]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/nfs/write.c
NFS: Optimise append writes with holes
[mirror_ubuntu-jammy-kernel.git] / fs / nfs / write.c
1 /*
2 * linux/fs/nfs/write.c
3 *
4 * Write file data over NFS.
5 *
6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7 */
8
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16
17 #include <linux/sunrpc/clnt.h>
18 #include <linux/nfs_fs.h>
19 #include <linux/nfs_mount.h>
20 #include <linux/nfs_page.h>
21 #include <linux/backing-dev.h>
22
23 #include <asm/uaccess.h>
24
25 #include "delegation.h"
26 #include "internal.h"
27 #include "iostat.h"
28
29 #define NFSDBG_FACILITY NFSDBG_PAGECACHE
30
31 #define MIN_POOL_WRITE (32)
32 #define MIN_POOL_COMMIT (4)
33
34 /*
35 * Local function declarations
36 */
37 static struct nfs_page * nfs_update_request(struct nfs_open_context*,
38 struct page *,
39 unsigned int, unsigned int);
40 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
41 struct inode *inode, int ioflags);
42 static void nfs_redirty_request(struct nfs_page *req);
43 static const struct rpc_call_ops nfs_write_partial_ops;
44 static const struct rpc_call_ops nfs_write_full_ops;
45 static const struct rpc_call_ops nfs_commit_ops;
46
47 static struct kmem_cache *nfs_wdata_cachep;
48 static mempool_t *nfs_wdata_mempool;
49 static mempool_t *nfs_commit_mempool;
50
51 struct nfs_write_data *nfs_commitdata_alloc(void)
52 {
53 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
54
55 if (p) {
56 memset(p, 0, sizeof(*p));
57 INIT_LIST_HEAD(&p->pages);
58 }
59 return p;
60 }
61
62 void nfs_commit_free(struct nfs_write_data *p)
63 {
64 if (p && (p->pagevec != &p->page_array[0]))
65 kfree(p->pagevec);
66 mempool_free(p, nfs_commit_mempool);
67 }
68
69 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
70 {
71 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
72
73 if (p) {
74 memset(p, 0, sizeof(*p));
75 INIT_LIST_HEAD(&p->pages);
76 p->npages = pagecount;
77 if (pagecount <= ARRAY_SIZE(p->page_array))
78 p->pagevec = p->page_array;
79 else {
80 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
81 if (!p->pagevec) {
82 mempool_free(p, nfs_wdata_mempool);
83 p = NULL;
84 }
85 }
86 }
87 return p;
88 }
89
90 static void nfs_writedata_free(struct nfs_write_data *p)
91 {
92 if (p && (p->pagevec != &p->page_array[0]))
93 kfree(p->pagevec);
94 mempool_free(p, nfs_wdata_mempool);
95 }
96
97 void nfs_writedata_release(void *data)
98 {
99 struct nfs_write_data *wdata = data;
100
101 put_nfs_open_context(wdata->args.context);
102 nfs_writedata_free(wdata);
103 }
104
105 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
106 {
107 ctx->error = error;
108 smp_wmb();
109 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
110 }
111
112 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
113 {
114 struct nfs_page *req = NULL;
115
116 if (PagePrivate(page)) {
117 req = (struct nfs_page *)page_private(page);
118 if (req != NULL)
119 kref_get(&req->wb_kref);
120 }
121 return req;
122 }
123
124 static struct nfs_page *nfs_page_find_request(struct page *page)
125 {
126 struct inode *inode = page->mapping->host;
127 struct nfs_page *req = NULL;
128
129 spin_lock(&inode->i_lock);
130 req = nfs_page_find_request_locked(page);
131 spin_unlock(&inode->i_lock);
132 return req;
133 }
134
135 /* Adjust the file length if we're writing beyond the end */
136 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
137 {
138 struct inode *inode = page->mapping->host;
139 loff_t end, i_size = i_size_read(inode);
140 pgoff_t end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
141
142 if (i_size > 0 && page->index < end_index)
143 return;
144 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
145 if (i_size >= end)
146 return;
147 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
148 i_size_write(inode, end);
149 }
150
151 /* A writeback failed: mark the page as bad, and invalidate the page cache */
152 static void nfs_set_pageerror(struct page *page)
153 {
154 SetPageError(page);
155 nfs_zap_mapping(page->mapping->host, page->mapping);
156 }
157
158 /* We can set the PG_uptodate flag if we see that a write request
159 * covers the full page.
160 */
161 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
162 {
163 if (PageUptodate(page))
164 return;
165 if (base != 0)
166 return;
167 if (count != nfs_page_length(page))
168 return;
169 SetPageUptodate(page);
170 }
171
172 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
173 unsigned int offset, unsigned int count)
174 {
175 struct nfs_page *req;
176 int ret;
177
178 for (;;) {
179 req = nfs_update_request(ctx, page, offset, count);
180 if (!IS_ERR(req))
181 break;
182 ret = PTR_ERR(req);
183 if (ret != -EBUSY)
184 return ret;
185 ret = nfs_wb_page(page->mapping->host, page);
186 if (ret != 0)
187 return ret;
188 }
189 /* Update file length */
190 nfs_grow_file(page, offset, count);
191 nfs_clear_page_tag_locked(req);
192 return 0;
193 }
194
195 static int wb_priority(struct writeback_control *wbc)
196 {
197 if (wbc->for_reclaim)
198 return FLUSH_HIGHPRI | FLUSH_STABLE;
199 if (wbc->for_kupdate)
200 return FLUSH_LOWPRI;
201 return 0;
202 }
203
204 /*
205 * NFS congestion control
206 */
207
208 int nfs_congestion_kb;
209
210 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
211 #define NFS_CONGESTION_OFF_THRESH \
212 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
213
214 static int nfs_set_page_writeback(struct page *page)
215 {
216 int ret = test_set_page_writeback(page);
217
218 if (!ret) {
219 struct inode *inode = page->mapping->host;
220 struct nfs_server *nfss = NFS_SERVER(inode);
221
222 if (atomic_long_inc_return(&nfss->writeback) >
223 NFS_CONGESTION_ON_THRESH)
224 set_bdi_congested(&nfss->backing_dev_info, WRITE);
225 }
226 return ret;
227 }
228
229 static void nfs_end_page_writeback(struct page *page)
230 {
231 struct inode *inode = page->mapping->host;
232 struct nfs_server *nfss = NFS_SERVER(inode);
233
234 end_page_writeback(page);
235 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
236 clear_bdi_congested(&nfss->backing_dev_info, WRITE);
237 }
238
239 /*
240 * Find an associated nfs write request, and prepare to flush it out
241 * May return an error if the user signalled nfs_wait_on_request().
242 */
243 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
244 struct page *page)
245 {
246 struct inode *inode = page->mapping->host;
247 struct nfs_page *req;
248 int ret;
249
250 spin_lock(&inode->i_lock);
251 for(;;) {
252 req = nfs_page_find_request_locked(page);
253 if (req == NULL) {
254 spin_unlock(&inode->i_lock);
255 return 0;
256 }
257 if (nfs_set_page_tag_locked(req))
258 break;
259 /* Note: If we hold the page lock, as is the case in nfs_writepage,
260 * then the call to nfs_set_page_tag_locked() will always
261 * succeed provided that someone hasn't already marked the
262 * request as dirty (in which case we don't care).
263 */
264 spin_unlock(&inode->i_lock);
265 ret = nfs_wait_on_request(req);
266 nfs_release_request(req);
267 if (ret != 0)
268 return ret;
269 spin_lock(&inode->i_lock);
270 }
271 if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) {
272 /* This request is marked for commit */
273 spin_unlock(&inode->i_lock);
274 nfs_clear_page_tag_locked(req);
275 nfs_pageio_complete(pgio);
276 return 0;
277 }
278 if (nfs_set_page_writeback(page) != 0) {
279 spin_unlock(&inode->i_lock);
280 BUG();
281 }
282 spin_unlock(&inode->i_lock);
283 if (!nfs_pageio_add_request(pgio, req)) {
284 nfs_redirty_request(req);
285 return pgio->pg_error;
286 }
287 return 0;
288 }
289
290 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
291 {
292 struct inode *inode = page->mapping->host;
293
294 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
295 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
296
297 nfs_pageio_cond_complete(pgio, page->index);
298 return nfs_page_async_flush(pgio, page);
299 }
300
301 /*
302 * Write an mmapped page to the server.
303 */
304 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
305 {
306 struct nfs_pageio_descriptor pgio;
307 int err;
308
309 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
310 err = nfs_do_writepage(page, wbc, &pgio);
311 nfs_pageio_complete(&pgio);
312 if (err < 0)
313 return err;
314 if (pgio.pg_error < 0)
315 return pgio.pg_error;
316 return 0;
317 }
318
319 int nfs_writepage(struct page *page, struct writeback_control *wbc)
320 {
321 int ret;
322
323 ret = nfs_writepage_locked(page, wbc);
324 unlock_page(page);
325 return ret;
326 }
327
328 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
329 {
330 int ret;
331
332 ret = nfs_do_writepage(page, wbc, data);
333 unlock_page(page);
334 return ret;
335 }
336
337 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
338 {
339 struct inode *inode = mapping->host;
340 struct nfs_pageio_descriptor pgio;
341 int err;
342
343 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
344
345 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
346 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
347 nfs_pageio_complete(&pgio);
348 if (err < 0)
349 return err;
350 if (pgio.pg_error < 0)
351 return pgio.pg_error;
352 return 0;
353 }
354
355 /*
356 * Insert a write request into an inode
357 */
358 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
359 {
360 struct nfs_inode *nfsi = NFS_I(inode);
361 int error;
362
363 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
364 BUG_ON(error);
365 if (!nfsi->npages) {
366 igrab(inode);
367 if (nfs_have_delegation(inode, FMODE_WRITE))
368 nfsi->change_attr++;
369 }
370 SetPagePrivate(req->wb_page);
371 set_page_private(req->wb_page, (unsigned long)req);
372 nfsi->npages++;
373 kref_get(&req->wb_kref);
374 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
375 NFS_PAGE_TAG_LOCKED);
376 }
377
378 /*
379 * Remove a write request from an inode
380 */
381 static void nfs_inode_remove_request(struct nfs_page *req)
382 {
383 struct inode *inode = req->wb_context->path.dentry->d_inode;
384 struct nfs_inode *nfsi = NFS_I(inode);
385
386 BUG_ON (!NFS_WBACK_BUSY(req));
387
388 spin_lock(&inode->i_lock);
389 set_page_private(req->wb_page, 0);
390 ClearPagePrivate(req->wb_page);
391 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
392 nfsi->npages--;
393 if (!nfsi->npages) {
394 spin_unlock(&inode->i_lock);
395 iput(inode);
396 } else
397 spin_unlock(&inode->i_lock);
398 nfs_clear_request(req);
399 nfs_release_request(req);
400 }
401
402 static void
403 nfs_mark_request_dirty(struct nfs_page *req)
404 {
405 __set_page_dirty_nobuffers(req->wb_page);
406 }
407
408 /*
409 * Check if a request is dirty
410 */
411 static inline int
412 nfs_dirty_request(struct nfs_page *req)
413 {
414 struct page *page = req->wb_page;
415
416 if (page == NULL || test_bit(PG_NEED_COMMIT, &req->wb_flags))
417 return 0;
418 return !PageWriteback(page);
419 }
420
421 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
422 /*
423 * Add a request to the inode's commit list.
424 */
425 static void
426 nfs_mark_request_commit(struct nfs_page *req)
427 {
428 struct inode *inode = req->wb_context->path.dentry->d_inode;
429 struct nfs_inode *nfsi = NFS_I(inode);
430
431 spin_lock(&inode->i_lock);
432 nfsi->ncommit++;
433 set_bit(PG_NEED_COMMIT, &(req)->wb_flags);
434 radix_tree_tag_set(&nfsi->nfs_page_tree,
435 req->wb_index,
436 NFS_PAGE_TAG_COMMIT);
437 spin_unlock(&inode->i_lock);
438 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
439 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
440 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
441 }
442
443 static inline
444 int nfs_write_need_commit(struct nfs_write_data *data)
445 {
446 return data->verf.committed != NFS_FILE_SYNC;
447 }
448
449 static inline
450 int nfs_reschedule_unstable_write(struct nfs_page *req)
451 {
452 if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) {
453 nfs_mark_request_commit(req);
454 return 1;
455 }
456 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
457 nfs_mark_request_dirty(req);
458 return 1;
459 }
460 return 0;
461 }
462 #else
463 static inline void
464 nfs_mark_request_commit(struct nfs_page *req)
465 {
466 }
467
468 static inline
469 int nfs_write_need_commit(struct nfs_write_data *data)
470 {
471 return 0;
472 }
473
474 static inline
475 int nfs_reschedule_unstable_write(struct nfs_page *req)
476 {
477 return 0;
478 }
479 #endif
480
481 /*
482 * Wait for a request to complete.
483 *
484 * Interruptible by fatal signals only.
485 */
486 static int nfs_wait_on_requests_locked(struct inode *inode, pgoff_t idx_start, unsigned int npages)
487 {
488 struct nfs_inode *nfsi = NFS_I(inode);
489 struct nfs_page *req;
490 pgoff_t idx_end, next;
491 unsigned int res = 0;
492 int error;
493
494 if (npages == 0)
495 idx_end = ~0;
496 else
497 idx_end = idx_start + npages - 1;
498
499 next = idx_start;
500 while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_LOCKED)) {
501 if (req->wb_index > idx_end)
502 break;
503
504 next = req->wb_index + 1;
505 BUG_ON(!NFS_WBACK_BUSY(req));
506
507 kref_get(&req->wb_kref);
508 spin_unlock(&inode->i_lock);
509 error = nfs_wait_on_request(req);
510 nfs_release_request(req);
511 spin_lock(&inode->i_lock);
512 if (error < 0)
513 return error;
514 res++;
515 }
516 return res;
517 }
518
519 static void nfs_cancel_commit_list(struct list_head *head)
520 {
521 struct nfs_page *req;
522
523 while(!list_empty(head)) {
524 req = nfs_list_entry(head->next);
525 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
526 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
527 BDI_RECLAIMABLE);
528 nfs_list_remove_request(req);
529 clear_bit(PG_NEED_COMMIT, &(req)->wb_flags);
530 nfs_inode_remove_request(req);
531 nfs_unlock_request(req);
532 }
533 }
534
535 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
536 /*
537 * nfs_scan_commit - Scan an inode for commit requests
538 * @inode: NFS inode to scan
539 * @dst: destination list
540 * @idx_start: lower bound of page->index to scan.
541 * @npages: idx_start + npages sets the upper bound to scan.
542 *
543 * Moves requests from the inode's 'commit' request list.
544 * The requests are *not* checked to ensure that they form a contiguous set.
545 */
546 static int
547 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
548 {
549 struct nfs_inode *nfsi = NFS_I(inode);
550 int res = 0;
551
552 if (nfsi->ncommit != 0) {
553 res = nfs_scan_list(nfsi, dst, idx_start, npages,
554 NFS_PAGE_TAG_COMMIT);
555 nfsi->ncommit -= res;
556 }
557 return res;
558 }
559 #else
560 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
561 {
562 return 0;
563 }
564 #endif
565
566 /*
567 * Try to update any existing write request, or create one if there is none.
568 * In order to match, the request's credentials must match those of
569 * the calling process.
570 *
571 * Note: Should always be called with the Page Lock held!
572 */
573 static struct nfs_page * nfs_update_request(struct nfs_open_context* ctx,
574 struct page *page, unsigned int offset, unsigned int bytes)
575 {
576 struct address_space *mapping = page->mapping;
577 struct inode *inode = mapping->host;
578 struct nfs_page *req, *new = NULL;
579 pgoff_t rqend, end;
580
581 end = offset + bytes;
582
583 for (;;) {
584 /* Loop over all inode entries and see if we find
585 * A request for the page we wish to update
586 */
587 spin_lock(&inode->i_lock);
588 req = nfs_page_find_request_locked(page);
589 if (req) {
590 if (!nfs_set_page_tag_locked(req)) {
591 int error;
592
593 spin_unlock(&inode->i_lock);
594 error = nfs_wait_on_request(req);
595 nfs_release_request(req);
596 if (error < 0) {
597 if (new) {
598 radix_tree_preload_end();
599 nfs_release_request(new);
600 }
601 return ERR_PTR(error);
602 }
603 continue;
604 }
605 spin_unlock(&inode->i_lock);
606 if (new) {
607 radix_tree_preload_end();
608 nfs_release_request(new);
609 }
610 break;
611 }
612
613 if (new) {
614 nfs_lock_request_dontget(new);
615 nfs_inode_add_request(inode, new);
616 spin_unlock(&inode->i_lock);
617 radix_tree_preload_end();
618 req = new;
619 goto out;
620 }
621 spin_unlock(&inode->i_lock);
622
623 new = nfs_create_request(ctx, inode, page, offset, bytes);
624 if (IS_ERR(new))
625 return new;
626 if (radix_tree_preload(GFP_NOFS)) {
627 nfs_release_request(new);
628 return ERR_PTR(-ENOMEM);
629 }
630 }
631
632 /* We have a request for our page.
633 * If the creds don't match, or the
634 * page addresses don't match,
635 * tell the caller to wait on the conflicting
636 * request.
637 */
638 rqend = req->wb_offset + req->wb_bytes;
639 if (req->wb_context != ctx
640 || req->wb_page != page
641 || !nfs_dirty_request(req)
642 || offset > rqend || end < req->wb_offset) {
643 nfs_clear_page_tag_locked(req);
644 return ERR_PTR(-EBUSY);
645 }
646
647 /* Okay, the request matches. Update the region */
648 if (offset < req->wb_offset) {
649 req->wb_offset = offset;
650 req->wb_pgbase = offset;
651 req->wb_bytes = max(end, rqend) - req->wb_offset;
652 goto out;
653 }
654
655 if (end > rqend)
656 req->wb_bytes = end - req->wb_offset;
657
658 out:
659 return req;
660 }
661
662 int nfs_flush_incompatible(struct file *file, struct page *page)
663 {
664 struct nfs_open_context *ctx = nfs_file_open_context(file);
665 struct nfs_page *req;
666 int do_flush, status;
667 /*
668 * Look for a request corresponding to this page. If there
669 * is one, and it belongs to another file, we flush it out
670 * before we try to copy anything into the page. Do this
671 * due to the lack of an ACCESS-type call in NFSv2.
672 * Also do the same if we find a request from an existing
673 * dropped page.
674 */
675 do {
676 req = nfs_page_find_request(page);
677 if (req == NULL)
678 return 0;
679 do_flush = req->wb_page != page || req->wb_context != ctx
680 || !nfs_dirty_request(req);
681 nfs_release_request(req);
682 if (!do_flush)
683 return 0;
684 status = nfs_wb_page(page->mapping->host, page);
685 } while (status == 0);
686 return status;
687 }
688
689 /*
690 * If the page cache is marked as unsafe or invalid, then we can't rely on
691 * the PageUptodate() flag. In this case, we will need to turn off
692 * write optimisations that depend on the page contents being correct.
693 */
694 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
695 {
696 return PageUptodate(page) &&
697 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
698 }
699
700 /*
701 * Update and possibly write a cached page of an NFS file.
702 *
703 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
704 * things with a page scheduled for an RPC call (e.g. invalidate it).
705 */
706 int nfs_updatepage(struct file *file, struct page *page,
707 unsigned int offset, unsigned int count)
708 {
709 struct nfs_open_context *ctx = nfs_file_open_context(file);
710 struct inode *inode = page->mapping->host;
711 int status = 0;
712
713 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
714
715 dprintk("NFS: nfs_updatepage(%s/%s %d@%Ld)\n",
716 file->f_path.dentry->d_parent->d_name.name,
717 file->f_path.dentry->d_name.name, count,
718 (long long)(page_offset(page) +offset));
719
720 /* If we're not using byte range locks, and we know the page
721 * is up to date, it may be more efficient to extend the write
722 * to cover the entire page in order to avoid fragmentation
723 * inefficiencies.
724 */
725 if (nfs_write_pageuptodate(page, inode) &&
726 inode->i_flock == NULL &&
727 !(file->f_flags & O_SYNC)) {
728 count = max(count + offset, nfs_page_length(page));
729 offset = 0;
730 }
731
732 status = nfs_writepage_setup(ctx, page, offset, count);
733 if (status < 0)
734 nfs_set_pageerror(page);
735 else
736 __set_page_dirty_nobuffers(page);
737
738 dprintk("NFS: nfs_updatepage returns %d (isize %Ld)\n",
739 status, (long long)i_size_read(inode));
740 return status;
741 }
742
743 static void nfs_writepage_release(struct nfs_page *req)
744 {
745
746 if (PageError(req->wb_page)) {
747 nfs_end_page_writeback(req->wb_page);
748 nfs_inode_remove_request(req);
749 } else if (!nfs_reschedule_unstable_write(req)) {
750 /* Set the PG_uptodate flag */
751 nfs_mark_uptodate(req->wb_page, req->wb_pgbase, req->wb_bytes);
752 nfs_end_page_writeback(req->wb_page);
753 nfs_inode_remove_request(req);
754 } else
755 nfs_end_page_writeback(req->wb_page);
756 nfs_clear_page_tag_locked(req);
757 }
758
759 static int flush_task_priority(int how)
760 {
761 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
762 case FLUSH_HIGHPRI:
763 return RPC_PRIORITY_HIGH;
764 case FLUSH_LOWPRI:
765 return RPC_PRIORITY_LOW;
766 }
767 return RPC_PRIORITY_NORMAL;
768 }
769
770 /*
771 * Set up the argument/result storage required for the RPC call.
772 */
773 static int nfs_write_rpcsetup(struct nfs_page *req,
774 struct nfs_write_data *data,
775 const struct rpc_call_ops *call_ops,
776 unsigned int count, unsigned int offset,
777 int how)
778 {
779 struct inode *inode = req->wb_context->path.dentry->d_inode;
780 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
781 int priority = flush_task_priority(how);
782 struct rpc_task *task;
783 struct rpc_message msg = {
784 .rpc_argp = &data->args,
785 .rpc_resp = &data->res,
786 .rpc_cred = req->wb_context->cred,
787 };
788 struct rpc_task_setup task_setup_data = {
789 .rpc_client = NFS_CLIENT(inode),
790 .task = &data->task,
791 .rpc_message = &msg,
792 .callback_ops = call_ops,
793 .callback_data = data,
794 .workqueue = nfsiod_workqueue,
795 .flags = flags,
796 .priority = priority,
797 };
798
799 /* Set up the RPC argument and reply structs
800 * NB: take care not to mess about with data->commit et al. */
801
802 data->req = req;
803 data->inode = inode = req->wb_context->path.dentry->d_inode;
804 data->cred = msg.rpc_cred;
805
806 data->args.fh = NFS_FH(inode);
807 data->args.offset = req_offset(req) + offset;
808 data->args.pgbase = req->wb_pgbase + offset;
809 data->args.pages = data->pagevec;
810 data->args.count = count;
811 data->args.context = get_nfs_open_context(req->wb_context);
812 data->args.stable = NFS_UNSTABLE;
813 if (how & FLUSH_STABLE) {
814 data->args.stable = NFS_DATA_SYNC;
815 if (!NFS_I(inode)->ncommit)
816 data->args.stable = NFS_FILE_SYNC;
817 }
818
819 data->res.fattr = &data->fattr;
820 data->res.count = count;
821 data->res.verf = &data->verf;
822 nfs_fattr_init(&data->fattr);
823
824 /* Set up the initial task struct. */
825 NFS_PROTO(inode)->write_setup(data, &msg);
826
827 dprintk("NFS: %5u initiated write call "
828 "(req %s/%Ld, %u bytes @ offset %Lu)\n",
829 data->task.tk_pid,
830 inode->i_sb->s_id,
831 (long long)NFS_FILEID(inode),
832 count,
833 (unsigned long long)data->args.offset);
834
835 task = rpc_run_task(&task_setup_data);
836 if (IS_ERR(task))
837 return PTR_ERR(task);
838 rpc_put_task(task);
839 return 0;
840 }
841
842 /* If a nfs_flush_* function fails, it should remove reqs from @head and
843 * call this on each, which will prepare them to be retried on next
844 * writeback using standard nfs.
845 */
846 static void nfs_redirty_request(struct nfs_page *req)
847 {
848 nfs_mark_request_dirty(req);
849 nfs_end_page_writeback(req->wb_page);
850 nfs_clear_page_tag_locked(req);
851 }
852
853 /*
854 * Generate multiple small requests to write out a single
855 * contiguous dirty area on one page.
856 */
857 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
858 {
859 struct nfs_page *req = nfs_list_entry(head->next);
860 struct page *page = req->wb_page;
861 struct nfs_write_data *data;
862 size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
863 unsigned int offset;
864 int requests = 0;
865 int ret = 0;
866 LIST_HEAD(list);
867
868 nfs_list_remove_request(req);
869
870 nbytes = count;
871 do {
872 size_t len = min(nbytes, wsize);
873
874 data = nfs_writedata_alloc(1);
875 if (!data)
876 goto out_bad;
877 list_add(&data->pages, &list);
878 requests++;
879 nbytes -= len;
880 } while (nbytes != 0);
881 atomic_set(&req->wb_complete, requests);
882
883 ClearPageError(page);
884 offset = 0;
885 nbytes = count;
886 do {
887 int ret2;
888
889 data = list_entry(list.next, struct nfs_write_data, pages);
890 list_del_init(&data->pages);
891
892 data->pagevec[0] = page;
893
894 if (nbytes < wsize)
895 wsize = nbytes;
896 ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
897 wsize, offset, how);
898 if (ret == 0)
899 ret = ret2;
900 offset += wsize;
901 nbytes -= wsize;
902 } while (nbytes != 0);
903
904 return ret;
905
906 out_bad:
907 while (!list_empty(&list)) {
908 data = list_entry(list.next, struct nfs_write_data, pages);
909 list_del(&data->pages);
910 nfs_writedata_release(data);
911 }
912 nfs_redirty_request(req);
913 return -ENOMEM;
914 }
915
916 /*
917 * Create an RPC task for the given write request and kick it.
918 * The page must have been locked by the caller.
919 *
920 * It may happen that the page we're passed is not marked dirty.
921 * This is the case if nfs_updatepage detects a conflicting request
922 * that has been written but not committed.
923 */
924 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
925 {
926 struct nfs_page *req;
927 struct page **pages;
928 struct nfs_write_data *data;
929
930 data = nfs_writedata_alloc(npages);
931 if (!data)
932 goto out_bad;
933
934 pages = data->pagevec;
935 while (!list_empty(head)) {
936 req = nfs_list_entry(head->next);
937 nfs_list_remove_request(req);
938 nfs_list_add_request(req, &data->pages);
939 ClearPageError(req->wb_page);
940 *pages++ = req->wb_page;
941 }
942 req = nfs_list_entry(data->pages.next);
943
944 /* Set up the argument struct */
945 return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
946 out_bad:
947 while (!list_empty(head)) {
948 req = nfs_list_entry(head->next);
949 nfs_list_remove_request(req);
950 nfs_redirty_request(req);
951 }
952 return -ENOMEM;
953 }
954
955 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
956 struct inode *inode, int ioflags)
957 {
958 size_t wsize = NFS_SERVER(inode)->wsize;
959
960 if (wsize < PAGE_CACHE_SIZE)
961 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
962 else
963 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
964 }
965
966 /*
967 * Handle a write reply that flushed part of a page.
968 */
969 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
970 {
971 struct nfs_write_data *data = calldata;
972 struct nfs_page *req = data->req;
973
974 dprintk("NFS: write (%s/%Ld %d@%Ld)",
975 req->wb_context->path.dentry->d_inode->i_sb->s_id,
976 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
977 req->wb_bytes,
978 (long long)req_offset(req));
979
980 nfs_writeback_done(task, data);
981 }
982
983 static void nfs_writeback_release_partial(void *calldata)
984 {
985 struct nfs_write_data *data = calldata;
986 struct nfs_page *req = data->req;
987 struct page *page = req->wb_page;
988 int status = data->task.tk_status;
989
990 if (status < 0) {
991 nfs_set_pageerror(page);
992 nfs_context_set_write_error(req->wb_context, status);
993 dprintk(", error = %d\n", status);
994 goto out;
995 }
996
997 if (nfs_write_need_commit(data)) {
998 struct inode *inode = page->mapping->host;
999
1000 spin_lock(&inode->i_lock);
1001 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1002 /* Do nothing we need to resend the writes */
1003 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1004 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1005 dprintk(" defer commit\n");
1006 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1007 set_bit(PG_NEED_RESCHED, &req->wb_flags);
1008 clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1009 dprintk(" server reboot detected\n");
1010 }
1011 spin_unlock(&inode->i_lock);
1012 } else
1013 dprintk(" OK\n");
1014
1015 out:
1016 if (atomic_dec_and_test(&req->wb_complete))
1017 nfs_writepage_release(req);
1018 nfs_writedata_release(calldata);
1019 }
1020
1021 static const struct rpc_call_ops nfs_write_partial_ops = {
1022 .rpc_call_done = nfs_writeback_done_partial,
1023 .rpc_release = nfs_writeback_release_partial,
1024 };
1025
1026 /*
1027 * Handle a write reply that flushes a whole page.
1028 *
1029 * FIXME: There is an inherent race with invalidate_inode_pages and
1030 * writebacks since the page->count is kept > 1 for as long
1031 * as the page has a write request pending.
1032 */
1033 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1034 {
1035 struct nfs_write_data *data = calldata;
1036
1037 nfs_writeback_done(task, data);
1038 }
1039
1040 static void nfs_writeback_release_full(void *calldata)
1041 {
1042 struct nfs_write_data *data = calldata;
1043 int status = data->task.tk_status;
1044
1045 /* Update attributes as result of writeback. */
1046 while (!list_empty(&data->pages)) {
1047 struct nfs_page *req = nfs_list_entry(data->pages.next);
1048 struct page *page = req->wb_page;
1049
1050 nfs_list_remove_request(req);
1051
1052 dprintk("NFS: write (%s/%Ld %d@%Ld)",
1053 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1054 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1055 req->wb_bytes,
1056 (long long)req_offset(req));
1057
1058 if (status < 0) {
1059 nfs_set_pageerror(page);
1060 nfs_context_set_write_error(req->wb_context, status);
1061 dprintk(", error = %d\n", status);
1062 goto remove_request;
1063 }
1064
1065 if (nfs_write_need_commit(data)) {
1066 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1067 nfs_mark_request_commit(req);
1068 nfs_end_page_writeback(page);
1069 dprintk(" marked for commit\n");
1070 goto next;
1071 }
1072 /* Set the PG_uptodate flag? */
1073 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
1074 dprintk(" OK\n");
1075 remove_request:
1076 nfs_end_page_writeback(page);
1077 nfs_inode_remove_request(req);
1078 next:
1079 nfs_clear_page_tag_locked(req);
1080 }
1081 nfs_writedata_release(calldata);
1082 }
1083
1084 static const struct rpc_call_ops nfs_write_full_ops = {
1085 .rpc_call_done = nfs_writeback_done_full,
1086 .rpc_release = nfs_writeback_release_full,
1087 };
1088
1089
1090 /*
1091 * This function is called when the WRITE call is complete.
1092 */
1093 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1094 {
1095 struct nfs_writeargs *argp = &data->args;
1096 struct nfs_writeres *resp = &data->res;
1097 int status;
1098
1099 dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1100 task->tk_pid, task->tk_status);
1101
1102 /*
1103 * ->write_done will attempt to use post-op attributes to detect
1104 * conflicting writes by other clients. A strict interpretation
1105 * of close-to-open would allow us to continue caching even if
1106 * another writer had changed the file, but some applications
1107 * depend on tighter cache coherency when writing.
1108 */
1109 status = NFS_PROTO(data->inode)->write_done(task, data);
1110 if (status != 0)
1111 return status;
1112 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1113
1114 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1115 if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1116 /* We tried a write call, but the server did not
1117 * commit data to stable storage even though we
1118 * requested it.
1119 * Note: There is a known bug in Tru64 < 5.0 in which
1120 * the server reports NFS_DATA_SYNC, but performs
1121 * NFS_FILE_SYNC. We therefore implement this checking
1122 * as a dprintk() in order to avoid filling syslog.
1123 */
1124 static unsigned long complain;
1125
1126 if (time_before(complain, jiffies)) {
1127 dprintk("NFS: faulty NFS server %s:"
1128 " (committed = %d) != (stable = %d)\n",
1129 NFS_SERVER(data->inode)->nfs_client->cl_hostname,
1130 resp->verf->committed, argp->stable);
1131 complain = jiffies + 300 * HZ;
1132 }
1133 }
1134 #endif
1135 /* Is this a short write? */
1136 if (task->tk_status >= 0 && resp->count < argp->count) {
1137 static unsigned long complain;
1138
1139 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1140
1141 /* Has the server at least made some progress? */
1142 if (resp->count != 0) {
1143 /* Was this an NFSv2 write or an NFSv3 stable write? */
1144 if (resp->verf->committed != NFS_UNSTABLE) {
1145 /* Resend from where the server left off */
1146 argp->offset += resp->count;
1147 argp->pgbase += resp->count;
1148 argp->count -= resp->count;
1149 } else {
1150 /* Resend as a stable write in order to avoid
1151 * headaches in the case of a server crash.
1152 */
1153 argp->stable = NFS_FILE_SYNC;
1154 }
1155 rpc_restart_call(task);
1156 return -EAGAIN;
1157 }
1158 if (time_before(complain, jiffies)) {
1159 printk(KERN_WARNING
1160 "NFS: Server wrote zero bytes, expected %u.\n",
1161 argp->count);
1162 complain = jiffies + 300 * HZ;
1163 }
1164 /* Can't do anything about it except throw an error. */
1165 task->tk_status = -EIO;
1166 }
1167 return 0;
1168 }
1169
1170
1171 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1172 void nfs_commitdata_release(void *data)
1173 {
1174 struct nfs_write_data *wdata = data;
1175
1176 put_nfs_open_context(wdata->args.context);
1177 nfs_commit_free(wdata);
1178 }
1179
1180 /*
1181 * Set up the argument/result storage required for the RPC call.
1182 */
1183 static int nfs_commit_rpcsetup(struct list_head *head,
1184 struct nfs_write_data *data,
1185 int how)
1186 {
1187 struct nfs_page *first = nfs_list_entry(head->next);
1188 struct inode *inode = first->wb_context->path.dentry->d_inode;
1189 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
1190 int priority = flush_task_priority(how);
1191 struct rpc_task *task;
1192 struct rpc_message msg = {
1193 .rpc_argp = &data->args,
1194 .rpc_resp = &data->res,
1195 .rpc_cred = first->wb_context->cred,
1196 };
1197 struct rpc_task_setup task_setup_data = {
1198 .task = &data->task,
1199 .rpc_client = NFS_CLIENT(inode),
1200 .rpc_message = &msg,
1201 .callback_ops = &nfs_commit_ops,
1202 .callback_data = data,
1203 .workqueue = nfsiod_workqueue,
1204 .flags = flags,
1205 .priority = priority,
1206 };
1207
1208 /* Set up the RPC argument and reply structs
1209 * NB: take care not to mess about with data->commit et al. */
1210
1211 list_splice_init(head, &data->pages);
1212
1213 data->inode = inode;
1214 data->cred = msg.rpc_cred;
1215
1216 data->args.fh = NFS_FH(data->inode);
1217 /* Note: we always request a commit of the entire inode */
1218 data->args.offset = 0;
1219 data->args.count = 0;
1220 data->args.context = get_nfs_open_context(first->wb_context);
1221 data->res.count = 0;
1222 data->res.fattr = &data->fattr;
1223 data->res.verf = &data->verf;
1224 nfs_fattr_init(&data->fattr);
1225
1226 /* Set up the initial task struct. */
1227 NFS_PROTO(inode)->commit_setup(data, &msg);
1228
1229 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1230
1231 task = rpc_run_task(&task_setup_data);
1232 if (IS_ERR(task))
1233 return PTR_ERR(task);
1234 rpc_put_task(task);
1235 return 0;
1236 }
1237
1238 /*
1239 * Commit dirty pages
1240 */
1241 static int
1242 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1243 {
1244 struct nfs_write_data *data;
1245 struct nfs_page *req;
1246
1247 data = nfs_commitdata_alloc();
1248
1249 if (!data)
1250 goto out_bad;
1251
1252 /* Set up the argument struct */
1253 return nfs_commit_rpcsetup(head, data, how);
1254 out_bad:
1255 while (!list_empty(head)) {
1256 req = nfs_list_entry(head->next);
1257 nfs_list_remove_request(req);
1258 nfs_mark_request_commit(req);
1259 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1260 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1261 BDI_RECLAIMABLE);
1262 nfs_clear_page_tag_locked(req);
1263 }
1264 return -ENOMEM;
1265 }
1266
1267 /*
1268 * COMMIT call returned
1269 */
1270 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1271 {
1272 struct nfs_write_data *data = calldata;
1273
1274 dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1275 task->tk_pid, task->tk_status);
1276
1277 /* Call the NFS version-specific code */
1278 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1279 return;
1280 }
1281
1282 static void nfs_commit_release(void *calldata)
1283 {
1284 struct nfs_write_data *data = calldata;
1285 struct nfs_page *req;
1286 int status = data->task.tk_status;
1287
1288 while (!list_empty(&data->pages)) {
1289 req = nfs_list_entry(data->pages.next);
1290 nfs_list_remove_request(req);
1291 clear_bit(PG_NEED_COMMIT, &(req)->wb_flags);
1292 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1293 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1294 BDI_RECLAIMABLE);
1295
1296 dprintk("NFS: commit (%s/%Ld %d@%Ld)",
1297 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1298 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1299 req->wb_bytes,
1300 (long long)req_offset(req));
1301 if (status < 0) {
1302 nfs_context_set_write_error(req->wb_context, status);
1303 nfs_inode_remove_request(req);
1304 dprintk(", error = %d\n", status);
1305 goto next;
1306 }
1307
1308 /* Okay, COMMIT succeeded, apparently. Check the verifier
1309 * returned by the server against all stored verfs. */
1310 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1311 /* We have a match */
1312 /* Set the PG_uptodate flag */
1313 nfs_mark_uptodate(req->wb_page, req->wb_pgbase,
1314 req->wb_bytes);
1315 nfs_inode_remove_request(req);
1316 dprintk(" OK\n");
1317 goto next;
1318 }
1319 /* We have a mismatch. Write the page again */
1320 dprintk(" mismatch\n");
1321 nfs_mark_request_dirty(req);
1322 next:
1323 nfs_clear_page_tag_locked(req);
1324 }
1325 nfs_commitdata_release(calldata);
1326 }
1327
1328 static const struct rpc_call_ops nfs_commit_ops = {
1329 .rpc_call_done = nfs_commit_done,
1330 .rpc_release = nfs_commit_release,
1331 };
1332
1333 int nfs_commit_inode(struct inode *inode, int how)
1334 {
1335 LIST_HEAD(head);
1336 int res;
1337
1338 spin_lock(&inode->i_lock);
1339 res = nfs_scan_commit(inode, &head, 0, 0);
1340 spin_unlock(&inode->i_lock);
1341 if (res) {
1342 int error = nfs_commit_list(inode, &head, how);
1343 if (error < 0)
1344 return error;
1345 }
1346 return res;
1347 }
1348 #else
1349 static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1350 {
1351 return 0;
1352 }
1353 #endif
1354
1355 long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how)
1356 {
1357 struct inode *inode = mapping->host;
1358 pgoff_t idx_start, idx_end;
1359 unsigned int npages = 0;
1360 LIST_HEAD(head);
1361 int nocommit = how & FLUSH_NOCOMMIT;
1362 long pages, ret;
1363
1364 /* FIXME */
1365 if (wbc->range_cyclic)
1366 idx_start = 0;
1367 else {
1368 idx_start = wbc->range_start >> PAGE_CACHE_SHIFT;
1369 idx_end = wbc->range_end >> PAGE_CACHE_SHIFT;
1370 if (idx_end > idx_start) {
1371 pgoff_t l_npages = 1 + idx_end - idx_start;
1372 npages = l_npages;
1373 if (sizeof(npages) != sizeof(l_npages) &&
1374 (pgoff_t)npages != l_npages)
1375 npages = 0;
1376 }
1377 }
1378 how &= ~FLUSH_NOCOMMIT;
1379 spin_lock(&inode->i_lock);
1380 do {
1381 ret = nfs_wait_on_requests_locked(inode, idx_start, npages);
1382 if (ret != 0)
1383 continue;
1384 if (nocommit)
1385 break;
1386 pages = nfs_scan_commit(inode, &head, idx_start, npages);
1387 if (pages == 0)
1388 break;
1389 if (how & FLUSH_INVALIDATE) {
1390 spin_unlock(&inode->i_lock);
1391 nfs_cancel_commit_list(&head);
1392 ret = pages;
1393 spin_lock(&inode->i_lock);
1394 continue;
1395 }
1396 pages += nfs_scan_commit(inode, &head, 0, 0);
1397 spin_unlock(&inode->i_lock);
1398 ret = nfs_commit_list(inode, &head, how);
1399 spin_lock(&inode->i_lock);
1400
1401 } while (ret >= 0);
1402 spin_unlock(&inode->i_lock);
1403 return ret;
1404 }
1405
1406 static int __nfs_write_mapping(struct address_space *mapping, struct writeback_control *wbc, int how)
1407 {
1408 int ret;
1409
1410 ret = nfs_writepages(mapping, wbc);
1411 if (ret < 0)
1412 goto out;
1413 ret = nfs_sync_mapping_wait(mapping, wbc, how);
1414 if (ret < 0)
1415 goto out;
1416 return 0;
1417 out:
1418 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1419 return ret;
1420 }
1421
1422 /* Two pass sync: first using WB_SYNC_NONE, then WB_SYNC_ALL */
1423 static int nfs_write_mapping(struct address_space *mapping, int how)
1424 {
1425 struct writeback_control wbc = {
1426 .bdi = mapping->backing_dev_info,
1427 .sync_mode = WB_SYNC_NONE,
1428 .nr_to_write = LONG_MAX,
1429 .for_writepages = 1,
1430 .range_cyclic = 1,
1431 };
1432 int ret;
1433
1434 ret = __nfs_write_mapping(mapping, &wbc, how);
1435 if (ret < 0)
1436 return ret;
1437 wbc.sync_mode = WB_SYNC_ALL;
1438 return __nfs_write_mapping(mapping, &wbc, how);
1439 }
1440
1441 /*
1442 * flush the inode to disk.
1443 */
1444 int nfs_wb_all(struct inode *inode)
1445 {
1446 return nfs_write_mapping(inode->i_mapping, 0);
1447 }
1448
1449 int nfs_wb_nocommit(struct inode *inode)
1450 {
1451 return nfs_write_mapping(inode->i_mapping, FLUSH_NOCOMMIT);
1452 }
1453
1454 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1455 {
1456 struct nfs_page *req;
1457 loff_t range_start = page_offset(page);
1458 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1459 struct writeback_control wbc = {
1460 .bdi = page->mapping->backing_dev_info,
1461 .sync_mode = WB_SYNC_ALL,
1462 .nr_to_write = LONG_MAX,
1463 .range_start = range_start,
1464 .range_end = range_end,
1465 };
1466 int ret = 0;
1467
1468 BUG_ON(!PageLocked(page));
1469 for (;;) {
1470 req = nfs_page_find_request(page);
1471 if (req == NULL)
1472 goto out;
1473 if (test_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1474 nfs_release_request(req);
1475 break;
1476 }
1477 if (nfs_lock_request_dontget(req)) {
1478 nfs_inode_remove_request(req);
1479 /*
1480 * In case nfs_inode_remove_request has marked the
1481 * page as being dirty
1482 */
1483 cancel_dirty_page(page, PAGE_CACHE_SIZE);
1484 nfs_unlock_request(req);
1485 break;
1486 }
1487 ret = nfs_wait_on_request(req);
1488 if (ret < 0)
1489 goto out;
1490 }
1491 if (!PagePrivate(page))
1492 return 0;
1493 ret = nfs_sync_mapping_wait(page->mapping, &wbc, FLUSH_INVALIDATE);
1494 out:
1495 return ret;
1496 }
1497
1498 static int nfs_wb_page_priority(struct inode *inode, struct page *page,
1499 int how)
1500 {
1501 loff_t range_start = page_offset(page);
1502 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1503 struct writeback_control wbc = {
1504 .bdi = page->mapping->backing_dev_info,
1505 .sync_mode = WB_SYNC_ALL,
1506 .nr_to_write = LONG_MAX,
1507 .range_start = range_start,
1508 .range_end = range_end,
1509 };
1510 int ret;
1511
1512 do {
1513 if (clear_page_dirty_for_io(page)) {
1514 ret = nfs_writepage_locked(page, &wbc);
1515 if (ret < 0)
1516 goto out_error;
1517 } else if (!PagePrivate(page))
1518 break;
1519 ret = nfs_sync_mapping_wait(page->mapping, &wbc, how);
1520 if (ret < 0)
1521 goto out_error;
1522 } while (PagePrivate(page));
1523 return 0;
1524 out_error:
1525 __mark_inode_dirty(inode, I_DIRTY_PAGES);
1526 return ret;
1527 }
1528
1529 /*
1530 * Write back all requests on one page - we do this before reading it.
1531 */
1532 int nfs_wb_page(struct inode *inode, struct page* page)
1533 {
1534 return nfs_wb_page_priority(inode, page, FLUSH_STABLE);
1535 }
1536
1537 int __init nfs_init_writepagecache(void)
1538 {
1539 nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1540 sizeof(struct nfs_write_data),
1541 0, SLAB_HWCACHE_ALIGN,
1542 NULL);
1543 if (nfs_wdata_cachep == NULL)
1544 return -ENOMEM;
1545
1546 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1547 nfs_wdata_cachep);
1548 if (nfs_wdata_mempool == NULL)
1549 return -ENOMEM;
1550
1551 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1552 nfs_wdata_cachep);
1553 if (nfs_commit_mempool == NULL)
1554 return -ENOMEM;
1555
1556 /*
1557 * NFS congestion size, scale with available memory.
1558 *
1559 * 64MB: 8192k
1560 * 128MB: 11585k
1561 * 256MB: 16384k
1562 * 512MB: 23170k
1563 * 1GB: 32768k
1564 * 2GB: 46340k
1565 * 4GB: 65536k
1566 * 8GB: 92681k
1567 * 16GB: 131072k
1568 *
1569 * This allows larger machines to have larger/more transfers.
1570 * Limit the default to 256M
1571 */
1572 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1573 if (nfs_congestion_kb > 256*1024)
1574 nfs_congestion_kb = 256*1024;
1575
1576 return 0;
1577 }
1578
1579 void nfs_destroy_writepagecache(void)
1580 {
1581 mempool_destroy(nfs_commit_mempool);
1582 mempool_destroy(nfs_wdata_mempool);
1583 kmem_cache_destroy(nfs_wdata_cachep);
1584 }
1585