]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/nfs/write.c
NFSv4.1: pull error handling out of nfs_commit_list
[mirror_ubuntu-bionic-kernel.git] / fs / nfs / write.c
1 /*
2 * linux/fs/nfs/write.c
3 *
4 * Write file data over NFS.
5 *
6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7 */
8
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23
24 #include <asm/uaccess.h>
25
26 #include "delegation.h"
27 #include "internal.h"
28 #include "iostat.h"
29 #include "nfs4_fs.h"
30 #include "fscache.h"
31 #include "pnfs.h"
32
33 #define NFSDBG_FACILITY NFSDBG_PAGECACHE
34
35 #define MIN_POOL_WRITE (32)
36 #define MIN_POOL_COMMIT (4)
37
38 /*
39 * Local function declarations
40 */
41 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
42 struct inode *inode, int ioflags);
43 static void nfs_redirty_request(struct nfs_page *req);
44 static const struct rpc_call_ops nfs_write_partial_ops;
45 static const struct rpc_call_ops nfs_write_full_ops;
46 static const struct rpc_call_ops nfs_commit_ops;
47
48 static struct kmem_cache *nfs_wdata_cachep;
49 static mempool_t *nfs_wdata_mempool;
50 static mempool_t *nfs_commit_mempool;
51
52 struct nfs_write_data *nfs_commitdata_alloc(void)
53 {
54 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
55
56 if (p) {
57 memset(p, 0, sizeof(*p));
58 INIT_LIST_HEAD(&p->pages);
59 }
60 return p;
61 }
62
63 void nfs_commit_free(struct nfs_write_data *p)
64 {
65 if (p && (p->pagevec != &p->page_array[0]))
66 kfree(p->pagevec);
67 mempool_free(p, nfs_commit_mempool);
68 }
69
70 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
71 {
72 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
73
74 if (p) {
75 memset(p, 0, sizeof(*p));
76 INIT_LIST_HEAD(&p->pages);
77 p->npages = pagecount;
78 if (pagecount <= ARRAY_SIZE(p->page_array))
79 p->pagevec = p->page_array;
80 else {
81 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
82 if (!p->pagevec) {
83 mempool_free(p, nfs_wdata_mempool);
84 p = NULL;
85 }
86 }
87 }
88 return p;
89 }
90
91 void nfs_writedata_free(struct nfs_write_data *p)
92 {
93 if (p && (p->pagevec != &p->page_array[0]))
94 kfree(p->pagevec);
95 mempool_free(p, nfs_wdata_mempool);
96 }
97
98 static void nfs_writedata_release(struct nfs_write_data *wdata)
99 {
100 put_lseg(wdata->lseg);
101 put_nfs_open_context(wdata->args.context);
102 nfs_writedata_free(wdata);
103 }
104
105 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
106 {
107 ctx->error = error;
108 smp_wmb();
109 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
110 }
111
112 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
113 {
114 struct nfs_page *req = NULL;
115
116 if (PagePrivate(page)) {
117 req = (struct nfs_page *)page_private(page);
118 if (req != NULL)
119 kref_get(&req->wb_kref);
120 }
121 return req;
122 }
123
124 static struct nfs_page *nfs_page_find_request(struct page *page)
125 {
126 struct inode *inode = page->mapping->host;
127 struct nfs_page *req = NULL;
128
129 spin_lock(&inode->i_lock);
130 req = nfs_page_find_request_locked(page);
131 spin_unlock(&inode->i_lock);
132 return req;
133 }
134
135 /* Adjust the file length if we're writing beyond the end */
136 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
137 {
138 struct inode *inode = page->mapping->host;
139 loff_t end, i_size;
140 pgoff_t end_index;
141
142 spin_lock(&inode->i_lock);
143 i_size = i_size_read(inode);
144 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
145 if (i_size > 0 && page->index < end_index)
146 goto out;
147 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
148 if (i_size >= end)
149 goto out;
150 i_size_write(inode, end);
151 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
152 out:
153 spin_unlock(&inode->i_lock);
154 }
155
156 /* A writeback failed: mark the page as bad, and invalidate the page cache */
157 static void nfs_set_pageerror(struct page *page)
158 {
159 SetPageError(page);
160 nfs_zap_mapping(page->mapping->host, page->mapping);
161 }
162
163 /* We can set the PG_uptodate flag if we see that a write request
164 * covers the full page.
165 */
166 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
167 {
168 if (PageUptodate(page))
169 return;
170 if (base != 0)
171 return;
172 if (count != nfs_page_length(page))
173 return;
174 SetPageUptodate(page);
175 }
176
177 static int wb_priority(struct writeback_control *wbc)
178 {
179 if (wbc->for_reclaim)
180 return FLUSH_HIGHPRI | FLUSH_STABLE;
181 if (wbc->for_kupdate || wbc->for_background)
182 return FLUSH_LOWPRI | FLUSH_COND_STABLE;
183 return FLUSH_COND_STABLE;
184 }
185
186 /*
187 * NFS congestion control
188 */
189
190 int nfs_congestion_kb;
191
192 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
193 #define NFS_CONGESTION_OFF_THRESH \
194 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
195
196 static int nfs_set_page_writeback(struct page *page)
197 {
198 int ret = test_set_page_writeback(page);
199
200 if (!ret) {
201 struct inode *inode = page->mapping->host;
202 struct nfs_server *nfss = NFS_SERVER(inode);
203
204 page_cache_get(page);
205 if (atomic_long_inc_return(&nfss->writeback) >
206 NFS_CONGESTION_ON_THRESH) {
207 set_bdi_congested(&nfss->backing_dev_info,
208 BLK_RW_ASYNC);
209 }
210 }
211 return ret;
212 }
213
214 static void nfs_end_page_writeback(struct page *page)
215 {
216 struct inode *inode = page->mapping->host;
217 struct nfs_server *nfss = NFS_SERVER(inode);
218
219 end_page_writeback(page);
220 page_cache_release(page);
221 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
222 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
223 }
224
225 static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
226 {
227 struct inode *inode = page->mapping->host;
228 struct nfs_page *req;
229 int ret;
230
231 spin_lock(&inode->i_lock);
232 for (;;) {
233 req = nfs_page_find_request_locked(page);
234 if (req == NULL)
235 break;
236 if (nfs_set_page_tag_locked(req))
237 break;
238 /* Note: If we hold the page lock, as is the case in nfs_writepage,
239 * then the call to nfs_set_page_tag_locked() will always
240 * succeed provided that someone hasn't already marked the
241 * request as dirty (in which case we don't care).
242 */
243 spin_unlock(&inode->i_lock);
244 if (!nonblock)
245 ret = nfs_wait_on_request(req);
246 else
247 ret = -EAGAIN;
248 nfs_release_request(req);
249 if (ret != 0)
250 return ERR_PTR(ret);
251 spin_lock(&inode->i_lock);
252 }
253 spin_unlock(&inode->i_lock);
254 return req;
255 }
256
257 /*
258 * Find an associated nfs write request, and prepare to flush it out
259 * May return an error if the user signalled nfs_wait_on_request().
260 */
261 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
262 struct page *page, bool nonblock)
263 {
264 struct nfs_page *req;
265 int ret = 0;
266
267 req = nfs_find_and_lock_request(page, nonblock);
268 if (!req)
269 goto out;
270 ret = PTR_ERR(req);
271 if (IS_ERR(req))
272 goto out;
273
274 ret = nfs_set_page_writeback(page);
275 BUG_ON(ret != 0);
276 BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
277
278 if (!nfs_pageio_add_request(pgio, req)) {
279 nfs_redirty_request(req);
280 ret = pgio->pg_error;
281 }
282 out:
283 return ret;
284 }
285
286 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
287 {
288 struct inode *inode = page->mapping->host;
289 int ret;
290
291 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
292 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
293
294 nfs_pageio_cond_complete(pgio, page->index);
295 ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
296 if (ret == -EAGAIN) {
297 redirty_page_for_writepage(wbc, page);
298 ret = 0;
299 }
300 return ret;
301 }
302
303 /*
304 * Write an mmapped page to the server.
305 */
306 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
307 {
308 struct nfs_pageio_descriptor pgio;
309 int err;
310
311 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
312 err = nfs_do_writepage(page, wbc, &pgio);
313 nfs_pageio_complete(&pgio);
314 if (err < 0)
315 return err;
316 if (pgio.pg_error < 0)
317 return pgio.pg_error;
318 return 0;
319 }
320
321 int nfs_writepage(struct page *page, struct writeback_control *wbc)
322 {
323 int ret;
324
325 ret = nfs_writepage_locked(page, wbc);
326 unlock_page(page);
327 return ret;
328 }
329
330 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
331 {
332 int ret;
333
334 ret = nfs_do_writepage(page, wbc, data);
335 unlock_page(page);
336 return ret;
337 }
338
339 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
340 {
341 struct inode *inode = mapping->host;
342 unsigned long *bitlock = &NFS_I(inode)->flags;
343 struct nfs_pageio_descriptor pgio;
344 int err;
345
346 /* Stop dirtying of new pages while we sync */
347 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
348 nfs_wait_bit_killable, TASK_KILLABLE);
349 if (err)
350 goto out_err;
351
352 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
353
354 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
355 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
356 nfs_pageio_complete(&pgio);
357
358 clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
359 smp_mb__after_clear_bit();
360 wake_up_bit(bitlock, NFS_INO_FLUSHING);
361
362 if (err < 0)
363 goto out_err;
364 err = pgio.pg_error;
365 if (err < 0)
366 goto out_err;
367 return 0;
368 out_err:
369 return err;
370 }
371
372 /*
373 * Insert a write request into an inode
374 */
375 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
376 {
377 struct nfs_inode *nfsi = NFS_I(inode);
378 int error;
379
380 error = radix_tree_preload(GFP_NOFS);
381 if (error != 0)
382 goto out;
383
384 /* Lock the request! */
385 nfs_lock_request_dontget(req);
386
387 spin_lock(&inode->i_lock);
388 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
389 BUG_ON(error);
390 if (!nfsi->npages) {
391 igrab(inode);
392 if (nfs_have_delegation(inode, FMODE_WRITE))
393 nfsi->change_attr++;
394 }
395 set_bit(PG_MAPPED, &req->wb_flags);
396 SetPagePrivate(req->wb_page);
397 set_page_private(req->wb_page, (unsigned long)req);
398 nfsi->npages++;
399 kref_get(&req->wb_kref);
400 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
401 NFS_PAGE_TAG_LOCKED);
402 spin_unlock(&inode->i_lock);
403 radix_tree_preload_end();
404 out:
405 return error;
406 }
407
408 /*
409 * Remove a write request from an inode
410 */
411 static void nfs_inode_remove_request(struct nfs_page *req)
412 {
413 struct inode *inode = req->wb_context->path.dentry->d_inode;
414 struct nfs_inode *nfsi = NFS_I(inode);
415
416 BUG_ON (!NFS_WBACK_BUSY(req));
417
418 spin_lock(&inode->i_lock);
419 set_page_private(req->wb_page, 0);
420 ClearPagePrivate(req->wb_page);
421 clear_bit(PG_MAPPED, &req->wb_flags);
422 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
423 nfsi->npages--;
424 if (!nfsi->npages) {
425 spin_unlock(&inode->i_lock);
426 iput(inode);
427 } else
428 spin_unlock(&inode->i_lock);
429 nfs_release_request(req);
430 }
431
432 static void
433 nfs_mark_request_dirty(struct nfs_page *req)
434 {
435 __set_page_dirty_nobuffers(req->wb_page);
436 __mark_inode_dirty(req->wb_page->mapping->host, I_DIRTY_DATASYNC);
437 }
438
439 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
440 /*
441 * Add a request to the inode's commit list.
442 */
443 static void
444 nfs_mark_request_commit(struct nfs_page *req)
445 {
446 struct inode *inode = req->wb_context->path.dentry->d_inode;
447 struct nfs_inode *nfsi = NFS_I(inode);
448
449 spin_lock(&inode->i_lock);
450 set_bit(PG_CLEAN, &(req)->wb_flags);
451 radix_tree_tag_set(&nfsi->nfs_page_tree,
452 req->wb_index,
453 NFS_PAGE_TAG_COMMIT);
454 nfsi->ncommit++;
455 spin_unlock(&inode->i_lock);
456 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
457 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
458 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
459 }
460
461 static int
462 nfs_clear_request_commit(struct nfs_page *req)
463 {
464 struct page *page = req->wb_page;
465
466 if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
467 dec_zone_page_state(page, NR_UNSTABLE_NFS);
468 dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
469 return 1;
470 }
471 return 0;
472 }
473
474 static inline
475 int nfs_write_need_commit(struct nfs_write_data *data)
476 {
477 if (data->verf.committed == NFS_DATA_SYNC)
478 return data->lseg == NULL;
479 else
480 return data->verf.committed != NFS_FILE_SYNC;
481 }
482
483 static inline
484 int nfs_reschedule_unstable_write(struct nfs_page *req)
485 {
486 if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
487 nfs_mark_request_commit(req);
488 return 1;
489 }
490 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
491 nfs_mark_request_dirty(req);
492 return 1;
493 }
494 return 0;
495 }
496 #else
497 static inline void
498 nfs_mark_request_commit(struct nfs_page *req)
499 {
500 }
501
502 static inline int
503 nfs_clear_request_commit(struct nfs_page *req)
504 {
505 return 0;
506 }
507
508 static inline
509 int nfs_write_need_commit(struct nfs_write_data *data)
510 {
511 return 0;
512 }
513
514 static inline
515 int nfs_reschedule_unstable_write(struct nfs_page *req)
516 {
517 return 0;
518 }
519 #endif
520
521 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
522 static int
523 nfs_need_commit(struct nfs_inode *nfsi)
524 {
525 return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
526 }
527
528 /*
529 * nfs_scan_commit - Scan an inode for commit requests
530 * @inode: NFS inode to scan
531 * @dst: destination list
532 * @idx_start: lower bound of page->index to scan.
533 * @npages: idx_start + npages sets the upper bound to scan.
534 *
535 * Moves requests from the inode's 'commit' request list.
536 * The requests are *not* checked to ensure that they form a contiguous set.
537 */
538 static int
539 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
540 {
541 struct nfs_inode *nfsi = NFS_I(inode);
542 int ret;
543
544 if (!nfs_need_commit(nfsi))
545 return 0;
546
547 ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
548 if (ret > 0)
549 nfsi->ncommit -= ret;
550 if (nfs_need_commit(NFS_I(inode)))
551 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
552 return ret;
553 }
554 #else
555 static inline int nfs_need_commit(struct nfs_inode *nfsi)
556 {
557 return 0;
558 }
559
560 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
561 {
562 return 0;
563 }
564 #endif
565
566 /*
567 * Search for an existing write request, and attempt to update
568 * it to reflect a new dirty region on a given page.
569 *
570 * If the attempt fails, then the existing request is flushed out
571 * to disk.
572 */
573 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
574 struct page *page,
575 unsigned int offset,
576 unsigned int bytes)
577 {
578 struct nfs_page *req;
579 unsigned int rqend;
580 unsigned int end;
581 int error;
582
583 if (!PagePrivate(page))
584 return NULL;
585
586 end = offset + bytes;
587 spin_lock(&inode->i_lock);
588
589 for (;;) {
590 req = nfs_page_find_request_locked(page);
591 if (req == NULL)
592 goto out_unlock;
593
594 rqend = req->wb_offset + req->wb_bytes;
595 /*
596 * Tell the caller to flush out the request if
597 * the offsets are non-contiguous.
598 * Note: nfs_flush_incompatible() will already
599 * have flushed out requests having wrong owners.
600 */
601 if (offset > rqend
602 || end < req->wb_offset)
603 goto out_flushme;
604
605 if (nfs_set_page_tag_locked(req))
606 break;
607
608 /* The request is locked, so wait and then retry */
609 spin_unlock(&inode->i_lock);
610 error = nfs_wait_on_request(req);
611 nfs_release_request(req);
612 if (error != 0)
613 goto out_err;
614 spin_lock(&inode->i_lock);
615 }
616
617 if (nfs_clear_request_commit(req) &&
618 radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
619 req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL)
620 NFS_I(inode)->ncommit--;
621
622 /* Okay, the request matches. Update the region */
623 if (offset < req->wb_offset) {
624 req->wb_offset = offset;
625 req->wb_pgbase = offset;
626 }
627 if (end > rqend)
628 req->wb_bytes = end - req->wb_offset;
629 else
630 req->wb_bytes = rqend - req->wb_offset;
631 out_unlock:
632 spin_unlock(&inode->i_lock);
633 return req;
634 out_flushme:
635 spin_unlock(&inode->i_lock);
636 nfs_release_request(req);
637 error = nfs_wb_page(inode, page);
638 out_err:
639 return ERR_PTR(error);
640 }
641
642 /*
643 * Try to update an existing write request, or create one if there is none.
644 *
645 * Note: Should always be called with the Page Lock held to prevent races
646 * if we have to add a new request. Also assumes that the caller has
647 * already called nfs_flush_incompatible() if necessary.
648 */
649 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
650 struct page *page, unsigned int offset, unsigned int bytes)
651 {
652 struct inode *inode = page->mapping->host;
653 struct nfs_page *req;
654 int error;
655
656 req = nfs_try_to_update_request(inode, page, offset, bytes);
657 if (req != NULL)
658 goto out;
659 req = nfs_create_request(ctx, inode, page, offset, bytes);
660 if (IS_ERR(req))
661 goto out;
662 error = nfs_inode_add_request(inode, req);
663 if (error != 0) {
664 nfs_release_request(req);
665 req = ERR_PTR(error);
666 }
667 out:
668 return req;
669 }
670
671 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
672 unsigned int offset, unsigned int count)
673 {
674 struct nfs_page *req;
675
676 req = nfs_setup_write_request(ctx, page, offset, count);
677 if (IS_ERR(req))
678 return PTR_ERR(req);
679 nfs_mark_request_dirty(req);
680 /* Update file length */
681 nfs_grow_file(page, offset, count);
682 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
683 nfs_mark_request_dirty(req);
684 nfs_clear_page_tag_locked(req);
685 return 0;
686 }
687
688 int nfs_flush_incompatible(struct file *file, struct page *page)
689 {
690 struct nfs_open_context *ctx = nfs_file_open_context(file);
691 struct nfs_page *req;
692 int do_flush, status;
693 /*
694 * Look for a request corresponding to this page. If there
695 * is one, and it belongs to another file, we flush it out
696 * before we try to copy anything into the page. Do this
697 * due to the lack of an ACCESS-type call in NFSv2.
698 * Also do the same if we find a request from an existing
699 * dropped page.
700 */
701 do {
702 req = nfs_page_find_request(page);
703 if (req == NULL)
704 return 0;
705 do_flush = req->wb_page != page || req->wb_context != ctx ||
706 req->wb_lock_context->lockowner != current->files ||
707 req->wb_lock_context->pid != current->tgid;
708 nfs_release_request(req);
709 if (!do_flush)
710 return 0;
711 status = nfs_wb_page(page->mapping->host, page);
712 } while (status == 0);
713 return status;
714 }
715
716 /*
717 * If the page cache is marked as unsafe or invalid, then we can't rely on
718 * the PageUptodate() flag. In this case, we will need to turn off
719 * write optimisations that depend on the page contents being correct.
720 */
721 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
722 {
723 return PageUptodate(page) &&
724 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
725 }
726
727 /*
728 * Update and possibly write a cached page of an NFS file.
729 *
730 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
731 * things with a page scheduled for an RPC call (e.g. invalidate it).
732 */
733 int nfs_updatepage(struct file *file, struct page *page,
734 unsigned int offset, unsigned int count)
735 {
736 struct nfs_open_context *ctx = nfs_file_open_context(file);
737 struct inode *inode = page->mapping->host;
738 int status = 0;
739
740 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
741
742 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n",
743 file->f_path.dentry->d_parent->d_name.name,
744 file->f_path.dentry->d_name.name, count,
745 (long long)(page_offset(page) + offset));
746
747 /* If we're not using byte range locks, and we know the page
748 * is up to date, it may be more efficient to extend the write
749 * to cover the entire page in order to avoid fragmentation
750 * inefficiencies.
751 */
752 if (nfs_write_pageuptodate(page, inode) &&
753 inode->i_flock == NULL &&
754 !(file->f_flags & O_DSYNC)) {
755 count = max(count + offset, nfs_page_length(page));
756 offset = 0;
757 }
758
759 status = nfs_writepage_setup(ctx, page, offset, count);
760 if (status < 0)
761 nfs_set_pageerror(page);
762
763 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
764 status, (long long)i_size_read(inode));
765 return status;
766 }
767
768 static void nfs_writepage_release(struct nfs_page *req)
769 {
770 struct page *page = req->wb_page;
771
772 if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req))
773 nfs_inode_remove_request(req);
774 nfs_clear_page_tag_locked(req);
775 nfs_end_page_writeback(page);
776 }
777
778 static int flush_task_priority(int how)
779 {
780 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
781 case FLUSH_HIGHPRI:
782 return RPC_PRIORITY_HIGH;
783 case FLUSH_LOWPRI:
784 return RPC_PRIORITY_LOW;
785 }
786 return RPC_PRIORITY_NORMAL;
787 }
788
789 int nfs_initiate_write(struct nfs_write_data *data,
790 struct rpc_clnt *clnt,
791 const struct rpc_call_ops *call_ops,
792 int how)
793 {
794 struct inode *inode = data->inode;
795 int priority = flush_task_priority(how);
796 struct rpc_task *task;
797 struct rpc_message msg = {
798 .rpc_argp = &data->args,
799 .rpc_resp = &data->res,
800 .rpc_cred = data->cred,
801 };
802 struct rpc_task_setup task_setup_data = {
803 .rpc_client = clnt,
804 .task = &data->task,
805 .rpc_message = &msg,
806 .callback_ops = call_ops,
807 .callback_data = data,
808 .workqueue = nfsiod_workqueue,
809 .flags = RPC_TASK_ASYNC,
810 .priority = priority,
811 };
812 int ret = 0;
813
814 /* Set up the initial task struct. */
815 NFS_PROTO(inode)->write_setup(data, &msg);
816
817 dprintk("NFS: %5u initiated write call "
818 "(req %s/%lld, %u bytes @ offset %llu)\n",
819 data->task.tk_pid,
820 inode->i_sb->s_id,
821 (long long)NFS_FILEID(inode),
822 data->args.count,
823 (unsigned long long)data->args.offset);
824
825 task = rpc_run_task(&task_setup_data);
826 if (IS_ERR(task)) {
827 ret = PTR_ERR(task);
828 goto out;
829 }
830 if (how & FLUSH_SYNC) {
831 ret = rpc_wait_for_completion_task(task);
832 if (ret == 0)
833 ret = task->tk_status;
834 }
835 rpc_put_task(task);
836 out:
837 return ret;
838 }
839 EXPORT_SYMBOL_GPL(nfs_initiate_write);
840
841 /*
842 * Set up the argument/result storage required for the RPC call.
843 */
844 static int nfs_write_rpcsetup(struct nfs_page *req,
845 struct nfs_write_data *data,
846 const struct rpc_call_ops *call_ops,
847 unsigned int count, unsigned int offset,
848 struct pnfs_layout_segment *lseg,
849 int how)
850 {
851 struct inode *inode = req->wb_context->path.dentry->d_inode;
852
853 /* Set up the RPC argument and reply structs
854 * NB: take care not to mess about with data->commit et al. */
855
856 data->req = req;
857 data->inode = inode = req->wb_context->path.dentry->d_inode;
858 data->cred = req->wb_context->cred;
859 data->lseg = get_lseg(lseg);
860
861 data->args.fh = NFS_FH(inode);
862 data->args.offset = req_offset(req) + offset;
863 data->args.pgbase = req->wb_pgbase + offset;
864 data->args.pages = data->pagevec;
865 data->args.count = count;
866 data->args.context = get_nfs_open_context(req->wb_context);
867 data->args.lock_context = req->wb_lock_context;
868 data->args.stable = NFS_UNSTABLE;
869 if (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) {
870 data->args.stable = NFS_DATA_SYNC;
871 if (!nfs_need_commit(NFS_I(inode)))
872 data->args.stable = NFS_FILE_SYNC;
873 }
874
875 data->res.fattr = &data->fattr;
876 data->res.count = count;
877 data->res.verf = &data->verf;
878 nfs_fattr_init(&data->fattr);
879
880 if (data->lseg &&
881 (pnfs_try_to_write_data(data, call_ops, how) == PNFS_ATTEMPTED))
882 return 0;
883
884 return nfs_initiate_write(data, NFS_CLIENT(inode), call_ops, how);
885 }
886
887 /* If a nfs_flush_* function fails, it should remove reqs from @head and
888 * call this on each, which will prepare them to be retried on next
889 * writeback using standard nfs.
890 */
891 static void nfs_redirty_request(struct nfs_page *req)
892 {
893 struct page *page = req->wb_page;
894
895 nfs_mark_request_dirty(req);
896 nfs_clear_page_tag_locked(req);
897 nfs_end_page_writeback(page);
898 }
899
900 /*
901 * Generate multiple small requests to write out a single
902 * contiguous dirty area on one page.
903 */
904 static int nfs_flush_multi(struct nfs_pageio_descriptor *desc)
905 {
906 struct nfs_page *req = nfs_list_entry(desc->pg_list.next);
907 struct page *page = req->wb_page;
908 struct nfs_write_data *data;
909 size_t wsize = NFS_SERVER(desc->pg_inode)->wsize, nbytes;
910 unsigned int offset;
911 int requests = 0;
912 int ret = 0;
913 struct pnfs_layout_segment *lseg;
914 LIST_HEAD(list);
915
916 nfs_list_remove_request(req);
917
918 if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
919 (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit ||
920 desc->pg_count > wsize))
921 desc->pg_ioflags &= ~FLUSH_COND_STABLE;
922
923
924 nbytes = desc->pg_count;
925 do {
926 size_t len = min(nbytes, wsize);
927
928 data = nfs_writedata_alloc(1);
929 if (!data)
930 goto out_bad;
931 list_add(&data->pages, &list);
932 requests++;
933 nbytes -= len;
934 } while (nbytes != 0);
935 atomic_set(&req->wb_complete, requests);
936
937 BUG_ON(desc->pg_lseg);
938 lseg = pnfs_update_layout(desc->pg_inode, req->wb_context, IOMODE_RW);
939 ClearPageError(page);
940 offset = 0;
941 nbytes = desc->pg_count;
942 do {
943 int ret2;
944
945 data = list_entry(list.next, struct nfs_write_data, pages);
946 list_del_init(&data->pages);
947
948 data->pagevec[0] = page;
949
950 if (nbytes < wsize)
951 wsize = nbytes;
952 ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
953 wsize, offset, lseg, desc->pg_ioflags);
954 if (ret == 0)
955 ret = ret2;
956 offset += wsize;
957 nbytes -= wsize;
958 } while (nbytes != 0);
959
960 put_lseg(lseg);
961 desc->pg_lseg = NULL;
962 return ret;
963
964 out_bad:
965 while (!list_empty(&list)) {
966 data = list_entry(list.next, struct nfs_write_data, pages);
967 list_del(&data->pages);
968 nfs_writedata_free(data);
969 }
970 nfs_redirty_request(req);
971 return -ENOMEM;
972 }
973
974 /*
975 * Create an RPC task for the given write request and kick it.
976 * The page must have been locked by the caller.
977 *
978 * It may happen that the page we're passed is not marked dirty.
979 * This is the case if nfs_updatepage detects a conflicting request
980 * that has been written but not committed.
981 */
982 static int nfs_flush_one(struct nfs_pageio_descriptor *desc)
983 {
984 struct nfs_page *req;
985 struct page **pages;
986 struct nfs_write_data *data;
987 struct list_head *head = &desc->pg_list;
988 struct pnfs_layout_segment *lseg = desc->pg_lseg;
989 int ret;
990
991 data = nfs_writedata_alloc(nfs_page_array_len(desc->pg_base,
992 desc->pg_count));
993 if (!data) {
994 while (!list_empty(head)) {
995 req = nfs_list_entry(head->next);
996 nfs_list_remove_request(req);
997 nfs_redirty_request(req);
998 }
999 ret = -ENOMEM;
1000 goto out;
1001 }
1002 pages = data->pagevec;
1003 while (!list_empty(head)) {
1004 req = nfs_list_entry(head->next);
1005 nfs_list_remove_request(req);
1006 nfs_list_add_request(req, &data->pages);
1007 ClearPageError(req->wb_page);
1008 *pages++ = req->wb_page;
1009 }
1010 req = nfs_list_entry(data->pages.next);
1011 if ((!lseg) && list_is_singular(&data->pages))
1012 lseg = pnfs_update_layout(desc->pg_inode, req->wb_context, IOMODE_RW);
1013
1014 if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
1015 (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit))
1016 desc->pg_ioflags &= ~FLUSH_COND_STABLE;
1017
1018 /* Set up the argument struct */
1019 ret = nfs_write_rpcsetup(req, data, &nfs_write_full_ops, desc->pg_count, 0, lseg, desc->pg_ioflags);
1020 out:
1021 put_lseg(lseg); /* Cleans any gotten in ->pg_test */
1022 desc->pg_lseg = NULL;
1023 return ret;
1024 }
1025
1026 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1027 struct inode *inode, int ioflags)
1028 {
1029 size_t wsize = NFS_SERVER(inode)->wsize;
1030
1031 pnfs_pageio_init_write(pgio, inode);
1032
1033 if (wsize < PAGE_CACHE_SIZE)
1034 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
1035 else
1036 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
1037 }
1038
1039 /*
1040 * Handle a write reply that flushed part of a page.
1041 */
1042 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
1043 {
1044 struct nfs_write_data *data = calldata;
1045
1046 dprintk("NFS: %5u write(%s/%lld %d@%lld)",
1047 task->tk_pid,
1048 data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
1049 (long long)
1050 NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
1051 data->req->wb_bytes, (long long)req_offset(data->req));
1052
1053 nfs_writeback_done(task, data);
1054 }
1055
1056 static void nfs_writeback_release_partial(void *calldata)
1057 {
1058 struct nfs_write_data *data = calldata;
1059 struct nfs_page *req = data->req;
1060 struct page *page = req->wb_page;
1061 int status = data->task.tk_status;
1062
1063 if (status < 0) {
1064 nfs_set_pageerror(page);
1065 nfs_context_set_write_error(req->wb_context, status);
1066 dprintk(", error = %d\n", status);
1067 goto out;
1068 }
1069
1070 if (nfs_write_need_commit(data)) {
1071 struct inode *inode = page->mapping->host;
1072
1073 spin_lock(&inode->i_lock);
1074 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1075 /* Do nothing we need to resend the writes */
1076 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1077 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1078 dprintk(" defer commit\n");
1079 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1080 set_bit(PG_NEED_RESCHED, &req->wb_flags);
1081 clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1082 dprintk(" server reboot detected\n");
1083 }
1084 spin_unlock(&inode->i_lock);
1085 } else
1086 dprintk(" OK\n");
1087
1088 out:
1089 if (atomic_dec_and_test(&req->wb_complete))
1090 nfs_writepage_release(req);
1091 nfs_writedata_release(calldata);
1092 }
1093
1094 #if defined(CONFIG_NFS_V4_1)
1095 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1096 {
1097 struct nfs_write_data *data = calldata;
1098
1099 if (nfs4_setup_sequence(NFS_SERVER(data->inode),
1100 &data->args.seq_args,
1101 &data->res.seq_res, 1, task))
1102 return;
1103 rpc_call_start(task);
1104 }
1105 #endif /* CONFIG_NFS_V4_1 */
1106
1107 static const struct rpc_call_ops nfs_write_partial_ops = {
1108 #if defined(CONFIG_NFS_V4_1)
1109 .rpc_call_prepare = nfs_write_prepare,
1110 #endif /* CONFIG_NFS_V4_1 */
1111 .rpc_call_done = nfs_writeback_done_partial,
1112 .rpc_release = nfs_writeback_release_partial,
1113 };
1114
1115 /*
1116 * Handle a write reply that flushes a whole page.
1117 *
1118 * FIXME: There is an inherent race with invalidate_inode_pages and
1119 * writebacks since the page->count is kept > 1 for as long
1120 * as the page has a write request pending.
1121 */
1122 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1123 {
1124 struct nfs_write_data *data = calldata;
1125
1126 nfs_writeback_done(task, data);
1127 }
1128
1129 static void nfs_writeback_release_full(void *calldata)
1130 {
1131 struct nfs_write_data *data = calldata;
1132 int status = data->task.tk_status;
1133
1134 /* Update attributes as result of writeback. */
1135 while (!list_empty(&data->pages)) {
1136 struct nfs_page *req = nfs_list_entry(data->pages.next);
1137 struct page *page = req->wb_page;
1138
1139 nfs_list_remove_request(req);
1140
1141 dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1142 data->task.tk_pid,
1143 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1144 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1145 req->wb_bytes,
1146 (long long)req_offset(req));
1147
1148 if (status < 0) {
1149 nfs_set_pageerror(page);
1150 nfs_context_set_write_error(req->wb_context, status);
1151 dprintk(", error = %d\n", status);
1152 goto remove_request;
1153 }
1154
1155 if (nfs_write_need_commit(data)) {
1156 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1157 nfs_mark_request_commit(req);
1158 dprintk(" marked for commit\n");
1159 goto next;
1160 }
1161 dprintk(" OK\n");
1162 remove_request:
1163 nfs_inode_remove_request(req);
1164 next:
1165 nfs_clear_page_tag_locked(req);
1166 nfs_end_page_writeback(page);
1167 }
1168 nfs_writedata_release(calldata);
1169 }
1170
1171 static const struct rpc_call_ops nfs_write_full_ops = {
1172 #if defined(CONFIG_NFS_V4_1)
1173 .rpc_call_prepare = nfs_write_prepare,
1174 #endif /* CONFIG_NFS_V4_1 */
1175 .rpc_call_done = nfs_writeback_done_full,
1176 .rpc_release = nfs_writeback_release_full,
1177 };
1178
1179
1180 /*
1181 * This function is called when the WRITE call is complete.
1182 */
1183 void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1184 {
1185 struct nfs_writeargs *argp = &data->args;
1186 struct nfs_writeres *resp = &data->res;
1187 struct nfs_server *server = NFS_SERVER(data->inode);
1188 int status;
1189
1190 dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1191 task->tk_pid, task->tk_status);
1192
1193 /*
1194 * ->write_done will attempt to use post-op attributes to detect
1195 * conflicting writes by other clients. A strict interpretation
1196 * of close-to-open would allow us to continue caching even if
1197 * another writer had changed the file, but some applications
1198 * depend on tighter cache coherency when writing.
1199 */
1200 status = NFS_PROTO(data->inode)->write_done(task, data);
1201 if (status != 0)
1202 return;
1203 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1204
1205 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1206 if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1207 /* We tried a write call, but the server did not
1208 * commit data to stable storage even though we
1209 * requested it.
1210 * Note: There is a known bug in Tru64 < 5.0 in which
1211 * the server reports NFS_DATA_SYNC, but performs
1212 * NFS_FILE_SYNC. We therefore implement this checking
1213 * as a dprintk() in order to avoid filling syslog.
1214 */
1215 static unsigned long complain;
1216
1217 /* Note this will print the MDS for a DS write */
1218 if (time_before(complain, jiffies)) {
1219 dprintk("NFS: faulty NFS server %s:"
1220 " (committed = %d) != (stable = %d)\n",
1221 server->nfs_client->cl_hostname,
1222 resp->verf->committed, argp->stable);
1223 complain = jiffies + 300 * HZ;
1224 }
1225 }
1226 #endif
1227 /* Is this a short write? */
1228 if (task->tk_status >= 0 && resp->count < argp->count) {
1229 static unsigned long complain;
1230
1231 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1232
1233 /* Has the server at least made some progress? */
1234 if (resp->count != 0) {
1235 /* Was this an NFSv2 write or an NFSv3 stable write? */
1236 if (resp->verf->committed != NFS_UNSTABLE) {
1237 /* Resend from where the server left off */
1238 data->mds_offset += resp->count;
1239 argp->offset += resp->count;
1240 argp->pgbase += resp->count;
1241 argp->count -= resp->count;
1242 } else {
1243 /* Resend as a stable write in order to avoid
1244 * headaches in the case of a server crash.
1245 */
1246 argp->stable = NFS_FILE_SYNC;
1247 }
1248 nfs_restart_rpc(task, server->nfs_client);
1249 return;
1250 }
1251 if (time_before(complain, jiffies)) {
1252 printk(KERN_WARNING
1253 "NFS: Server wrote zero bytes, expected %u.\n",
1254 argp->count);
1255 complain = jiffies + 300 * HZ;
1256 }
1257 /* Can't do anything about it except throw an error. */
1258 task->tk_status = -EIO;
1259 }
1260 return;
1261 }
1262
1263
1264 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1265 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
1266 {
1267 int ret;
1268
1269 if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
1270 return 1;
1271 if (!may_wait)
1272 return 0;
1273 ret = out_of_line_wait_on_bit_lock(&nfsi->flags,
1274 NFS_INO_COMMIT,
1275 nfs_wait_bit_killable,
1276 TASK_KILLABLE);
1277 return (ret < 0) ? ret : 1;
1278 }
1279
1280 static void nfs_commit_clear_lock(struct nfs_inode *nfsi)
1281 {
1282 clear_bit(NFS_INO_COMMIT, &nfsi->flags);
1283 smp_mb__after_clear_bit();
1284 wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
1285 }
1286
1287
1288 static void nfs_commitdata_release(void *data)
1289 {
1290 struct nfs_write_data *wdata = data;
1291
1292 put_nfs_open_context(wdata->args.context);
1293 nfs_commit_free(wdata);
1294 }
1295
1296 static int nfs_initiate_commit(struct nfs_write_data *data, struct rpc_clnt *clnt,
1297 const struct rpc_call_ops *call_ops,
1298 int how)
1299 {
1300 struct rpc_task *task;
1301 int priority = flush_task_priority(how);
1302 struct rpc_message msg = {
1303 .rpc_argp = &data->args,
1304 .rpc_resp = &data->res,
1305 .rpc_cred = data->cred,
1306 };
1307 struct rpc_task_setup task_setup_data = {
1308 .task = &data->task,
1309 .rpc_client = clnt,
1310 .rpc_message = &msg,
1311 .callback_ops = call_ops,
1312 .callback_data = data,
1313 .workqueue = nfsiod_workqueue,
1314 .flags = RPC_TASK_ASYNC,
1315 .priority = priority,
1316 };
1317 /* Set up the initial task struct. */
1318 NFS_PROTO(data->inode)->commit_setup(data, &msg);
1319
1320 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1321
1322 task = rpc_run_task(&task_setup_data);
1323 if (IS_ERR(task))
1324 return PTR_ERR(task);
1325 if (how & FLUSH_SYNC)
1326 rpc_wait_for_completion_task(task);
1327 rpc_put_task(task);
1328 return 0;
1329 }
1330
1331 /*
1332 * Set up the argument/result storage required for the RPC call.
1333 */
1334 static void nfs_init_commit(struct nfs_write_data *data,
1335 struct list_head *head)
1336 {
1337 struct nfs_page *first = nfs_list_entry(head->next);
1338 struct inode *inode = first->wb_context->path.dentry->d_inode;
1339
1340 /* Set up the RPC argument and reply structs
1341 * NB: take care not to mess about with data->commit et al. */
1342
1343 list_splice_init(head, &data->pages);
1344
1345 data->inode = inode;
1346 data->cred = first->wb_context->cred;
1347 data->mds_ops = &nfs_commit_ops;
1348
1349 data->args.fh = NFS_FH(data->inode);
1350 /* Note: we always request a commit of the entire inode */
1351 data->args.offset = 0;
1352 data->args.count = 0;
1353 data->args.context = get_nfs_open_context(first->wb_context);
1354 data->res.count = 0;
1355 data->res.fattr = &data->fattr;
1356 data->res.verf = &data->verf;
1357 nfs_fattr_init(&data->fattr);
1358 }
1359
1360 static void nfs_retry_commit(struct list_head *page_list)
1361 {
1362 struct nfs_page *req;
1363
1364 while (!list_empty(page_list)) {
1365 req = nfs_list_entry(page_list->next);
1366 nfs_list_remove_request(req);
1367 nfs_mark_request_commit(req);
1368 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1369 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1370 BDI_RECLAIMABLE);
1371 nfs_clear_page_tag_locked(req);
1372 }
1373 }
1374
1375 /*
1376 * Commit dirty pages
1377 */
1378 static int
1379 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1380 {
1381 struct nfs_write_data *data;
1382
1383 data = nfs_commitdata_alloc();
1384
1385 if (!data)
1386 goto out_bad;
1387
1388 /* Set up the argument struct */
1389 nfs_init_commit(data, head);
1390 return nfs_initiate_commit(data, NFS_CLIENT(inode), data->mds_ops, how);
1391 out_bad:
1392 nfs_retry_commit(head);
1393 nfs_commit_clear_lock(NFS_I(inode));
1394 return -ENOMEM;
1395 }
1396
1397 /*
1398 * COMMIT call returned
1399 */
1400 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1401 {
1402 struct nfs_write_data *data = calldata;
1403
1404 dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1405 task->tk_pid, task->tk_status);
1406
1407 /* Call the NFS version-specific code */
1408 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1409 return;
1410 }
1411
1412 static void nfs_commit_release(void *calldata)
1413 {
1414 struct nfs_write_data *data = calldata;
1415 struct nfs_page *req;
1416 int status = data->task.tk_status;
1417
1418 while (!list_empty(&data->pages)) {
1419 req = nfs_list_entry(data->pages.next);
1420 nfs_list_remove_request(req);
1421 nfs_clear_request_commit(req);
1422
1423 dprintk("NFS: commit (%s/%lld %d@%lld)",
1424 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1425 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1426 req->wb_bytes,
1427 (long long)req_offset(req));
1428 if (status < 0) {
1429 nfs_context_set_write_error(req->wb_context, status);
1430 nfs_inode_remove_request(req);
1431 dprintk(", error = %d\n", status);
1432 goto next;
1433 }
1434
1435 /* Okay, COMMIT succeeded, apparently. Check the verifier
1436 * returned by the server against all stored verfs. */
1437 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1438 /* We have a match */
1439 nfs_inode_remove_request(req);
1440 dprintk(" OK\n");
1441 goto next;
1442 }
1443 /* We have a mismatch. Write the page again */
1444 dprintk(" mismatch\n");
1445 nfs_mark_request_dirty(req);
1446 next:
1447 nfs_clear_page_tag_locked(req);
1448 }
1449 nfs_commit_clear_lock(NFS_I(data->inode));
1450 nfs_commitdata_release(calldata);
1451 }
1452
1453 static const struct rpc_call_ops nfs_commit_ops = {
1454 #if defined(CONFIG_NFS_V4_1)
1455 .rpc_call_prepare = nfs_write_prepare,
1456 #endif /* CONFIG_NFS_V4_1 */
1457 .rpc_call_done = nfs_commit_done,
1458 .rpc_release = nfs_commit_release,
1459 };
1460
1461 int nfs_commit_inode(struct inode *inode, int how)
1462 {
1463 LIST_HEAD(head);
1464 int may_wait = how & FLUSH_SYNC;
1465 int res;
1466
1467 res = nfs_commit_set_lock(NFS_I(inode), may_wait);
1468 if (res <= 0)
1469 goto out_mark_dirty;
1470 spin_lock(&inode->i_lock);
1471 res = nfs_scan_commit(inode, &head, 0, 0);
1472 spin_unlock(&inode->i_lock);
1473 if (res) {
1474 int error = nfs_commit_list(inode, &head, how);
1475 if (error < 0)
1476 return error;
1477 if (!may_wait)
1478 goto out_mark_dirty;
1479 error = wait_on_bit(&NFS_I(inode)->flags,
1480 NFS_INO_COMMIT,
1481 nfs_wait_bit_killable,
1482 TASK_KILLABLE);
1483 if (error < 0)
1484 return error;
1485 } else
1486 nfs_commit_clear_lock(NFS_I(inode));
1487 return res;
1488 /* Note: If we exit without ensuring that the commit is complete,
1489 * we must mark the inode as dirty. Otherwise, future calls to
1490 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1491 * that the data is on the disk.
1492 */
1493 out_mark_dirty:
1494 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1495 return res;
1496 }
1497
1498 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1499 {
1500 struct nfs_inode *nfsi = NFS_I(inode);
1501 int flags = FLUSH_SYNC;
1502 int ret = 0;
1503
1504 if (wbc->sync_mode == WB_SYNC_NONE) {
1505 /* Don't commit yet if this is a non-blocking flush and there
1506 * are a lot of outstanding writes for this mapping.
1507 */
1508 if (nfsi->ncommit <= (nfsi->npages >> 1))
1509 goto out_mark_dirty;
1510
1511 /* don't wait for the COMMIT response */
1512 flags = 0;
1513 }
1514
1515 ret = nfs_commit_inode(inode, flags);
1516 if (ret >= 0) {
1517 if (wbc->sync_mode == WB_SYNC_NONE) {
1518 if (ret < wbc->nr_to_write)
1519 wbc->nr_to_write -= ret;
1520 else
1521 wbc->nr_to_write = 0;
1522 }
1523 return 0;
1524 }
1525 out_mark_dirty:
1526 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1527 return ret;
1528 }
1529 #else
1530 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1531 {
1532 return 0;
1533 }
1534 #endif
1535
1536 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1537 {
1538 return nfs_commit_unstable_pages(inode, wbc);
1539 }
1540
1541 /*
1542 * flush the inode to disk.
1543 */
1544 int nfs_wb_all(struct inode *inode)
1545 {
1546 struct writeback_control wbc = {
1547 .sync_mode = WB_SYNC_ALL,
1548 .nr_to_write = LONG_MAX,
1549 .range_start = 0,
1550 .range_end = LLONG_MAX,
1551 };
1552
1553 return sync_inode(inode, &wbc);
1554 }
1555
1556 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1557 {
1558 struct nfs_page *req;
1559 int ret = 0;
1560
1561 BUG_ON(!PageLocked(page));
1562 for (;;) {
1563 wait_on_page_writeback(page);
1564 req = nfs_page_find_request(page);
1565 if (req == NULL)
1566 break;
1567 if (nfs_lock_request_dontget(req)) {
1568 nfs_inode_remove_request(req);
1569 /*
1570 * In case nfs_inode_remove_request has marked the
1571 * page as being dirty
1572 */
1573 cancel_dirty_page(page, PAGE_CACHE_SIZE);
1574 nfs_unlock_request(req);
1575 break;
1576 }
1577 ret = nfs_wait_on_request(req);
1578 nfs_release_request(req);
1579 if (ret < 0)
1580 break;
1581 }
1582 return ret;
1583 }
1584
1585 /*
1586 * Write back all requests on one page - we do this before reading it.
1587 */
1588 int nfs_wb_page(struct inode *inode, struct page *page)
1589 {
1590 loff_t range_start = page_offset(page);
1591 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1592 struct writeback_control wbc = {
1593 .sync_mode = WB_SYNC_ALL,
1594 .nr_to_write = 0,
1595 .range_start = range_start,
1596 .range_end = range_end,
1597 };
1598 int ret;
1599
1600 for (;;) {
1601 wait_on_page_writeback(page);
1602 if (clear_page_dirty_for_io(page)) {
1603 ret = nfs_writepage_locked(page, &wbc);
1604 if (ret < 0)
1605 goto out_error;
1606 continue;
1607 }
1608 if (!PagePrivate(page))
1609 break;
1610 ret = nfs_commit_inode(inode, FLUSH_SYNC);
1611 if (ret < 0)
1612 goto out_error;
1613 }
1614 return 0;
1615 out_error:
1616 return ret;
1617 }
1618
1619 #ifdef CONFIG_MIGRATION
1620 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1621 struct page *page)
1622 {
1623 struct nfs_page *req;
1624 int ret;
1625
1626 nfs_fscache_release_page(page, GFP_KERNEL);
1627
1628 req = nfs_find_and_lock_request(page, false);
1629 ret = PTR_ERR(req);
1630 if (IS_ERR(req))
1631 goto out;
1632
1633 ret = migrate_page(mapping, newpage, page);
1634 if (!req)
1635 goto out;
1636 if (ret)
1637 goto out_unlock;
1638 page_cache_get(newpage);
1639 spin_lock(&mapping->host->i_lock);
1640 req->wb_page = newpage;
1641 SetPagePrivate(newpage);
1642 set_page_private(newpage, (unsigned long)req);
1643 ClearPagePrivate(page);
1644 set_page_private(page, 0);
1645 spin_unlock(&mapping->host->i_lock);
1646 page_cache_release(page);
1647 out_unlock:
1648 nfs_clear_page_tag_locked(req);
1649 out:
1650 return ret;
1651 }
1652 #endif
1653
1654 int __init nfs_init_writepagecache(void)
1655 {
1656 nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1657 sizeof(struct nfs_write_data),
1658 0, SLAB_HWCACHE_ALIGN,
1659 NULL);
1660 if (nfs_wdata_cachep == NULL)
1661 return -ENOMEM;
1662
1663 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1664 nfs_wdata_cachep);
1665 if (nfs_wdata_mempool == NULL)
1666 return -ENOMEM;
1667
1668 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1669 nfs_wdata_cachep);
1670 if (nfs_commit_mempool == NULL)
1671 return -ENOMEM;
1672
1673 /*
1674 * NFS congestion size, scale with available memory.
1675 *
1676 * 64MB: 8192k
1677 * 128MB: 11585k
1678 * 256MB: 16384k
1679 * 512MB: 23170k
1680 * 1GB: 32768k
1681 * 2GB: 46340k
1682 * 4GB: 65536k
1683 * 8GB: 92681k
1684 * 16GB: 131072k
1685 *
1686 * This allows larger machines to have larger/more transfers.
1687 * Limit the default to 256M
1688 */
1689 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1690 if (nfs_congestion_kb > 256*1024)
1691 nfs_congestion_kb = 256*1024;
1692
1693 return 0;
1694 }
1695
1696 void nfs_destroy_writepagecache(void)
1697 {
1698 mempool_destroy(nfs_commit_mempool);
1699 mempool_destroy(nfs_wdata_mempool);
1700 kmem_cache_destroy(nfs_wdata_cachep);
1701 }
1702