]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/nfsd/nfscache.c
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[mirror_ubuntu-bionic-kernel.git] / fs / nfsd / nfscache.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Request reply cache. This is currently a global cache, but this may
4 * change in the future and be a per-client cache.
5 *
6 * This code is heavily inspired by the 44BSD implementation, although
7 * it does things a bit differently.
8 *
9 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
10 */
11
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/sunrpc/addr.h>
15 #include <linux/highmem.h>
16 #include <linux/log2.h>
17 #include <linux/hash.h>
18 #include <net/checksum.h>
19
20 #include "nfsd.h"
21 #include "cache.h"
22
23 #define NFSDDBG_FACILITY NFSDDBG_REPCACHE
24
25 /*
26 * We use this value to determine the number of hash buckets from the max
27 * cache size, the idea being that when the cache is at its maximum number
28 * of entries, then this should be the average number of entries per bucket.
29 */
30 #define TARGET_BUCKET_SIZE 64
31
32 struct nfsd_drc_bucket {
33 struct list_head lru_head;
34 spinlock_t cache_lock;
35 };
36
37 static struct nfsd_drc_bucket *drc_hashtbl;
38 static struct kmem_cache *drc_slab;
39
40 /* max number of entries allowed in the cache */
41 static unsigned int max_drc_entries;
42
43 /* number of significant bits in the hash value */
44 static unsigned int maskbits;
45 static unsigned int drc_hashsize;
46
47 /*
48 * Stats and other tracking of on the duplicate reply cache. All of these and
49 * the "rc" fields in nfsdstats are protected by the cache_lock
50 */
51
52 /* total number of entries */
53 static atomic_t num_drc_entries;
54
55 /* cache misses due only to checksum comparison failures */
56 static unsigned int payload_misses;
57
58 /* amount of memory (in bytes) currently consumed by the DRC */
59 static unsigned int drc_mem_usage;
60
61 /* longest hash chain seen */
62 static unsigned int longest_chain;
63
64 /* size of cache when we saw the longest hash chain */
65 static unsigned int longest_chain_cachesize;
66
67 static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
68 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
69 struct shrink_control *sc);
70 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
71 struct shrink_control *sc);
72
73 static struct shrinker nfsd_reply_cache_shrinker = {
74 .scan_objects = nfsd_reply_cache_scan,
75 .count_objects = nfsd_reply_cache_count,
76 .seeks = 1,
77 };
78
79 /*
80 * Put a cap on the size of the DRC based on the amount of available
81 * low memory in the machine.
82 *
83 * 64MB: 8192
84 * 128MB: 11585
85 * 256MB: 16384
86 * 512MB: 23170
87 * 1GB: 32768
88 * 2GB: 46340
89 * 4GB: 65536
90 * 8GB: 92681
91 * 16GB: 131072
92 *
93 * ...with a hard cap of 256k entries. In the worst case, each entry will be
94 * ~1k, so the above numbers should give a rough max of the amount of memory
95 * used in k.
96 */
97 static unsigned int
98 nfsd_cache_size_limit(void)
99 {
100 unsigned int limit;
101 unsigned long low_pages = totalram_pages - totalhigh_pages;
102
103 limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
104 return min_t(unsigned int, limit, 256*1024);
105 }
106
107 /*
108 * Compute the number of hash buckets we need. Divide the max cachesize by
109 * the "target" max bucket size, and round up to next power of two.
110 */
111 static unsigned int
112 nfsd_hashsize(unsigned int limit)
113 {
114 return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
115 }
116
117 static u32
118 nfsd_cache_hash(__be32 xid)
119 {
120 return hash_32(be32_to_cpu(xid), maskbits);
121 }
122
123 static struct svc_cacherep *
124 nfsd_reply_cache_alloc(void)
125 {
126 struct svc_cacherep *rp;
127
128 rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
129 if (rp) {
130 rp->c_state = RC_UNUSED;
131 rp->c_type = RC_NOCACHE;
132 INIT_LIST_HEAD(&rp->c_lru);
133 }
134 return rp;
135 }
136
137 static void
138 nfsd_reply_cache_free_locked(struct svc_cacherep *rp)
139 {
140 if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) {
141 drc_mem_usage -= rp->c_replvec.iov_len;
142 kfree(rp->c_replvec.iov_base);
143 }
144 list_del(&rp->c_lru);
145 atomic_dec(&num_drc_entries);
146 drc_mem_usage -= sizeof(*rp);
147 kmem_cache_free(drc_slab, rp);
148 }
149
150 static void
151 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
152 {
153 spin_lock(&b->cache_lock);
154 nfsd_reply_cache_free_locked(rp);
155 spin_unlock(&b->cache_lock);
156 }
157
158 int nfsd_reply_cache_init(void)
159 {
160 unsigned int hashsize;
161 unsigned int i;
162 int status = 0;
163
164 max_drc_entries = nfsd_cache_size_limit();
165 atomic_set(&num_drc_entries, 0);
166 hashsize = nfsd_hashsize(max_drc_entries);
167 maskbits = ilog2(hashsize);
168
169 status = register_shrinker(&nfsd_reply_cache_shrinker);
170 if (status)
171 return status;
172
173 drc_slab = kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep),
174 0, 0, NULL);
175 if (!drc_slab)
176 goto out_nomem;
177
178 drc_hashtbl = kcalloc(hashsize, sizeof(*drc_hashtbl), GFP_KERNEL);
179 if (!drc_hashtbl) {
180 drc_hashtbl = vzalloc(hashsize * sizeof(*drc_hashtbl));
181 if (!drc_hashtbl)
182 goto out_nomem;
183 }
184
185 for (i = 0; i < hashsize; i++) {
186 INIT_LIST_HEAD(&drc_hashtbl[i].lru_head);
187 spin_lock_init(&drc_hashtbl[i].cache_lock);
188 }
189 drc_hashsize = hashsize;
190
191 return 0;
192 out_nomem:
193 printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
194 nfsd_reply_cache_shutdown();
195 return -ENOMEM;
196 }
197
198 void nfsd_reply_cache_shutdown(void)
199 {
200 struct svc_cacherep *rp;
201 unsigned int i;
202
203 unregister_shrinker(&nfsd_reply_cache_shrinker);
204
205 for (i = 0; i < drc_hashsize; i++) {
206 struct list_head *head = &drc_hashtbl[i].lru_head;
207 while (!list_empty(head)) {
208 rp = list_first_entry(head, struct svc_cacherep, c_lru);
209 nfsd_reply_cache_free_locked(rp);
210 }
211 }
212
213 kvfree(drc_hashtbl);
214 drc_hashtbl = NULL;
215 drc_hashsize = 0;
216
217 kmem_cache_destroy(drc_slab);
218 drc_slab = NULL;
219 }
220
221 /*
222 * Move cache entry to end of LRU list, and queue the cleaner to run if it's
223 * not already scheduled.
224 */
225 static void
226 lru_put_end(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
227 {
228 rp->c_timestamp = jiffies;
229 list_move_tail(&rp->c_lru, &b->lru_head);
230 }
231
232 static long
233 prune_bucket(struct nfsd_drc_bucket *b)
234 {
235 struct svc_cacherep *rp, *tmp;
236 long freed = 0;
237
238 list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
239 /*
240 * Don't free entries attached to calls that are still
241 * in-progress, but do keep scanning the list.
242 */
243 if (rp->c_state == RC_INPROG)
244 continue;
245 if (atomic_read(&num_drc_entries) <= max_drc_entries &&
246 time_before(jiffies, rp->c_timestamp + RC_EXPIRE))
247 break;
248 nfsd_reply_cache_free_locked(rp);
249 freed++;
250 }
251 return freed;
252 }
253
254 /*
255 * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
256 * Also prune the oldest ones when the total exceeds the max number of entries.
257 */
258 static long
259 prune_cache_entries(void)
260 {
261 unsigned int i;
262 long freed = 0;
263
264 for (i = 0; i < drc_hashsize; i++) {
265 struct nfsd_drc_bucket *b = &drc_hashtbl[i];
266
267 if (list_empty(&b->lru_head))
268 continue;
269 spin_lock(&b->cache_lock);
270 freed += prune_bucket(b);
271 spin_unlock(&b->cache_lock);
272 }
273 return freed;
274 }
275
276 static unsigned long
277 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
278 {
279 return atomic_read(&num_drc_entries);
280 }
281
282 static unsigned long
283 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
284 {
285 return prune_cache_entries();
286 }
287 /*
288 * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
289 */
290 static __wsum
291 nfsd_cache_csum(struct svc_rqst *rqstp)
292 {
293 int idx;
294 unsigned int base;
295 __wsum csum;
296 struct xdr_buf *buf = &rqstp->rq_arg;
297 const unsigned char *p = buf->head[0].iov_base;
298 size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len,
299 RC_CSUMLEN);
300 size_t len = min(buf->head[0].iov_len, csum_len);
301
302 /* rq_arg.head first */
303 csum = csum_partial(p, len, 0);
304 csum_len -= len;
305
306 /* Continue into page array */
307 idx = buf->page_base / PAGE_SIZE;
308 base = buf->page_base & ~PAGE_MASK;
309 while (csum_len) {
310 p = page_address(buf->pages[idx]) + base;
311 len = min_t(size_t, PAGE_SIZE - base, csum_len);
312 csum = csum_partial(p, len, csum);
313 csum_len -= len;
314 base = 0;
315 ++idx;
316 }
317 return csum;
318 }
319
320 static bool
321 nfsd_cache_match(struct svc_rqst *rqstp, __wsum csum, struct svc_cacherep *rp)
322 {
323 /* Check RPC XID first */
324 if (rqstp->rq_xid != rp->c_xid)
325 return false;
326 /* compare checksum of NFS data */
327 if (csum != rp->c_csum) {
328 ++payload_misses;
329 return false;
330 }
331
332 /* Other discriminators */
333 if (rqstp->rq_proc != rp->c_proc ||
334 rqstp->rq_prot != rp->c_prot ||
335 rqstp->rq_vers != rp->c_vers ||
336 rqstp->rq_arg.len != rp->c_len ||
337 !rpc_cmp_addr(svc_addr(rqstp), (struct sockaddr *)&rp->c_addr) ||
338 rpc_get_port(svc_addr(rqstp)) != rpc_get_port((struct sockaddr *)&rp->c_addr))
339 return false;
340
341 return true;
342 }
343
344 /*
345 * Search the request hash for an entry that matches the given rqstp.
346 * Must be called with cache_lock held. Returns the found entry or
347 * NULL on failure.
348 */
349 static struct svc_cacherep *
350 nfsd_cache_search(struct nfsd_drc_bucket *b, struct svc_rqst *rqstp,
351 __wsum csum)
352 {
353 struct svc_cacherep *rp, *ret = NULL;
354 struct list_head *rh = &b->lru_head;
355 unsigned int entries = 0;
356
357 list_for_each_entry(rp, rh, c_lru) {
358 ++entries;
359 if (nfsd_cache_match(rqstp, csum, rp)) {
360 ret = rp;
361 break;
362 }
363 }
364
365 /* tally hash chain length stats */
366 if (entries > longest_chain) {
367 longest_chain = entries;
368 longest_chain_cachesize = atomic_read(&num_drc_entries);
369 } else if (entries == longest_chain) {
370 /* prefer to keep the smallest cachesize possible here */
371 longest_chain_cachesize = min_t(unsigned int,
372 longest_chain_cachesize,
373 atomic_read(&num_drc_entries));
374 }
375
376 return ret;
377 }
378
379 /*
380 * Try to find an entry matching the current call in the cache. When none
381 * is found, we try to grab the oldest expired entry off the LRU list. If
382 * a suitable one isn't there, then drop the cache_lock and allocate a
383 * new one, then search again in case one got inserted while this thread
384 * didn't hold the lock.
385 */
386 int
387 nfsd_cache_lookup(struct svc_rqst *rqstp)
388 {
389 struct svc_cacherep *rp, *found;
390 __be32 xid = rqstp->rq_xid;
391 u32 proto = rqstp->rq_prot,
392 vers = rqstp->rq_vers,
393 proc = rqstp->rq_proc;
394 __wsum csum;
395 u32 hash = nfsd_cache_hash(xid);
396 struct nfsd_drc_bucket *b = &drc_hashtbl[hash];
397 unsigned long age;
398 int type = rqstp->rq_cachetype;
399 int rtn = RC_DOIT;
400
401 rqstp->rq_cacherep = NULL;
402 if (type == RC_NOCACHE) {
403 nfsdstats.rcnocache++;
404 return rtn;
405 }
406
407 csum = nfsd_cache_csum(rqstp);
408
409 /*
410 * Since the common case is a cache miss followed by an insert,
411 * preallocate an entry.
412 */
413 rp = nfsd_reply_cache_alloc();
414 spin_lock(&b->cache_lock);
415 if (likely(rp)) {
416 atomic_inc(&num_drc_entries);
417 drc_mem_usage += sizeof(*rp);
418 }
419
420 /* go ahead and prune the cache */
421 prune_bucket(b);
422
423 found = nfsd_cache_search(b, rqstp, csum);
424 if (found) {
425 if (likely(rp))
426 nfsd_reply_cache_free_locked(rp);
427 rp = found;
428 goto found_entry;
429 }
430
431 if (!rp) {
432 dprintk("nfsd: unable to allocate DRC entry!\n");
433 goto out;
434 }
435
436 nfsdstats.rcmisses++;
437 rqstp->rq_cacherep = rp;
438 rp->c_state = RC_INPROG;
439 rp->c_xid = xid;
440 rp->c_proc = proc;
441 rpc_copy_addr((struct sockaddr *)&rp->c_addr, svc_addr(rqstp));
442 rpc_set_port((struct sockaddr *)&rp->c_addr, rpc_get_port(svc_addr(rqstp)));
443 rp->c_prot = proto;
444 rp->c_vers = vers;
445 rp->c_len = rqstp->rq_arg.len;
446 rp->c_csum = csum;
447
448 lru_put_end(b, rp);
449
450 /* release any buffer */
451 if (rp->c_type == RC_REPLBUFF) {
452 drc_mem_usage -= rp->c_replvec.iov_len;
453 kfree(rp->c_replvec.iov_base);
454 rp->c_replvec.iov_base = NULL;
455 }
456 rp->c_type = RC_NOCACHE;
457 out:
458 spin_unlock(&b->cache_lock);
459 return rtn;
460
461 found_entry:
462 nfsdstats.rchits++;
463 /* We found a matching entry which is either in progress or done. */
464 age = jiffies - rp->c_timestamp;
465 lru_put_end(b, rp);
466
467 rtn = RC_DROPIT;
468 /* Request being processed or excessive rexmits */
469 if (rp->c_state == RC_INPROG || age < RC_DELAY)
470 goto out;
471
472 /* From the hall of fame of impractical attacks:
473 * Is this a user who tries to snoop on the cache? */
474 rtn = RC_DOIT;
475 if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
476 goto out;
477
478 /* Compose RPC reply header */
479 switch (rp->c_type) {
480 case RC_NOCACHE:
481 break;
482 case RC_REPLSTAT:
483 svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat);
484 rtn = RC_REPLY;
485 break;
486 case RC_REPLBUFF:
487 if (!nfsd_cache_append(rqstp, &rp->c_replvec))
488 goto out; /* should not happen */
489 rtn = RC_REPLY;
490 break;
491 default:
492 printk(KERN_WARNING "nfsd: bad repcache type %d\n", rp->c_type);
493 nfsd_reply_cache_free_locked(rp);
494 }
495
496 goto out;
497 }
498
499 /*
500 * Update a cache entry. This is called from nfsd_dispatch when
501 * the procedure has been executed and the complete reply is in
502 * rqstp->rq_res.
503 *
504 * We're copying around data here rather than swapping buffers because
505 * the toplevel loop requires max-sized buffers, which would be a waste
506 * of memory for a cache with a max reply size of 100 bytes (diropokres).
507 *
508 * If we should start to use different types of cache entries tailored
509 * specifically for attrstat and fh's, we may save even more space.
510 *
511 * Also note that a cachetype of RC_NOCACHE can legally be passed when
512 * nfsd failed to encode a reply that otherwise would have been cached.
513 * In this case, nfsd_cache_update is called with statp == NULL.
514 */
515 void
516 nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp)
517 {
518 struct svc_cacherep *rp = rqstp->rq_cacherep;
519 struct kvec *resv = &rqstp->rq_res.head[0], *cachv;
520 u32 hash;
521 struct nfsd_drc_bucket *b;
522 int len;
523 size_t bufsize = 0;
524
525 if (!rp)
526 return;
527
528 hash = nfsd_cache_hash(rp->c_xid);
529 b = &drc_hashtbl[hash];
530
531 len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
532 len >>= 2;
533
534 /* Don't cache excessive amounts of data and XDR failures */
535 if (!statp || len > (256 >> 2)) {
536 nfsd_reply_cache_free(b, rp);
537 return;
538 }
539
540 switch (cachetype) {
541 case RC_REPLSTAT:
542 if (len != 1)
543 printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
544 rp->c_replstat = *statp;
545 break;
546 case RC_REPLBUFF:
547 cachv = &rp->c_replvec;
548 bufsize = len << 2;
549 cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
550 if (!cachv->iov_base) {
551 nfsd_reply_cache_free(b, rp);
552 return;
553 }
554 cachv->iov_len = bufsize;
555 memcpy(cachv->iov_base, statp, bufsize);
556 break;
557 case RC_NOCACHE:
558 nfsd_reply_cache_free(b, rp);
559 return;
560 }
561 spin_lock(&b->cache_lock);
562 drc_mem_usage += bufsize;
563 lru_put_end(b, rp);
564 rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
565 rp->c_type = cachetype;
566 rp->c_state = RC_DONE;
567 spin_unlock(&b->cache_lock);
568 return;
569 }
570
571 /*
572 * Copy cached reply to current reply buffer. Should always fit.
573 * FIXME as reply is in a page, we should just attach the page, and
574 * keep a refcount....
575 */
576 static int
577 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
578 {
579 struct kvec *vec = &rqstp->rq_res.head[0];
580
581 if (vec->iov_len + data->iov_len > PAGE_SIZE) {
582 printk(KERN_WARNING "nfsd: cached reply too large (%zd).\n",
583 data->iov_len);
584 return 0;
585 }
586 memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len);
587 vec->iov_len += data->iov_len;
588 return 1;
589 }
590
591 /*
592 * Note that fields may be added, removed or reordered in the future. Programs
593 * scraping this file for info should test the labels to ensure they're
594 * getting the correct field.
595 */
596 static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
597 {
598 seq_printf(m, "max entries: %u\n", max_drc_entries);
599 seq_printf(m, "num entries: %u\n",
600 atomic_read(&num_drc_entries));
601 seq_printf(m, "hash buckets: %u\n", 1 << maskbits);
602 seq_printf(m, "mem usage: %u\n", drc_mem_usage);
603 seq_printf(m, "cache hits: %u\n", nfsdstats.rchits);
604 seq_printf(m, "cache misses: %u\n", nfsdstats.rcmisses);
605 seq_printf(m, "not cached: %u\n", nfsdstats.rcnocache);
606 seq_printf(m, "payload misses: %u\n", payload_misses);
607 seq_printf(m, "longest chain len: %u\n", longest_chain);
608 seq_printf(m, "cachesize at longest: %u\n", longest_chain_cachesize);
609 return 0;
610 }
611
612 int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file)
613 {
614 return single_open(file, nfsd_reply_cache_stats_show, NULL);
615 }