]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/nfs/write.c
bd4b34e5870b6bf11fb5176756be6f3f6bbd3804
[mirror_ubuntu-hirsute-kernel.git] / fs / nfs / write.c
1 /*
2 * linux/fs/nfs/write.c
3 *
4 * Write file data over NFS.
5 *
6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7 */
8
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23
24 #include <asm/uaccess.h>
25
26 #include "delegation.h"
27 #include "internal.h"
28 #include "iostat.h"
29 #include "nfs4_fs.h"
30 #include "fscache.h"
31 #include "pnfs.h"
32
33 #define NFSDBG_FACILITY NFSDBG_PAGECACHE
34
35 #define MIN_POOL_WRITE (32)
36 #define MIN_POOL_COMMIT (4)
37
38 /*
39 * Local function declarations
40 */
41 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
42 struct inode *inode, int ioflags);
43 static void nfs_redirty_request(struct nfs_page *req);
44 static const struct rpc_call_ops nfs_write_partial_ops;
45 static const struct rpc_call_ops nfs_write_full_ops;
46 static const struct rpc_call_ops nfs_commit_ops;
47
48 static struct kmem_cache *nfs_wdata_cachep;
49 static mempool_t *nfs_wdata_mempool;
50 static mempool_t *nfs_commit_mempool;
51
52 struct nfs_write_data *nfs_commitdata_alloc(void)
53 {
54 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
55
56 if (p) {
57 memset(p, 0, sizeof(*p));
58 INIT_LIST_HEAD(&p->pages);
59 }
60 return p;
61 }
62 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
63
64 void nfs_commit_free(struct nfs_write_data *p)
65 {
66 if (p && (p->pagevec != &p->page_array[0]))
67 kfree(p->pagevec);
68 mempool_free(p, nfs_commit_mempool);
69 }
70 EXPORT_SYMBOL_GPL(nfs_commit_free);
71
72 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
73 {
74 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
75
76 if (p) {
77 memset(p, 0, sizeof(*p));
78 INIT_LIST_HEAD(&p->pages);
79 p->npages = pagecount;
80 if (pagecount <= ARRAY_SIZE(p->page_array))
81 p->pagevec = p->page_array;
82 else {
83 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
84 if (!p->pagevec) {
85 mempool_free(p, nfs_wdata_mempool);
86 p = NULL;
87 }
88 }
89 }
90 return p;
91 }
92
93 void nfs_writedata_free(struct nfs_write_data *p)
94 {
95 if (p && (p->pagevec != &p->page_array[0]))
96 kfree(p->pagevec);
97 mempool_free(p, nfs_wdata_mempool);
98 }
99
100 static void nfs_writedata_release(struct nfs_write_data *wdata)
101 {
102 put_lseg(wdata->lseg);
103 put_nfs_open_context(wdata->args.context);
104 nfs_writedata_free(wdata);
105 }
106
107 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
108 {
109 ctx->error = error;
110 smp_wmb();
111 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
112 }
113
114 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
115 {
116 struct nfs_page *req = NULL;
117
118 if (PagePrivate(page)) {
119 req = (struct nfs_page *)page_private(page);
120 if (req != NULL)
121 kref_get(&req->wb_kref);
122 }
123 return req;
124 }
125
126 static struct nfs_page *nfs_page_find_request(struct page *page)
127 {
128 struct inode *inode = page->mapping->host;
129 struct nfs_page *req = NULL;
130
131 spin_lock(&inode->i_lock);
132 req = nfs_page_find_request_locked(page);
133 spin_unlock(&inode->i_lock);
134 return req;
135 }
136
137 /* Adjust the file length if we're writing beyond the end */
138 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
139 {
140 struct inode *inode = page->mapping->host;
141 loff_t end, i_size;
142 pgoff_t end_index;
143
144 spin_lock(&inode->i_lock);
145 i_size = i_size_read(inode);
146 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
147 if (i_size > 0 && page->index < end_index)
148 goto out;
149 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
150 if (i_size >= end)
151 goto out;
152 i_size_write(inode, end);
153 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
154 out:
155 spin_unlock(&inode->i_lock);
156 }
157
158 /* A writeback failed: mark the page as bad, and invalidate the page cache */
159 static void nfs_set_pageerror(struct page *page)
160 {
161 SetPageError(page);
162 nfs_zap_mapping(page->mapping->host, page->mapping);
163 }
164
165 /* We can set the PG_uptodate flag if we see that a write request
166 * covers the full page.
167 */
168 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
169 {
170 if (PageUptodate(page))
171 return;
172 if (base != 0)
173 return;
174 if (count != nfs_page_length(page))
175 return;
176 SetPageUptodate(page);
177 }
178
179 static int wb_priority(struct writeback_control *wbc)
180 {
181 if (wbc->for_reclaim)
182 return FLUSH_HIGHPRI | FLUSH_STABLE;
183 if (wbc->for_kupdate || wbc->for_background)
184 return FLUSH_LOWPRI | FLUSH_COND_STABLE;
185 return FLUSH_COND_STABLE;
186 }
187
188 /*
189 * NFS congestion control
190 */
191
192 int nfs_congestion_kb;
193
194 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
195 #define NFS_CONGESTION_OFF_THRESH \
196 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
197
198 static int nfs_set_page_writeback(struct page *page)
199 {
200 int ret = test_set_page_writeback(page);
201
202 if (!ret) {
203 struct inode *inode = page->mapping->host;
204 struct nfs_server *nfss = NFS_SERVER(inode);
205
206 page_cache_get(page);
207 if (atomic_long_inc_return(&nfss->writeback) >
208 NFS_CONGESTION_ON_THRESH) {
209 set_bdi_congested(&nfss->backing_dev_info,
210 BLK_RW_ASYNC);
211 }
212 }
213 return ret;
214 }
215
216 static void nfs_end_page_writeback(struct page *page)
217 {
218 struct inode *inode = page->mapping->host;
219 struct nfs_server *nfss = NFS_SERVER(inode);
220
221 end_page_writeback(page);
222 page_cache_release(page);
223 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
224 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
225 }
226
227 static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
228 {
229 struct inode *inode = page->mapping->host;
230 struct nfs_page *req;
231 int ret;
232
233 spin_lock(&inode->i_lock);
234 for (;;) {
235 req = nfs_page_find_request_locked(page);
236 if (req == NULL)
237 break;
238 if (nfs_set_page_tag_locked(req))
239 break;
240 /* Note: If we hold the page lock, as is the case in nfs_writepage,
241 * then the call to nfs_set_page_tag_locked() will always
242 * succeed provided that someone hasn't already marked the
243 * request as dirty (in which case we don't care).
244 */
245 spin_unlock(&inode->i_lock);
246 if (!nonblock)
247 ret = nfs_wait_on_request(req);
248 else
249 ret = -EAGAIN;
250 nfs_release_request(req);
251 if (ret != 0)
252 return ERR_PTR(ret);
253 spin_lock(&inode->i_lock);
254 }
255 spin_unlock(&inode->i_lock);
256 return req;
257 }
258
259 /*
260 * Find an associated nfs write request, and prepare to flush it out
261 * May return an error if the user signalled nfs_wait_on_request().
262 */
263 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
264 struct page *page, bool nonblock)
265 {
266 struct nfs_page *req;
267 int ret = 0;
268
269 req = nfs_find_and_lock_request(page, nonblock);
270 if (!req)
271 goto out;
272 ret = PTR_ERR(req);
273 if (IS_ERR(req))
274 goto out;
275
276 ret = nfs_set_page_writeback(page);
277 BUG_ON(ret != 0);
278 BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
279
280 if (!nfs_pageio_add_request(pgio, req)) {
281 nfs_redirty_request(req);
282 ret = pgio->pg_error;
283 }
284 out:
285 return ret;
286 }
287
288 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
289 {
290 struct inode *inode = page->mapping->host;
291 int ret;
292
293 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
294 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
295
296 nfs_pageio_cond_complete(pgio, page->index);
297 ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
298 if (ret == -EAGAIN) {
299 redirty_page_for_writepage(wbc, page);
300 ret = 0;
301 }
302 return ret;
303 }
304
305 /*
306 * Write an mmapped page to the server.
307 */
308 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
309 {
310 struct nfs_pageio_descriptor pgio;
311 int err;
312
313 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
314 err = nfs_do_writepage(page, wbc, &pgio);
315 nfs_pageio_complete(&pgio);
316 if (err < 0)
317 return err;
318 if (pgio.pg_error < 0)
319 return pgio.pg_error;
320 return 0;
321 }
322
323 int nfs_writepage(struct page *page, struct writeback_control *wbc)
324 {
325 int ret;
326
327 ret = nfs_writepage_locked(page, wbc);
328 unlock_page(page);
329 return ret;
330 }
331
332 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
333 {
334 int ret;
335
336 ret = nfs_do_writepage(page, wbc, data);
337 unlock_page(page);
338 return ret;
339 }
340
341 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
342 {
343 struct inode *inode = mapping->host;
344 unsigned long *bitlock = &NFS_I(inode)->flags;
345 struct nfs_pageio_descriptor pgio;
346 int err;
347
348 /* Stop dirtying of new pages while we sync */
349 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
350 nfs_wait_bit_killable, TASK_KILLABLE);
351 if (err)
352 goto out_err;
353
354 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
355
356 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
357 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
358 nfs_pageio_complete(&pgio);
359
360 clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
361 smp_mb__after_clear_bit();
362 wake_up_bit(bitlock, NFS_INO_FLUSHING);
363
364 if (err < 0)
365 goto out_err;
366 err = pgio.pg_error;
367 if (err < 0)
368 goto out_err;
369 return 0;
370 out_err:
371 return err;
372 }
373
374 /*
375 * Insert a write request into an inode
376 */
377 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
378 {
379 struct nfs_inode *nfsi = NFS_I(inode);
380 int error;
381
382 error = radix_tree_preload(GFP_NOFS);
383 if (error != 0)
384 goto out;
385
386 /* Lock the request! */
387 nfs_lock_request_dontget(req);
388
389 spin_lock(&inode->i_lock);
390 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
391 BUG_ON(error);
392 if (!nfsi->npages && nfs_have_delegation(inode, FMODE_WRITE))
393 nfsi->change_attr++;
394 set_bit(PG_MAPPED, &req->wb_flags);
395 SetPagePrivate(req->wb_page);
396 set_page_private(req->wb_page, (unsigned long)req);
397 nfsi->npages++;
398 kref_get(&req->wb_kref);
399 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
400 NFS_PAGE_TAG_LOCKED);
401 spin_unlock(&inode->i_lock);
402 radix_tree_preload_end();
403 out:
404 return error;
405 }
406
407 /*
408 * Remove a write request from an inode
409 */
410 static void nfs_inode_remove_request(struct nfs_page *req)
411 {
412 struct inode *inode = req->wb_context->path.dentry->d_inode;
413 struct nfs_inode *nfsi = NFS_I(inode);
414
415 BUG_ON (!NFS_WBACK_BUSY(req));
416
417 spin_lock(&inode->i_lock);
418 set_page_private(req->wb_page, 0);
419 ClearPagePrivate(req->wb_page);
420 clear_bit(PG_MAPPED, &req->wb_flags);
421 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
422 nfsi->npages--;
423 spin_unlock(&inode->i_lock);
424 nfs_release_request(req);
425 }
426
427 static void
428 nfs_mark_request_dirty(struct nfs_page *req)
429 {
430 __set_page_dirty_nobuffers(req->wb_page);
431 __mark_inode_dirty(req->wb_page->mapping->host, I_DIRTY_DATASYNC);
432 }
433
434 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
435 /*
436 * Add a request to the inode's commit list.
437 */
438 static void
439 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
440 {
441 struct inode *inode = req->wb_context->path.dentry->d_inode;
442 struct nfs_inode *nfsi = NFS_I(inode);
443
444 spin_lock(&inode->i_lock);
445 set_bit(PG_CLEAN, &(req)->wb_flags);
446 radix_tree_tag_set(&nfsi->nfs_page_tree,
447 req->wb_index,
448 NFS_PAGE_TAG_COMMIT);
449 nfsi->ncommit++;
450 spin_unlock(&inode->i_lock);
451 pnfs_mark_request_commit(req, lseg);
452 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
453 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
454 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
455 }
456
457 static int
458 nfs_clear_request_commit(struct nfs_page *req)
459 {
460 struct page *page = req->wb_page;
461
462 if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
463 dec_zone_page_state(page, NR_UNSTABLE_NFS);
464 dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
465 return 1;
466 }
467 return 0;
468 }
469
470 static inline
471 int nfs_write_need_commit(struct nfs_write_data *data)
472 {
473 if (data->verf.committed == NFS_DATA_SYNC)
474 return data->lseg == NULL;
475 else
476 return data->verf.committed != NFS_FILE_SYNC;
477 }
478
479 static inline
480 int nfs_reschedule_unstable_write(struct nfs_page *req,
481 struct nfs_write_data *data)
482 {
483 if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
484 nfs_mark_request_commit(req, data->lseg);
485 return 1;
486 }
487 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
488 nfs_mark_request_dirty(req);
489 return 1;
490 }
491 return 0;
492 }
493 #else
494 static inline void
495 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
496 {
497 }
498
499 static inline int
500 nfs_clear_request_commit(struct nfs_page *req)
501 {
502 return 0;
503 }
504
505 static inline
506 int nfs_write_need_commit(struct nfs_write_data *data)
507 {
508 return 0;
509 }
510
511 static inline
512 int nfs_reschedule_unstable_write(struct nfs_page *req,
513 struct nfs_write_data *data)
514 {
515 return 0;
516 }
517 #endif
518
519 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
520 static int
521 nfs_need_commit(struct nfs_inode *nfsi)
522 {
523 return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
524 }
525
526 /*
527 * nfs_scan_commit - Scan an inode for commit requests
528 * @inode: NFS inode to scan
529 * @dst: destination list
530 * @idx_start: lower bound of page->index to scan.
531 * @npages: idx_start + npages sets the upper bound to scan.
532 *
533 * Moves requests from the inode's 'commit' request list.
534 * The requests are *not* checked to ensure that they form a contiguous set.
535 */
536 static int
537 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
538 {
539 struct nfs_inode *nfsi = NFS_I(inode);
540 int ret;
541
542 if (!nfs_need_commit(nfsi))
543 return 0;
544
545 spin_lock(&inode->i_lock);
546 ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
547 if (ret > 0)
548 nfsi->ncommit -= ret;
549 spin_unlock(&inode->i_lock);
550
551 if (nfs_need_commit(NFS_I(inode)))
552 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
553
554 return ret;
555 }
556 #else
557 static inline int nfs_need_commit(struct nfs_inode *nfsi)
558 {
559 return 0;
560 }
561
562 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
563 {
564 return 0;
565 }
566 #endif
567
568 /*
569 * Search for an existing write request, and attempt to update
570 * it to reflect a new dirty region on a given page.
571 *
572 * If the attempt fails, then the existing request is flushed out
573 * to disk.
574 */
575 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
576 struct page *page,
577 unsigned int offset,
578 unsigned int bytes)
579 {
580 struct nfs_page *req;
581 unsigned int rqend;
582 unsigned int end;
583 int error;
584
585 if (!PagePrivate(page))
586 return NULL;
587
588 end = offset + bytes;
589 spin_lock(&inode->i_lock);
590
591 for (;;) {
592 req = nfs_page_find_request_locked(page);
593 if (req == NULL)
594 goto out_unlock;
595
596 rqend = req->wb_offset + req->wb_bytes;
597 /*
598 * Tell the caller to flush out the request if
599 * the offsets are non-contiguous.
600 * Note: nfs_flush_incompatible() will already
601 * have flushed out requests having wrong owners.
602 */
603 if (offset > rqend
604 || end < req->wb_offset)
605 goto out_flushme;
606
607 if (nfs_set_page_tag_locked(req))
608 break;
609
610 /* The request is locked, so wait and then retry */
611 spin_unlock(&inode->i_lock);
612 error = nfs_wait_on_request(req);
613 nfs_release_request(req);
614 if (error != 0)
615 goto out_err;
616 spin_lock(&inode->i_lock);
617 }
618
619 if (nfs_clear_request_commit(req) &&
620 radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
621 req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL) {
622 NFS_I(inode)->ncommit--;
623 pnfs_clear_request_commit(req);
624 }
625
626 /* Okay, the request matches. Update the region */
627 if (offset < req->wb_offset) {
628 req->wb_offset = offset;
629 req->wb_pgbase = offset;
630 }
631 if (end > rqend)
632 req->wb_bytes = end - req->wb_offset;
633 else
634 req->wb_bytes = rqend - req->wb_offset;
635 out_unlock:
636 spin_unlock(&inode->i_lock);
637 return req;
638 out_flushme:
639 spin_unlock(&inode->i_lock);
640 nfs_release_request(req);
641 error = nfs_wb_page(inode, page);
642 out_err:
643 return ERR_PTR(error);
644 }
645
646 /*
647 * Try to update an existing write request, or create one if there is none.
648 *
649 * Note: Should always be called with the Page Lock held to prevent races
650 * if we have to add a new request. Also assumes that the caller has
651 * already called nfs_flush_incompatible() if necessary.
652 */
653 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
654 struct page *page, unsigned int offset, unsigned int bytes)
655 {
656 struct inode *inode = page->mapping->host;
657 struct nfs_page *req;
658 int error;
659
660 req = nfs_try_to_update_request(inode, page, offset, bytes);
661 if (req != NULL)
662 goto out;
663 req = nfs_create_request(ctx, inode, page, offset, bytes);
664 if (IS_ERR(req))
665 goto out;
666 error = nfs_inode_add_request(inode, req);
667 if (error != 0) {
668 nfs_release_request(req);
669 req = ERR_PTR(error);
670 }
671 out:
672 return req;
673 }
674
675 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
676 unsigned int offset, unsigned int count)
677 {
678 struct nfs_page *req;
679
680 req = nfs_setup_write_request(ctx, page, offset, count);
681 if (IS_ERR(req))
682 return PTR_ERR(req);
683 /* Update file length */
684 nfs_grow_file(page, offset, count);
685 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
686 nfs_mark_request_dirty(req);
687 nfs_clear_page_tag_locked(req);
688 return 0;
689 }
690
691 int nfs_flush_incompatible(struct file *file, struct page *page)
692 {
693 struct nfs_open_context *ctx = nfs_file_open_context(file);
694 struct nfs_page *req;
695 int do_flush, status;
696 /*
697 * Look for a request corresponding to this page. If there
698 * is one, and it belongs to another file, we flush it out
699 * before we try to copy anything into the page. Do this
700 * due to the lack of an ACCESS-type call in NFSv2.
701 * Also do the same if we find a request from an existing
702 * dropped page.
703 */
704 do {
705 req = nfs_page_find_request(page);
706 if (req == NULL)
707 return 0;
708 do_flush = req->wb_page != page || req->wb_context != ctx ||
709 req->wb_lock_context->lockowner != current->files ||
710 req->wb_lock_context->pid != current->tgid;
711 nfs_release_request(req);
712 if (!do_flush)
713 return 0;
714 status = nfs_wb_page(page->mapping->host, page);
715 } while (status == 0);
716 return status;
717 }
718
719 /*
720 * If the page cache is marked as unsafe or invalid, then we can't rely on
721 * the PageUptodate() flag. In this case, we will need to turn off
722 * write optimisations that depend on the page contents being correct.
723 */
724 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
725 {
726 return PageUptodate(page) &&
727 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
728 }
729
730 /*
731 * Update and possibly write a cached page of an NFS file.
732 *
733 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
734 * things with a page scheduled for an RPC call (e.g. invalidate it).
735 */
736 int nfs_updatepage(struct file *file, struct page *page,
737 unsigned int offset, unsigned int count)
738 {
739 struct nfs_open_context *ctx = nfs_file_open_context(file);
740 struct inode *inode = page->mapping->host;
741 int status = 0;
742
743 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
744
745 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n",
746 file->f_path.dentry->d_parent->d_name.name,
747 file->f_path.dentry->d_name.name, count,
748 (long long)(page_offset(page) + offset));
749
750 /* If we're not using byte range locks, and we know the page
751 * is up to date, it may be more efficient to extend the write
752 * to cover the entire page in order to avoid fragmentation
753 * inefficiencies.
754 */
755 if (nfs_write_pageuptodate(page, inode) &&
756 inode->i_flock == NULL &&
757 !(file->f_flags & O_DSYNC)) {
758 count = max(count + offset, nfs_page_length(page));
759 offset = 0;
760 }
761
762 status = nfs_writepage_setup(ctx, page, offset, count);
763 if (status < 0)
764 nfs_set_pageerror(page);
765
766 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
767 status, (long long)i_size_read(inode));
768 return status;
769 }
770
771 static void nfs_writepage_release(struct nfs_page *req,
772 struct nfs_write_data *data)
773 {
774 struct page *page = req->wb_page;
775
776 if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req, data))
777 nfs_inode_remove_request(req);
778 nfs_clear_page_tag_locked(req);
779 nfs_end_page_writeback(page);
780 }
781
782 static int flush_task_priority(int how)
783 {
784 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
785 case FLUSH_HIGHPRI:
786 return RPC_PRIORITY_HIGH;
787 case FLUSH_LOWPRI:
788 return RPC_PRIORITY_LOW;
789 }
790 return RPC_PRIORITY_NORMAL;
791 }
792
793 int nfs_initiate_write(struct nfs_write_data *data,
794 struct rpc_clnt *clnt,
795 const struct rpc_call_ops *call_ops,
796 int how)
797 {
798 struct inode *inode = data->inode;
799 int priority = flush_task_priority(how);
800 struct rpc_task *task;
801 struct rpc_message msg = {
802 .rpc_argp = &data->args,
803 .rpc_resp = &data->res,
804 .rpc_cred = data->cred,
805 };
806 struct rpc_task_setup task_setup_data = {
807 .rpc_client = clnt,
808 .task = &data->task,
809 .rpc_message = &msg,
810 .callback_ops = call_ops,
811 .callback_data = data,
812 .workqueue = nfsiod_workqueue,
813 .flags = RPC_TASK_ASYNC,
814 .priority = priority,
815 };
816 int ret = 0;
817
818 /* Set up the initial task struct. */
819 NFS_PROTO(inode)->write_setup(data, &msg);
820
821 dprintk("NFS: %5u initiated write call "
822 "(req %s/%lld, %u bytes @ offset %llu)\n",
823 data->task.tk_pid,
824 inode->i_sb->s_id,
825 (long long)NFS_FILEID(inode),
826 data->args.count,
827 (unsigned long long)data->args.offset);
828
829 task = rpc_run_task(&task_setup_data);
830 if (IS_ERR(task)) {
831 ret = PTR_ERR(task);
832 goto out;
833 }
834 if (how & FLUSH_SYNC) {
835 ret = rpc_wait_for_completion_task(task);
836 if (ret == 0)
837 ret = task->tk_status;
838 }
839 rpc_put_task(task);
840 out:
841 return ret;
842 }
843 EXPORT_SYMBOL_GPL(nfs_initiate_write);
844
845 /*
846 * Set up the argument/result storage required for the RPC call.
847 */
848 static void nfs_write_rpcsetup(struct nfs_page *req,
849 struct nfs_write_data *data,
850 unsigned int count, unsigned int offset,
851 int how)
852 {
853 struct inode *inode = req->wb_context->path.dentry->d_inode;
854
855 /* Set up the RPC argument and reply structs
856 * NB: take care not to mess about with data->commit et al. */
857
858 data->req = req;
859 data->inode = inode = req->wb_context->path.dentry->d_inode;
860 data->cred = req->wb_context->cred;
861
862 data->args.fh = NFS_FH(inode);
863 data->args.offset = req_offset(req) + offset;
864 /* pnfs_set_layoutcommit needs this */
865 data->mds_offset = data->args.offset;
866 data->args.pgbase = req->wb_pgbase + offset;
867 data->args.pages = data->pagevec;
868 data->args.count = count;
869 data->args.context = get_nfs_open_context(req->wb_context);
870 data->args.lock_context = req->wb_lock_context;
871 data->args.stable = NFS_UNSTABLE;
872 switch (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) {
873 case 0:
874 break;
875 case FLUSH_COND_STABLE:
876 if (nfs_need_commit(NFS_I(inode)))
877 break;
878 default:
879 data->args.stable = NFS_FILE_SYNC;
880 }
881
882 data->res.fattr = &data->fattr;
883 data->res.count = count;
884 data->res.verf = &data->verf;
885 nfs_fattr_init(&data->fattr);
886 }
887
888 static int nfs_do_write(struct nfs_write_data *data,
889 const struct rpc_call_ops *call_ops,
890 struct pnfs_layout_segment *lseg,
891 int how)
892 {
893 struct inode *inode = data->args.context->path.dentry->d_inode;
894
895 if (lseg != NULL) {
896 data->lseg = get_lseg(lseg);
897 if (pnfs_try_to_write_data(data, call_ops, how) == PNFS_ATTEMPTED)
898 return 0;
899 put_lseg(data->lseg);
900 data->lseg = NULL;
901 }
902
903 return nfs_initiate_write(data, NFS_CLIENT(inode), call_ops, how);
904 }
905
906 static int nfs_do_multiple_writes(struct list_head *head,
907 const struct rpc_call_ops *call_ops,
908 struct pnfs_layout_segment *lseg,
909 int how)
910 {
911 struct nfs_write_data *data;
912 int ret = 0;
913
914 while (!list_empty(head)) {
915 int ret2;
916
917 data = list_entry(head->next, struct nfs_write_data, list);
918 list_del_init(&data->list);
919
920 ret2 = nfs_do_write(data, call_ops, lseg, how);
921 if (ret == 0)
922 ret = ret2;
923 }
924 return ret;
925 }
926
927 /* If a nfs_flush_* function fails, it should remove reqs from @head and
928 * call this on each, which will prepare them to be retried on next
929 * writeback using standard nfs.
930 */
931 static void nfs_redirty_request(struct nfs_page *req)
932 {
933 struct page *page = req->wb_page;
934
935 nfs_mark_request_dirty(req);
936 nfs_clear_page_tag_locked(req);
937 nfs_end_page_writeback(page);
938 }
939
940 /*
941 * Generate multiple small requests to write out a single
942 * contiguous dirty area on one page.
943 */
944 static int nfs_flush_multi(struct nfs_pageio_descriptor *desc, struct list_head *res)
945 {
946 struct nfs_page *req = nfs_list_entry(desc->pg_list.next);
947 struct page *page = req->wb_page;
948 struct nfs_write_data *data;
949 size_t wsize = NFS_SERVER(desc->pg_inode)->wsize, nbytes;
950 unsigned int offset;
951 int requests = 0;
952 int ret = 0;
953
954 nfs_list_remove_request(req);
955
956 if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
957 (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit ||
958 desc->pg_count > wsize))
959 desc->pg_ioflags &= ~FLUSH_COND_STABLE;
960
961
962 offset = 0;
963 nbytes = desc->pg_count;
964 do {
965 size_t len = min(nbytes, wsize);
966
967 data = nfs_writedata_alloc(1);
968 if (!data)
969 goto out_bad;
970 data->pagevec[0] = page;
971 nfs_write_rpcsetup(req, data, wsize, offset, desc->pg_ioflags);
972 list_add(&data->list, res);
973 requests++;
974 nbytes -= len;
975 offset += len;
976 } while (nbytes != 0);
977 atomic_set(&req->wb_complete, requests);
978 return ret;
979
980 out_bad:
981 while (!list_empty(res)) {
982 data = list_entry(res->next, struct nfs_write_data, list);
983 list_del(&data->list);
984 nfs_writedata_free(data);
985 }
986 nfs_redirty_request(req);
987 return -ENOMEM;
988 }
989
990 /*
991 * Create an RPC task for the given write request and kick it.
992 * The page must have been locked by the caller.
993 *
994 * It may happen that the page we're passed is not marked dirty.
995 * This is the case if nfs_updatepage detects a conflicting request
996 * that has been written but not committed.
997 */
998 static int nfs_flush_one(struct nfs_pageio_descriptor *desc, struct list_head *res)
999 {
1000 struct nfs_page *req;
1001 struct page **pages;
1002 struct nfs_write_data *data;
1003 struct list_head *head = &desc->pg_list;
1004 int ret = 0;
1005
1006 data = nfs_writedata_alloc(nfs_page_array_len(desc->pg_base,
1007 desc->pg_count));
1008 if (!data) {
1009 while (!list_empty(head)) {
1010 req = nfs_list_entry(head->next);
1011 nfs_list_remove_request(req);
1012 nfs_redirty_request(req);
1013 }
1014 ret = -ENOMEM;
1015 goto out;
1016 }
1017 pages = data->pagevec;
1018 while (!list_empty(head)) {
1019 req = nfs_list_entry(head->next);
1020 nfs_list_remove_request(req);
1021 nfs_list_add_request(req, &data->pages);
1022 ClearPageError(req->wb_page);
1023 *pages++ = req->wb_page;
1024 }
1025 req = nfs_list_entry(data->pages.next);
1026
1027 if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
1028 (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit))
1029 desc->pg_ioflags &= ~FLUSH_COND_STABLE;
1030
1031 /* Set up the argument struct */
1032 nfs_write_rpcsetup(req, data, desc->pg_count, 0, desc->pg_ioflags);
1033 list_add(&data->list, res);
1034 out:
1035 return ret;
1036 }
1037
1038 int nfs_generic_pg_writepages(struct nfs_pageio_descriptor *desc)
1039 {
1040 LIST_HEAD(head);
1041 int ret;
1042
1043 if (desc->pg_bsize < PAGE_CACHE_SIZE) {
1044 ret = nfs_flush_multi(desc, &head);
1045 if (ret == 0)
1046 ret = nfs_do_multiple_writes(&head,
1047 &nfs_write_partial_ops,
1048 desc->pg_lseg,
1049 desc->pg_ioflags);
1050 } else {
1051 ret = nfs_flush_one(desc, &head);
1052 if (ret == 0)
1053 ret = nfs_do_multiple_writes(&head,
1054 &nfs_write_full_ops,
1055 desc->pg_lseg,
1056 desc->pg_ioflags);
1057 }
1058 put_lseg(desc->pg_lseg);
1059 desc->pg_lseg = NULL;
1060 return ret;
1061 }
1062 EXPORT_SYMBOL_GPL(nfs_generic_pg_writepages);
1063
1064 static const struct nfs_pageio_ops nfs_pageio_write_ops = {
1065 .pg_test = nfs_generic_pg_test,
1066 .pg_doio = nfs_generic_pg_writepages,
1067 };
1068
1069 void nfs_pageio_init_write_mds(struct nfs_pageio_descriptor *pgio,
1070 struct inode *inode, int ioflags)
1071 {
1072 nfs_pageio_init(pgio, inode, &nfs_pageio_write_ops,
1073 NFS_SERVER(inode)->wsize, ioflags);
1074 }
1075 EXPORT_SYMBOL_GPL(nfs_pageio_init_write_mds);
1076
1077 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1078 struct inode *inode, int ioflags)
1079 {
1080 if (!pnfs_pageio_init_write(pgio, inode, ioflags))
1081 nfs_pageio_init_write_mds(pgio, inode, ioflags);
1082 }
1083
1084 /*
1085 * Handle a write reply that flushed part of a page.
1086 */
1087 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
1088 {
1089 struct nfs_write_data *data = calldata;
1090
1091 dprintk("NFS: %5u write(%s/%lld %d@%lld)",
1092 task->tk_pid,
1093 data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
1094 (long long)
1095 NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
1096 data->req->wb_bytes, (long long)req_offset(data->req));
1097
1098 nfs_writeback_done(task, data);
1099 }
1100
1101 static void nfs_writeback_release_partial(void *calldata)
1102 {
1103 struct nfs_write_data *data = calldata;
1104 struct nfs_page *req = data->req;
1105 struct page *page = req->wb_page;
1106 int status = data->task.tk_status;
1107
1108 if (status < 0) {
1109 nfs_set_pageerror(page);
1110 nfs_context_set_write_error(req->wb_context, status);
1111 dprintk(", error = %d\n", status);
1112 goto out;
1113 }
1114
1115 if (nfs_write_need_commit(data)) {
1116 struct inode *inode = page->mapping->host;
1117
1118 spin_lock(&inode->i_lock);
1119 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1120 /* Do nothing we need to resend the writes */
1121 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1122 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1123 dprintk(" defer commit\n");
1124 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1125 set_bit(PG_NEED_RESCHED, &req->wb_flags);
1126 clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1127 dprintk(" server reboot detected\n");
1128 }
1129 spin_unlock(&inode->i_lock);
1130 } else
1131 dprintk(" OK\n");
1132
1133 out:
1134 if (atomic_dec_and_test(&req->wb_complete))
1135 nfs_writepage_release(req, data);
1136 nfs_writedata_release(calldata);
1137 }
1138
1139 #if defined(CONFIG_NFS_V4_1)
1140 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1141 {
1142 struct nfs_write_data *data = calldata;
1143
1144 if (nfs4_setup_sequence(NFS_SERVER(data->inode),
1145 &data->args.seq_args,
1146 &data->res.seq_res, 1, task))
1147 return;
1148 rpc_call_start(task);
1149 }
1150 #endif /* CONFIG_NFS_V4_1 */
1151
1152 static const struct rpc_call_ops nfs_write_partial_ops = {
1153 #if defined(CONFIG_NFS_V4_1)
1154 .rpc_call_prepare = nfs_write_prepare,
1155 #endif /* CONFIG_NFS_V4_1 */
1156 .rpc_call_done = nfs_writeback_done_partial,
1157 .rpc_release = nfs_writeback_release_partial,
1158 };
1159
1160 /*
1161 * Handle a write reply that flushes a whole page.
1162 *
1163 * FIXME: There is an inherent race with invalidate_inode_pages and
1164 * writebacks since the page->count is kept > 1 for as long
1165 * as the page has a write request pending.
1166 */
1167 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1168 {
1169 struct nfs_write_data *data = calldata;
1170
1171 nfs_writeback_done(task, data);
1172 }
1173
1174 static void nfs_writeback_release_full(void *calldata)
1175 {
1176 struct nfs_write_data *data = calldata;
1177 int status = data->task.tk_status;
1178
1179 /* Update attributes as result of writeback. */
1180 while (!list_empty(&data->pages)) {
1181 struct nfs_page *req = nfs_list_entry(data->pages.next);
1182 struct page *page = req->wb_page;
1183
1184 nfs_list_remove_request(req);
1185
1186 dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1187 data->task.tk_pid,
1188 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1189 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1190 req->wb_bytes,
1191 (long long)req_offset(req));
1192
1193 if (status < 0) {
1194 nfs_set_pageerror(page);
1195 nfs_context_set_write_error(req->wb_context, status);
1196 dprintk(", error = %d\n", status);
1197 goto remove_request;
1198 }
1199
1200 if (nfs_write_need_commit(data)) {
1201 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1202 nfs_mark_request_commit(req, data->lseg);
1203 dprintk(" marked for commit\n");
1204 goto next;
1205 }
1206 dprintk(" OK\n");
1207 remove_request:
1208 nfs_inode_remove_request(req);
1209 next:
1210 nfs_clear_page_tag_locked(req);
1211 nfs_end_page_writeback(page);
1212 }
1213 nfs_writedata_release(calldata);
1214 }
1215
1216 static const struct rpc_call_ops nfs_write_full_ops = {
1217 #if defined(CONFIG_NFS_V4_1)
1218 .rpc_call_prepare = nfs_write_prepare,
1219 #endif /* CONFIG_NFS_V4_1 */
1220 .rpc_call_done = nfs_writeback_done_full,
1221 .rpc_release = nfs_writeback_release_full,
1222 };
1223
1224
1225 /*
1226 * This function is called when the WRITE call is complete.
1227 */
1228 void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1229 {
1230 struct nfs_writeargs *argp = &data->args;
1231 struct nfs_writeres *resp = &data->res;
1232 struct nfs_server *server = NFS_SERVER(data->inode);
1233 int status;
1234
1235 dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1236 task->tk_pid, task->tk_status);
1237
1238 /*
1239 * ->write_done will attempt to use post-op attributes to detect
1240 * conflicting writes by other clients. A strict interpretation
1241 * of close-to-open would allow us to continue caching even if
1242 * another writer had changed the file, but some applications
1243 * depend on tighter cache coherency when writing.
1244 */
1245 status = NFS_PROTO(data->inode)->write_done(task, data);
1246 if (status != 0)
1247 return;
1248 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1249
1250 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1251 if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1252 /* We tried a write call, but the server did not
1253 * commit data to stable storage even though we
1254 * requested it.
1255 * Note: There is a known bug in Tru64 < 5.0 in which
1256 * the server reports NFS_DATA_SYNC, but performs
1257 * NFS_FILE_SYNC. We therefore implement this checking
1258 * as a dprintk() in order to avoid filling syslog.
1259 */
1260 static unsigned long complain;
1261
1262 /* Note this will print the MDS for a DS write */
1263 if (time_before(complain, jiffies)) {
1264 dprintk("NFS: faulty NFS server %s:"
1265 " (committed = %d) != (stable = %d)\n",
1266 server->nfs_client->cl_hostname,
1267 resp->verf->committed, argp->stable);
1268 complain = jiffies + 300 * HZ;
1269 }
1270 }
1271 #endif
1272 /* Is this a short write? */
1273 if (task->tk_status >= 0 && resp->count < argp->count) {
1274 static unsigned long complain;
1275
1276 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1277
1278 /* Has the server at least made some progress? */
1279 if (resp->count != 0) {
1280 /* Was this an NFSv2 write or an NFSv3 stable write? */
1281 if (resp->verf->committed != NFS_UNSTABLE) {
1282 /* Resend from where the server left off */
1283 data->mds_offset += resp->count;
1284 argp->offset += resp->count;
1285 argp->pgbase += resp->count;
1286 argp->count -= resp->count;
1287 } else {
1288 /* Resend as a stable write in order to avoid
1289 * headaches in the case of a server crash.
1290 */
1291 argp->stable = NFS_FILE_SYNC;
1292 }
1293 nfs_restart_rpc(task, server->nfs_client);
1294 return;
1295 }
1296 if (time_before(complain, jiffies)) {
1297 printk(KERN_WARNING
1298 "NFS: Server wrote zero bytes, expected %u.\n",
1299 argp->count);
1300 complain = jiffies + 300 * HZ;
1301 }
1302 /* Can't do anything about it except throw an error. */
1303 task->tk_status = -EIO;
1304 }
1305 return;
1306 }
1307
1308
1309 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1310 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
1311 {
1312 int ret;
1313
1314 if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
1315 return 1;
1316 if (!may_wait)
1317 return 0;
1318 ret = out_of_line_wait_on_bit_lock(&nfsi->flags,
1319 NFS_INO_COMMIT,
1320 nfs_wait_bit_killable,
1321 TASK_KILLABLE);
1322 return (ret < 0) ? ret : 1;
1323 }
1324
1325 void nfs_commit_clear_lock(struct nfs_inode *nfsi)
1326 {
1327 clear_bit(NFS_INO_COMMIT, &nfsi->flags);
1328 smp_mb__after_clear_bit();
1329 wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
1330 }
1331 EXPORT_SYMBOL_GPL(nfs_commit_clear_lock);
1332
1333 void nfs_commitdata_release(void *data)
1334 {
1335 struct nfs_write_data *wdata = data;
1336
1337 put_lseg(wdata->lseg);
1338 put_nfs_open_context(wdata->args.context);
1339 nfs_commit_free(wdata);
1340 }
1341 EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1342
1343 int nfs_initiate_commit(struct nfs_write_data *data, struct rpc_clnt *clnt,
1344 const struct rpc_call_ops *call_ops,
1345 int how)
1346 {
1347 struct rpc_task *task;
1348 int priority = flush_task_priority(how);
1349 struct rpc_message msg = {
1350 .rpc_argp = &data->args,
1351 .rpc_resp = &data->res,
1352 .rpc_cred = data->cred,
1353 };
1354 struct rpc_task_setup task_setup_data = {
1355 .task = &data->task,
1356 .rpc_client = clnt,
1357 .rpc_message = &msg,
1358 .callback_ops = call_ops,
1359 .callback_data = data,
1360 .workqueue = nfsiod_workqueue,
1361 .flags = RPC_TASK_ASYNC,
1362 .priority = priority,
1363 };
1364 /* Set up the initial task struct. */
1365 NFS_PROTO(data->inode)->commit_setup(data, &msg);
1366
1367 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1368
1369 task = rpc_run_task(&task_setup_data);
1370 if (IS_ERR(task))
1371 return PTR_ERR(task);
1372 if (how & FLUSH_SYNC)
1373 rpc_wait_for_completion_task(task);
1374 rpc_put_task(task);
1375 return 0;
1376 }
1377 EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1378
1379 /*
1380 * Set up the argument/result storage required for the RPC call.
1381 */
1382 void nfs_init_commit(struct nfs_write_data *data,
1383 struct list_head *head,
1384 struct pnfs_layout_segment *lseg)
1385 {
1386 struct nfs_page *first = nfs_list_entry(head->next);
1387 struct inode *inode = first->wb_context->path.dentry->d_inode;
1388
1389 /* Set up the RPC argument and reply structs
1390 * NB: take care not to mess about with data->commit et al. */
1391
1392 list_splice_init(head, &data->pages);
1393
1394 data->inode = inode;
1395 data->cred = first->wb_context->cred;
1396 data->lseg = lseg; /* reference transferred */
1397 data->mds_ops = &nfs_commit_ops;
1398
1399 data->args.fh = NFS_FH(data->inode);
1400 /* Note: we always request a commit of the entire inode */
1401 data->args.offset = 0;
1402 data->args.count = 0;
1403 data->args.context = get_nfs_open_context(first->wb_context);
1404 data->res.count = 0;
1405 data->res.fattr = &data->fattr;
1406 data->res.verf = &data->verf;
1407 nfs_fattr_init(&data->fattr);
1408 }
1409 EXPORT_SYMBOL_GPL(nfs_init_commit);
1410
1411 void nfs_retry_commit(struct list_head *page_list,
1412 struct pnfs_layout_segment *lseg)
1413 {
1414 struct nfs_page *req;
1415
1416 while (!list_empty(page_list)) {
1417 req = nfs_list_entry(page_list->next);
1418 nfs_list_remove_request(req);
1419 nfs_mark_request_commit(req, lseg);
1420 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1421 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1422 BDI_RECLAIMABLE);
1423 nfs_clear_page_tag_locked(req);
1424 }
1425 }
1426 EXPORT_SYMBOL_GPL(nfs_retry_commit);
1427
1428 /*
1429 * Commit dirty pages
1430 */
1431 static int
1432 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1433 {
1434 struct nfs_write_data *data;
1435
1436 data = nfs_commitdata_alloc();
1437
1438 if (!data)
1439 goto out_bad;
1440
1441 /* Set up the argument struct */
1442 nfs_init_commit(data, head, NULL);
1443 return nfs_initiate_commit(data, NFS_CLIENT(inode), data->mds_ops, how);
1444 out_bad:
1445 nfs_retry_commit(head, NULL);
1446 nfs_commit_clear_lock(NFS_I(inode));
1447 return -ENOMEM;
1448 }
1449
1450 /*
1451 * COMMIT call returned
1452 */
1453 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1454 {
1455 struct nfs_write_data *data = calldata;
1456
1457 dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1458 task->tk_pid, task->tk_status);
1459
1460 /* Call the NFS version-specific code */
1461 NFS_PROTO(data->inode)->commit_done(task, data);
1462 }
1463
1464 void nfs_commit_release_pages(struct nfs_write_data *data)
1465 {
1466 struct nfs_page *req;
1467 int status = data->task.tk_status;
1468
1469 while (!list_empty(&data->pages)) {
1470 req = nfs_list_entry(data->pages.next);
1471 nfs_list_remove_request(req);
1472 nfs_clear_request_commit(req);
1473
1474 dprintk("NFS: commit (%s/%lld %d@%lld)",
1475 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1476 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1477 req->wb_bytes,
1478 (long long)req_offset(req));
1479 if (status < 0) {
1480 nfs_context_set_write_error(req->wb_context, status);
1481 nfs_inode_remove_request(req);
1482 dprintk(", error = %d\n", status);
1483 goto next;
1484 }
1485
1486 /* Okay, COMMIT succeeded, apparently. Check the verifier
1487 * returned by the server against all stored verfs. */
1488 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1489 /* We have a match */
1490 nfs_inode_remove_request(req);
1491 dprintk(" OK\n");
1492 goto next;
1493 }
1494 /* We have a mismatch. Write the page again */
1495 dprintk(" mismatch\n");
1496 nfs_mark_request_dirty(req);
1497 next:
1498 nfs_clear_page_tag_locked(req);
1499 }
1500 }
1501 EXPORT_SYMBOL_GPL(nfs_commit_release_pages);
1502
1503 static void nfs_commit_release(void *calldata)
1504 {
1505 struct nfs_write_data *data = calldata;
1506
1507 nfs_commit_release_pages(data);
1508 nfs_commit_clear_lock(NFS_I(data->inode));
1509 nfs_commitdata_release(calldata);
1510 }
1511
1512 static const struct rpc_call_ops nfs_commit_ops = {
1513 #if defined(CONFIG_NFS_V4_1)
1514 .rpc_call_prepare = nfs_write_prepare,
1515 #endif /* CONFIG_NFS_V4_1 */
1516 .rpc_call_done = nfs_commit_done,
1517 .rpc_release = nfs_commit_release,
1518 };
1519
1520 int nfs_commit_inode(struct inode *inode, int how)
1521 {
1522 LIST_HEAD(head);
1523 int may_wait = how & FLUSH_SYNC;
1524 int res;
1525
1526 res = nfs_commit_set_lock(NFS_I(inode), may_wait);
1527 if (res <= 0)
1528 goto out_mark_dirty;
1529 res = nfs_scan_commit(inode, &head, 0, 0);
1530 if (res) {
1531 int error;
1532
1533 error = pnfs_commit_list(inode, &head, how);
1534 if (error == PNFS_NOT_ATTEMPTED)
1535 error = nfs_commit_list(inode, &head, how);
1536 if (error < 0)
1537 return error;
1538 if (!may_wait)
1539 goto out_mark_dirty;
1540 error = wait_on_bit(&NFS_I(inode)->flags,
1541 NFS_INO_COMMIT,
1542 nfs_wait_bit_killable,
1543 TASK_KILLABLE);
1544 if (error < 0)
1545 return error;
1546 } else
1547 nfs_commit_clear_lock(NFS_I(inode));
1548 return res;
1549 /* Note: If we exit without ensuring that the commit is complete,
1550 * we must mark the inode as dirty. Otherwise, future calls to
1551 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1552 * that the data is on the disk.
1553 */
1554 out_mark_dirty:
1555 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1556 return res;
1557 }
1558
1559 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1560 {
1561 struct nfs_inode *nfsi = NFS_I(inode);
1562 int flags = FLUSH_SYNC;
1563 int ret = 0;
1564
1565 if (wbc->sync_mode == WB_SYNC_NONE) {
1566 /* Don't commit yet if this is a non-blocking flush and there
1567 * are a lot of outstanding writes for this mapping.
1568 */
1569 if (nfsi->ncommit <= (nfsi->npages >> 1))
1570 goto out_mark_dirty;
1571
1572 /* don't wait for the COMMIT response */
1573 flags = 0;
1574 }
1575
1576 ret = nfs_commit_inode(inode, flags);
1577 if (ret >= 0) {
1578 if (wbc->sync_mode == WB_SYNC_NONE) {
1579 if (ret < wbc->nr_to_write)
1580 wbc->nr_to_write -= ret;
1581 else
1582 wbc->nr_to_write = 0;
1583 }
1584 return 0;
1585 }
1586 out_mark_dirty:
1587 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1588 return ret;
1589 }
1590 #else
1591 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1592 {
1593 return 0;
1594 }
1595 #endif
1596
1597 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1598 {
1599 int ret;
1600
1601 ret = nfs_commit_unstable_pages(inode, wbc);
1602 if (ret >= 0 && test_bit(NFS_INO_LAYOUTCOMMIT, &NFS_I(inode)->flags)) {
1603 int status;
1604 bool sync = true;
1605
1606 if (wbc->sync_mode == WB_SYNC_NONE || wbc->nonblocking ||
1607 wbc->for_background)
1608 sync = false;
1609
1610 status = pnfs_layoutcommit_inode(inode, sync);
1611 if (status < 0)
1612 return status;
1613 }
1614 return ret;
1615 }
1616
1617 /*
1618 * flush the inode to disk.
1619 */
1620 int nfs_wb_all(struct inode *inode)
1621 {
1622 struct writeback_control wbc = {
1623 .sync_mode = WB_SYNC_ALL,
1624 .nr_to_write = LONG_MAX,
1625 .range_start = 0,
1626 .range_end = LLONG_MAX,
1627 };
1628
1629 return sync_inode(inode, &wbc);
1630 }
1631
1632 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1633 {
1634 struct nfs_page *req;
1635 int ret = 0;
1636
1637 BUG_ON(!PageLocked(page));
1638 for (;;) {
1639 wait_on_page_writeback(page);
1640 req = nfs_page_find_request(page);
1641 if (req == NULL)
1642 break;
1643 if (nfs_lock_request_dontget(req)) {
1644 nfs_inode_remove_request(req);
1645 /*
1646 * In case nfs_inode_remove_request has marked the
1647 * page as being dirty
1648 */
1649 cancel_dirty_page(page, PAGE_CACHE_SIZE);
1650 nfs_unlock_request(req);
1651 break;
1652 }
1653 ret = nfs_wait_on_request(req);
1654 nfs_release_request(req);
1655 if (ret < 0)
1656 break;
1657 }
1658 return ret;
1659 }
1660
1661 /*
1662 * Write back all requests on one page - we do this before reading it.
1663 */
1664 int nfs_wb_page(struct inode *inode, struct page *page)
1665 {
1666 loff_t range_start = page_offset(page);
1667 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1668 struct writeback_control wbc = {
1669 .sync_mode = WB_SYNC_ALL,
1670 .nr_to_write = 0,
1671 .range_start = range_start,
1672 .range_end = range_end,
1673 };
1674 int ret;
1675
1676 for (;;) {
1677 wait_on_page_writeback(page);
1678 if (clear_page_dirty_for_io(page)) {
1679 ret = nfs_writepage_locked(page, &wbc);
1680 if (ret < 0)
1681 goto out_error;
1682 continue;
1683 }
1684 if (!PagePrivate(page))
1685 break;
1686 ret = nfs_commit_inode(inode, FLUSH_SYNC);
1687 if (ret < 0)
1688 goto out_error;
1689 }
1690 return 0;
1691 out_error:
1692 return ret;
1693 }
1694
1695 #ifdef CONFIG_MIGRATION
1696 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1697 struct page *page)
1698 {
1699 struct nfs_page *req;
1700 int ret;
1701
1702 nfs_fscache_release_page(page, GFP_KERNEL);
1703
1704 req = nfs_find_and_lock_request(page, false);
1705 ret = PTR_ERR(req);
1706 if (IS_ERR(req))
1707 goto out;
1708
1709 ret = migrate_page(mapping, newpage, page);
1710 if (!req)
1711 goto out;
1712 if (ret)
1713 goto out_unlock;
1714 page_cache_get(newpage);
1715 spin_lock(&mapping->host->i_lock);
1716 req->wb_page = newpage;
1717 SetPagePrivate(newpage);
1718 set_page_private(newpage, (unsigned long)req);
1719 ClearPagePrivate(page);
1720 set_page_private(page, 0);
1721 spin_unlock(&mapping->host->i_lock);
1722 page_cache_release(page);
1723 out_unlock:
1724 nfs_clear_page_tag_locked(req);
1725 out:
1726 return ret;
1727 }
1728 #endif
1729
1730 int __init nfs_init_writepagecache(void)
1731 {
1732 nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1733 sizeof(struct nfs_write_data),
1734 0, SLAB_HWCACHE_ALIGN,
1735 NULL);
1736 if (nfs_wdata_cachep == NULL)
1737 return -ENOMEM;
1738
1739 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1740 nfs_wdata_cachep);
1741 if (nfs_wdata_mempool == NULL)
1742 return -ENOMEM;
1743
1744 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1745 nfs_wdata_cachep);
1746 if (nfs_commit_mempool == NULL)
1747 return -ENOMEM;
1748
1749 /*
1750 * NFS congestion size, scale with available memory.
1751 *
1752 * 64MB: 8192k
1753 * 128MB: 11585k
1754 * 256MB: 16384k
1755 * 512MB: 23170k
1756 * 1GB: 32768k
1757 * 2GB: 46340k
1758 * 4GB: 65536k
1759 * 8GB: 92681k
1760 * 16GB: 131072k
1761 *
1762 * This allows larger machines to have larger/more transfers.
1763 * Limit the default to 256M
1764 */
1765 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1766 if (nfs_congestion_kb > 256*1024)
1767 nfs_congestion_kb = 256*1024;
1768
1769 return 0;
1770 }
1771
1772 void nfs_destroy_writepagecache(void)
1773 {
1774 mempool_destroy(nfs_commit_mempool);
1775 mempool_destroy(nfs_wdata_mempool);
1776 kmem_cache_destroy(nfs_wdata_cachep);
1777 }
1778