(req);
1829 dprintk_cont(" OK\n");
1830 goto next;
1831 }
1832 /* We have a mismatch. Write the page again */
1833 dprintk_cont(" mismatch\n");
1834 nfs_mark_request_dirty(req);
1835 set_bit(NFS_CONTEXT_RESEND_WRITES, &req->wb_context->flags);
1836 next:
1837 nfs_unlock_and_release_request(req);
1838 /* Latency breaker */
1839 cond_resched();
1840 }
1841 nfss = NFS_SERVER(data->inode);
1842 if (atomic_long_read(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
1843 clear_bdi_congested(inode_to_bdi(data->inode), BLK_RW_ASYNC);
1844
1845 nfs_init_cinfo(&cinfo, data->inode, data->dreq);
1846 nfs_commit_end(cinfo.mds);
1847 }
1848
1849 static void nfs_commit_release(void *calldata)
1850 {
1851 struct nfs_commit_data *data = calldata;
1852
1853 data->completion_ops->completion(data);
1854 nfs_commitdata_release(calldata);
1855 }
1856
1857 static const struct rpc_call_ops nfs_commit_ops = {
1858 .rpc_call_prepare = nfs_commit_prepare,
1859 .rpc_call_done = nfs_commit_done,
1860 .rpc_release = nfs_commit_release,
1861 };
1862
1863 static const struct nfs_commit_completion_ops nfs_commit_completion_ops = {
1864 .completion = nfs_commit_release_pages,
1865 .resched_write = nfs_commit_resched_write,
1866 };
1867
1868 int nfs_generic_commit_list(struct inode *inode, struct list_head *head,
1869 int how, struct nfs_commit_info *cinfo)
1870 {
1871 int status;
1872
1873 status = pnfs_commit_list(inode, head, how, cinfo);
1874 if (status == PNFS_NOT_ATTEMPTED)
1875 status = nfs_commit_list(inode, head, how, cinfo);
1876 return status;
1877 }
1878
1879 int nfs_commit_inode(struct inode *inode, int how)
1880 {
1881 LIST_HEAD(head);
1882 struct nfs_commit_info cinfo;
1883 int may_wait = how & FLUSH_SYNC;
1884 int error = 0;
1885 int res;
1886
1887 nfs_init_cinfo_from_inode(&cinfo, inode);
1888 nfs_commit_begin(cinfo.mds);
1889 res = nfs_scan_commit(inode, &head, &cinfo);
1890 if (res)
1891 error = nfs_generic_commit_list(inode, &head, how, &cinfo);
1892 nfs_commit_end(cinfo.mds);
1893 if (res == 0)
1894 return res;
1895 if (error < 0)
1896 goto out_error;
1897 if (!may_wait)
1898 goto out_mark_dirty;
1899 error = wait_on_commit(cinfo.mds);
1900 if (error < 0)
1901 return error;
1902 return res;
1903 out_error:
1904 res = error;
1905 /* Note: If we exit without ensuring that the commit is complete,
1906 * we must mark the inode as dirty. Otherwise, future calls to
1907 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1908 * that the data is on the disk.
1909 */
1910 out_mark_dirty:
1911 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1912 return res;
1913 }
1914 EXPORT_SYMBOL_GPL(nfs_commit_inode);
1915
1916 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1917 {
1918 struct nfs_inode *nfsi = NFS_I(inode);
1919 int flags = FLUSH_SYNC;
1920 int ret = 0;
1921
1922 /* no commits means nothing needs to be done */
1923 if (!atomic_long_read(&nfsi->commit_info.ncommit))
1924 return ret;
1925
1926 if (wbc->sync_mode == WB_SYNC_NONE) {
1927 /* Don't commit yet if this is a non-blocking flush and there
1928 * are a lot of outstanding writes for this mapping.
1929 */
1930 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))
1931 goto out_mark_dirty;
1932
1933 /* don't wait for the COMMIT response */
1934 flags = 0;
1935 }
1936
1937 ret = nfs_commit_inode(inode, flags);
1938 if (ret >= 0) {
1939 if (wbc->sync_mode == WB_SYNC_NONE) {
1940 if (ret < wbc->nr_to_write)
1941 wbc->nr_to_write -= ret;
1942 else
1943 wbc->nr_to_write = 0;
1944 }
1945 return 0;
1946 }
1947 out_mark_dirty:
1948 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1949 return ret;
1950 }
1951 EXPORT_SYMBOL_GPL(nfs_write_inode);
1952
1953 /*
1954 * Wrapper for filemap_write_and_wait_range()
1955 *
1956 * Needed for pNFS in order to ensure data becomes visible to the
1957 * client.
1958 */
1959 int nfs_filemap_write_and_wait_range(struct address_space *mapping,
1960 loff_t lstart, loff_t lend)
1961 {
1962 int ret;
1963
1964 ret = filemap_write_and_wait_range(mapping, lstart, lend);
1965 if (ret == 0)
1966 ret = pnfs_sync_inode(mapping->host, true);
1967 return ret;
1968 }
1969 EXPORT_SYMBOL_GPL(nfs_filemap_write_and_wait_range);
1970
1971 /*
1972 * flush the inode to disk.
1973 */
1974 int nfs_wb_all(struct inode *inode)
1975 {
1976 int ret;
1977
1978 trace_nfs_writeback_inode_enter(inode);
1979
1980 ret = filemap_write_and_wait(inode->i_mapping);
1981 if (ret)
1982 goto out;
1983 ret = nfs_commit_inode(inode, FLUSH_SYNC);
1984 if (ret < 0)
1985 goto out;
1986 pnfs_sync_inode(inode, true);
1987 ret = 0;
1988
1989 out:
1990 trace_nfs_writeback_inode_exit(inode, ret);
1991 return ret;
1992 }
1993 EXPORT_SYMBOL_GPL(nfs_wb_all);
1994
1995 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1996 {
1997 struct nfs_page *req;
1998 int ret = 0;
1999
2000 wait_on_page_writeback(page);
2001
2002 /* blocking call to cancel all requests and join to a single (head)
2003 * request */
2004 req = nfs_lock_and_join_requests(page);
2005
2006 if (IS_ERR(req)) {
2007 ret = PTR_ERR(req);
2008 } else if (req) {
2009 /* all requests from this page have been cancelled by
2010 * nfs_lock_and_join_requests, so just remove the head
2011 * request from the inode / page_private pointer and
2012 * release it */
2013 nfs_inode_remove_request(req);
2014 nfs_unlock_and_release_request(req);
2015 }
2016
2017 return ret;
2018 }
2019
2020 /*
2021 * Write back all requests on one page - we do this before reading it.
2022 */
2023 int nfs_wb_page(struct inode *inode, struct page *page)
2024 {
2025 loff_t range_start = page_file_offset(page);
2026 loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1);
2027 struct writeback_control wbc = {
2028 .sync_mode = WB_SYNC_ALL,
2029 .nr_to_write = 0,
2030 .range_start = range_start,
2031 .range_end = range_end,
2032 };
2033 int ret;
2034
2035 trace_nfs_writeback_page_enter(inode);
2036
2037 for (;;) {
2038 wait_on_page_writeback(page);
2039 if (clear_page_dirty_for_io(page)) {
2040 ret = nfs_writepage_locked(page, &wbc);
2041 if (ret < 0)
2042 goto out_error;
2043 continue;
2044 }
2045 ret = 0;
2046 if (!PagePrivate(page))
2047 break;
2048 ret = nfs_commit_inode(inode, FLUSH_SYNC);
2049 if (ret < 0)
2050 goto out_error;
2051 }
2052 out_error:
2053 trace_nfs_writeback_page_exit(inode, ret);
2054 return ret;
2055 }
2056
2057 #ifdef CONFIG_MIGRATION
2058 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
2059 struct page *page, enum migrate_mode mode)
2060 {
2061 /*
2062 * If PagePrivate is set, then the page is currently associated with
2063 * an in-progress read or write request. Don't try to migrate it.
2064 *
2065 * FIXME: we could do this in principle, but we'll need a way to ensure
2066 * that we can safely release the inode reference while holding
2067 * the page lock.
2068 */
2069 if (PagePrivate(page))
2070 return -EBUSY;
2071
2072 if (!nfs_fscache_release_page(page, GFP_KERNEL))
2073 return -EBUSY;
2074
2075 return migrate_page(mapping, newpage, page, mode);
2076 }
2077 #endif
2078
2079 int __init nfs_init_writepagecache(void)
2080 {
2081 nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
2082 sizeof(struct nfs_pgio_header),
2083 0, SLAB_HWCACHE_ALIGN,
2084 NULL);
2085 if (nfs_wdata_cachep == NULL)
2086 return -ENOMEM;
2087
2088 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
2089 nfs_wdata_cachep);
2090 if (nfs_wdata_mempool == NULL)
2091 goto out_destroy_write_cache;
2092
2093 nfs_cdata_cachep = kmem_cache_create("nfs_commit_data",
2094 sizeof(struct nfs_commit_data),
2095 0, SLAB_HWCACHE_ALIGN,
2096 NULL);
2097 if (nfs_cdata_cachep == NULL)
2098 goto out_destroy_write_mempool;
2099
2100 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
2101 nfs_cdata_cachep);
2102 if (nfs_commit_mempool == NULL)
2103 goto out_destroy_commit_cache;
2104
2105 /*
2106 * NFS congestion size, scale with available memory.
2107 *
2108 * 64MB: 8192k
2109 * 128MB: 11585k
2110 * 256MB: 16384k
2111 * 512MB: 23170k
2112 * 1GB: 32768k
2113 * 2GB: 46340k
2114 * 4GB: 65536k
2115 * 8GB: 92681k
2116 * 16GB: 131072k
2117 *
2118 * This allows larger machines to have larger/more transfers.
2119 * Limit the default to 256M
2120 */
2121 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
2122 if (nfs_congestion_kb > 256*1024)
2123 nfs_congestion_kb = 256*1024;
2124
2125 return 0;
2126
2127 out_destroy_commit_cache:
2128 kmem_cache_destroy(nfs_cdata_cachep);
2129 out_destroy_write_mempool:
2130 mempool_destroy(nfs_wdata_mempool);
2131 out_destroy_write_cache:
2132 kmem_cache_destroy(nfs_wdata_cachep);
2133 return -ENOMEM;
2134 }
2135
2136 void nfs_destroy_writepagecache(void)
2137 {
2138 mempool_destroy(nfs_commit_mempool);
2139 kmem_cache_destroy(nfs_cdata_cachep);
2140 mempool_destroy(nfs_wdata_mempool);
2141 kmem_cache_destroy(nfs_wdata_cachep);
2142 }
2143
2144 static const struct nfs_rw_ops nfs_rw_write_ops = {
2145 .rw_alloc_header = nfs_writehdr_alloc,
2146 .rw_free_header = nfs_writehdr_free,
2147 .rw_done = nfs_writeback_done,
2148 .rw_result = nfs_writeback_result,
2149 .rw_initiate = nfs_initiate_write,
2150 };